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Abstract

Bayesian inference in the space of functions has been an important topic for
Bayesian modeling in the past. In this paper, we propose a new solution to this
problem called Functional Variational Inference (FVI). In FVI, we minimize a
divergence in function space between the variational distribution and the poste-
rior process. This is done by using as functional variational family a new class
of flexible distributions called Stochastic Process Generators (SPGs), which are
cleverly designed so that the functional ELBO can be estimated efficiently using an-
alytic solutions and mini-batch sampling. FVI can be applied to stochastic process
priors when random function samples from those priors are available. Our experi-
ments show that FVI consistently outperforms weight-space and function space VI
methods on several tasks, which validates the effectiveness of our approach.

1 Introduction

As an important approach to Bayesian deep learning, Bayesian neural networks (BNNs) have been
proposed and studied for decades [29, 34, 19]. Despite some successful applications in specific cases
[55, 44, 23], BNNs still suffer from several shortcomings. As over-parameterized models, BNNs
often have multiple posterior modes in its weight space, that generate identical predictions [30].
Therefore, Bayesian inference in weight space can be very difficult [50]. Furthermore, due to the
complexity of interactions between weights in the network forward pass, it is unclear the effect that a
given prior distribution over the weights will have in the resulting distribution over functions.

To address these issues, there has been a recent resurgence of interest in applying the perspective of
Bayesian non-parametrics to neural nets. That is, BNNs are treated as probability measures over func-
tions, i.e., as stochastic processes, with Bayesian inference being performed now in function space.e
Examples include functional BNNs (f-BNNs) [47], and variational implicit processes (VIPs) [28].
Despite their empirical advantage over weight space VI, they still suffer from a number of issues.
i), f-BNNs optimize a functional KL divergence between BNNs and GPs, which is not always
well-defined[5]. Also, f-BNNs rely on (spectral) stein gradient estimators, which are less efficient for
high dimensional distributions [56, 14]. While VIPs do not have this problem, they use a wake-sleep
procedure that does not correspond to a single unified objective. ii), F-BNNs rely on a mean-field
approximation, which often lacks predictive in-between uncertainty on test data. This issue was ob-
served both with single layer BNNs [10], and deeper BNNs (able to represent in-between uncertainty,
but more over-confident than HMC empirically for certain settings [11, 9]). On the other hand, VIPs
use as variational family a Gaussian process, which is not able to capture non-Gaussian processes
such as structured implicit priors [47].

Therefore, it is an open challenge how to improve and justify (variational) inference in the space
of functions using priors given by stochastic processes. In this paper, we investigate this old but
important problem and propose a new solution. Our contributions are as follows:
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(d) Ours (FVI on BNN)

Figure 1: A regression task on a synthetic dataset (red crosses) from [10]. We plot predictive mean
and uncertainties for each algorithm. This tasks is used to demonstrate the theoretical pathologies
of weight-space VI for single-layer BNNs: there is no setting of the variational parameters that can
model the in-between uncertainty between two data clusters. The functional BNNs [47] also have
this problem, since mean-field BNNs are used as part of the model. On the contrary, our FVI method
can produce sensible uncertainty estimates. See Appendix C.2 for more details.

• We propose a new objective function for variational inference in function space, as an alternative
to functional KL divergence between stochastic prcoesses [47]. We show that this new objective is
a valid divergence, and can avoid some of the problems that the functional KL divergence has.

• We propose a new class of flexible variational distributions in function space, called stochastic
process generators (SPGs). SPGs are non-Gaussian generalizations of the VIP family [28], and can
help avoid the fundamental limitation of mean field Gaussians [10] used in BNNs and functional
BNNs. A theorem regarding the expressiveness of SPGs is proved (Proposition 4). Based on SPGs,
our proposed functional divergence between stochastic processes can be estimated efficiently using
mini-batch sampling (Proposition 5, 6 and 7), which achieves a significant speed-up against the
gradient estimator approach in [47].

• We compare our methods against existing weight-space and function-space inference methods in
several tasks. Our method consistently outperforms the baselines, and is much faster than f-BNN,
which validates the effectiveness of our approach.

2 Backgrounds

Variational BNNs Let y = g(x,w) be a neural network, where x is the input, y is the output, and
w denotes the weights. To build a Bayesian neural network (BNN), we place a prior p(w) over w,
and add an observational noise ϵ ∼ N (ϵ; 0, σ2) to the output. Then, a BNN is given by

log p(y|x) = log

∫
w

N (y; g(x,w), σ2)p(w)dw. (1)

Given a dataset D = {xi, yi}Ni=1, the goal of Bayesian inference is to compute the posterior
p(w|D) ∝ p(D|w)p(w). Since this is intractable, we often resort to approximate inference methods
such as variational inference (VI), e.g. Bayes by Backprop (BBB) [4], variational dropout [12],
or other extensions [20, 26, 41]. Since the posterior p(w|D) is usually highly multi-modal due to
the non-identifiability of neural networks, VI often leads to unsatisfactory results, and suffers from
over-parameterization and other pathologies [10].

Variational Implicit Processes (VIPs) An alternative way of looking at BNNs is to treat them
as a prior distribution over function space, i.e., a stochastic process. Indeed, p(y|x) in Equation 1
generates a random function g(·,w), depending on what w is actually sampled from the prior. This
idea is further explored by the variational implicit process (VIPs). Given a prior p(f) on random
functions, VIP approximates the posterior in function space p(f |D) by using a Bayesian linear
regression model qVIP(f |D) =

∑
s asϕs,a ∼ N (a;µ,Σ), where the basis functions {ϕs}Ss=1 are

random samples drawn directly from p(f). Although VIP has shown improved performance over
parameter-space VI methods, it has a few limitations. For example, qVIP(f |D) resembles a GP
approximation to p(f |D), whereas the true posterior in function space might be arbitrarily complex.
Also, the wake-sleep training procedure of VIP does not optimize any coherent objective function.
Lastly, VIP requires the prior p(f) to be reparameterizable. i.e., can be represented in the form of
f(x) = gθ(x, z), z ∼ p(z). This may limit its application to non-reparameterizable priors.
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3 Problem setting and the functional KL divergence

We consider the problem of Bayesian inference in function space. Let p(f) be a stochastic process
defined on the probability space (Ω,B). Note that we use f in its scalar form to denote a scalar
function f(·) : T 7→ R. Here T is the index set of p(f) (assumed to be a compact subset of Rd). For
example, p(f) could be a Gaussian process p(f) = GP(m(·), k(·, ·)), a Bayesian neural network, or
any other suitable stochastic process. We use p(f) to model the uncertainty in function space. Then,
a likelihood function pπ(y|f(·)) is defined on top of f to generate observable data y.

Given observed data D = {xi, yi}Ni=1, our goal is to infer the posterior process p(f |D) conditioned
on the observations D. If p(f) is a GP, then p(f |D) can be computed analytically. However, in most
cases this is intractable. Therefore, following [32, 47], we define another stochastic process q(f) on
(Ω,B) as our variational family to approximate p(f |D). q(f) can be optimized by maximizing the
evidence lower bound (ELBO) in function space:

Lfunctional
q := Eq(f)[log pπ(D|f)]−DKL[q(f)||p(f)]. (2)

Note that DKL[q(f)||p(f)] is the functional KL-divergence between stochastic processes. As shown
by [47], DKL[q(f)||p(f)] can be written as:

DKL[q(f)||p(f)] = sup
n,Xn

DKL[q(f
Xn)||p(fXn)], (3)

where Xn denote a set of n measure points {xk}1≤k≤n in the domain/index set of f(·), which can be
treated as an element of the product space T n. Moreover, fXn denotes the vector of function values
evaluated on Xn, and DKL[q(f

Xn)||p(fXn)] is the KL-divergence over random vectors typically
used by the machine learning community. In other words, the KL-divergence between stochastic
processes is the supreme of the relative entropies obtained on all possible measure points in T Z+

.

4 Functional Variational Inference using Stochastic Process Generators

4.1 The grid-functional KL divergence

Figure 2: Illustration of Dgrid

As pointed out by [5], the functional KL diver-
gence defined in Eq 3 is not always well-defined.
For example, the functional KL divergence be-
tween two BNNs with different network architec-
tures can be infinite. To address this issue, we
propose to optimize a new divergence measure
called the grid-functional KL divergence. Figure
2 illustrates the idea of grid functional KL diver-
gence, which we now proceed to describe. Instead
of taking the supremum as in the original func-
tional KL divergence, we take an expectation over
both n and Xn. We specify a probability distri-
bution {pn}1≤n<∞ over n assigning lower prob-
ability values pn to larger n. This way, we can
trim down the contributions from the KL terms

DKL[q(f
Xn)||p(fXn |D)] that correspond to large n, and hopefully arrive at a finite expectation value.

Following this idea, we give the formal definition of grid-functional KL divergence as

Dgrid[q(f)||p(f |D)] := En,Xn∼cDKL[q(f
Xn)||p(fXn |D)], (4)

where Xn is a set of n measurement points {xk}1≤k≤n sampled from T , according to some sampling
distribution c. Note that c is defined on the product space T Z+

and the number of sampled measure
points n is also random. One may recognize that [47] proposed a similar objective as an approximation
to 3 in which the number of measure points n is a fixed constant instead of a random variable. However,
as we show below, it is in fact critical that n is not fixed.

Proposition 1. Suppose c has full support on T Z+

. Then, Dgrid[q(f)||p(f |D)] satisfies the following
conditions: i), Dgrid[q(f)||p(f |D)] ≥ 0; ii), Dgrid[q(f)||p(f |D)] = 0 if and only if q(f) = p(f |D).
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In other words, if c has full support on T Z+

(we will give an example of such c later), then
Dgrid[q(f)||p(f |D)] is a valid divergence in function space. Therefore, we can use Dgrid as an
alternative objective for function space inference. We can show that, for certain scenarios, Dgrid can
avoid some of the issues the original functional KL divergence has (see Appendix A.2 for details):
Proposition 2. Let p(f) and q(f) be two distributions for random functions with different parametric
forms. Assume that p(f) is parameterized by the following sampling processes:

f = g + ϵ, g(x) ∼ p(g|x; Θ),Θ ∼ p(Θ), ϵ ∼ N (0, σ2)

and q(f) is parameterized by:

f = g + ϵ, g(x) ∼ q(g|x; Γ),Γ ∼ q(Γ), ϵ ∼ N (0, σ2).

Here, x ∈ T ⊂ Rd is the input variable of the f , g is the random latent function, and Θ ∈ RI ,
Γ ∈ RJ are the parameters of each random function, respectively. Suppose p(g|x; Θ), q(g|x; Θ),
p(Θ) and q(Γ) all have compact supports w.r.t. g, g, Θ, and Γ, respectively. Then, there exist a
sampling distribution c such that: 1) c has full support on T Z+

, and 2) Dgrid[q(f)||p(f)] is finite.

This result shows that the grid-functional KL divergence allows us to perform VI between p and q
even if they have different parametric forms. In Appendix A.2, we further show that the compactness
assumptions can be relaxed under certain assumptions. Moreover, in Appendix A.3 Corollary 1,
we have shown that if one of the distributions is replaced by a Gaussian process (of certain kernel
function), then under some additional assumptions, the grid-functional KL is still finite. In those
cases, the original functional KL is no longer finite. This validates our choice of grid-functional
KL divergence. To use Dgrid[q(f)||p(f |D)] for VI, we further derive a new ELBO based on Dgrid

(Appendix A.1):
Proposition 3. Let n,Xn ∼ c be a set of random measure points such that XD ⊂ Xn. Define

Lgrid
q := log p(D)−Dgrid[q(f)||p(f |D)]. (5)

Then we have
Lgrid
q = Eq(f)[log p(D|f)]−Dgrid[q(f)||p(f)] (6)

and log p(D) ≥ Lgrid
q ≥ Lfunctional

q .

Proposition 3 shows that Lgrid
q is a valid variational objective function: it is a lower bound for

log p(D) and also upper-bounds Lfunctional
q . For the rest of the paper, we will discuss how to

perform functional VI based on Lgrid
q . We will focus on how to propose a expressive variational

family q(f) and how to efficiently estimate Dgrid[q(f)||p(f)].
Remark. One example of c that satisfies the requirement of Propositions 1, 2, and 3 takes the
following form (which will be used throughout the paper):

(n− |D|) ∼ Geom(p),xk ∼ U(T ), ∀1 ≤ k ≤ n− |D|,Xn := XD
⋃

{xk}1≤k≤n−|D|, (7)

where we first sample n from a geometric distribution such that (n−|D|) ∼ Geom(p) with parameter
p (see Appendix A.2 for more discussion). Then, (n− |D|) out of distribution (OOD) measure points
are sampled independently from a uniform distribution on T .

4.2 Choosing q(f): stochastic process generators

In order to obtain good performance in FVI, it is crucial to pick an expressive variational family for
q(f). Here, we propose a new class of variational distributions called stochastic process generator
(SPG). SPGs can be seen as the non-Gaussian extension of the variational approximation used in
VIPs. Recall that in VIPs, the variational family qVIP(f) is defined by the following sampling process:

f =
∑
s

asϕs(·), a ∼ N (a;µ,Σ), (8)

where {ϕs}Ss=1 are random paths sampled from the prior process p(f). In SPGs, we remove the
Gaussian assumption on a. This is done by specifying a separate variational auto-encoder to represent
the non-Gaussian distribution for a:

q(a) =

∫
h

pθ(a|h)qη(h), (9)
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where h is the latent variable of the VAE, pθ(a|h) is the decoder parameterized by θ, and qη(h) is a
distribution over the latent space. Furthermore, we remove the constraint that {ϕs}Ss=1 need to be
sampled from p(f). For example, we may assume that each ϕs : Rd 7→ R1 is a DNN with learnable
weights ws. We can finally give the definition of our SPG variational family qSPG(f |qη(h)):

f =
∑
s

asϕs(·,ws) + ν, a ∼
∫
h

pθ(a|h)qη(h), ν ∼ GP(ν; 0, δ(·, ·)σ2
ν), (10)

where ν is a white noise process that models additive aleatoric uncertainty. Intuitively, qSPG serves
as a generator for stochastic processes. qSPG(f |·) maps any given qη(h) to a stochastic process
qSPG(f |qη(h)), hence the name. Regarding the expressiveness of SPGs, we have the following result:
Proposition 4 (Expressiveness of SPGs). Let p(f) be a square-integrable stochastic process on a
probability space (X ,B), and its index set T is a compact subset of Rd. Suppose X is a compact
metric space, B is the Borel set on X . Then, for ∀ϵ > 0, there exists a SPG qϵSPG(f), such that:

MMD(p, qϵSPG;F) < ϵ for ∀x ∈ T , (11)

where MMD is the maximum mean discrepancy, F is the MMD function class defined to be a unit
ball in a RKHS with a universal kernel [46] k(·, ·) as its reproducing kernel.

Next we will discuss how {ws}, θ and qη(h) can be estimated and how can we use SPGs to estimate
the function space KL-divergence in Equation 3.

4.3 Efficient estimation of grid-functional KL

In order to estimate the grid-functional KL-divergence in Equation 4, we propose to use a two-step
method for a scalable approximation. In the first step, we distill p(f) by fitting a stochastic process
generator p̃SPG(f) to p(f). In the second step, we calculate the KL-divergence between qSPG(f) and
p̃SPG(f) as the surrogate for the KL-divergence between qSPG(f) and p(f).

Distilling p(f) via a stochastic process generator. Assume that we can draw M random functions
[f1(·), f2(·), ..., fm(·), ..., fM (·)] from the prior process p(f). Let p̃SPG(f) be an SPG given by

f =
∑
s

asϕs(·,ws) + ν, a ∼
∫
h

pθ(a|h)p0(h), ν ∼ GP(ν; 0, δ(·, ·)σ2
ν), (12)

where p0(h) is a fixed standard normal distribution. We denote the above process by p̃SPG(f |p0(h)).
We can train p̃SPG(f) on f1, f2, ..., fm, ..., fM , by optimizing the aggregated ELBO on p̃SPG(f):

max
{ws},θ,λ

EXO

∑
m

log p̃SPG(f
XO
m ) ≥ max

{ws},θ,λ
EXO

∑
m

E
q̃λ(h|f

XO
m )

log
p̃SPG(f

XO
m |h)p0(h)

q̃λ(h|fXO
m )

, (13)

where fXm are the function values of fm evaluated on XO, XO are |O| ≤ |D| measure points inde-
pendently sampled from the training set XD = {xi}Ni=1. fXm are the function values of fm evaluated
on XO, and q̃λ(h|fXO

m ) is an encoder network that approximates the true posterior p̃SPG(h|fXO
m ).

Product of Experts (PoE) encoder. When sampling XO, since its size might vary each time, we
would need to set up to 2N inference nets, one for each possible subsets. To overcome this issue, we
adopt the Product of Experts encoder [53], a simple and flexible approach for such scenario given by

q̃λ(h|fXO
m ) ∝ p0(h)

|O|∏
i=1

q̃λ(h|fm(xi),xi), (14)

where q̃λ(h|fm(xi),xi) is an inference network representing the expert associated with the i-th
measurement point. Now the we can use a single encoder q̃λ(h|fXO

m ) to handle all the possible
inputs fXO

m . In practice, we let q̃λ(h|fm(xi),xi) to be a Gaussian expert that maps [fm(xi),xi]
to a factorized Gaussian in latent space. Since the product of Gaussian experts is still Gaussian,
q̃λ(h|fXO

m ) is a Gaussian distribution whose statistics can be computed analytically.

Estimating the grid-functional KL-divergence given Xn. In order to estimate the grid-functional
KL divergence between qSPG(f) and p(f), we first discuss how this divergence can be estimated
on measurement points Xn, i.e., DKL[q(f

Xn)||p(fXn)] where fXn is the vector of function values
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evaluated on Xn. We then discuss how this can be used to estimate the grid-functional divergence in
Equation 4. To begin with, as in Section 4.2, our variational family is given by

f =
∑
s

asϕs(·,ws) + ν, a ∼ q(a) =

∫
h

pθ(a|h)qη(h), ν ∼ GP(ν; 0, σ2
ν). (15)

We denote the above variational family by qSPG(f |qη(h)). The key ingredient of our estimation
method is that we force qSPG(f |qη(h)) and p̃SPG(f |p0(h)) to share the same basis functions (or
weights {ws}) and decoder parameters θ. That is, once optimal {ws} and θ are obtained by fitting
p̃SPG(f) to p(f), these are frozen and reused in qSPG(f). This makes sense, since according to our
definition in Section 3, qSPG(f) and p̃SPG(f) share the same measurable space (RT ,BT

R ).

Therefore, the only difference between qSPG(f) and p̃SPG(f) is the choice of the prior distributions on
h, which is qη(h) and p0(h), respectively. Given this property, we can compute the KL divergence
between qSPG(f) and p̃SPG(f) given measurement points Xn (Appendix A.5):

Proposition 5 (KL divergence on measurement points between SPGs). Let qSPG(f) and p̃SPG(f) be
the SPGs defined in Equation 12 and 15. Then we have

DKL[qSPG(f
Xn)||p̃SPG(f

Xn)] = Ef∼qSPG(f)
logZ(fXn), (16)

where Z(fXn) is the partition function, Z(fXn) =
∫
h
p̃SPG(h|fXn)

qη(h)
p0(h)

dh.

Note that Z(fXn) is intractable to compute due to the intractability of the posterior p̃SPG(h|fXn).
Fortunately, this is already approximated by the PoE inference net q̃λ(h|fXn) given by Equation 14:

Z(fXn) ≈ Z̃(fXn) :=

∫
h

q̃λ(h|fXn)
qη(h)

p0(h)
dh. (17)

Since qη(h), p0(h), and q̃λ(h|fXn) are all Gaussian distributions, Z̃(fXn) can be computed using
analytic solutions. Note also that thanks to the VAE-like structure in SPGs, all the calculations are
performed in the latent space, whose dimensionality is much lower than fX. With the additional help
of analytic solutions for Z̃(fX), the estimation of (17) is very efficient and scalable.

4.4 The final algorithm: Mini-batching and de-biasing

So far we have been discussing the estimation of the KL-divergence on measurement points Xn.
Next, we derive a practical algorithm based on the grid-functional ELBO Lgrid

q defined in Equation 6.
Applying the approximation (17) to Equation 6, our final variational objective becomes

log p(D) ≥
|D|∑
i

Eq(f)[log pπ(yi|f(xi))]− En,Xn∼cDKL[q(f
Xn)||p(fXn)]

≈
|D|∑
i

Eq(f)[log pπ(yi|f(xi))]− En,Xn∼cEf∼qSPG(f) log Z̃(fXn).

(18)

To make Equation 18 scalable to large data, we can apply mini-batch sampling to the likelihood term∑|D|
i Eq(f)[log p(yi|f(xi))]. Then the only bottleneck of Equation 18 is that the input Xn to the

inference net q̃λ (used in Z̃(fXn)) can be very high dimensional due to the condition XD ⊂ Xn

required by Proposition 3. Fortunately, we can derive the following mini-batch estimators for
En,Xn∼cEf∼qSPG(f) log Z̃(fXn) (Appendix A.6 and A.7):

Proposition 6. En,Xn∼cEf∼qSPG(f) log Z̃(fXn) can be estimated by the mini-batch estimator

JK :=
1

2

H∑
i=1

Ef∼qSPG(f)

[
log σ−2

ηi
+ log σ̂−2

λi
− log (σ−2

ηi
+ σ̂−2

λi
− 1)− µ̂2

λi
σ̂−2
λi

− µ2
ηi
σ−2
ηi

+ (σ̂−2
ηi

µ̂ηi + σ̂−2
λi

µ̂λi)
2(σ−2

ηi
+ σ̂−2

λi
− 1)−1

]
,

(19)
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Algorithm 1 Functional Variational Inference (FVI)
Require: data D = {xi, yi}Ni=1; prior p(f); surrogate p̃SPG(f), variational process qSPG(f), likeli-
hood function pπ(y|f), mini-batch sizes I and K

1: while not converged do
2: Sample [f1(·), f2(·), ..., fM (·)] from p(f).
3: Improve p̃SPG(f) by optimizing the aggregated ELBO in Equation 13 w.r.t. {ws}, θ, λ.
4: end while
5: while not converged do
6: sample mini-batch I from {1, ..., |D|} and a set of measure points Xn via c.
7: Optimize L̂FVI in Equation 20 w.r.t. η and π via reparameterization tricks
8: end while

where H is the dimensionality of h, N (h;µηi
, σ2

ηi
) = qη(hi), N (h;µλi

, σ2
λi
) = q̃λ(hi|fX). σ̂−2

λi

and µ̂λi are the mini-batch approximators for µλi and σ2
λi

, respectively:

σ̂−2
λi

:=
∑
k∈K

|D|
K

σ−2
hi|fxk

+
∑

xl∈Xn\XD

σ−2
hi|fxl

µ̂λi

σ̂2
λi

:=
∑
k∈K

|D|
K

σ−2
hi|fxk

µhi|fxb +
∑

xl∈Xn\XD

σ−2
hi|fxl

µhi|fxl ,

where K is a mini-batch of size K sampled from {1, ..., |D|}, xl ∈ Xn \XD is a set of OOD samples
sampled from T using c in Eq. 7, and µhi|fxk and σ2

hi|fxk are the mean and variance parameter
returned from q̃λ(hi|f(xk)).

The estimation in Eq. 19 is biased (but consistent). To remove the bias, we propose to debias Eq. 19
based on the Russian Roulette estimator [22]:
Proposition 7 (Debiasing). Let R be a random integer from a distribution P(N) with sup-
port over the integers larger than K. x0 is a random location sampled from T . Then
En,Xn∼cEf∼qSPG(f) log Z̃(fXn) can be estimated by E

[
JK +

∑R
k=K

∆k

P(N≥k)

]
, where ∆k =

Jk+1 −Jk, and the expectation is taken over R, n, Xn, and all mini-batches used by each Jk terms.

This will enable us to also perform mini-batch sampling on the measurement points when performing
FVI. Our final optimization objective function is

L̂FVI :=
|D|
I

∑
i∈I

Eq(f)[log p(yi|f(xi))]− JK −
R∑

k=B

∆k

P(N ≥ k)
, (20)

where I is a mini-batch of size I for the likelihood terms, R is an integer sampled from P(N), which
is set to be (R−K) ∼ Geom(0.5). Finally, the full algorithm is sketched in Algorithm 1. We call
this proposed method Functional Variational Inference (FVI).

Scalability. Our method is empirically much faster than f-BNN (Appendix C.3). When estimating
Dgrid[q(f)||p(f)], our method scales as O(Mq), where Mq is the number of samples sampled from
qSPG(f) that are used in JK . In practice, we use Mq = 1. On the contrary, the SSGE estimator used
in f-BNN scales as O(M3

q +M2
qD), where much larger value needs to used (e.g., Mq = 100).

5 Related Works

Since BNNs and VIPs are discussed in Section 1 and 2, here we only address the rest of the related
works including f-BNNs, functional priors, and Bayesian non-parameterics.

F-BNNs and F-PO. The functional BNN [47] is proposed to address the issue of specifying mean-
ingful priors to BNN weights. It matches a BNN to a GP prior by minimizing the functional KL
divergence estimated by score function estimators [27]. As discussed in [5], this objective is not
well-defined for a wide class of distributions. Also, the score function estimators used in f-BNNs

7



Figure 3: Implicit function prior and posterior samples from ground truth, FVI, VIP, and f-BNN,
respectively. The first row corresponds to a piecewise constant prior, and the second row corresponds
to a piecewise linear prior. The leftmost column shows 5 prior samples. From the second column
to the rightmost column we show posterior samples generated by ground truth (returned by SIR),
FVI, VIP and f-BNN, respectively. Red dots denote the training data. We plot 10 posterior samples
in black lines and show predictive uncertainty as grey shaded areas.

often perform poorly in high dimensional spaces and are less efficient. In practice, we found that
the f-BNN computational time is prohibitive. On the contrary, our FVI estimator avoids these issues
by making use of the grid-functional divergence, which can be efficiently estimated using the latent
representation of SPGs. More recently, the concurrent work of [39] proposes a tractable function
space VI method for BNNs, in which the functional KL divergence is approximated via linearization.
In their problem setting, the functional KL divergence is well defined since both p and q are BNNs
with the same neural network structures. Similarly, f-POVI [50] performs inference on BNN priors
by performing particle optimization in function space. One limitation of f-POVI is that it requires the
prior to be reparameterizable and differentiable while our method does not have this issue.

Function space priors. Another line of work directly defines distributions over functions by
combining stochastic processes with neural networks. For example, neural processes (NPs) [13]
and its variants [24, 15] focus on meta-learning scenarios and propose to use set encoders to model
all possible posterior distributions of the form {p(f |C)|C ⊂ D}, where C is the so-called “context
points” in neural processes. This could be inefficient for large datasets, since it needs to feed all data
points to the set encoder, which scales linearly w.r.t. the dataset size. More importantly, NPs still
use for learning and inference an ELBO defined on parameter space instead of function space. On
the contrary, our method focuses on the functional VI for supervised learning scenarios and does not
need to model all possible conditionals. When computing predictive distribution , we only need to
evaluate qη(h), which is a simple Gaussian distribution (no set encoders involved).

Bayesian non-parametrics. In the field of Bayesian non-parameterics, Gaussian Processes (GPs)
[36] and deep GPs [8] are great examples of using function-space priors to produce models that are
reliable under uncertainty. To reduce the prohibitive computation cost of exact/deep GPs, various
VI methods [49, 17, 32, 40] have been studied. These methods share a similar principle with our
work, that is, to minimize the functional divergence between the posterior and variational processes.
Nevertheless, the GP components of the functional prior play a critical role in this line of work, which
makes them less applicable to general non-GP based priors.

6 Experiments

In this section, we evaluate the performance of FVI using a number of tasks, including interpolation
with structured implicit priors, multivariate regression with BNN priors, contextual bandits, and
image classification. We mainly compare FVI with other weight-space and function-space Bayesian
inference methods using the same priors. For more implementation details, please refer to Appendix
B. Additional experiments can be found in Appendix C.

6.1 Interpolation with non-Gaussian priors: structured implicit priors

An advantage of FVI is that it can be applied to implicit (and non-Gaussian) priors over functions,
where typical GPs do not apply. In this experiment, we evaluate the interpolation task as [47]. We
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Table 1: Regression experiment: Average test negative log likelihood

DATASET N D FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GP
BOSTON 506 13 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
MEAN RANK N/A N/A 1.33 2.11 3.56 5.22 4.56 3.33 N/A N/A

Table 2: Contextual bandits performance comparison. Results are relative to the cumulative regret of
the worst algorithm on each dataset. Numbers after the algorithm are the network sizes. The best
methods are boldfaced, and the second best methods are highlighted in brown.

MEAN RANK MUSHROOM STATLOG COVERTYPE JESTER ADULT WHEEL CENSUS
FVI 2× 50 2.11 16.46 ± 2.04 7.95 ± 2.92 49.59 ± 1.61 68.59 ± 6.87 90.33 ± 0.86 41.44 ± 9.28 51.77 ± 3.06
UNIFORM 10.45 100.0 ± 0.00 99.85 ± 0.36 99.49 ± 0.62 100.0 ± 0.00 99.60 ± 0.53 94.04 ± 11.9 99.30 ± 0.55
RMS 5.68 17.74 ± 7.65 10.36 ± 2.51 69.72 ± 7.23 75.07 ± 5.50 97.65 ± 1.48 70.39 ± 19.7 94.55 ± 3.60
DROPOUT 2× 50 5.54 19.84 ± 6.46 15.53 ± 4.50 67.72 ± 2.32 75.04 ± 4.66 97.44 ± 0.98 59.40 ± 10.8 86.60 ± 0.52
BBB 2× 50 4.88 23.18 ± 5.90 30.90 ± 3.29 63.91 ± 1.96 72.93 ± 5.69 95.49 ± 2.03 56.38 ± 11.3 70.68 ± 2.32
BBB 1× 50 8.22 15.52 ± 4.40 80.25 ± 18.6 94.80 ± 4.84 83.30 ± 5.26 99.24 ± 0.66 58.12 ± 18.0 99.46 ± 0.37
NEURALLINEAR 6.94 19.04 ± 2.96 21.22 ± 1.98 75.34 ± 1.00 86.86 ± 3.61 97.93 ± 1.37 37.41 ± 8.86 83.75 ± 1.44
BOOTRMS 4.51 17.11 ± 5.99 9.47 ± 2.03 63.27 ± 1.35 74.66 ± 3.87 96.11 ± 1.02 63.15 ± 25.9 90.47 ± 3.40
PARAMNOISE 5.94 17.76 ± 4.14 20.95 ± 3.07 78.08 ± 5.66 76.95 ± 5.84 96.23 ± 1.81 41.26 ± 6.48 96.34 ± 4.56
BBα 2× 50 9.45 68.45 ± 6.05 95.22 ± 4.88 98.60 ± 1.45 94.29 ± 2.69 98.72 ± 1.28 80.50 ± 7.96 97.94 ± 2.01
FBNN 2× 50 3.17 16.55 ± 2.41 10.01 ± 1.39 50.10 ± 5.70 70.82 ± 3.27 90.72 ± 3.18 77.70 ± 21.2 51.22 ± 2.55

consider two 1-D implicit priors on [0, 1]: 1), piecewise constant random functions and 2), piecewise
linear random functions. Please refer to Appendix B.2 for details. For each prior, we first sample a
random function from the prior; then, 100 observed data points are sampled as D, half of which are
sampled from [0, 0.2] and the other half are sampled from [0.8, 1]. Finally, we ask the algorithms to
perform inference using the prior, i.e., producing samples from p(f |D).

We compare the performance of FVI with ground truth, f-BNN and VIPs. The ground truth posterior
samples are generated by sampling importance re-sampling. F-BNNs are based on the code kindly
open-sourced by [47]. As we found that the training time required by f-BNN is prohibitive, we only
trained f-BNN for 100 epochs for fairness (additional results for fully trained f-BNNs are provided in
Appendix C.5). For VIPs (Gaussian approximations), we use an empirical covariance kernel, which
is estimated from random function samples of the implicit priors. For FVI, implementation details
can be found in Appendix B.2.

Results are displayed in Figure 3. FVI can successfully generate samples that mimic the piecewise
constant/linear behaviors. The posterior uncertainty returned by FVI is also close to the ground truth
estimates. On the other hand, f-BNNs severely under-fit the data and provide very poor in-between
uncertainties. Note that, although f-BNNs are only trained for 100 epochs, their running time is still
100x higher than that of FVI (Appendix C.3). VIP performs better than f-BNNs, but fails to mimic
the behaviour of the priors: the posterior samples from VIP are very noisy. This is due to the prior
function samples violating the Gaussian assumption, with the correlation level between points being
lower than expected. This results in very noisy VIP posterior samples that are hard to interpret.

6.2 Multivariate regression with BNNs priors

In this experiment, we test if the proposed FVI can perform accurate posterior inference with BNNs
as functional priors. We consider multivariate regression tasks based on 9 different UCI datasets.
We mainly compare with the following weight-space VI baselines for BNNs: Bayes-by-Backprop
[4], variational dropout [12], and variational alpha dropout [26] (α = 0.5). We also compare with
three function-space BNN inference methods: VIP-BNNs, VIP-Neural processes [28], and f-BNNs.
Finally, we include comparisons to function space particle optimization [50] in Appendix C.7 for
reference purpose. All inference methods are based on the same BNN priors whenever applicable.
For experimental settings, we follow [28]. Each dataset was randomly split into train (90%) and test
sets (10%). This was repeated 10 times and results were averaged.

Results are shown in Table 1. Overall, FVI consistently outperforms other VI-based inference
methods for BNNs and achieves the best result in 7 datasets (out of 9). FVI also outperforms f-BNNs
(in 5 datasets out of 6), despite the fact that they are more expensive to train. Note that exact GPs and
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Table 3: Image classification and OOD detection performance. Accuracy, negative log-likelihood
(NLL) and area-under-the-curve (AUC) of OOD detection are reported. Our method outperforms all
baselines in terms of classification accuracy and OOD-AUC and performs competitively on NLL for
CIFAR10. Results for MAP, KFAC and Ritter et al. are obtained from [21].

FMNIST CIFAR10
MODEL ACCURACY NLL OOD-AUC ACCURACY NLL OOD-AUC
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER ET AL. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

f-BNNs are not directly comparable to other methods, since i), they perform inference over different
priors; and ii), they are much more expensive as they require the evaluation of the exact GP likelihood.
Thus, their results are only available for smaller datasets, and are not included for ranking.

6.3 Contextual Bandits

Uncertainty estimates are important for downstream decision-making scenarios, since exploration-
exploitation is a common dilemma that must be addressed. In this section, we consider a classic
task called contextual bandits, where the agent is asked to make decisions that maximize the reward
given some contexts (inputs). For this, Thompson sampling [48] is an elegant approach to guide
exploration, where a model configuration is first sampled from the posterior and then an optimal
action is choosen based on the sampled configuration.

We compare FVI with several NN-related baselines on datasets benchmarked by [37]. The hyperpa-
rameter settings are consistent with [47] except that we used a smaller batchsize (32). The learning
rates for each baseline are tuned from [0.001, 0.05]. We report the cumulative regret as well as the
mean ranks. Experiments are repeated for 10 runs. As shown in Table 2, no single algorithm always
outperforms the others in all bandit problems. However, FVI tends to give better performance than
the baselines (ranks the first overall, performs the best on 4 out of 7 datasets, and ranked top 2 on 6
out of 7 datasets), indicating that FVI can provide reliable uncertainty estimates for decision making.
Moreover, FVI is much more efficient than f-BNN (nearly 500 times faster, c.f. Appendix C.4).

6.4 Image classification and out-of-distribution detection

To demonstrate the scalability of our method to higher dimensional data, we consider image classifica-
tion tasks on Fashion MINIST [54] and CIFAR10 [25] with BNN priors. We compare our method to
the following baselines: mean field VI (MFVI), maximum a posteriori (MAP), KFAC Laplace-GNN
approximation [31] and its dampened version [38]. For all models, we use Bayesian CNNs with the
same mixed CNN-fully connected structure as in [21, 43]. Apart from test accuracy and negative
log likelihood (NLL), we also perform out-of-distribution detection using in-distribution (ID) / out-
of-distribution (OOD) pairs including FashionMNIST/MNIST and CIFAR10/SVNH. Following the
settings of [35, 21], we calculate the area under the curve (AUC) of out-of-distribution detection
based on predictive entropies. Results are shown in Table 3. On both datasets, our proposed FVI
method consistently outperforms all baselines in terms of (in-distribution) classification accuracy and
OOD detection AUC. Although FVI does not achieve the best NLL on CIFAR10, it still performs
competitively to MAP and dampened KFAC. This demonstrates that our method is able to scale to
high dimensional data and produce accurate predictions with well-calibrated uncertainties.

7 Conclusion

In this paper, we propose Functional Variational Inference (FVI), a new VI method in function space.
It optimizes a grid-based functional divergence, which can be estimated based on our proposed SPG
model. We demonstrated that FVI works well with implicit priors, scales well to high dimensional
data and provides reliable uncertainty estimates. Possible directions for future work might include
developing grid-function KL estimation methods without surrogate models and improving the
theoretical understanding of functional space VI.
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