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ABSTRACT

Despite the fast development of differentiable architecture search (DARTS), it
suffers from long-standing performance instability, which extremely limits its ap-
plication. Existing robustifying methods draw clues from the resulting deterio-
rated behavior instead of finding out its causing factor. Various indicators such
as Hessian eigenvalues are proposed as a signal to stop searching before the per-
formance collapses. However, these indicator-based methods tend to easily reject
good architectures if the thresholds are inappropriately set, let alone the search-
ing is intrinsically noisy. In this paper, we undertake a more subtle and direct
approach to resolve the collapse. We first demonstrate that skip connections have
a clear advantage over other candidate operations, where it can easily recover
from a disadvantageous state and become dominant. We conjecture that this priv-
ilege is causing degenerated performance. Therefore, we propose to factor out
this benefit with an auxiliary skip connection, ensuring a fairer competition for
all operations. We call this approach DARTS-. Extensive experiments on various
datasets verify that it can substantially improve robustness. Our code is available
at https://github.com/Meituan-AutoML/DARTS-.

1 INTRODUCTION

Recent studies (Zela et al., 2020; Liang et al., 2019; Chu et al., 2020b) have shown that one critical
issue for differentiable architecture search (Liu et al., 2019b) regarding the performance collapse due
to superfluous skip connections. Accordingly, some empirical indicators for detecting the occurrence
of collapse have been produced. R-DARTS (Zela et al., 2020) shows that the loss landscape has
more curvatures (characterized by higher Hessian eigenvalues w.r.t. architectural weights) when
the derived architecture generalizes poorly. By regularizing for a lower Hessian eigenvalue, Zela
et al. (2020); Chen & Hsieh (2020) attempt to stabilize the search process. Meanwhile, by directly
constraining the number of skip connections to a fixed number (typically 2), the collapse issue
becomes less pronounced (Chen et al., 2019b; Liang et al., 2019). These indicator-based approaches
have several main drawbacks. Firstly, robustness relies heavily on the quality of the indicator. An
imprecise indicator either inevitably accepts poor models or mistakenly reject good ones. Secondly,
indicators impose strong priors by directly manipulating the inferred model, which is somewhat
suspicious, akin to touching the test set. Thirdly, extra computing cost (Zela et al., 2020) or careful
tuning of hyper-parameters (Chen et al., 2019b; Liang et al., 2019) are required. Therefore, it’s
natural to ask the following questions:

• Can we resolve the collapse without handcrafted indicators and restrictions to interfere with
the searching and/or discretization procedure?

• Is it possible to achieve robustness in DARTS without tuning extra hyper-parameters?

∗Work done as an intern at Meituan Inc.
†Correspondent Author.
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Figure 1: Schematic illustration about (a) DARTS
and (b) the proposed DARTS-, featuring an auxil-
iary skip connection (thick red line) with a decay
rate β between every two nodes to remove the po-
tential unfair advantage that leads to performance
collapse.

To answer the above questions, we propose
an effective and efficient approach to stabilize
DARTS. Our contributions can be summarized
as follows:

New Paradigm to Stabilize DARTS. While
empirically observing that current indicators
(Zela et al., 2020; Chen & Hsieh, 2020) can
avoid performance collapse at a cost of reduced
exploration coverage in the search space, we
propose a novel indicator-free approach to sta-
bilize DARTS, referred to as DARTS-1, which
involves an auxiliary skip connection (see Fig-
ure 1) to remove the unfair advantage (Chu
et al., 2020b) in the searching phase.

Strong Robustness and Stabilization. We
conduct thorough experiments across seven
search spaces and three datasets to demonstrate
the effectiveness of our method. Specifically, our approach robustly obtains state-of-the-art results
on 4 search space with 3× fewer search cost than R-DARTS (Zela et al., 2020), which requires four
independent runs to report the final performance.

Seamless Plug-in Combination with DARTS Variants. We conduct experiments to demonstrate
that our approach can work together seamlessly with other orthogonal DARTS variants by removing
their handcrafted indicators without extra overhead. In particular, our approach is able to improve
0.8% accuracy for P-DARTS, and 0.25% accuracy for PC-DARTS on CIFAR-10 dataset.

2 RELATED WORK

Neural architecture search and DARTS variants. Over the years, researchers have sought to
automatically discover neural architectures for various deep learning tasks to relieve human from
the tedious effort, ranging from image classification (Zoph et al., 2018), objection detection (Ghiasi
et al., 2019), image segmentation (Liu et al., 2019a) to machine translation (So et al., 2019) etc.
Among many proposed approaches, Differentiable Architecture Search (Liu et al., 2019b) features
weight-sharing and resolves the searching problem via gradient descent, which is very efficient and
easy to generalize. A short description of DARTS can be found in A.1. Since then, many subsequent
works have been dedicated to accelerating the process (Dong & Yang, 2019b), reducing memory
cost (Xu et al., 2020), or fostering its ability such as hardware-awareness (Cai et al., 2019; Wu et al.,
2019), finer granularity (Mei et al., 2020) and so on. However, regardless of these endeavors, a
fundamental issue of DARTS over its searching performance collapse remains not properly solved,
which extremely prohibits its application.

Robustifying DARTS. As DARTS (Liu et al., 2019b) is known to be unstable as a result of per-
formance collapse (Chu et al., 2020b), some recent works have devoted to resolving it by either
designing indicators like Hessian eigenvalues for the collapse (Zela et al., 2020) or adding pertur-
bations to regularize such an indicator (Chen & Hsieh, 2020). Both methods rely heavily on the
indicator’s accurateness, i.e., to what extent does the indicator correlate with the performance col-
lapse? Other methods like Progressive DARTS (Chen et al., 2019b) and DARTS+ (Liang et al.,
2019) employ a strong human prior, i.e., limiting the number of skip-connections to be a fixed value.
Fair DARTS (Chu et al., 2020b) argues that the collapse results from the unfair advantage in an ex-
clusive competitive environment, from which skip connections overly benefit to cause an abundant
aggregation. To suppress such an advantage from overshooting, they convert the competition into
collaboration where each operation is independent of others. It is however an indirect approach.
SGAS (Li et al., 2020), instead, circumvents the problem with a greedy strategy where the unfair
advantage can be prevented from taking effect. Nevertheless, potentially good operations might be
pruned out too early because of greedy underestimation.

1We name it so as we undertake an inward way, as opposed to those outward ones who design new indicators,
add extra cost and introduce new hyper-parameters.

2



Published as a conference paper at ICLR 2021

3 DARTS-

3.1 MOTIVATION

We start from the detailed analysis of the role of skip connections. Skip connections were proposed
to construct a residual block in ResNet (He et al., 2016), which significantly improves training
stability. It is even possible to deepen the network up to hundreds of layers without accuracy degra-
dation by simply stacking them up. In contrast, stacking the plain blocks of VGG has degenerated
performance when the network gets deeper. Besides, Ren et al. (2015); Wei et al. (2017); Tai et al.
(2017); Li et al. (2018b) also empirically demonstrate that deep residual network can achieve better
performance on various tasks.

From the gradient flow’s perspective, skip connection is able to alleviate the gradient vanishing
problem. Given a stack of n residual blocks, the output of the (i + 1)th residual block Xi+1 can
be computed as Xi+1 = fi+1(Xi,Wi+1) + Xi, where fi+1 denotes the operations of the (i + 1)th

residual block with weights Wi+1. Suppose the loss function of the model is L, and the gradient of
Xi can be obtained as follows (1 denotes a tensor whose items are all ones):

∂L
∂Xi

=
∂L

∂Xi+1
·
(
∂fi+1

∂Xi
+ 1

)
=

∂L
∂Xi+j

·
j∏

k=1

(
∂fi+k

∂Xi+k−1
+ 1

)
(1)

We observe that the gradient of shallow layers always includes the gradient of deep layers, which
mitigates the gradient vanishing of Wi. Formally we have,

∂L
∂Wi

=
∂L

∂Xi+j
·
j∏

k=1

(
∂fi+k

∂Xi+k−1
+ 1

)
· ∂fi
∂Wi

(2)

To analyze how skip connect affects the performance of residual networks, we introduce a trainable
coefficient β on all skip connections in ResNet. Therefore, the gradient of Xi is converted to:

∂L
∂Xi

=
∂L

∂Xi+1
·
(
∂fi+1

∂Xi
+ β

)
(3)

Once β < 1, gradients of deep layers gradually vanish during the back-propagation (BP) towards
shallow layers. Here β controls the memory of gradients in BP to stabilize the training procedure.
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Figure 2: Tendency of trainable coef-
ficient β (initialized with {0, 0.5, 1})
of the skip connection in ResNet50 and
test accuracy (inset figure) vs. epochs.
The residual structure is proved to learn
a large β to ease training in all three
cases. All models are trained and tested
on CIFAR-10.

We conduct a confirmatory experiment on ResNet50
and show the result in Fig 2. By initializing β with
{0, 0.5, 1.0}, we can visualize the tendency of β along
with training epochs. We observe that β converges to-
wards 1 after 40 epochs no matter the initialization, which
demonstrates that the residual structure learns to push β
to a rather large value to alleviate gradient vanishing.

Similarly, DARTS (Liu et al., 2019b) utilizes a trainable
parameter βskip to denote the importance of skip connec-
tion. However, In the search stage, βskip can generally
increase and dominate the architecture parameters, and
finally leads to performance collapse. We analyze that
a large βskip in DARTS could result from two aspects:
On the one hand, as the supernet automatically learns to
alleviate gradient vanishing, it pushes βskip to a proper
large value; On the other hand, the skip connection is
indeed an important connection for the target network,
which should be selected in the discretization stage. As
a consequence, the skip connection in DARTS plays two-fold roles: as an auxiliary connection to
stabilize the supernet training, and as a candidate operation to build the final network. Inspired by
the above observation and analysis, we propose to stabilize the search process by distinguishing the
two roles of skip connection and handling the issue of gradient flow.
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3.2 STEPPING OUT OF THE PERFORMANCE COLLAPSE

To distinguish the two roles, we introduce an auxiliary skip connection between every two nodes
in a cell, see Fig. 1 (b). On the one hand, the fixed auxiliary skip connection carries the function
of stabilizing the supernet training, even when βskip is rather small. On the other hand, it also
breaks the unfair advantage (Chu et al., 2020b) as the advantageous contribution from the residual
block is factored out. Consequently, the learned architectural parameter βskip can be freed from the
role of controlling the memory of gradients, and is more precisely aimed to represent the relative
importance of skip connection as a candidate operation. In contrast to Eq. 7, the output feature map
of edge e(i,j) can now be obtained by Eq. 4, where βi,jo =

exp(α(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
denotes the normalized

importance, and β is a coefficient independent from the architecture parameters.

Moreover, to eliminate the impact of auxiliary connection on the discretization procedure, we pro-
pose to decrease β to 0 in the search phase, and our method can be degenerated to standard DARTS
at the end of the search. Note that our method is insensitive to the type of decay strategy, so we
choose linear decay by default for simplicity.

ō(i,j)(x) = βx+
∑
o∈O

β(i,j)
o o(x) =

(
β + β

(i,j)
skip

)
x+

∑
o 6=skip

β(i,j)
o o(x) (4)

We then analyze how the auxiliary skip connection handles the issue of gradient flow. Referring
to the theorem of a recent work by Zhou et al. (2020), the convergence of network weight W in
the supernet can heavily depend on βskip. Specifically, suppose only three operations (none, skip
connection, and convolution) are included in the search space and MSE loss is utilized as training
loss, when architecture parameters βoi,j are fixed to optimize W via gradient descent, training loss
can decrease by ratio (1− ηλ/4) at one step with probability at least 1− δ, where η is the learning
rate that should be bounded by δ, and λ follows Eq. 5.

λ ∝
h−2∑
i=0

[(
β(i,h−1)
conv

)2 i−1∏
t=0

(
β
(t,i)
skip

)2]
(5)

where h is the number of layers of the supernet. From Eq. 5, we observe that λ relies much on βskip
than βconv , which indicates that the network weights W can converge faster with a large βskip.
However, by involving an auxiliary skip connection weighted as β, Eq. 5 can be refined as follows:

λ ∝
h−2∑
i=0

[(
β(i,h−1)
conv

)2 i−1∏
t=0

(
β
(t,i)
skip + β

)2]
(6)

Algorithm 1 DARTS-
Require:

Network weightsw; Architecture parameters α;
Number of search epochs E;
Decay strategy for βe, e ∈ {1, 2, ..., E}.

Ensure:
Searched architecture parameters α.

1: Construct a super-network by stacking cells in
which there is an auxiliary skip connection be-
tween every two nodes of choice

2: for each e ∈ [1, E] do
3: Update weights w by∇wLtrain(w,α, βe)
4: Update parameters α by∇αLval(w,α, βe)
5: end for
6: Derive the final architecture based on learned α

from the best validation supernet.

where β � βskip making λ insensitive to
βskip, so that the convergence of network
weights W depends more on βconv . In the
beginning of the search, the common value
for βskip is 0.15 while β is 1.0. From the view
of convergence theorem (Zhou et al., 2020),
the auxiliary skip connection alleviates the
privilege of βskip and equalize the compe-
tition among architecture parameters. Even
when β gradually decays, the fair competi-
tion still holds since network weights W have
been converged to an optimal point. Con-
sequently, DARTS- is able to stabilize the
search stage of DARTS.

Extensive experiments are performed to
demonstrate the efficiency of the proposed
auxiliary skip connection, and we emphasize
that our method is flexible to combine with other methods to further improve the stabilization and
searching performance. The overall algorithm is given in Alg. 1.
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3.3 RELATIONSHIP TO PRIOR WORK

Our method is aimed to address the performance collapse in differentiable neural architecture search.
Most previous works (Zela et al., 2020; Chen & Hsieh, 2020; Liang et al., 2019) concentrate on de-
veloping various criteria or indicators characterizing the occurrence of collapse. Whereas, we don’t
study or rely on these indicators because they can mistakenly reject good models. Inspired by Chu
et al. (2020b), our method focuses on calibrating the biased searching process. The underlying phi-
losophy is simple: if the biased process is rectified, the searching result will be better. In summary,
our method differs from others in two aspects: being process-oriented and indicator-free. Distinct
from Chu et al. (2020b) that tweaks the competitive environment, our method can be viewed as
one that breaks the unfair advantage. Moreover, we don’t introduce any handcrafted indicators to
represent performance collapse, thus greatly reducing the burden of shifting to different tasks.

4 EXPERIMENTS

4.1 SEARCH SPACES AND TRAINING SETTINGS

For searching and evaluation in the standard DARTS space (we name it as S0 for simplicity), we
keep the same settings as in DARTS (Liu et al., 2019b). We follow R-DARTS (Zela et al., 2020)
for their proposed reduced spaces S1- S4 (harder than S0). However, the inferred models are trained
with two different settings from R-DARTS (Zela et al., 2020) and SDARTS (Chen & Hsieh, 2020).
The difference lies in the number of layers and initial channels for evaluation on CIFAR-100. R-
DARTS sets 8 layers and 16 initial channels. Instead, SDARTS uses 20 and 36 respectively. For the
proxyless searching on ImageNet, we instead search in MobileNetV2-like search space (we name it
S5) proposed in FBNet (Wu et al., 2019). We use the SGD optimizer for weight and Adam (β1 = 0.5
and β2 = 0.999, 0.001 learning rate) for architecture parameters with the batch-size of 768. The
initial learning rate is 0.045 and decayed to 0 within 30 epochs following the cosine schedule. We
also use L2 regularization with 1e-4. It takes about 4.5 GPU days on Tesla V100. More details are
provided in the appendix. We also use NAS-Bench-201 (S6) since DARTS performs severely bad.
In total, we use 7 different search spaces to conduct the experiments, which involves three datasets.

4.2 SEARCHING RESULTS

Table 1: Comparison of searched CNN in the
DARTS search space on two different datasets.

Dataset DARTS R-DARTS (L2) Ours
C10 (S0) 2.91±0.25 2.95±0.21 2.63±0.07
C100 (S0) 20.58±0.44 18.01±0.26 17.51±0.25

CIFAR-10 and CIFAR-100. Following the set-
tings of R-DARTS (Zela et al., 2020), we obtain an
average top-1 accuracy of 97.41% on CIFAR-10,
as shown in Table 2. Moreover, our method is very
robust since out of 5 independent runs the search-
ing results are quite stable. The best cells found on
CIFAR-10 (97.5%) are shown in Figure 9 (B). Results on CIFAR-100 are presented in Table 10 (see
A.2.1). Moreover, our method has a much lower searching cost (3× less) than R-DARTS (Zela et al.,
2020), where four independent searches with different regularization settings are needed to generate
the best architecture. In other words, its robustness comes from the cost of more CO2 emissions.

ImageNet. To further verify the efficiency of DARTS-, we directly search on ImageNet in S5
and compare our results with the state-of-the-art models under the mobile setting in Table 2. The
visualization of the architecture is given in Fig 10. DARTS-A obtains 76.2% top-1 accuracy on the
ImageNet validation dataset. By contrast, direct applying DARTS on this search space only obtains
66.4% (Chu et al., 2020b). Moreover, it obtains 77.8% top-1 accuracy after being equipped with
auto-augmentation (Cubuk et al., 2019) and squeeze-and-excitation (Hu et al., 2018), which are also
used in EfficientNet.

NAS-Bench-201. Apart from standard search spaces, benchmarking with known optimal in a lim-
ited setting is also recommended. NAS-Bench-201 (Dong & Yang, 2020) consists of 15,625 archi-
tectures in a reduced DARTS-like search space, where it has 4 internal nodes and 5 operations per
node. We compare our method with prior work in Table 3. We search on CIFAR-10 and look up the
ground-truth performance with found genotypes on various test sets. Remarkably, we achieve a new
state of the art, the best of which almost touches the optimal.
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Table 2: Comparison of the state-of-the-art models on CIFAR-10 (left) and ImageNet (right). On
CIFAR-10 dataset, our average result is obtained on 5 independently searched models to assure the
robustness. For ImageNet, networks in the top block are directly searched on ImageNet; the middle
indicates that architectures are searched on CIFAR-10 and then transferred to ImageNet; the bottom
indicates models have SE and Swish. We search in S0 for CIFAR-10 and S5 for ImageNet.

Models Params FLOPs Acc Cost
(M) (M) (%) GPU Days

NASNet-A (2018) 3.3 608† 97.35 2000
ENAS (2018) 4.6 626† 97.11 0.5
DARTS (2019b) 3.3 528† 97.00±0.14? 0.4
SNAS (2019) 2.8 422† 97.15±0.02? 1.5
GDAS (2019b) 3.4 519† 97.07 0.2
P-DARTS (2019b) 3.4 532† 97.5 0.3
PC-DARTS (2020) 3.6 558† 97.43 0.1
DARTS- (best) 3.5 568 97.5 0.4
P-DARTS (2019b)‡ 3.3±0.21 540±34 97.19±0.14 0.3
R-DARTS (2020) - - 97.05±0.21 1.6
SDARTS-ADV (2020) 3.3 - 97.39±0.02 1.3
DARTS- (avg.) 3.5±0.13 583±22 97.41±0.08 0.4

† Based on the provided genotypes.
‡

5 independent searches using their released code.
? Training the best searched model for several times

(whose average doesn’t indicate the stability of the
method)

Models FLOPs Params Top-1 Top-5 Cost
(M) (M) (%) (%) (GPU days)

AmoebaNet-A (2019) 555 5.1 74.5 92.0 3150
MnasNet-92 (2019) 388 3.9 74.79 92.1 3791‡

FBNet-C (2019) 375 5.5 74.9 92.3 9
FairNAS-A (2019b) 388 4.6 75.3 92.4 12
SCARLET-C (2019a) 365 6.7 76.9 93.4 10
FairDARTS-D (2020b) 440 4.3 75.6 92.6 3
PC-DARTS (2020) 597 5.3 75.8 92.7 3.8
DARTS- (ours) 467 4.9 76.2 93.0 4.5

NASNet-A (2018) 564 5.3 74.0 91.6 2000
DARTS (2019b) 574 4.7 73.3 91.3 0.4
SNAS (2019) 522 4.3 72.7 90.8 1.5
PC-DARTS (2020) 586 5.3 74.9 92.2 0.1
FairDARTS-B (2020b) 541 4.8 75.1 92.5 0.4

MobileNetV3 (2019) 219 5.4 75.2 92.2 ≈3000
MoGA-A (2020a) 304 5.1 75.9 92.8 12
MixNet-M (2019) 360 5.0 77.0 93.3 ≈3000
EfficientNet B0 (2019) 390 5.3 76.3 93.2 ≈3000
NoisyDARTS-A� 449 5.5 77.9 94.0 12
DARTS- (ours)� 470 5.5 77.8 93.9 4.5
‡ Estimated by Wu et al. (2019).
� SE modules and Swish enabled.

Table 3: Searching performance on NAS-Bench-201 (Dong & Yang, 2020). Our method robustly
obtains new SOTA. Averaged on 4 runs of searching. 1st: first-order, 2nd: second-order

Method Cost CIFAR-10 CIFAR-100 ImageNet16-120
(hours) valid test valid test valid test

DARTS1st (2019b) 3.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS2nd (2019b) 10.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS (2019b) 8.7 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN (2019a) 9.5 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
DARTS- 3.2 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82
DARTS- (best) 3.2 91.55 94.36 73.49 73.51 46.37 46.34
optimal n/a 91.61 94.37 73.49 73.51 46.77 47.31

Transfer results on objection detection We further evaluate the transfer-ability of our models on
down-stream object detection task by replacing the backbone of RetinaNet (Lin et al., 2017) on
MMDetection toolbox platform (Chen et al., 2019a). Specifically, with the same training setting as
Chu et al. (2020b), our model achieves 32.5% mAP on the COCO dataset, surpassing other similar-
sized models such as MobileNetV3, MixNet, and FairDARTS. The detailed results are shown in
Appendix (Table 11).

4.3 ORTHOGONAL COMBINATION WITH OTHER VARIANTS

Our method can be flexibly adapted to combine with prior work for further improvements. Here we
investigate the joint outcome with two methods: P-DARTS and PC-DARTS.

Table 4: We remove the strong con-
straints on the number of skip connec-
tions as 2 and dropout (priors) for P-
DARTS and compare its performance
w/ and w/o DARTS-.

Method Setting Acc (%)

P-DARTS w/o priors 96.48±0.55
P-DARTS- w/o priors 97.28±0.04

Progressive DARTS (P-DARTS). P-DARTS (Chen et al.,
2019b) proposes a progressive approach to search gradu-
ally with deeper depths while pruning out the uncompeti-
tive paths. Additionally, it makes use of some handcrafted
criteria to address the collapse (the progressive idea itself
cannot deal with it), for instance, they impose two strong
priors by regularizing the number of skip connections M
as 2 as well as dropout. To be fair, we remove such a
carefully handcrafted trick and run P-DARTS for several
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Table 7: Comparison in various search spaces. We report the lowest error rate of 3 found archi-
tectures. †: under Chen & Hsieh (2020)’s training settings where all models have 20 layers and
36 initial channels (the best is shown in boldface). ‡: under Zela et al. (2020)’s settings where
CIFAR-100 models have 8 layers and 16 initial channels (The best is in boldface and underlined).

Benchmark DARTS‡ R-DARTS‡ DARTS‡ Ours‡ PC-DARTS† SDARTS† Ours†
DP L2 ES ADA RS ADV

C10

S1 3.84 3.11 2.78 3.01 3.10 2.68 3.11 2.78 2.73 2.68
S2 4.85 3.48 3.31 3.26 3.35 2.63 3.02 2.75 2.65 2.63
S3 3.34 2.93 2.51 2.74 2.59 2.42 2.51 2.53 2.49 2.42
S4 7.20 3.58 3.56 3.71 4.84 2.86 3.02 2.93 2.87 2.86

C100

S1 29.46 25.93 24.25 28.37 24.03 22.41 18.87 17.02 16.88 16.92
S2 26.05 22.30 22.24 23.25 23.52 21.61 18.23 17.56 17.24 16.14
S3 28.90 22.36 23.99 23.73 23.37 21.13 18.05 17.73 17.12 15.86
S4 22.85 22.18 21.94 21.26 23.20 21.55 17.16 17.17 15.46 17.48

times. As a natural control group, we also combine DARTS- with P-DARTS. We run both exper-
iments for 3 times on CIFAR-10 dataset in Table 4. Without the strong priors, P-DARTS severely
suffers from the collapse, where the inferred models contain an excessive number of skip connec-
tions. Specifically, it has a very high test error (3.42% on average), even worse than DARTS. How-
ever, P-DARTS can benefit greatly from the combination with DARTS-. The improved version (we
call P-DARTS-) obtains much higher top-1 accuracy (+0.8%) on CIFAR-10 than its baseline.

Table 5: Comparison of PC-DARTS remov-
ing the strong prior (i.e. channel shuffle) and
combining DARTS-. The results are from 3
independent runs on CIFAR-10. The GPU
memory cost is on a batch size of 256.

Method Setting Acc (%) Memory Cost

PC-DARTS K = 2 97.09±0.14 19.9G 3.75h
PC-DARTS- K = 2 97.35±0.02 20.8G 3.41h

Memory Friendly DARTS (PC-DARTS). To alle-
viate the large memory overhead from the whole su-
pernet, PC-DARTS (Xu et al., 2020) selects the par-
tial channel for searching. The proportion hyper-
parameter K needs careful calibration to achieve a
good result for specific tasks. As a byproduct, the
search time is also reduced to 0.1 GPU days (K=4).
We use their released code and run repeated experi-
ments across different seeds under the same settings.

To accurately evaluate the role of our method, we choose K=2 (a bad configuration in the original
paper). We make comparisons between the original PC-DARTS and its combination with ours
(named PC-DARTS-) in Table 5. PC-DARTS- can marginally boost the CIFAR-10 top-1 accuracy
(+0.26% on average). The result also confirms that our method can make PC-DARTS less sensitive
to its hyper-parameter K while keeping its advantage of less memory cost and run time.

4.4 ABLATION STUDY

Robustness to Decay Strategy. Our method is insensitive to the type of decay policy on β. We
design extra two strategies as comparisons: cosine and step decay. They both have the similar
performance. Specifically, when β is scheduled to zero by the cosine strategy, the average accuracy
of four searched CIFAR-10 models in S3 is 97.33%±0.09, the best is 97.47%. The step decay at
epoch 45 obtains 97.30% top-1 accuracy on average in the same search space.

Table 6: Searching performance on
CIFAR-10 in S3 w.r.t the initial lin-
ear decay rate β0. Each setting is
run for three times.

β0 Error (%)

1 2.65±0.04
0.7 2.76±0.16
0.4 3.04±0.19
0.1 3.11±0.16
0 4.58±1.3

Robustness Comparison on C10 and C100 in S0-S4. To
verify the robustness, it is required to search several times to
report the average performance of derived models (Yu et al.,
2020; Antoine et al., 2020). As shown in Table 1, Table 9
and Table 7, our method outperforms the recent SOTAs across
several spaces and datasets. Note that SDARTS-ADV utilizes
adversarial training and requires 3× more search time than
ours. Especially, we find a good model in S3 on CIFAR-100
with the lowest top-1 test error 15.86%. The architectures of
these models can be found in the appendix.

Sensitivity Analysis of β The power of the auxiliary skip
connection branch can be discounted by setting a lower initial β. We now evaluate how sensitive
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our approach is to the value of β. It’s trivial to see that our approach degrades to DARTS when
β = 0. We compare results when searching with β ∈ {1, 0.7, 0.4, 0.1, 0} in Table 6, which show
that a bigger β0 is advantageous to obtain better networks.

The choice of auxiliary branch Apart from the default skip connection serving as the auxiliary
branch, we show that it is also effective to replace it with a learnable 1×1 convolution projection,
which is initialized with an identity tensor. The average accuracy of three searched CIFAR-10
models in S3 is 97.25%±0.09. Akin to the ablation in He et al. (2016), the projection convolution
here works in a similar way as the proposed skip connection. This proves the necessity of the
auxiliary branch.

Performance with longer epochs. It is claimed by Bi et al. (2019) that much longer epochs lead
to better convergence of the supernet, supposedly beneficial for inferring the final models. However,
many of DARTS variants fail since their final models are full of skip connections. We thus evaluate
how our method behaves in such a situation. Specifically, we extend the standard 50 epochs to 150,
200 and we search 3 independent times each for S0, S2 and S3. Due to the longer epochs, we slightly
change our decay strategy, we keep β = 1 all the way until for last 50 epochs we decay β to 0. Other
hyper-parameters are kept unchanged. The results are shown in Table 8 and the found genotypes are
listed in Figure 17, 18, 19, 20 and 21. It indicates that DARTS- doesn’t suffer from longer epochs
since it has reasonable values for #P compared with those (#P = 0) investigated by Bi et al.
(2019). Notice S2 and S3 are harder cases where DARTS suffers more severely from the collapse
than S0. As a result, DARTS- can successfully survive longer epochs even in challenging search
spaces. Noticeably, it is still unclear whether longer epochs can truly boost searching performance.
Although we achieve a new state-of-the-art result in S2 where the best model has 2.50% error rate
(previously 2.63%), it still has worse average performance (2.71±0.11%) in S0 than the models
searched with 50 epochs (2.59±0.08%), and the best model in S3 (2.53%) is also weaker than
before (2.42%).

Table 8: Searching performance on CIFAR-10 in S0, S2 and S3 using longer epochs. Following Bi
et al. (2019), #P means the number of parametric operators in the normal cell. Averaged on 3 runs
of search.

Epoch S0 S2 S3
#P Params (M) Error (%) #P Params (M) Error (%) #P Params (M) Error (%)

150 6.6±1.1 3.3±0.3 2.74±0.06 6.0±0.0 3.9±0.3 2.58±0.11 6.0±1.0 3.6±0.3 2.55±0.03
200 7.3±0.6 3.2±0.3 2.71±0.11 8.0±0.0 4.3±0.1 2.65±0.21 7.6±0.5 4.3±0.2 2.66±0.09

Besides, compared with first-order DARTS with a cost of 0.4 GPU days in S0, Amended-DARTS
(Bi et al., 2019), particularly designed to survive longer epochs, reports 1.7 GPU days even with
pruned edges in S0. Our approach has the same cost as first-order DARTS, which is more efficient.

5 ANALYSIS AND DISCUSSIONS

5.1 FAILURE OF HESSIAN EIGENVALUE

The maximal Hessian eigenvalue calculated from the validation loss w.r.t α is regarded as an indi-
cator of performance collapse (Zela et al., 2020; Chen & Hsieh, 2020). Surprisingly, our method
develops a growing eigenvalue in the majority of configurations, which conflicts with the previous
observations. We visualize these statistics across different search space and datasets in Figure 4
(A.2.2). Although eigenvalues increase almost monotonously and reach a relatively large value in
the end, the final models still have good performance that matches with state-of-the-art ones (see Ta-
ble 9). These models can be mistakenly deemed as bad ones or never visited according to the eigen-
value criteria. Our observations disclose one fatal drawback of these indicator-based approaches:
they are prone to rejecting good models. Further analysis can be found in A.2.2.
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5.2 VALIDATION ACCURACY LANDSCAPE

Recent works, R-DARTS (Zela et al., 2020) and SDARTS (Chen & Hsieh, 2020) point that the ar-
chitectural weights are expected to converge to an optimal point where accuracy is insensitive to per-
turbations to obtain a stable architecture after the discretization process, i.e., the convergence point
should have a smooth landscape. SDARTS proposes a perturbation-based regularization, which
further stabilizes the searching process of DARTS. However, the perturbation regularization dis-
turbs the training procedure and thus misleads the update of architectural weights. Different from
SDARTS that explicitly smooths landscape by perturbation, DARTS- can implicitly do the same
without directly perturbing architectural weights.
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Figure 3: Comparison of the validation accuracy landscape of (a) DARTS and (b) DARTS- w.r.t. α
on CIFAR-10 in S3. Their contour maps are shown respectively in (c) and (d), where we set the
step of contour map as 0.1. The accuracy of the derived models are 94.84% (a,c) and 97.58% (b,d),
while the maximum Hessian eigenvalues are similarly high (0.52 and 0.42)

To analyze the efficacy of DARTS-, we plot the validation accuracy landscape w.r.t architectural
weights α, and find that auxiliary connection smooths the landscape and thus stabilizes the search-
ing stage. Specifically, we choose two random directions and apply normalized perturbation on α
(following Li et al. 2018a). As shown in Figure 3, DARTS- is less sensitive to the perturbation than
DARTS, and the contour map of DARTS- descends more gently.

6 CONCLUSION

We propose a simple and effective approach named DARTS- to address the performance collapse in
differentiable architecture search. Its core idea is to make use of an auxiliary skip connection branch
to take over the gradient advantage role from the candidate skip connection operation. This can
create a fair competition where the bi-level optimization process can easily differentiate good oper-
ations from the bad. As a result, the search process is more stable and the collapse seldom happens
across various search spaces and different datasets. Under strictly controlled settings, it steadily
outperforms recent state-of-the-art RobustDARTS (Zela et al., 2020) with 3× fewer search cost.
Moreover, our method disapproves of various handcrafted regularization tricks. Last but not least, it
can be used stand-alone or in cooperation with various orthogonal improvements if necessary.

This paper conveys two important messages for future research. On the one hand, the Hessian
eigenvalue indicator for performance collapse (Zela et al., 2020; Chen & Hsieh, 2020) is not ideal
because it has a risk of rejecting good models. On the other hand, handcraft regularization tricks
(Chen et al., 2019b) seem more critical to search a good model instead of the proposed methods.
Then what’s the solution? In principle, it’s difficult to find a perfect indicator of the collapse. Our
approach shows the potential to control the search process and doesn’t impose limitations or priors
on the final model. We hope more attention be paid in this direction.
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A APPENDIX

A.1 PRELIMINARY ABOUT DARTS

In differentiable architecture search (Liu et al., 2019b), a cell-based search space in the form of Di-
rected Acyclic Graph (DAG) is constructed. The DAG has two input nodes from the previous layers,
four intermediate nodes, and one output node. There are several paralleling operators (denoted as
O) between each two nodes (say i, j), whose output ō(i,j) given an input x is defined as,

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (7)

It is essentially applying softmax over all operators where each operator is assigned with an archi-
tectural weight α. A supernet is built on two kinds of such cells, so-called normal cells and reduction
cells (for down-sampling). The architectural search is then characterized as a bi-level optimization:

min
α

Lval(w∗(α), α) (8)

s.t. w∗(α) = arg min
w
Ltrain(w,α) (9)

This indicates that the training of such a cell-based supernet should be interleaved, where at each step
the network weights and architectural weights are updated iteratively. The final model is determined
by simply choosing operations with the largest architectural weights.

A.2 EXPERIMENT

A.2.1 TRAINING DETAILS

CIFAR-10 and CIFAR-100. Table 9 gives the averaged performance in reduced search spaces
S1-S4, as well with maximum eigenvalues. Table 10 reports the CIFAR-100 results in S0.

Table 9: Comparison of searched CNN architectures in four reduced search spaces S1-S4 (Zela
et al., 2020) on CIFAR-10 and CIFAR-100. We report the mean±std of test error over 3 found
architectures retrained from scratch, alongside with eigenvalue (EV) that corresponds to the best
validation accuracy. We follow the same settings as Zela et al. (2020).

Benchmark DARTS DARTS-ES DARTS-ADA ours ours (EV)

C10

S1 4.66±0.71 3.05±0.07 3.03±0.08 2.76±0.07 0.37±0.19
S2 4.42±0.40 3.41±0.14 3.59±0.31 2.79±0.04 0.41±0.08
S3 4.12±0.85 3.71±1.14 2.99±0.34 2.65±0.04 0.31±0.09
S4 6.95±0.18 4.17±0.21 3.89±0.67 2.91±0.04 0.30±0.11

C100

S1 29.93±0.41 28.90±0.81 24.94±0.81 23.26±0.59 0.60±0.15
S2 28.75±0.92 24.68±1.43 26.88±1.11 22.31±0.65 0.54±0.15
S3 29.01±0.24 26.99±1.79 24.55±0.63 21.47±0.40 0.40±0.03
S4 24.77±1.51 23.90±2.01 23.66±0.90 21.75±0.26 0.93±0.15

ImageNet classification. For training on ImageNet, we use the same setting as MnasNet (Tan et al.,
2019). To be comparable with EfficientNet (Tan & Le, 2019), we also use squeeze-and-excitation
(Hu et al., 2018). Furthermore, we don’t include methods trained using large model distillation,
because it can boost final validation accuracy marginally. To be fair, we don’t use the efficient head
in MobileNetV3 (Howard et al., 2019) although it can reduce FLOPs marginally.

COCO object detection. All models are trained and evaluated on MS COCO dataset for 12 epochs
with a batch size of 16. The initial learning rate is 0.01 and reduced by 0.1 at epoch 8 and 11.

A.2.2 FURTHER DISCUSSIONS ON FAILURE OF EIGENVALUE

To further explore the relationship between the searching performance and Hessian Eigenvalue, we
plot the performance trajectory of the searched models in Figure 4 (b). Specifically, we sample
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Table 10: Comparison of searched models on CIFAR-100. �: Reported by Dong & Yang (2019b),
?: Reported by Zela et al. (2020), ‡:Rerun their code.

Models Params Error Cost
(M) (%) GPU Days

ResNet (2016) 1.7 22.10� -
AmoebaNet (2019) 3.1 18.93� 3150
PNAS (2018) 3.2 19.53� 150
ENAS (2018) 4.6 19.43� 0.45
DARTS (2019b) - 20.58±0.44? 0.4
GDAS (2019b) 3.4 18.38 0.2
P-DARTS (2019b) 3.6 17.49‡ 0.3
R-DARTS (2020) - 18.01±0.26 1.6
DARTS- (avg.) 3.3 17.51±0.25 0.4
DARTS- (best) 3.4 17.16 0.4

Table 11: Transfer results on COCO datasets of various drop-in backbones.
Backbones Params (M) Acc AP AP50 AP75 APS APM APL

MobileNetV2 (2018) 3.4 72.0 28.3 46.7 29.3 14.8 30.7 38.1
SingPath NAS (2019) 4.3 75.0 30.7 49.8 32.2 15.4 33.9 41.6
MnasNet-A2 (2019) 4.8 75.6 30.5 50.2 32.0 16.6 34.1 41.1
MobileNetV3 (2019) 5.4 75.2 29.9 49.3 30.8 14.9 33.3 41.1
MixNet-M (2019) 5.0 77.0 31.3 51.7 32.4 17.0 35.0 41.9
FairDARTS-C (2020b) 5.3 77.2 31.9 51.9 33.0 17.4 35.3 43.0
DARTS-A (Ours) 5.5 77.8 32.5 52.8 34.1 18.0 36.1 43.4

models every 10 epochs and train these models from scratch using the same setting as above (Fig-
ure 5). The performance of the inferred models continues growing, where the accuracy is boosted
from 96.5% to 97.4%. This affirms the validity of searching using our method. In contrast, the
early-stopping strategies based on eigenvalues (Zela et al., 2020) would fail in this setting. We ar-
gue that the proposed auxiliary skip branch can regularize the overfitting of the supernet, leaving
the architectural weights to represent the ability of candidate operations. This experiment poses as
a counterexample to R-DARTS, where good models can appear albeit Hessian eigenvalues change
fast. It again denies the need for a costly indicator.
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(a) Trajectory of eigenvalues in S0-S4 (left to right) on CIFAR-10
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(c) Trajectory of eigenvalues in S0-S4 (left to right) on CIFAR-100

Figure 4: The evolution of maximal eigenvalues of DARTS- when searching in different search
spaces S0-S4 on CIFAR-10 (a) and CIFAR-100 (c). We run each experiment 3 times on different
seeds. (b) DARTS-’s growing Hessian eigenvalues don’t induce poor performance. Among the
sampled five models, the one corresponding to the highest eigenvalue has the best performance.
This example is done in S0 on CIFAR-10.
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Figure 5: Training five models sampled every 10 epochs during DARTS- searching process. See
Fig 4 (b) for the corresponding eigenvalues.

A.2.3 MORE ABLATION STUDIES

To supplement the sensitivity analysis in Section 4.4, Figure 6 shows the training loss curve when
initializing β with different values.
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Figure 6: The training loss curve of the over-parameterized network on CIFAR-10 in S3 with differ-
ent initial β0.

A.3 LOSS LANDSCAPE

To show the consistent smoothing capacity of DARTS-, we draw more loss landscapes in S0 and
S3 (on several seeds) w.r.t architectural parameters and their contours in Figure 7 and 8. Generally,
DARTS-’s slopes are more inflated if we consider them as camping tents, which suggest better
convergence of the over-parameterized network.

A.4 LIST OF EXPERIMENTS

We summarize all the conducted experiments with their related figures and tables in Table 12.

B FIGURES OF GENOTYPES
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Figure 7: More visualization of validation accuracy landscapes of DARTS (a,b) and DARTS- (e,f)
w.r.t. the architectural weights α on CIFAR-10 in S0. Their contour maps are shown respectively
in (c,d) and (g,h). The step of contour map is 0.1. The inferred models by DARTS- have higher
accuracies (97.50%, 97.49%) than DARTS (97.19%, 97.20%).
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Figure 8: More visualization of validation accuracy landscapes of DARTS (a,b) and DARTS- (e,f)
w.r.t. the architectural weights α on CIFAR-10 in S3. Their contour maps are shown respectively in
(c,d) and (g,h). The step of contour map is 0.1.

Table 12: List of experiments conducted in this paper

Method Search Space Dataset Figures Tables
Main text Supp. Main text Supp.

DARTS S0 CIFAR-10 7
DARTS S3 CIFAR-10 3
DARTS- S0 CIFAR-10 4,5,9,7 1,2
DARTS- S1-S4 CIFAR-10 3 4,6,9,8 7,9 6
DARTS- S5 ImageNet 5,10 2
DARTS- S5 MS COCO 11
DARTS- S6 CIFAR-10 3
DARTS- S1-S4 CIFAR-100 4,11 7 9
DARTS- S0 CIFAR-100 4,11 1,10
P-DARTS w/o M=2 S0 CIFAR-10 12 4
P-DARTS w/ auxiliary skip S0 CIFAR-10 13 4
PC-DARTS w/o channel shuffling S0 CIFAR-10 14 5
PC-DARTS w/ auxiliary skip S0 CIFAR-10 15 5
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Figure 9: The best found normal cell and reduction cell in search spaces S0-S4 on CIFAR-10 dataset.
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Figure 10: Architecture of DARTS-A searched on ImageNet dataset.
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Figure 11: The best found normal cell and reduction cell in search spaces S0-S4 on CIFAR-100
dataset.
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Figure 12: Found normal cells and reduction cells by P-DARTS (Chen et al., 2019b) without prior
(M=2) in the DARTS’ standard search space on CIFAR-10 dataset.
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Figure 13: Found normal cells and reduction cells by P-DARTS (Chen et al., 2019b) with the
proposed auxiliary skip connections in the DARTS’ standard search space on CIFAR-10 dataset.
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Figure 14: Found normal cells and reduction cells by PC-DARTS (Xu et al., 2020) without channel
shuffling in the DARTS’ standard search space on CIFAR-10 dataset.
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Figure 15: Found normal cells and reduction cells by PC-DARTS (Xu et al., 2020) with the pro-
posed auxiliary skip connections in the DARTS’ standard search space on CIFAR-10 dataset.
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Figure 16: Keep βskip = 1 throughout the DARTS- searching in the DARTS’ standard search space
on CIFAR-10 dataset.
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Figure 17: Best cells found when decaying βskip in the last 50 epochs during the DARTS- searching
for 150 and 200 epochs respectively in the DARTS search space on CIFAR-10.
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Figure 18: Decaying βskip in the last 50 epochs during the DARTS- searching for 150 epochs in S2
on CIFAR-10 dataset.
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Figure 19: Decaying βskip in the last 50 epochs during the DARTS- searching for 200 epochs in S2
on CIFAR-10 dataset.
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Figure 20: Decaying βskip in the last 50 epochs during the DARTS- searching for 150 epochs in S3
on CIFAR-10 dataset.
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Figure 21: Decaying βskip in the last 50 epochs during the DARTS- searching for 200 epochs in S3
on CIFAR-10 dataset.
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