
Under review as submission to TMLR

Factor Learning Portfolio Optimization Informed by
Continuous-Time Finance Models

Anonymous authors
Paper under double-blind review

Abstract

We study financial portfolio optimization in the presence of unknown and uncontrolled
system variables referred to as stochastic factors. Existing work falls into two distinct
categories: (i) reinforcement learning employs end-to-end policy learning with flexible
factor representation, but does not precisely model the dynamics of asset prices or factors;
(ii) continuous-time finance methods, in contrast, take advantage of explicitly modeled
dynamics but pre-specify, rather than learn, factor representation. We propose FaLPO
(factor learning portfolio optimization), a framework that interpolates between these two
approaches. Specifically, FaLPO hinges on deep policy gradient to learn a performant
investment policy that takes advantage of flexible representation for stochastic factors.
Meanwhile, FaLPO also incorporates continuous-time finance models when modeling the
dynamics. It uses the optimal policy functional form derived from such models and optimizes
an objective that combines policy learning and model calibration. We prove the convergence
of FaLPO and provide performance guarantees via a finite-sample bound. On both synthetic
and real-world portfolio optimization tasks, we observe that FaLPO outperforms five leading
methods. Finally, we show that FaLPO can be extended to other decision-making problems
with stochastic factors.

1 Introduction

Portfolio optimization studies how to allocate investments across multiple risky financial assets such as stocks
and safe assets such as US government bonds. The investment target is often formulated as maximizing the
expected utility of the investment portfolio’s value at a fixed time horizon, which conceptually maximizes
profit while constraining risk (von Neumann & Morgenstern, 1947). With continuous-time stochastic models
of stock prices, great advances in the expected utility maximization framework were made in Merton (1969)
using stochastic optimal control (dynamic programming) methods. More realistic models incorporate factors
like economic indices and proprietary trading signals (Merton et al., 1973; Fama & French, 2015; 1992),
which (i) affect the dynamics of stock prices; (ii) stochastically evolve over time; (iii) are not affected by
individual investment decisions. With greater data availability, it is natural to design and apply data-driven
machine learning methods (Bengio, 1997; Dixon et al., 2020; De Prado, 2018) to handle factors for portfolio
optimization. This work proposes a novel method—Factor Learning Portfolio Optimization (FaLPO)—which
combines tools from both machine learning and continuous-time finance.

Portfolio optimization with stochastic factors is challenging for three reasons. First, financial data is
notoriously noisy and idiosyncratic (Goyal & Santa-Clara, 2003), causing complex purely data-driven methods
to be unstable and prone to overfitting. Second, the relationship between the factors and their impact on
stock prices can be extremely complicated and difficult to model ex ante. Third, many successful finance
models are in continuous time and require interacting with the environment infinitely frequently. As a result,
such models cannot be easily combined with machine learning methods, many of which are in discrete time.

Current approaches to portfolio optimization broadly fall into two categories: reinforcement learning (RL) and
continuous-time finance methods. Many RL solutions to portfolio optimization are built on deep deterministic
policy gradient (Silver et al. 2014; Hambly et al. 2021, Section 4.3). Such methods parameterize the policy
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Figure 1: Demonstration of FaLPO

function as a neural network that take factors as the input and learn the neural network by optimizing
the corresponding portfolio performance. However, these approaches (as well as other model-free methods
like Haarnoja et al. 2018; Geng et al. 2023b) have high sample complexity and tend to overfit due to the
high noise in the data. Other RL methods explicitly learn representation (Watter et al., 2015; Lee et al.,
2020; Laskin et al., 2021) and leverage discrete-time models (Deisenroth & Rasmussen, 2011; Gu et al., 2016;
Mhammedi et al., 2020; Janner et al., 2019; Nagabandi et al., 2018). Nonetheless, these methods are not
informed by continuous-time finance models and, as our experiments suggest in Section 5, cannot benefit from
structures inherent in the financial market. As a result, RL provides flexible representation for stochastic
factors but suffers from the high noise in the data.

Stochastic factor models can be used to mathematically derive optimal (or approximately optimal) investment
policies (Kim & Omberg, 1996; Chacko & Viceira, 2005; Fouque et al., 2017; Avanesyan, 2021). To this
end, one needs domain knowledge to pick and model the factors. Then, model calibration (a.k.a. model
fitting, parameter estimation) is conducted by maximizing a calibration objective. With the calibrated
model, the optimal investment policy can be derived analytically or numerically (Merton, 1992; Fleming
& Soner, 2006). This procedure of calibration and optimization effectively constrains the ‘learning’ in the
optimization step, and thus helps reduce overfitting to noisy data. However, this approach cannot capture
the complicated factor effects in the data, because the factors may be complex and unlikely to be identified
manually. Therefore, these methods may end up with oversimplified models and suffer from model bias with
suboptimal performance.

To tackle these limitations, we propose factor learning portfolio optimization (FaLPO), a new method that
interpolates between the two aforementioned solutions (Figure 1). FaLPO includes (i) a neural stochastic
factor model to handle huge noise and complicated factor effects and (ii) a model-regularized policy learning
method to combine continuous-time models with discrete-time policy learning methods. First, to reduce
the sample complexity and avoid overfitting, FaLPO assumes factors and asset prices follow a parametric
continuous-time finance model. To capture the complicated factor effects, FaLPO models the factors by a
representation function ϕ parameterized by a neural network with minimal parametric constraints. Second,
for policy learning, FaLPO incorporates two regularizations derived from continuous-time stochastic factor
models: a policy functional form and model calibration. Specifically, we derive policy functional forms from
the neural stochastic factor model using stochastic optimal control tools, and apply it to parameterize the
candidate policy in FaLPO. The use of this form in the learning algorithm effectively acts as a regularizer.
Then, model calibration and policy learning are conducted jointly, such that the learned policy is informed
by continuous-time models.

Theoretically, we prove that the added continuous-time regularization leads to the optimal portfolio per-
formance as the trading frequency increases. Empirically, we demonstrate the improved performance of
the proposed method by both synthetic and real-world experiments. We review the related literature in
Appendix A. We also discuss how FaLPO is extendable beyond portfolio optimization, and can be applied to
other decision-making problems with stochastic factors in Appendix H.
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2 Background

In this section, we first formulate the portfolio optimization problem. We then review two major solutions to
this problem: deep deterministic policy gradient in reinforcement learning (RL) and stochastic factor models
in continuous-time finance.

2.1 Portfolio Optimization
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Figure 2: Power & exponential utilities.

Problem Formulation Portfolio optimization
seeks to derive a policy of asset allocation that yields
high return while maintaining low risk for the invest-
ment. Formally, consider dS risky assets with prices
St := [S1

t , S2
t , · · · SdS

t ]⊤ and a risk-free money mar-
ket account with, for simplicity, zero interest rate of
return (like cash). We observe dY stochastic factors
(e.g. economic indices, market benchmarks) denoted
as Yt. Such stochastic factors (i) affect the dynamics
of asset prices; (ii) evolve over time stochastically;
(iii) are not affected by investment decisions. Given
an initial investment capital (or wealth) z0 and the
initial values for Yt and St as y0 and s0, we use a
dS × 1 vector πt to denote the fractions of wealth
invested in the dS assets at time point t. Note that negative values are allowed in πt indicating short positions.
At the terminal time T > 0, the target is to maximize the expectation of a given utility function E[U(Zπ

T )],

Intuitively, a utility function reflects the risk preference of an investor. It is an increasing function of wealth
that is also concave: it changes significantly when the wealth is low but less so when the wealth is high
(Figure 2). This work focuses on the power utility U(z; γ) := 1

1−γ z1−γ with Z = R+, γ > 0, and γ ̸= 1; and
the exponential utility U(z; γ) := − exp(−γz)

γ with Z = R and γ > 0. Here, γ is the investor’s risk aversion
coefficient and is hand-picked (instead of tuned) by the user. A larger γ corresponds to more risk aversion,
while a smaller γ corresponds to more risk tolerance. Note that potentially, one can learn a suitable γ from
data, which is related to the area of inverse reinforcement learning (Geng et al., 2020; 2023a). Beyond these
two utilities, our method is also applicable to other utility functions and other objective functions for portfolio
optimization (see Appendix B).

Discrete- and Continuous-Time Policies Discrete- and continuous-time policies are two major types of
investment policies, differing on how frequently the portfolio is rebalanced. A discrete-time policy rebalances
the portfolio finitely frequently, leading to a discrete-time dynamics for the wealth. Such policies are
often considered in RL methods (Section 2.2). Continuous-time policies rebalance the investment infinitely
frequently, leading to a continuous-time dynamics for the wealth. These policies are often found explicitly in
continuous-time finance models (Section 2.3) 1.

2.2 Deep Deterministic Policy Gradient

We review deep deterministic policy gradient (DDPG, Silver et al. 2014)—a quintessential example of RL
methods. DDPG does not explicitly model the dynamics, but instead directly learns a discrete-time policy
for portfolio optimization. DDPG parameterizes the policy function as a deep neural network and conducts
gradient-based policy learning. Denote by π(t, St, Zt, Yt; θD) the deep policy function with parameter θD.
Without explicitly modeling the dynamics of St or Xt, DDPG directly maximizes the following performance
objective to learn a policy:

max
θD

V (θD) with V (θD) := E[U(Zπ(·;θD)
T )], (1)

1Note that it is impossible to rebalance a portfolio infinitely frequently in practice. Thus, continuous-time policies are more
useful as analytical tools.
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where the expectation is over the terminal wealth Z
π(·;θD)
T following the policy π(·; θD). A key step of DDPG

is to compute the gradient of V (θD) to update θD. Following the procedure in Appendix C, this can be
achieved by sampling the trajectories of St and Yt to approximate the expectation and thus the gradient of
V (θD).

Typically, DDPG learns a discrete-time policy that rebalances the portfolio finitely frequently. To see how
the policy rebalances the portfolio, we study its corresponding wealth process Z

π(·;θD)
t that characterizes

the changes in wealth over time. Let ∆t > 0 be the time interval (e.g. daily, weekly) to rebalance the
portfolio and, for integer M > 0, let T := M∆t be the fixed investment horizon (e.g. one or two months). At
time m∆t with m ∈ {0, 1, 2, · · · , M − 1}, define πi

m∆t := πi(m∆t, Sm∆t, Zm∆t, Ym∆t; θD) as the fraction of
current wealth invested in the ith risky asset. Then, the wealth change at time m∆t is: Z

π(·;θD)
(m+1)∆t − Z

π(·;θD)
m∆t =

Z
π(·;θD)
m∆t

[∑dS

i=1 πi
m∆t

Si
(m+1)∆t−Si

m∆t

Si
m∆t

]
, where Z

π(·;θD)
m∆t πi

m∆t

Si
(m+1)∆t−Si

m∆t

Si
m∆t

is the wealth change due to the

investment in the ith risky asset. Note that the number of shares invested in an asset (Zπ(·;θD)
m∆t

πi
m∆t

Si
m∆t

) does
not change during (m∆t, (m + 1)∆t): the portfolio rebalances every ∆t time.

RL methods like DDPG provide flexible representation for factors: the hidden layers of the neural network are
considered as the representation learned for Yt, providing strong representation power. Nonetheless, there is
not an explicit parametric model for the learned representation and asset prices. Consequently, such methods
require lots of data and tend to overfit (Aboussalah, 2020).

2.3 Stochastic Factor Models

We review stochastic factor models in continuous-time finance. These models can explicitly formulate the
dynamics and can also be used to mathematically derive the functional form of the optimal continuous-time
investment policy. Stochastic factor models are described by stochastic differential equations (SDEs) (see
Oksendal 2013 and Appendix D) to formulate the dynamics of asset prices St. Specifically, let Wt :=
[W 1

t , W 2
t , · · · W dW

t ]⊤ be a dW × 1 Brownian motion that characterizes random fluctuations. Then, St and Yt

are assumed to follow

dSi
t

Si
t

= f i
S(Yt; θ∗

S)dt +
dW∑
j=1

gij
S (Yt; θ∗

S)dW j
t ,

dYt = fY (Yt; θ∗
S)dt + gY (Yt; θ∗

S)⊤dWt,

(2)

with i ∈ {1, 2, · · · , dS}.

In (2), fS : RdY → R
dS , fY : RdY → R

dY , gS : RdY → R
dS×dW , and gY : RdY → R

dY ×dW are parametric
functions pre-specified by domain knowledge. Further, fS and fY are often referred to as the drift, and gS

and gY as the volatility of St and Yt respectively. Intuitively, SDEs formulate the change of a variable in
an infinitesimal time step as the sum of a deterministic part (dt) and a stochastic part (dWt), and we use
θ∗

S to parameterize the SDE. The factor Yt appears in both the drift and volatility of the asset prices, thus
affecting the price transition. With the parametric functional forms in (2), we can use tools in stochastic
optimal control to derive the functional form of the optimal continuous-time investment policy.

Continuous-time policies change the investment in each asset at every time point. For a continuous-time
investment policy π̃t, the dynamics of wealth Z̃ π̃

t is defined as dZ̃π̃
t

Z̃π̃
t

:=
∑dS

i=1
π̃i

tdSi
t

Si
t

, with Z̃0 = z0, S0 =
s0 and Y0 = y0. Crucially, this is different from the discrete-time wealth process Zπ

t in Section 2.2, as the
number of shares Z̃π̃

t π̃i
t

Si
t

in asset i now changes continuously over time, as opposed to being rebalanced at
finite intervals. This discrepancy creates obstacles to directly apply the results derived from stochastic factor
models to discrete-time policy learning.

Stochastic factor models can reduce sample complexity for portfolio optimization, since the assumed functional
forms in (2) significantly constrain the solution space. However, a crucial step to apply stochastic factor
models is to pick or even construct Yt that perfectly follows a pre-specified model. This step often relies on
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Figure 3: Demonstration for neural stochastic factor models.

domain knowledge and thus may end up with oversimplified models suffering from model bias and eventually
leading to suboptimal performance.

3 Factor Learning Portfolio Optimization

We propose factor learning portfolio optimization (FaLPO), a new decision-making framework that interpolates
between DDPG and stochastic factor models. FaLPO has two components: (i) a neural stochastic factor
model to handle huge noise and complicated factor effects and (ii) model-regularized policy learning to
combine continuous-time models with discrete-time policy learning methods.

3.1 Neural Stochastic Factor Models

We describe neural stochastic factor models (NSFM) and discuss their benefits. Specifically, a neural stochastic
factor model is defined as

dSi
t

Si
t

= f i
S(Xt; θ∗

S)dt +
dW∑
j=1

gij
S (Xt; θ∗

S)dW j
t ,

dXt = fX(Xt; θ∗
S)dt + gX(Xt; θ∗

S)⊤dWt,

Xt = ϕ(Yt; θ∗
ϕ).

On the one hand, a neural stochastic factor model assumes the existence of a representation function ϕ for
factors such that Xt = ϕ(Yt; θ∗

ϕ) along with asset prices St follows a stochastic factor model (e.g. (2) and
(6)), which reduces the sample complexity and avoids overfitting. On the other hand, ϕ is formulated as a
neural network with parameter θ∗

ϕ. As a result, FaLPO avoids hand-picking factors following SDEs as is the
case in stochastic factor models (Section 2.3). The neural network representation has only a few parametric
constraints and thus is able to capture complicated factor effects in the data. Note that the notation of Xt is
only provided for the ease of exposition: it does not represent any external data other than the factors Yt. A
demonstration of NSFM is provided in Figure 3.

3.2 Model-Regularized Policy Learning

Under the proposed neural stochastic factor model, we aim to learn the discrete-time optimal policy function
π∗

t and the representation function ϕ(·; θ∗
ϕ). However, while the policy learning is for discrete-time policies,

our proposed model is in continuous time. To bridge this gap, we incorporate two types of continuous-time
model regularization into discrete-time policy learning: (i) the policy functional form (3) and (ii) the model
calibration objective (4).

Policy Functional Form From our model, we apply the functional form of a continuous-time optimal
policy into our discrete-time policy learning. Using tools in stochastic optimal control, we can derive the
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Algorithm 1 FaLPO
1: Input: number of iterations N .
2: Initialize θϕ and θπ .
3: for n ∈ [N ] do
4: Parameterize the policy function according to (3).
5: Estimate the policy gradient for H in (5) (Appendix C).
6: Update θϕ, θπ, and θS .
7: end for
8: Return π(·; θϕ, θπ)

functional form of an optimal continuous-time policy: π̃∗
t = Π(t, St, Zt, Xt; θ∗

π̃), where the functional form of
Π can be obtained in many existing stochastic factor models (Kim & Omberg, 1996; Chacko & Viceira, 2005;
Avanesyan, 2021; Zariphopoulou, 2001; Wachter, 2002; Kraft, 2005), and θ∗

π̃ is an optimal parameter for Π.
FaLPO uses the functional form of Π in policy learning and parameterize the candidate policy as

π(t, St, Zt, Yt; θϕ, θπ) := Π(t, St, Zt, ϕ(Yt; θϕ); θπ), (3)

where ϕ is the representation function for the factors in Section 3.1. As a result, Π constrains the policy
space and acts as regularization. Importantly, although Π is derived for continuous-time policies, it can still
provide guidance for discrete-time policy learning when ∆t is small. We rigorously prove the soundness of
using (3) in Section 4.

Model Calibration FaLPO also hinges on model calibration to regularize policy learning. Given the
specific functional forms in (2), FaLPO conducts model calibration to estimate the parameters of the SDE.
The calibration procedure can be summarized as maximizing a model calibration objective:

max
θS

L(θϕ, θS). (4)

In practice, with discrete data, one may use likelihood (Phillips, 1972; Beskos & Roberts, 2005) or other
likelihood-based objective functions (Bishwal, 2007; Ait-Sahalia & Kimmel, 2010) for L (see Appendix E for
concrete examples).

To harness the information provided by model calibration in policy learning, FaLPO combines the model
calibration objective L in (4) with the performance objective V in (1) and facilitates a joint optimization over
the two. Note that naively combining L(θϕ, θS) and V (θD) is not effective since the two in general do not share
common parameters: the parameter of the policy network θD has no overlap with the SDE parameter θS or
factor representation parameter θϕ. However, by constraining the policy space to (3) in FaLPO, we can show
that θϕ is also part of the policy parameterization. Thus, V can be derived as V (θϕ, θπ) := E[U(Zπ(·;θϕ,θπ)

T )].
In other words, θϕ is shared in both V and L, and hence FaLPO can carry out a joint optimization over the
two:

max
(θϕ,θπθS)∈A

H(θϕ, θπ, θS), with

H(θϕ, θπ, θS) := (1 − λ)V (θϕ, θπ) + λL(θϕ, θS),
(5)

where the candidate policy follows the functional form of the optimal continuous-time policy (3) (see
Algorithm 1), and A denotes the considered parameter set. The model calibration objective also acts as a
model regularization, where λ ∈ (0, 1) is a hyperparameter determining its effect. In practice, we can optimize
(5) by gradient-based methods, facilitating a easy and end-to-end learning procedure (see Appendix C for
gradient estimation details).

3.3 Example of FaLPO

In portfolio optimization, one can use different types of stochastic factor models. FaLPO can be applied to
many such types (Appendix F). In this section, we use the Kim–Omberg model (Kim & Omberg, 1996) as an
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example to illustrate FaLPO’s modeling and policy learning. Kim–Omberg is a standard model for portfolio
optimization with stocahstic factors, which has been extensively studied empirically (Welch & Goyal, 2008;
Muhle-Karbe et al., 2017). For modeling, FaLPO with Kim–Omberg model formulates the dynamics of asset
prices and factors as

dSi
t

Si
t

= Xi
t dt +

dW∑
j=1

σij dW j
t ,

dXt = µ(ω − Xt) dt + v dWt, and Xt = ϕ(Yt; θ∗
ϕ),

(6)

where SDE parameters ω, σ, v, and µ are constant matrices or vectors.

For policy learning, we detail the policy functional form and model calibration. Under the Kim-Omberg
model, we can derive the optimal policy functional form Π in (3). Specifically, for power utility
Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = k1(t; θπ)ϕ(Yt; θϕ) + k2(t; θπ), for exponential utility Π(t, St, Zt, ϕ(Yt; θϕ); θπ) =
k1(t; θπ)ϕ(Yt; θϕ)/Zt + k2(t; θπ)/Zt, where k1(·; θπ) : [0, T ] → RdS×dX and k2(·; θπ) : [0, T ] → RdS×dX

are two time dependent functions (Appendix F.2). We can derive the functional forms of k1 and k2
since the two are solutions to systems of ODEs related to algebraic Riccati equations (Appendix G).
We can also directly use function approximators like neural networks or kernel methods for the two.
For model calibration, we use a negative mean square loss with the derivation deferred to Appendix E:
L(θϕ, θS) := −E

[∑dS

i=1
[

log(Si
t+∆t) − log(Si

t) − ϕi(Yt; θϕ)∆t − θi
S

]2], where in this case θS is a dS × 1 vector.

Therefore, to implement FaLPO, we can parameterize the candidate policy function using Π and optimize (5).

Note that the methodology of FaLPO is also generally applicable to other decision-making problems besides
portfolio optimization. In Appendix H, we use linear quadratic control with stochastic factors as an example
to demonstrate the generality of FaLPO.

4 Theory

We theoretically analyze both the asymptotic and non-asymptotic characteristics of FaLPO.

4.1 Asymptotic Analysis

FaLPO applies the policy functional form and model calibration derived from continuous-time models to
discrete-time policy learning. We show that FaLPO can achieve the optimal performance asymptotically
(i.e. with infinite data and perfect optimization). In the following, we describe the assumptions and results
and provide the formal theorem in the end.

We provide an intuitive description on the assumptions, with the formal statements provided in Appendix I.1.
First, we assume that the portfolio optimization problem satisfies some standard regularity conditions (Higham
et al., 2002): the drift and volatility are locally Lipschitz continuous; meanwhile, the asset prices, the stochastic
factors, and the wealth process under the optimal policy have bounded moments. Second, we assume that the
utility function U(z) has linear growth on z ∈ Z. Note that some widely used cases like power utility with
γ < 1 and exponential utility with lower-bounded wealth satisfy this assumption. Third, we consider only
admissible policies with parameters in A and we assume that A covers the optimal continuous-time policy
parameter. A policy is admissible if it is predictable and if the wealth process Zπ

t ∈ Z for any t ∈ [0, T ]
almost surely. It is a common practice to only consider such admissible policies in portfolio optimization.
The last two assumptions are artifacts of the current theoretical analysis; in practice FaLPO can achieve
reasonable performance without enforcing them (see Section 5).

With the foregoing assumptions, we show that the performance of FaLPO can asymptotically converge to that
of the best policy in discrete time. In detail, we define V ∗

∆t := V (π∗) where π∗ is an optimal discrete-time
admissible policy with time interval ∆t, i.e., V ∗

∆t is the optimal performance obtained without constraining
to the functional form (3) or leveraging model calibration like (5). Next, define θ∗

∆t := (θ∗
ϕ,∆t, θ∗

π,∆t, θ∗
S,∆t) ∈

arg max(θϕ,θπ,θS)∈A H(θϕ, θπ, θS) with the policy functional form (3), such that V (θ∗
∆t) is the performance

7
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that FaLPO can achieve with infinite data and perfect optimization. Then, Theorem 4.1 shows that the gap
between V ∗

∆t and V (θ∗
∆t) converges to zero as ∆t goes to zero.

Theorem 4.1. With assumptions above, lim∆t→0
(
V ∗

∆t − V (θ∗
∆t)
)

= 0.

Theorem 4.1 justifies the methodology of FaLPO under a small time interval. The proof is provided in
Appendix I.2 and Appendix I.3.

4.2 Non-Asymptotic Analysis

We study the finite-sample performance of FaLPO. We describe the problem setup, major assumptions, and
then provide the theorem. In each iteration, we collect B independent trajectories to estimate the gradient
of H. Let θn be the estimate after the nth iteration, and N the total number of iterations. we analyze
the average estimate θ̄ :=

∑N

n=1
θn

N instead of θN , which is a common technique for stochastic optimization
analysis. Specifically, we aim to bound the expected difference between V ∗

∆t and V (θ̄). Note that it is
extremely challenging to theoretically analyze a non-convex stochastic optimization (5) without further
specifications in problem setup and assumptions (Polyak, 1963; Bhandari & Russo, 2019; Jin et al., 2021;
Ma, 2020; Wang et al., 2019). Therefore, we consider a projection-based variant of FaLPO, under which the
optimization process is conducted in a bounded parameter set B ⊆ A. Furthermore, we assume that the
objective function H is strongly concave in B with a local maximal point θ†

∆t := (θ†
ϕ,∆t, θ†

P,∆t, θ†
S,∆t). Similar

local curvature assumptions are commonly used to analyze non-convex problems (Bach et al., 2017; Loh,
2017). With the above setup and assumptions (also detailed in Appendix J.2), the expected gap between V ∗

∆t

and V (θ̄) satisfies the following finite-sample bound in Theorem 4.2.
Theorem 4.2. With the aforementioned projection-based FaLPO algorithm and assumptions, there exist
positive constants C1, C2, C3, and C4 such that

E[V ∗
∆t − V (θ̄)]

≤ e∆t

1 − λ
+ H(θ∗

∆t) − H(θ†)
1 − λ

+ C1 log(N)
N(1 − λ)

+ C1 log(N)
BN(1 − λ)

[
(1 − λ)2C2 + λ2C3 + 2λ(1 − λ)C4

]
,

(7)

where λ ∈ [0, 1]. Also, e∆t is an error term not related to N or B but dependent on ∆t with lim∆t→0 e∆t = 0.

Theorem 4.2 provides a non-asymptotic upperbound on the gap between the optimal performance V ∗
∆t and

the one achieved by FaLPO V (θ̄). We briefly comment on each term in the upperbound. e∆t

1−λ bounds the
asymptotic performance gap caused by leveraging the continuous-time policy functional form constraint and
model calibration, and we explain its connection to Theorem 4.1 in Appendix J.4. H(θ∗

∆t)−H(θ†
∆t

)
1−λ controls the

performance gap between the local optimal point θ†
∆t and the global optimal point θ∗

∆t. The remaining terms
characterize the performance gap between θ̄ and θ†

∆t.

Theorem 4.2 has two implications. First, the bound in (7) is a rational function of λ. Accordingly, there
exist situations where a λ ∈ (0, 1) provides a smaller upper bound than λ = 0, indicating the possibility that
tuning λ can provide better performance (see experiments in Appendix J). Second, when λ = 1, the bound
diverges to infinity. This makes sense since when λ = 1, H(θϕ, θπ, θS) = L(θϕ, θS) does not contain θπ: the
algorithm does not learn the policy. We prove the theorem in Appendices J.1, J.3 and J.4.

5 Experiments

By incorporating continuous-time finance models into policy learning, FaLPO can deal with high data noise
and complex factor effects. In this section, we demonstrate the improved performance of FaLPO against
existing portfolio optimization methods, over synthetic and real-world experiments.

5.1 Synthetic Experiments
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Table 1: Competing methods and their characteristics.

Methods Factor Representation Parametric Modeling Joint Optimization
MMMC ✖ ✔ ✖

DDPG ✔ ✖ ✖

SLAC ✔ ✖ ✔

RichID ✔ ✔ ✖

CT-MB-RL ✖ ✔ ✖

FaLPO ✔ ✔ ✔

Metrics We compare different methods
using the average terminal utility since it
is the ultimate goal in our portfolio opti-
mization problem formulation and is com-
monly used in continuous-time finance
models. There exist other statistics mea-
suring the performance of portfolios (see
Section B). These statistics are not equiv-
alent or consistent with the utility, and
thus we do not emphasize them.

Methods FaLPO combines 1) flexible factor representation learning, 2) parametric modeling, and 3) joint
optimization of policy learning and model calibration. To demonstrate the performance improvement of the
combination of these three features, we compare FaLPO with five competing methods in prior work (Table 1).
(i) Merton Model with Model Calibration (MMMC): model calibration of a classic continuous-time finance
baseline, which does not consider stochastic factors (Merton, 1969). (ii) Deep Deterministic Policy Gradient
(DDPG): a state-of-the-art model-free RL method with deterministic policy (Silver et al., 2014), which is
at the core of many empirical portfolio optimization methods (Appendix A). DDPG directly treats factors
as input of neural networks for policy without parametric modeling and joint optimization. (iii) Stochastic
latent actor critic (SLAC): a state-of-the-art representation learning RL method that jointly learns the
policy and the representation of variables (a.k.a factors in our case) (Lee et al., 2020). But SLAC does
not use any parametric models in representation learning or policy learning. (iv) Model-based RL with rich
observations (RichID): a state-of-the-art model-based RL method with representation learning (Mhammedi
et al., 2020). RichID learns the representation of factors using parametric models, but it does not conduct
a joint optimization on performance and model calibration like FaLPO. (v) Continuous-time model-based
RL (CT-MB-RL): model-based policy gradient where factors are fed into the policy functional derived from
continuous-time models (Herzog et al., 2004) without representation learning. Note that all the considered
methods except MMMC observe the same data with stock prices St and factors Yt.

For policy gradient methods, we pick a deterministic policy approach like DDPG as, when compared to
non-deterministic policy gradient alternatives, they are more suitable to portfolio optimization due to the
continuous action space, high exploration cost, and high noise in financial data (Appendix A.2). For portfolio
optimization, different variance reduction methods for policy gradient (Schulman et al., 2015; 2017; Xu et al.,
2020) only provide minor performance improvements (Aboussalah, 2020). We hence do not report such
results. For areas of RL with representation learning and model-based RL, we focus on those (SLAC and
RichID) explicitly learning a representation of latent variables, since such methods are more closely related
to FaLPO. There are other techniques like data augmentation, feature construction, adversarial training, and
regularization that can improve the empirical performance of portfolio optimization (See Hambly et al. 2021
and Appendix A). In this work, we focus on the central methodological task of policy learning, and most
such techniques can be directly combined with our proposed method.

Protocol We simulate environments with the Kim–Omberg model and implement the considered methods
to compare their performance. Note that a key data generating parameter in portfolio optimization is the
signal-to-noise ratio, which can be roughly characterized by the ratio between the scale of the drift and
the scale of the volatility (see Appendix K.1 for detailed explanation). We test our method under different
signal-to-noise ratios. To this end, we randomly generate stock drifts to around 10% (to mimic the real-world
average return of stocks in SP500), vary the scale of volatility in {10%, 20%, 30%}, and simulate data following
the procedure in Appendix K.2. Then, we apply the considered methods to maximize the terminal power and
exponential utility with different γ’s. For each method, we tune the learning rate and other method-specific
hyperparameters with early stopping (Appendix K.3). With each method-hyperparameter-environment
combination, we repeat training, validation, and testing five times.

Results For exponential utility maximization, Table 2 summarizes the average test utility after hyperparameter
selection with 10 stocks, 10 factors, and γ = 5. FaLPO outperforms all the competing methods in terms
of average terminal utility. This performance gain may be explained by the factor representation learning
informed by the continuous-time finance model, as other methods are incapable of doing so. Meanwhile,
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Table 2: Average terminal utility after tuning with standard deviation for synthetic data

Annual Volatility 0.1 0.2 0.3
FaLPO −0.465 ± 0.446 −1.35 ± 0.155 −2.737 ± 0.219
DDPG −1.650 ± 0.456 −3.30 ± 1.294 −5.495 ± 1.269
SLAC −0.750 ± 0.210 −5.50 ± 0.011 −6.160 ± 0.012
RichID −3.350 ± 0.111 −5.65 ± 0.102 −6.325 ± 0.048

CT-MB-RL −2.850 ± 0.014 −5.35 ± 0.020 −6.160 ± 0.026
MMMC −4.723 ± 7.619 −5.602 ± 4.299 −6.124 ± 3.217

Table 3: Average terminal utility for real-world data. Mix denotes a mix of stocks in the
previous three sectors.

Methods Energy Material Industrials Mix
FaLPO −2.4 ± 1.9 −3.2 ± 1.0 −6.3 ± 2.3 −3.5 ± 1.5
DDPG −6.6 ± 1.2 −7.3 ± 1.5 −7.3 ± 2.1 −2.5 × 104 ± 3.3 × 108

SLAC −6.8 ± 0.2 −7.0 ± 1.5 −342.4 ± 886.8 −3.0 × 108 ± 4.3 × 1012

RichID −6.5 ± 0.1 −6.9 ± 1.4 −6.9 ± 0.4 −8.1 ± 3.9
CT-MB-RL −4.2 ± 6.2 −5.4 ± 4.3 −11655 ± 32947.5 −5.7 ± 3.1

MMMC −8.5 ± 7.6 −6.5 ± 1.7 −11.0 ± 5.4 −7.5 ± 4.4

MMMC and CT-MB-RL underperform, which suggests the disadvantage of using oversimplified models.
Compared with the more sophisticated RL methods like SLAC and RichID, the simple DDPG is fairly
competitive. This is consistent with the existing observation that more complicated RL solutions may not
always be suitable for portfolio optimization due to the large noise and idiosyncrasy in the data. In the
appendix, we provide additional experimental results with different problem dimensions (Appendix K.4.1),
other γ values (Appendix K.4.2), and different utility functions (Appendix K.4.3). The results are consistent.
Appendix K.4.4 studies a simplified case, where the optimal performance can be mathematically derived.
FaLPO achieves a similar performance as the theoretically optimal one.

5.2 Real-World Stock Trading

In this section, we present an application of FaLPO for real-world stock trading problems. Following the
synthetic portfolio optimization setup, we study the six considered methods for 21-day (one month) stock
trading in four different stock sectors using the daily stock price data from Yahoo finance between January
4, 2006 and April 1, 2022. For factors, we follow existing works (Aboussalah, 2020; De Prado, 2018; Dixon
et al., 2020) and consider economic indexes, technical analysis indexes, and sector-specific factors such as oil
prices, gold prices, and related ETF prices, leading to around 30 factors for each sector. In each sector we
select 10 stocks according to the availability and trading volume in the considered time range (Appendix L.1).
The training, validation, and testing data are constructed using rolling windows (Appendix L.3). Table 3
reports the achieved average utility of each method under the selected hyperparamters. FaLPO achieves the
highest average utility in all four sectors.

Next, we conduct the training-tuning-testing procedure above with γ ∈ {5, 7, 9}, and report the returns of
FaLPO in each quarter in Figure 4. Recall that a smaller γ corresponds to taking more risk. This is consistent
with the observation in Figure 4 that the smaller the γ the bigger the return but the larger the fluctuations.
Also, the return fluctuates and drops around late 2018 and early 2020. The former corresponds to the abrupt
bear market at the end of 2018, and the latter is consistent with the time period that COVID-19 bursts.
Under these two time periods, the financial market was especially noisy and unpredictable. In Appendix L.6
to L.8, we conduct additional experiments to further demonstrate the characteristics of FaLPO under various
scenarios including discussions on transaction costs, sensitivity analysis, and different initial wealth First, we
provide experimental results with short-selling transaction costs in Appendix L.6. This is in contrast to many
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Figure 4: FaLPO average return over portfolio terminal dates.

existing works of utility maximization (Merton, 1969; Kim & Omberg, 1996; Avanesyan, 2021; Guan & Liu,
2021), which do not consider transaction costs even with shorting. We also believe that further studying
other market frictions is an interesting direction for future work. Second, we implement sensitivity analysis
on λ in Appendix L.4 and observe that a non-zero small λ works well in practice. Then, we compare different
methods using Sharpe ratio and largest drawdon in Appendix L.7. Finally, we experiment with different
initial wealth values with results provided in Appendix L.8.

6 Conclusion

This work proposes FaLPO, a new decision-making framework for portfolio optimization with stochastic
factors. By using continuous-time finance models to regularize policy learning, FaLPO is able to handle
high noise and complex effects in financial data. FaLPO has one potential limitation: the performance of
FaLPO relies on a suitable parametric model and good factors (Yt). In the presence of unpredictable market
events (like COVID-19), or when the factors do not contain any useful signals (like the Merton case in
Appendix K.4.4), additional caution needs to be taken.
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Appendix

A Related Literature

In this section, we discuss related literature.

A.1 Continuous-Time Finance Models

Existing strategies for solving portfolio optimization using continuous-time finance models

can be loosely summarized as performing three steps:

1. Choosing the model for the dynamics, i.e. the type of stochastic differential equation (SDE).

2. Estimating the parameter of the selected model (which is also referred to as model fitting, model
identification, or calibration).

3. Solving for the optimal policy under the estimated model.

The third step leverages stochastic optimal control tools (Fleming & Rishel, 1975; Fleming & Mitter, 1982;
Fleming & Soner, 2006; Yong & Zhou, 1999).

Finding and estimating an appropriate model for stochastic optimal control requires significant domain
knowledge. For instance, in finance, the modeler must specify both which factors are relevant and how
they affect stock prices (Fama & French, 1992). If not every relevant factor is correctly specified, optimal
control can hardly lead to good performances. As a result, in stock trading, control methods would hand
pick three to five economic indices as the factors and assume they follow a simple (often linear) SDE. But
indeed trading can benefit from much richer datasets including related option prices, technical indicators,
and interest rates (Aboussalah, 2020; De Prado, 2018; Dixon et al., 2020; Mehtab & Sen, 2019).

Further, even with a correctly specified model and factors, likelihood-based estimation for SDE control models
can be very challenging (Phillips & Yu, 2009). As a result, methods like Aït-Sahalia (2008); Ait-Sahalia &
Kimmel (2010) seek to replace the exact likelihood with other likelihood-based objective functions, while
maintaining theoretical guarantees. However, the proposed objective function needs to be derived for each
specific problem, and the derivation can be challenging. Other methods like Fasen (2013); Holỳ & Tomanová
(2018) rely on more specific parametric or low-dimensional setups. To alleviate these issues, our framework
extends the existing continuous-time finance models by allowing for a flexible and generalized definition of
stochastic factor dynamics. Further, we simultaneously conduct policy learning and model calibration in an
RL manner, with a square-loss objective that avoids the calculation of an exact likelihood.

A.2 Reinforcement Learning

RL aims to conduct the aforementioned three steps by (i) relying more on data (ii) in an end-to-end fashion.
Methods like model-free RL assume no parametric forms on the dynamics, and directly learn the optimal
policy while explicitly learning the model (step 1) and estimating the parameters (step 2).

Discrete-Time Model-Free RL There exist many discrete-time model-free RL methods (Sutton & Barto,
2018). In this category, deep deterministic policy gradient (DDPG) is the most relevant one, and is empirically
most widely used for portfolio optimization (Hambly et al., 2021). The reason is twofold. First of all, DDPG
is a policy-gradient based method, and thus can naturally handle continuous states and actions in portfolio
optimization with simple procedures. Second, DDPG learns a deterministic policy instead of a stochastic one
like Haarnoja et al. (2018). This characteristic is especially important in portfolio optimization where the
policy learning goal is a deterministic policy since the cost of a stochastic policy is extremely expensive.

Continuous-Time Model-Free RL Continuous-time model-free RL (Wang et al., 2018; Doya, 2000;
Munos, 2006) aims to solve for a continuous-time policy. However, such methods do not use or assume
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any SDE structure, and thus struggle with the common open questions in model-free RL like poor stability
and sample complexity. As one example, path integral methods stem from the theoretical result that the
value function of a type of continuous-time decision-making problems can be expressed in closed form as a
Feyman-Kac path integral (Fleming & Rishel, 1975; Kappen, 2005). A series of control/RL methods follow the
rationale of optimizing the policy to maximize such an integral. Specifically, Theodorou et al. (2010) propose
an open-loop control strategy; Kappen & Ruiz (2016) builds RL with importance sampling; Chebotar et al.
(2017a;b); Stulp & Sigaud (2012) combine path integral with other model-based or model-free RL methods.
However, the core derivation only holds for decision-making satisfying Kappen & Ruiz (2016, Equation (1)),
which is equivalent to assuming that the action does not affect the randomness in decision-making. Such an
assumption is limiting, and does not hold for portfolio optimization, where how to allocate the wealth in
order to minimize the risk is key to a successful policy.

Model-based RL and RL with Representation Learning Model-based RL and RL with representation
learning are two active research areas but without a clear general state-of-the-art (Bharadhwaj et al., 2022;
Eysenbach et al., 2021; Trabucco et al., 2022; Janner et al., 2019; Deisenroth & Rasmussen, 2011; Nagabandi
et al., 2018; Laskin et al., 2021; Lee et al., 2020; Watter et al., 2015; Chebotar et al., 2017a; Hafner et al., 2019;
Kim et al., 2019). The closest to FaLPO are those that learn an explicit representation of a latent variable
like Lee et al. (2020); Mhammedi et al. (2020). But such methods are unable to leverage continuous-time
finance models for portfolio optimization.

Bayesian RL Our proposed framework is also related to Bayesian models (Ghavamzadeh et al., 2015; Rawlik
et al., 2012), if we treat the learned representation of factors as the hidden variable. Strictly formulating an
NSFM as a Bayesian model requires assumptions specifying the conditional distributions, and thus requires
more domain knowledge. The optimization of Bayesian methods is also more challenging.

RL for Stock Trading Various efforts have been made on applying RL to stock trading (Corazza &
Bertoluzzo, 2014; Hambly et al., 2021; Nan et al., 2022; Xiong et al., 2018; Guan & Liu, 2021; Liu et al.,
2021; Hu et al., 2018; Yu et al., 2019). However, these methods focus more on feature selection or empirical
performance-improving techniques. Methodologically, they do not take advantage of continuous-time finance
models.

A.3 Empirical Risk Minimization

Another related area is Empirical Risk Minimization (ERM) (Vapnik, 1992). ERM studies the minimization
of an objective function using the averages over training data to construct an empirical loss function. Recent
work connected ERM with simulation-based and data-based offline decision-making methods (Reppen &
Soner, 2020). More specifically, when the random input is observable and unaffected by actions, and a
training set is available, the decision-making problem can be formulated as an ERM problem. As a result,
the portfolio optimization may be reformulated as an ERM extension.

B Other Objective Functions

Note that the goal of portfolio optimization is to maximize the return while minimize or constrain the risk.
In practice, one can use different objective functions for such a goal, like mean-variance objective (Hambly
et al., 2021), Sharpe ratio, and so on. In this work, we consider utility maximization with power utility and
exponential utility. The proposed method also works with other objective functions, as long as we can derive
(part of) the optimal policy structure. Note that the selection among these objective functions is more a
user-preference question.
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C Gradient Estimates

In this section, we discuss the gradient estimation for both V and L. Assume that we collect B independent
trajectories for St and Yt, denoted as

D := {(s0,k, y0,k), (s∆t,k, y∆t,k), (s2∆t,k, y2∆t,k), · · · (sM∆t,k, yM∆t,k)}B
k=1 .

Then, the gradient estimate for V (θϕ, θπ) is defined as

∇̄V (θϕ, θπ) := 1
B

B∑
k=1

∇̃Vk(θϕ, θπ) with ∇̃Vk(θϕ, θπ) := ∇θϕ,θπ
U(zπ(·;θϕ,θπ),∆t

T,k ).

The terminal wealth in the trajectory k under the policy where π(·; θπ) is denoted as z
π(·;θπ),∆t
T,k with

z
π(·;θπ),∆t
T,k := z0 +

M∑
m=1

zm−1

[ dS∑
i=1

πi(m∆t, ym∆t; θϕ, θπ)
si

(m+1)∆t − si
m∆t

si
m∆t

]
.

Next, we consider the gradient of L:

∇̄L(θϕ, θS) := 1
B

B∑
k=1

∇̃Lk(θϕ, θS).

Specifically for likelihood and negative mean square loss, we have

∇̃LLikelihood,k(θϕ, θS) := 1
M

M−1∑
m=0

∇θϕ,θS
log(P(s(m+1)∆t,k, ϕ(y(m+1)∆t,k; θϕ)

| sm∆t,k, ϕ(ym∆t,k; θϕ); θS)),

∇̃LNMSL,k(θϕ, θS) := − 1
M

M−1∑
m=0

dS∑
i=1

∇θϕ,θS

(
log(si

(m+1)∆t,k) − log(si
m∆t,k)

− E
[ ∫ (m+1)∆t

m∆t

f j
S(Xs; θS)

− 1
2

dS∑
i=1

(gij
S (Xs; θS))2ds

∣∣∣∣sm∆t,k, ϕ(ym∆t,k; θϕ)
])2

.

As a result, in each iteration, we collect B trajectories to estimate the gradient of H(θϕ, θπ).

D A Primer on Stochastic Differential Equations (SDEs)

We provide a general formulation of SDEs with two examples.

D.1 Formulation of SDEs

SDEs are a generalization of ordinary differential equations to dynamic systems influenced by random
fluctuations. The structure of the randomness can in principle be quite general, such as with jump processes
where the state evolution is no longer continuous (Tankov, 2003). Although our method can be generalized
to all SDEs, we restrict ourselves to practical settings where the source of randomness is a Brownian motion.
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Let Wt be a multi-dimensional independent standard Brownian motion. For a random process St, an SDE is
typically expressed using a differential form as

dSt = f(St) dt + g(St) dWt, or St = S0 +
∫ t

0
f(St) dt +

∫ t

0
g(St) dWt, (8)

where f(·) and g(·) are functions of St. The stochastic integral
∫ t

0 g(St)dWt is the accumulation of influence
to the state due to the noise. We refer the reader to Karatzas & Shreve (1987) for details on the construction
of stochastic integrals and SDE theory. Important here is that Equation (8) defines the transition of St in an
infinitesimal time step. The drift coefficient f(St) characterizes the deterministic part of the change of St,
and the diffusion coefficient g(St) models the randomness in the transition of St.

D.2 Examples

As concrete examples, we discuss two families of SDEs widely used in finance, economics, and biology:
Geometric Brownian motion (GBM) and Ornstein–Uhlenbeck (OU) processes (Merton et al., 1973; Vasicek,
1977; Bartoszek et al., 2017; Blomberg et al., 2020; Rohlfs et al., 2014). The OU structure appears in both
applications below, and the financial application uses GBM as a base, but extends it with OU drift coefficients.
The two types of SDEs are given by

GBM: dSt

St
= µ dt + σ dWt, OU: dSt = µSt dt + σ dWt,

where dSt

St
:=
{

dSit

Sit

}
denotes the component-wise division of St, and the matrices µ and σ define the drift

and diffusion coefficients.

We refer the interested reader to Fleming & Soner (2006) for more information on these topics. We now
briefly formulate two classic stochastic optimal control models for decision-making with stochastic factors.
The stochastic factors appear as the drift coefficients of other state variables and are themselves modeled as
SDEs.

D.3 Itô’s Formula

Itô’s Formula is a fundamental analytical tool for SDEs, and crucial for their analysis. We only provide
a simple version here, which is sufficient for our analysis. A more general and rigorous statement with
assumptions and proof of Itô’s formula and integral can be found in Karatzas & Shreve (1987, Theorem 3.3).
Lemma D.1 (Itô’s Formula). Consider a twice differentiable function G, and St following

dSt = f(St) dt + g(St) dWt.

Then, we have

dG(t, St) =
{

∂G

∂t
+
(

∂G

∂St

)⊤

f(St) + 1
2 Tr

[
g(St)⊤ ∂2G

∂S2
t

g(St)
]}

dt +
(

∂G

∂St

)⊤

g(St)dWt.

Lemma D.2. For a suitable bounded process St, the Itô integral
∫ t

0 StdWt satisfies:

E
[∫ t

0
StdWt

]
= 0, E

[(∫ t

0
StdWt

)2]
= E

[∫ t

0
S2

t dt

]
.

The latter is also referred to as Itô’s isometry

E Model Calibration

We discuss two model calibration loss functions, log-likelihood and negative mean square loss.
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E.1 Log-Likelihood

We can use log-likelihood as L for model calibration. The log-likelihood of SDEs is derived in a sequential
manner. Specifically, for (2) the log-likelihood is derived as

LLog−Likelihood(θϕ, θS) := E[log(PθS
(St+∆t, ϕ(Yt+∆t; θϕ) | St, ϕ(Yt; θϕ)))], (9)

where PθS
denotes the conditional likelihood according to (2) but with parameter θS instead of θ∗

S . Then, in
specific models, one can derive PθS

(St+∆t, ϕ(Yt+∆t) | St, ϕ(Yt); θ) (Phillips, 1972; Holỳ & Tomanová, 2018;
Beskos & Roberts, 2005) or the approximation of it (Ait-Sahalia & Kimmel, 2010).

E.2 Negative Mean Square Loss

For the SDE system (2), one can also use a negative mean square loss (NMSL) as the calibration objective.
To derive this loss function, we first drive the dynamics of log price by applying Itô’s Formula Lemma D.1 to
(2):

d log(Si
t) = f i

S(Xt; θS)dt − 1
2

dW∑
j=1

(gij
S (Xs; θS)])2dt +

dW∑
j=1

gij
S (Xs; θS)]dW j

t . (10)

Then, combined with Lemma D.2, under proper assumptions of Lemma D.2, we pose expectation over both
sides of the above equation, and derive

E[d log(Si
t)] = f i

S(Xt; θS)dt − 1
2

dW∑
j=1

(gij
S (Xs; θS)])2dt.

In words, the expectation of the log price change in an infinitesimal time is f i
S(Xt; θS)dt −

1
2
∑dW

j=1(gij
S (Xs; θS)])2dt. Therefore, one can estimate the parameter θS by minimizing the mean square loss

between the log price change and the expected log price change:

LNMSL(θS) := −E
[ dS∑

i=1

(
log(Si

t+∆t) − log(Si
t) − E

[ ∫ t+∆t

t

f i
S(Xs; θS)

− 1
2

dW∑
j=1

(gij
S (Xs; θS))2ds

∣∣∣∣St, Xt

])2]
.

(11)

It can be easily proved that the true data generating SDE parameter satisfies

θ∗
S ∈ arg max LNMSL(θS).

Further, if we take Xt = ϕ(Yt; θϕ) and parameterize the objective as LNMSL(θϕ, θS) :=

−E
[∑dS

i=1
[

log(Si
t+∆t) − log(Si

t) − ϕi(Yt; θϕ)∆t − θi
S

]2], we can prove

θ∗
ϕ, θ∗

S ∈ arg max LNMSL(θϕ, θS).

Note that in practice it can be very hard to calculate the expectation E
[ ∫ t+∆t

t
f i

S(Xs; θS) −
1
2
∑dW

j=1(gij
S (Xs; θS))2ds

∣∣St, Xt

]
. Therefore, when ∆t is small, we replace the conditional expectation via

E
[
f i

S(XS ; θS)∆t − 1
2
∑dW

j=1(gij
S (XS ; θS))2∆t

∣∣∣∣St, Xt

]
. Accordingly the calibration objective is defined as

LNMSL(θS) ≈ −E
[ dS∑

i=1

(
log(Si

t+∆t) − log(Si
t) − f i

S(Xs; θS)∆t + 1
2

dW∑
j=1

(gij
S (Xs; θS))2∆t

])2]
. (12)

21



Under review as submission to TMLR

E.3 Other Model Calibration Objective

Another potential model calibration objective following the same rationale as (11) is

LNMSL−X(θϕ, θS) := −E
[ dX∑

i=1

(
ϕ(Yt+∆t; θϕ)i − ϕ(Yt; θϕ)i

− E
[ ∫ t+∆t

t

f i
X(ϕ(Ys; θϕ)i; θS)ds

∣∣∣∣ϕ(Yt; θϕ)i

])2]
,

which is derived using the conditional expectation of Xt+∆ given Xt. However, the true data-generating
parameter (θ∗

ϕ, θ∗
S) is not a maximal point of LNMSL−X . To more clearly see this, this loss function encourages

the representation function ϕ to take a constant output so that Xt is constant over time with f i
X(Xs; θS) = 0,

and LNMSL−X(θϕ) = 0. We also try this loss in experiments, and it leads to poor validation and test
performances.

F Applications of FaLPO to Different Stochastic Factor Models in Continuous-Time
Finance

FaLPO can be used with many stochastic factor models in continuous-time finance models. In this section,
we discuss the Merton model (Appendix F.1), Kim–Omberg (Appendix F.2) and EVE (Appendix F.3).

These models differ in how factors influence asset price dynamics. In the Merton model, factors have no
effect; in the Kim–Omberg model, factors affect only the drift; and in the EVE model, factors influence both
drift and volatility. Choosing the appropriate model depends on the role of factors in driving price behavior.
For instance, if asset prices are uncorrelated with the factors, the Merton model may be sufficient. If there is
evidence that volatility also depends on the factors, then the EVE model may be more appropriate.

F.1 Merton Model

Merton model (Merton, 1969) is a classic setup for portfolio optimization. It studies the allocation of capital
across a set of financial assets in order to maximize profits and minimize risks.

F.1.1 Modeling

Consider p risky assets with prices St = {Si
t}

p
i=1 and an additional risk-free money market account with, for

simplicity, zero interest rate of return (like cash). The Merton model does not include factors. The dynamics
for asset prices is formulated as

dSi
t

Si
t

= µ dt + σdWt. (13)

The parameters µ, σ are p × p matrices, with σ denoting the volatility of assets. Further, we use Z̃ π̃
t to

denote the wealth at time point t under the continuous-time policy π̃. Under the famous and widely used
self-financing assumption (Björk, 2009), we have

dZ̃ π̃
t

Z̃ π̃
t

= π̃tµdt + π̃tσdWt.

An investor’s goal is to maximize the expected utility of capital U(ZT ) at some future time point T :

max
π̃t

Eπ̃t

[
U(Z̃ π̃

T )|Z0 = z, S0 = s
]

. (14)

Negative values in the policy output are allowed, meaning the agent can short any asset.
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F.1.2 Policy Functional Form

For the Merton model, Π in (3) can be explicitly derived.
Lemma F.1 (Policy Functional Form for Merton Model). For a Merton model defined in (13), under common
assumptions, the optimal policy for portfolio optimization (14), with power utility follows

π̃∗ = µ(σσ⊤)−1.

The optimal policy for portfolio optimization (14) with exponential utility follows

π̃∗ = µ(σσ⊤)−1

Z̃ π̃∗
t

.

Proof. Lemma F.1 is a classic result in continuous-time finance, proposed in Merton (1969). □

In words, in a Merton model, the optimal policy is independent of time, stock prices, and factors. The optimal
investment strategy is to keep a constant fraction or amount of wealth in each asset all along, depending on
the choice of utility function. Let θπ be a dS × 1 parameter vector. According to Lemma F.1, in FaLPO, we
parameterize the candidate policy function as

π(t, St, Zt, Yt; θϕ, θπ) = Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = θπ

for power utility, and

π(t, St, Zt, Yt; θϕ, θπ) = Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = θπ

Zt

for exponential utility.

F.1.3 Model Calibration

According to the Merton model formulation, there exist no factors affecting the evolution of stock prices.
Therefore, we do not add the model calibration objective in FaLPO for Merton problem.

F.2 Kim–Omberg

Kim–Omberg model (Kim & Omberg, 1996) is a standard model for portfolio optimization with predictable
asset returns, which has been discussed extensively in the empirical literature (Welch & Goyal, 2008;
Muhle-Karbe et al., 2017).

F.2.1 Modeling

In Kim–Omberg model, the stock dynamics are formulated as

dSi
t

Si
t

= Xi
t dt +

dW∑
j=1

σij dW j
t

dXt = µ(ω − Xt) dt + v dWt.

The portfolio optimization goal is formulated as

max
π̃t

Ṽ (π̃t) with Ṽ (π̃t) := Eπ̃t [U(Z̃ π̃
t )|X0 = x, Z0 = z, S0 = s]. (15)

F.2.2 Policy Functional Form

An optimal policy function is derived in Lemma F.2
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Lemma F.2. Under common assumptions in Kim & Omberg (1996); Herzog et al. (2004), an optimal policy
functional form for (15) with power utility is derived as

π̃∗ = 1
1 − γ

(σσ⊤)−1[Xt + σv⊤(k3(t)Xt + k2(t))
]
,

where k2(t) and k3(t) satisfy

dk1(t)
dt

+ 1
2 Tr

{
v⊤(k2(t)k2(t)⊤ + k3(t))v

}
+ (µω)⊤k2(t) − γ

2(γ − 1)(k2(t)⊤vv⊤k2(t)) = 0,

dk2(t)
dt

+ k3(t)vv⊤k2(t) − µ⊤k2(t) + k3(t)µω − γ

γ − 1((σσ⊤)−1σvk2(t) + k3(t)vv⊤k2(t)) = 0,

dk3(t)
dt

+ k3(t)vv⊤k3(t) − k3(t)µ − µ⊤k3(t)

− γ

γ − 1((σσ⊤)−1 + (σσ⊤)−1σv⊤k3(t) + k3(t)vσ⊤(σσ⊤)−1 + k3(t)vv⊤k3(t)) = 0,

with k1(T ) = 0, k2(T ) = 0, and k3(T ) = 0. Note that k1(t) is a scalar, k2(t) is a dS × 1 vector, and k3(t) is
a dX × dX . And the ODE of k3(t) is the famous matrix Ricatti equation.

Similarly, an optimal policy functional form for (15) with exponential utility is derived as

π̃∗
t = (σσ⊤)−1 1

−γ2Zt

[
X(t) + σv⊤(k3(t)Xt + k2(t))

]
,

where k2(t) and k3(t) satisfy

dk1(t)
dt

+ 1
2 Tr

{
v⊤(k2(t)k2(t)⊤ + k3(t))v

}
+ (µω)⊤k2(t) − 1

2(k2(t)⊤vv⊤k2(t)) = 0,

dk2(t)
dt

+ k3(t)vv⊤k2(t) − µk2(t) + k3(t)µω − ((σσ⊤)−1σvk2(t) + k3(t)vv⊤k2(t)) = 0,

dk3(t)
dt

+ k3(t)vv⊤k3(t) − k3(t)µ − µ⊤k3(t)

− ((σσ⊤)−1 + (σσ⊤)−1σv⊤k3(t) + k3(t)vσ⊤(σσ⊤)−1 + k3(t)vv⊤k3(t)),

with k1(T ) = 0, k2(T ) = 0, and k3(T ) = 0.

F.2.3 Model Calibration

Following the derivation in Appendix E.2, the negative mean square loss for Kim–Omberg model can be
derived as L(θϕ, θS) := −E

[∑dS

i=1
[

log(Si
t+∆t) − log(Si

t) − ϕi(Yt; θϕ)∆t − θi
S

]2], where in this case θS is a
dS × 1 vector.

F.3 EVE Model with Stochastic Markovian Factors

We take EVE model (Avanesyan et al., 2020) with stochastic Markovian factors as another example.

F.3.1 Modeling

We first detail the modeling of EVE, which formulates the dynamics of asset prices by

dSi
t

Si
t

= µi(Xt; θS)dt +
dW∑
j=1

σji(Xt; θS)dW j
t , i = 1, 2, · · · , dS ,

dXt =
(
M⊤Xt + ω

)
dt + κ(Xt; θS)⊤dBt,

Bt = ρ⊤Wt + A⊤W ⊥
t .

(16)
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We use Wt and W ⊥
t to denote two sets of independent Brownian motions. ρ denotes a correlation matrix

with components ρij ∈ [−1, 1]. Therefore, B is indeed another Brownian motion. We let µ, σ, and κ be
parametric functions, with θS denoting all the parameters. The SDE parameters include all the parameter
matrices and β’s. Again, with Zt as the wealth, we aim to maximize the power utility at the terminal time
T > 0 as the performance objective:

Ṽ (π̃t) = Eπ̃

[
(Z̃ π̃

T )1−γ

1 − γ

]
.

EVE model poses further assumptions on (16).
Assumption F.3. M has non-negative off-diagonal entries and ω ∈ [0, ∞)k. Further, we assume that there
exist λ(x), Λ and L, and N such that µ(·), σ(·), κ(·) and ρ satisfy

λ(x)⊤λ(x) = µ(x)⊤σ(x)−1(σ(x)−1)⊤
µ(x) = Λ⊤x

κ(x)⊤κ(x) = diag(L1x1, L2x2, · · · , Lkxk), with L1, L2, · · · , Lk ≥ 0
Γκ(x)⊤ρ⊤λ(x) = N⊤x.

(17)

The conditions in Assumption F.3 are necessary for the process of Xt to be [0, ∞)k-valued and affine.
Under these conditions, the SDE in (16) has a unique weak solution which is affine and takes values in
[0, ∞)k (Filipović & Mayerhofer, 2009). Further, the EVE model requires the following two assumptions:
Assumption F.4 (Assumption 2.2 in Avanesyan et al. (2020)). The functions µ : RdX → R

dS , σ : RdX →
R

dW ×dS are continuous. More over, the columns of ρ belong to the range of left-multiplication by σ(x) for
all x ∈ RdX .
Assumption F.5 (EVE Condition in Avanesyan et al. (2020)). For some p ∈ [0, 1],

ρ⊤ρ = pI,

where I is the identity matrix. Note that when p = 1, ρ is a vector and thus we define p := ρ⊤ρ.

F.3.2 Concrete Example

We consider a more concrete example of EVE satisfying the formulation and assumptions in Appendix F.3.1.
Specifically, we use Dµ, Dσ, and Dλ to denote diagonal matrices. Further, let D(x) denote the diagonal
matrix whose diagonal is x. Also, we use x◦k for any k ∈ R to denote the component-wise power operation
(Hadamard power).

Then, we define

µ(x) := Dµx◦ 3
2

σ(x) := DσD(x)
κ(x) := ρ−1DκD(x◦ 1

2 ).
Then, we have

λ(x) = D−1
σ Dµx◦ 1

2 .

Further, we pose

ρ⊤ρ = ρρ⊤ = I.

Then,

λ(x) =
(
σ(x)−1)⊤

µ(x) = D−1
σ x◦ 1

2 and λ(x)⊤λ(x) = D−2
σ x,

κ(x)⊤κ(x) = DκD(x◦ 1
2 )
(
ρ−1)⊤

ρ−1DκD(x◦ 1
2 ) = D2

κD(x),

Γκ(x)⊤ρ⊤λ(x) = ΓD(x◦ 1
2 )Dκ

(
ρ−1)⊤

ρ⊤D−1
σ x◦ 1

2 = ΓD(x◦ 1
2 )DκD−1

σ x◦ 1
2 = ΓDκD−1

σ x.

Such a setup is shown satisfies (16).
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F.3.3 Policy Functional Form

The policy functional form of the EVE model with Markovian stochastic factors ca be derived as:
Lemma F.6. Under the assumptions in Appendix F.3.1 and Appendix F.3.2, the optimal policy function
follows:

π∗
t = 1

γ
σ(Xt)−1

(
λ(Xt) + qρκ(Xt)k2(t)⊤

)
,

with

dki
2(t)
dt

+ 1
2Li(k2(t)i)2 +

dX∑
j=1

(M + N)ijk2(t)j + Γ
2q

Λi = 0, i = 1, 2, · · · , dX

dk1(t)
dt

+ ω⊤k2(t) = 0.

For the specific example in F.3.2, in FaLPO, we parameterize the candidate policy as
π(t, Yt, Zt; θϕ, θπ) = Π(t, Yt, Zt; θϕ, θπ) = ϕ(Yt)

1
2 k(t; θπ).

F.3.4 Model Calibration

Following the derivations in Section E.2, we can derive the calibration objective as:

L(θS) := − min
θS=(C1,C2)

E
∥∥∥∆ log(St) − C1ϕ(Yt; θϕ)◦ 3

2 ∆t − C2ϕ(Yt; θϕ)◦2∆t
∥∥∥2

2
.

G Solutions of Riccati Differential Equations

According to the analysis in Section F, the optimal policy function is closely related to the solutions of Riccati
differential equations, which also have closed-form solutions.

Specifically, with abuse of notation, let A, B and D be p × p matrices, and X(t) : [0, T ] → R
p×p as a function

of t solving the following Riccati differential equation:
∂dX(t)

dt
= A⊤X(t) + X(t)A − X(t)BB⊤X(t) + D⊤D,

X(0) = X0.
(18)

Following the analysis and assumptions in (Behr et al., 2019), the unique symmetric positive stabilizing
solution of X(t) follows:

X(t) = X∞ − etÂ⊤(
X∞ − X0

)[
I − (XL − etÂXLetÂ⊤

)(X∞ − X0)
]−1

etÂ,

where
ÂXL + XLÂ⊤ + BB⊤ = 0,

with Â := A − BB⊤X∞, and
0 = A⊤X∞ + X∞A + D⊤D.

Note that with (18) we can further derive the policy functional forms without using neural networks to
parameterize time-dependent fucntions.

H Extension to Linear Quadratic Control (LQC)

The methodology of FaLPO can also be applied to decision-making problems other than portfolio optimization.
To implement FaLPO, one needs to first construct a neural stochastic factor model combining factor
representation with a continuous-time model. Then, the policy learning is conducted while leveraging
policy functional form and model calibration. As an example, we implement FaLPO to linear quadratic
control (LQC), and detail modeling (Section H.1), policy functional form (Section H.2) and model calibration
(Section H.3).
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H.1 Modeling

We consider the problem of LQC (Sun & Yong, 2020) but with stochastic factor Xt following an OU process.
With slight abuse of notation, we use St to denote the sate variable in this section:

dSt = (BSt + UAt + Xt) dt +
dW∑
j=1

DjAt dW j
t ,

Xt = µXt dt + v dWt,

(19)

where B, U , µ, v, and Dj are redefined as matrices with appropriate dimensions. With At = π(·) following
the policy π, we aim to solve

max
π

V (π) with V (π) := Eπ

[ ∫ T

0

[
(QSt)⊤St + (RAt)⊤At

]
dt + (GST )⊤ST

]
, (20)

with Q, R, and G as known matrices with appropriate dimensions, and T is terminal time. Further, we apply
the modeling strategy in Section 3.1 and aim to learn the representation of stochastic factors:

Xt = ϕ(Yt; θ∗
ϕ).

H.2 Policy Functional Form

By taking Ξt (the combination of St and Xt) as the state variables, we can reformulate the problem as a
classic LQC problem:

dΞt = BΞΞt + UΞAt +
dW∑
j=1

(DΞ
j At + βΞ

t )dW j
t ,

with all the coefficients redefined. Then, under common assumptions in Sun & Yong (2020); Yong & Zhou
(1999), it can be derived that the optimal policy satisfies:

π̃∗(t, ξ) = ΛΞ(KΞ(t))−1(UΞ)⊤
KΞ(t)ξ,

where

ΛΞ(KΞ(t)) = R +
dW∑
j=1

(D⊤
j KΞ(t)Dj).

Also, KΞ(t) solves the differential Riccati equation:

KΞ(t) = − e(BΞ)⊤(T −t)GΞeBΞ(T −t)

−
∫ T

t

e(BΞ)⊤(T −τ)KΞ(τ)⊤UΞ(ΛΞ(KΞ(τ))⊤)−1(UΞ)⊤KΞ(τ)e(BΞ)⊤(T −τ)dτ,

with
KΞ(T ) = 0.

Therefore, we can formulate the candidate policy as

π(t, St, Yt; θϕ, θπ) = Π(t, St, Yt; θϕ, θπ) = k1(t; θπ)St + k2(t; θπ)ϕ(Yt; θϕ). (21)

H.3 Model Calibration

According to (19) and following the derivation strategy in Appendix E.2, we can derive the negative mean
square loss for LQC as

L(θϕ, θS) := E
[

∥St+∆tSt − ϕ(Yt; θϕ)∆t − C1St − C2At∥2
2
]
, (22)
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with θS = {C1, C2}.

As a summary, to apply FaLPO to LQC with stochastic factors, we parameterize candidate policies following
(21) and maximize

(1 − λV (θϕ, θπ)) + λL(θϕ, θS),
with V in (20) and L in (22).

I Extended Results for Theorem 4.1

I.1 Assumptions and Definitions

To start with, we consider stochastic factor models such that the optimal feedback admissible policy admits a
functional form as

π̃∗
t = Π(t, Xt; θ∗

π̃).

Also, we consider the L function such that the true data generating parameters θ∗
S , θ∗

ϕ satisfy

θ∗
S , θ∗

ϕ ∈ arg max
θϕ,θS

L(θϕ, θS), (23)

while other options for L can also be empirically used in our method.
Definition I.1. For a continuous-time policy π̃t := Π(t, St, Zt, ϕ(Yt; θϕ); θπ̃), we define its value function as

Ṽ (θϕ, θπ) := E[U(Z π̃
T )].

Accordingly, we define the continuous-time version objective function as

H̃(θϕ, θπ̃, θS) := (1 − λ)Ṽ (θϕ, θπ̃) + λL(θϕ, θS).

Definition I.2. For t ∈ [m∆t, (m + 1)∆t), define ⌊t⌋ := m∆t and ⌊π̃∗
t ⌋ := π̃∗

⌊t⌋.
Definition I.3. For the continuous-time optimal policy π̃∗, we use ⌊π̃∗⌋ to denote the piece-wise constant
version π̃∗. We use Z̃

⌊π̃∗⌋
t to denote the wealth process when implementing the optimal continuous-time

policy π̃(·; θ∗
ϕ, θ∗

π) in the piece-wise constant manner. Specifically,

dZ̃
⌊π̃∗⌋
t :=Z̃

⌊π̃∗⌋
⌊t⌋

dS∑
i=1

(π̃∗
⌊t⌋)idSi

t

Si
⌊t⌋

=
dS∑
i=1

{
Πi(⌊t⌋, X⌊t⌋; θ∗

π̃)f i
S(Xt; θ∗

S) Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋ dt

+ Πi(⌊t⌋, X⌊t⌋; θ∗
π̃)

dW∑
j=1

gij
S (Xt; θ∗

S) Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋ dW j

t

}
.

Further, remember Z̃ π̃∗

t is used to denote the continuous-time wealth process under the policy π̃∗. By the
dynamics of continuous-time wealth process Z̃ π̃

t in Section 2.3 the dynamics of Z̃ π̃∗

t is derived as

dZ̃ π̃∗

t

Z̃ π̃∗
t

= Π(t, Xt; θ∗
π̃)⊤fS(Xt; θ∗

S)dt + Π(t, Xt; θ∗
π̃)⊤gS(Xt; θ∗

S)⊤dWt.

Assumption I.4. For each R > 0, if ∥x∥ ≤ R and t ≤ T , we assume that there exists a CR > 0 such that

∥Π(t, x; θ∗
π)∥ ∨ ∥fS(x; θ∗

S)∥ ∨ ∥gS(x; θ∗
S)∥ ∨ ∥fX(x; θ∗

S)∥ ∨ ∥gX(x; θ∗
S)∥ ≤ CR,

and Π(t, x; θ∗
π) is locally Lipschitz with Lipschitz constant CR.

For some p > 2, there exists a constant A such that

E
[

sup
0≤t≤T

|Z̃ π̃∗

t |p
]

∨ E
[

sup
0≤t≤T

|Z̃⌊π̃∗⌋
t |p

]
∨ E
[

sup
0≤t≤T

∥Xt∥p ] ∨ E
[

sup
0≤t≤T

∥log(St)∥p ] ≤ A.
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Note that Assumption I.4 requires the stochastic processes to have bounded high-order moments. For a
specific model like Kim–Omberg, this is not guaranteed to hold for every initial value and SDE coefficient,
but one can derive model-specific sufficient conditions for Assumption I.4. In practice when implementing
the method, we calculate the empirical moments of wealth, factors and asset prices to approximately check
whether Assumption I.4 holds.

With Assumption I.4, we define a stopping time:

Definition I.5. For R > 0, define a stopping time

τR :=
{

inf
0≤t≤T

| |Z̃ π̃∗

t | ≥ R or ∥Xt∥ ≥ R or ∥log(St)∥ ≥ R or |Z̃⌊π̃∗⌋
t | ≥ R

}
.

Assumption I.6. The utility function U(z) has a linear bound on Z:

|U(z)| ≤ CU (|z| + 1).

Note that Assumption I.6 holds as long as the utility function is bounded at the smallest value in Z.
Specifically for power utility, Assumption I.6 is equivalent to setting γ ∈ (0, 1).

Assumption I.7. There exists ∆t′ > 0 such that for any ∆t < ∆t′ , ⌊π̃∗⌋ is also an admissible policy.

I.2 Lemmas

Lemma I.8. Consider n non-negative constants c1, c2, · · · , cn. The following inequality is true:

(
n∑

i=1
ci)2 ≤ n

n∑
i=1

c2
i .

Proof. The proof follows the Cauchy-Schwartz inequality. □

Lemma I.9. (θ∗
ϕ, θ∗

π̃, θ∗
S) maximizes both Ṽ (θϕ, θπ̃) and L(θϕ, θS).

Proof. First of all, since θπ̃∗ is defined to be the optimal parameter for the continuous-time policy and θ∗
ϕ is

defined to be the true data generating parameter, (θ∗
ϕ, θ∗

π) maximizes Ṽ . Then, by (23), (θ∗
ϕ, θ∗

S) maximize L.
□

Lemma I.10. For any δ > 0,

E[ sup
0≤t≤T

(Z̃⌊π̃∗⌋
t − Z̃ π̃∗

t )2] ≤ E
[

sup
0≤t≤T

(Z̃⌊π̃∗⌋
t∧τR

− Z̃ π̃∗

t∧τR
)2]+ 2p+1δA

p
+ (p − 2)8A

pδ2/(p−2)Rp
.

Proof. Proof by applying Young’s inequality. See derivation in Higham et al. (2002, Equation (2.8)). □

Lemma I.11. For any t ≤ τR, the difference between the coefficients of the dynamics of Z̃ π̃∗

t and Z̃
⌊π̃∗⌋
t are

bounded by:

∣∣∣∣∣
dS∑
i=1

Π(t, Xt; θ∗
π)f i

S(Xt; θ∗
S)Z̃ π̃∗

t −
dS∑
i=1

Π(⌊t⌋, X⌊t⌋; θ∗
π)f i

S(Xt; θ∗
S)Z̃⌊π̃∗⌋

⌊t⌋
Si

t

Si
⌊t⌋

∣∣∣∣∣
2

≤ 5d2
S exp(2R)C4

R

[
exp(2R)R2|t − ⌊t⌋|2 + exp(2R)R2∣∣Xt − X⌊t⌋

∣∣2
+ R2 ∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2],
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and ∣∣∣∣∣
dS∑
i=1

[
Π(⌊t⌋, X⌊t⌋; θ∗

π)
dW∑
j=1

(
gij

S (Xt; θ∗
S) Si

t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋

)]
−

dS∑
i=1

[
Π(t, Xt; θ∗

π)
dW∑
j=1

(
gij

S (Xt; θ∗
S)Z̃ π̃∗

t

)]∣∣∣∣∣
2

≤5d2
S exp(2R)C4

R

[
exp(2R)R2|t − ⌊t⌋|2 + exp(2R)R2∣∣Xt − X⌊t⌋

∣∣2
+ R2 ∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
Proof.

By triangle inequality∣∣∣∣∣
dS∑
i=1

π̃i
tf

i
S(Xt; θ∗

S)Z̃ π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f i

S(Xt; θ∗
S)Z̃⌊π̃∗⌋

⌊t⌋
Si

t

Si
⌊t⌋

∣∣∣∣∣
≤

dS∑
i=1

1
Si

⌊t⌋

∣∣f i
S(Xt; θ∗

S)
∣∣(∣∣∣π̃i

tZ̃
π̃∗

t Si
⌊t⌋ − π̃i

⌊t⌋Z̃ π̃∗

t Si
⌊t⌋

∣∣∣
+
∣∣∣π̃i

⌊t⌋Z̃ π̃∗

t Si
⌊t⌋ − π̃i

⌊t⌋Z̃
⌊π̃∗⌋
⌊t⌋ Si

⌊t⌋

∣∣∣+
∣∣∣π̃i

⌊t⌋Z̃
⌊π̃∗⌋
⌊t⌋ Si

⌊t⌋ − π̃i
⌊t⌋Z̃

⌊π̃∗⌋
⌊t⌋ Si

t

∣∣∣).
For any t ≤ τR, we can further bound the right hand side by Assumption I.4∣∣∣∣∣

dS∑
i=1

π̃i
tf

i
S(Xt; θ∗

S)Z̃ π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f i

S(Xt; θ∗
S)Z̃⌊π̃∗⌋

⌊t⌋
Si

t

Si
⌊t⌋

∣∣∣∣∣
≤dS exp(R)C2

R

[
exp(R)R

(
|t − ⌊t⌋| +

∥∥Xt − X⌊t⌋
∥∥ )

+ exp(R)
(∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣+
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣)+ R
∥∥S⌊t⌋ − St

∥∥ ].
Then, by Lemma I.8∣∣∣∣∣

dS∑
i=1

π̃i
tf

i
S(Xt; θ∗

S)Z̃ π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f i

S(Xt; θ∗
S)Z̃⌊π̃∗⌋

⌊t⌋
Si

t

Si
⌊t⌋

∣∣∣∣∣
2

≤5d2
S exp(2R)C4

R

[
exp(2R)R2(|t − ⌊t⌋|2 +

∣∣Xt − X⌊t⌋
∣∣2)

+ exp(2R)
(∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 +
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2)+ R2 ∥∥S⌊t⌋ − St

∥∥2 ]
=5d2

S exp(2R)C4
R

[
exp(2R)R2|t − ⌊t⌋|2 + exp(2R)R2∣∣Xt − X⌊t⌋

∣∣2
+ R2 ∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
Similarly ∣∣∣∣∣∣

dS∑
i=1

[
π̃i

⌊t⌋

dW∑
j=1

(
gij

S (Xt; θ∗
S) Si

t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋

)]
−

dS∑
i=1

[
π̃i

t

dW∑
j=1

(
gij

S (Xt; θ∗
S)Z̃ π̃∗

t

)]∣∣∣∣∣∣
2

≤ 5d2
S exp(2R)C4

R

[
exp(2R)R2|t − ⌊t⌋|2 + exp(2R)R2∣∣Xt − X⌊t⌋

∣∣2
+ R2 ∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
□
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Lemma I.12. With τR defined in Definition I.5,

E
∥∥Xt∧τR

− X⌊t∧τR⌋
∥∥2 ≤ 2C2

R(∆t2 + ∆t),

E
∥∥St∧τR

− S⌊t∧τR⌋
∥∥2 ≤ 2 exp(2R)C2

R(∆t2 + ∆t),

E
∥∥∥Z̃

⌊π̃∗⌋
⌊t∧τR⌋ − Z̃

⌊π̃∗⌋
t∧τR

∥∥∥2
≤ 2R2 exp(4R)C4

R(∆t2 + ∆t).

Proof. By the dynamics of Xt and Lemma I.8, we can derive

E
∥∥Xt∧τR

− X⌊t∧τR⌋
∥∥2 ≤ 2∆tE

∫ t∧τR

mt∧τR
∆t

∥fX(Xs; θ∗
S)∥2

ds + 2E
∥∥∥∥∥
∫ t∧τR

mt∧τR
∆t

gX(Xs; θ∗
S)⊤dWs

∥∥∥∥∥
2

,

where mt∧τR
satisfies mt∧τR

∆t ≤ (t ∧ τR) < (mt∧τR
+ 1)∆t. Further, we apply Itô’s isometry with stopping

time (Lemma D.2), and derive

E
∥∥Xt∧τR

− X⌊t∧τR⌋
∥∥2 ≤ 2∆tE

∫ t∧τR

mt∧τR
∆t

∥fX(Xs; θ∗
S)∥2

ds + 2E
∫ t∧τR

mt∧τR
∆t

∥gX(Xs; θ∗
S)∥2

ds.

By Assumption I.4, we derive

E
∥∥Xt∧τR

− X⌊t∧τR⌋
∥∥2 ≤ 2C2

R(∆t2 + ∆t).

Similarly
E
∥∥St∧τR

− S⌊t∧τR⌋
∥∥2 ≤ 2 exp(2R)C2

R(∆t2 + ∆t),

and
E
∥∥∥Z̃

⌊π̃∗⌋
⌊t∧τR⌋ − Z̃

⌊π̃∗⌋
t∧τR

∥∥∥2
≤ 2R2 exp(4R)C4

R(∆t2 + ∆t).

□

Lemma I.13.

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2] ≤10(T + 4)Td2
SC4

R exp(4R)R2[∆t2 + 2C2
R(∆t2 + ∆t)

+ 2C2
R(∆t2 + ∆t) + 2 exp(4R)C4

R(∆t2 + ∆t)
]

+ 10(T + 4)d2
SC4

R exp(4R)
∫ τ

0
E sup

0≤r≤s

∣∣∣Z̃ π̃∗

r∧τR
− Z̃

⌊π̃∗⌋
r∧τR

∣∣∣2ds.

Proof.

By Cauchy–Schwarz inequality and the dynamics of Z̃ π̃∗

t and Z̃
⌊π̃∗⌋
t , for any τ ≤ T

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2]
≤2TE

[
sup

0≤t≤τ

∫ t∧τR

0

∣∣∣∣∣
dS∑
i=1

π̃i
sf i

S(Xs; θ∗
S)Z̃ π̃∗

s −
dS∑
i=1

π̃i
⌊s⌋f i

S(Xs; θ∗
S)Z̃⌊π̃∗⌋

⌊s⌋
Si

s

Si
⌊t⌋

∣∣∣∣∣
2

ds

]

+ 2E
[

sup
0≤t≤τ

∣∣∣∣∣∣
dW∑
j=1

∫ t∧τR

0

[ dS∑
i=1

π̃i
sgij(Xs; θ∗

S)Z̃ π̃∗

s − π̃i
⌊s⌋gij(X⌊s⌋; θ∗

S)Si
s/Si

⌊s⌋

]
dW j

s

∣∣∣∣∣∣
2]

.

Then, by Doob’s martingale inequality
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E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2]
≤2TE

[
sup

0≤t≤τ

∫ t∧τR

0

∣∣∣∣∣
dS∑
i=1

π̃i
sf i

S(Xs; θ∗
S)Z̃ π̃∗

s −
dS∑
i=1

π̃i
⌊s⌋f i

S(Xs; θ∗
S)Z̃⌊π̃∗⌋

⌊s⌋
Si

s

Si
⌊t⌋

∣∣∣∣∣
2

ds

]

+ 8TE
[( dW∑

j=1

∫ t∧τR

0

[ dS∑
i=1

π̃i
sgij(Xs; θ∗

S)Z̃ π̃∗

s − π̃i
⌊s⌋gij(X⌊s⌋; θ∗

S)Si
s/Si

⌊s⌋

]
dW j

s

)2]
.

Next, we apply Lemma I.11,

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2]
≤10(T + 4)d2

SC4
R exp(2R)E

[ ∫ τ∧τR

0

(
exp(2R)R2|s − ⌊s⌋|2 + exp(2R)R2∣∣Xs − X⌊s⌋

∣∣2
+ R2 ∥∥S⌊s⌋ − Ss

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

s − Z̃⌊π̃∗⌋
s

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

s − Z̃
⌊π̃∗⌋
⌊s⌋

∣∣∣2)ds

]
.

Therefore, combined with I.12,

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2] ≤10(T + 4)Td2
SC4

R exp(4R)R2[∆t2 + 2C2
R(∆t2 + ∆t)

+ 2C2
R(∆t2 + ∆t) + 2 exp(4R)C4

R(∆t2 + ∆t)
]

+ 10(T + 4)d2
SC4

R exp(4R)
∫ τ

0
E sup

0≤r≤s

∣∣∣Z̃ π̃∗

r∧τR
− Z̃

⌊π̃∗⌋
r∧τR

∣∣∣2ds.

□

Lemma I.14. With the definitions and assumptions in Section I.1,

lim
∆t→0

E[(Z̃⌊π̃∗⌋
T − Z̃ π̃∗

T )2] = 0.

Proof.

By Lemma I.13, we apply the Gronwall inequality and obtain

E
[

sup
0≤t≤T

(Z̃ π̃∗

t∧tk
− Z̃ π̃∗

t∧tk
)2]

≤ 10(T + 4)Td2
SC4

R exp(4R)R2[∆t2 + 2C2
R(∆t2 + ∆t)

+ 2C2
R(∆t2 + ∆t) + 2 exp(4R)C4

R(∆t2 + ∆t)
]

exp(10(T + 4)d2
SC4

R exp(4R)).

Then, combined with Lemma I.10, for any δ > 0,

E[ sup
0≤t≤T

(Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t )2]

≤ 10(T + 4)Td2
SC4

R exp(4R)R2[∆t2 + 2C2
R(∆t2 + ∆t)

+ 2C2
R(∆t2 + ∆t) + 2 exp(4R)C4

R(∆t2 + ∆t)
]

exp(10(T + 4)d2
SC4

R exp(4R))

+ 2p+1δA

p
+ (p − 2)8A

pδ2/(p−2)Rp
.

Therefore, E[sup0≤t≤T (Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t )2] converges to 0 as ∆t goes to 0. □
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I.3 Proof

For ease of presentation, we define

θ := (θϕ, θπ, θS), θ∗ := (θ∗
ϕ, θ∗

π̃, θ∗
S) and θ∗

∆t := (θ∗
ϕ,∆t, θ∗

π,∆t, θ∗
S,∆t).

Note that every discrete-time admissible policy is a continuous-time admissible policy. Thus, the continuous-
time admissible policy set includes the discrete-time admissible policy set. Therefore,

Ṽ (θ∗) ≥ V ∗
∆t.

In other words, it is enough to bound Ṽ (θ∗) − V (θ∗
∆t) for the proof. By Lemma I.9, θ∗ maximizes Ṽ and L

simultaneously, leading to

Ṽ (θ∗) − V (θ∗
∆t) ≤

H̃(θ∗) − H(θ∗
∆t)

1 − λ
.

By Assumption I.7, for ∆t ≤ ∆t′, θ∗ is also an admissible parameter θ∗ ∈ A, leading to H(θ∗) − H(θ∗
∆t) ≤ 0.

Further, for any δ > 0, by adding and subtracting equal terms,

Ṽ (θ∗) − V (θ∗
∆t)

≤ 1
1 − λ

[H̃(θ∗) − H(θ∗) + H(θ∗) − H(θ∗
∆t)]

≤ 1
1 − λ

∣∣H̃(θ∗) − H(θ∗)
∣∣.

(24)

Next, we focus on
∣∣H̃(θ∗; δ) − H(θ∗; δ)

∣∣, which by definition has∣∣H̃(θ∗; δ) − H(θ∗; δ)
∣∣ = (1 − λ)

∣∣∣E[U(Z̃ π̃∗

T ; δ) − U(Z̃⌊π̃∗⌋
T ; δ)]

∣∣∣,
where λL(θ∗) in both H̃(θ∗; δ) and H(θ∗; δ) omit each other. By Lemma I.14, we have lim∆t→0 Z̃

⌊π̃∗⌋
T

P−→ Z̃ π̃∗

T .
Since U(z; δ) is a continuous function, we implement the continuous mapping theorem and derive

lim
∆t→0

U(Z̃⌊π̃∗⌋
T ; δ) P−→ U(Z̃ π̃∗

T ; δ). (25)

By assumption I.4,
{

Z̃
⌊π̃∗⌋
T

}
∆t<∆t′

with different finite ∆t is uniformly integrable. Then, following Assump-

tion I.6, U(Z̃⌊π̃∗⌋
T ; δ) is also uniformly integrable since U(z; δ) has a linear bound. Combined with (25), we

derive
lim

∆t→0
E[U(Z̃⌊π̃∗⌋

T ; δ)] −→ E[U(Z̃ π̃∗

T ; δ)],

which finishes the proof.

J Extended Results of Theorem 4.2

In this section, we study the non-asymptotic guarantees on the performance of FaLPO.

J.1 Another Version of Theorem 4.2

Definition J.1. For two random vectors v and w, we define the trace of the covariance matrix as

Var(v) :=E[∥v∥2
2 − ∥E[v]∥2

2],
Cov(v, w) :=E[v⊤w] − E[v]⊤E[w].

Further, we use Var θ(v) and Covθ(v, w) to denote the conditional version of the two given θ:

Varθ(v) :=E[∥v∥2
2 − ∥E[v|θ]∥2

2 |θ],
Covθ(v, w) :=E[v⊤w|θ] − E[v|θ]⊤E[w|θ].
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Note that it is challenging to theoretically analyze a non-convex stochastic optimization (5), while there are
various ad-hoc procedures providing good empirical performances. To provide theoretical analysis, in this
section, we study a projection-based version of FaLPO (Algorithm 2). Specifically, the learning/optimization
process is conducted in a bounded parameter space B, under which we assume that the objective function is
strongly concave regarding the parameters.

Algorithm 2 Projected FaLPO
1: Input: Hyperparameter λ, learning rate η, number of iterations N , the strongly concave region B, and

batch size B.
2: Output: θϕ, θπ, and θS

3: Initialize neural networks with initial parameters (θϕ, θπ, θS) ∈ B.
4: Parameterize the policy function by (3).
5: for n ∈ [N ] do
6: Collect B trajectories.
7: Estimate the gradients of H following the procedure in Appendix C with the parameter λ.
8: Update θS and θR with learning rate η by gradients.
9: Project the achieved update to B.

10: end for
11: Return θϕ, θπ, and θS .

For ease of presentation, we define

θ∗ := (θ∗
ϕ, θ∗

π̃, θ∗
S), θ∗

∆t := (θ∗
ϕ,∆t, θ∗

π,∆t, θ∗
S,∆t) and θ† := (θ†

ϕ,∆t, θ†
π,∆t, θ†

S,∆t).

Let θn be the estimation after the nth iteration, and θ̄ :=
∑N−1

n=0
θn

N the average estimation. It is a common
technique to consider the average estimation θ̄ instead of the final estimations θN for such analysis. Then, we
provide a new version of Theorem 4.2.
Definition J.2. With the gradient estimations discussed in Appendix C, we define

∇̃Hk(θ) := (1 − λ)∇̃Vk(θ) + λ∇̃Lk(θ).

Theorem J.3. With assumptions in Section J.2, λ ∈ [0, 1), and η < 1
CL

as the learning rate,

E[V ∗
∆t − V (θ̄)]

≤
H̃(θ∗) − H(θ∗

∆t)
1 − λ

+ H(θ∗
∆t) − H(θ†)

1 − λ
+ CB log(N)

2N(1 − λ)

+ 1
2NB(1 − λ)E

[N−1∑
n=0

1
n + 1[(1 − λ)2Var θn

(
∇̃Vk(θn)

)
+ λ2Var θn

(
∇̃Lk(θn)

)
+ 2λ(1 − λ)Covθn

(∇̃Vk(θn), ∇̃Lk(θn))]
]
.

Also, there exits situations where a λ ∈ (0, 1) provides smaller value for (1 − λ)2Var
(
∇̃Hk(θn)

)
+

λ2Var
(
∇̃Lk(θn)

)
+ 2λ(1 − λ)Cov(∇̃Hk(θn), ∇̃Rk(θn)) than λ = 0. In other words, there exist cases where

tuning λ may provide better performances.

J.2 Assumptions

Assumption J.4. There exits a constant CB > 0 such that the parameter region B is a convex set and
satisfies the following conditions

1. In B ⊆ A, H(θϕ,∆t, θπ,∆t, θS,∆t) is locally m-strongly concave with a local maximal point
(θ†

ϕ,∆t, θ†
P,∆t, θ†

S,∆t) ∈ B.
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2. For any θ ∈ B, ∥θ∥ ≤ CB .

3. For any θ ∈ B, the expectation of the gradient estimation is bounded by∥∥∥∥∥E
[∑B

k=1 ∇̃Hk(θ)
B

]∥∥∥∥∥
2

≤ CB.

These assumptions are widely used in existing analysis (Papini et al., 2018; Karimi et al., 2019; Agarwal
et al., 2021; Bhandari & Russo, 2019; Wang et al., 2019; Xu et al., 2020).

However, even with Algorithm 2, it remains difficult to guarantee that training is confined to region B,
which is typically unknown a priori. In practice, a more effective approach is to use widely adopted weight
initialization schemes—such as those proposed in (Glorot & Bengio, 2010).
Assumption J.5. At the nth iteration, we use the learning rate as ηn+1 = 1

nm .

Note that in practice we will tune the learning rate η as a hyperparameter, since we may not know m. However,
it is a common practice to set the learning rate as in Assumption J.5 (Hazan & Kale, 2011; Nemirovski et al.,
2009; Shalev-Shwartz et al., 2011)

J.3 Technical Lemmas for Theorem 4.2

Lemma J.6. With Assumption J.4 and J.5, we have

H(θ†) − H(θ̄) ≤ 1
2N

N−1∑
n=0

 1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


+ 1
N

N−1∑
n=0

[(
∇H(θn) −

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)
]
.

Proof. By the strong concavity of H in Assumption J.4,

∇H(θn)(θ† − θn) ≥ H(θ†) − H(θn) + m

2
∥∥θn − θ†∥∥2

. (26)

Further, since θn+1 is the projection of θn + ηn+1

∑B

k=1
∇̃Hk(θn)
B to B, the projection satisfies∥∥∥∥∥θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− θ†

∥∥∥∥∥
2

≥
∥∥θn+1 − θ†∥∥2

,

which suggests ∥∥θn − θ†∥∥2 −
∥∥θn+1 − θ†∥∥2

≥
∥∥θn − θ†∥∥2 −

∥∥∥∥∥θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− θ†

∥∥∥∥∥
2

= −ηn+1

∑B
k=1 ∇̃Hk(θn)

B

⊤(
2θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− 2θ†)

= −η2
n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2

2

− 2ηn+1
(
θn − θ†)⊤

∑B
k=1 ∇̃Hk(θn)

B
.

(27)
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We reorder (27) and derive

−
(
θn − θ†)⊤

∑B
k=1 ∇̃Hk(θn)

B
≤ 1

2ηn+1

(∥∥θn − θ†∥∥2

+ η2
n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2

2

−
∥∥θn+1 − θ†∥∥2

)
.

Taking the result back to (26):

H(θ†) − H(θn) ≤

(
∇H(θn) −

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

+ 1
2ηn+1

∥∥θn − θ†∥∥2 −
∥∥θn+1 − θ†∥∥2 + η2

n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


− m

2
∥∥θn − θ†∥∥2

,

=
(

∇H(θn) −
∑B

k=1 ∇̃Hk(θn)
B

)⊤

(θ† − θn) + 1
2(η−1

n+1 − m)
∥∥θn − θ†∥∥2

− 1
2ηn+1

∥∥θn+1 − θ†∥∥2 + 1
2ηn+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2

.

(28)

By averaging over n with Assumption J.5 we get

H(θ†) − H(θ̄) ≤
N−1∑
n=0

(H(θ†) − H(θn))/N

≤ 1
2N

N−1∑
n=0

 1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


+ 1
N

N−1∑
n=0

[(
∇H(θn) −

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)
]
,

where the first inequality is due to condition 1 of Assumption J.4. □

J.4 Proof of Theorem 4.2

Note that every discrete-time admissible policy is a continuous-time admissible policy. Thus, the continuous-
time admissible policy set includes the discrete-time admissible policy set. Therefore,

Ṽ (θ∗) ≥ V ∗
∆t.

Therefore, it is enough to bound Ṽ (θ∗) − V (θ̄) for the proof. By Lemma I.9, θ∗ maximizes Ṽ and L
simultaneously. Therefore,

Ṽ (θ∗) − V (θ̄) ≤ H̃(θ∗) − H(θ̄)
1 − λ

= H̃(θ∗) − H(θ∗
∆t) + H(θ∗

∆t) − H(θ†) + H(θ†) − H(θ̄)
1 − λ

. (29)
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Then, we use the convergence result for Algorithm 2 detailed by Lemma J.6 :

H(θ†) − H(θ̄) ≤ 1
2N

N−1∑
n=0

 1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


+ 1
N

N−1∑
n=0

[(
∇H(θn) −

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)
]
.

(30)

Then, we take expectation on both sides

E[H(θ†) − H(θ̄)] ≤ 1
2N

N−1∑
n=0

E

 1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


+ 1
N

N−1∑
n=0

E
[(

∇H(θn) −
∑B

k=1 ∇̃Hk(θn)
B

)⊤

(θ† − θn)
]
.

(31)

For the last component of (31), since ∇̃Hk(θn) is an unbiased gradient estimator:

E
[(

∇H(θn) −
∑B

k=1 ∇̃Hk(θn)
B

)⊤

(θ† − θn)
]

= E
[
E
[(

∇H(θn) −
∑B

k=1 ∇̃Hk(θn)
B

)⊤

(θ† − θn)
∣∣∣∣θn

]]
= 0.

Then, for the first component in (31)

E

 1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2


=E

[
E
[

1
n + 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)
B

∥∥∥∥∥
2

|θn

]]

= 1
n + 1E

[
Varθn

(
∑B

k=1 ∇̃Hk(θn)
B

) +
∥∥∥∥∥E
[∑B

k=1 ∇̃Hk(θn)
B

|θn

]∥∥∥∥∥
2 ]

≤ 1
n + 1E

[
Varθn(

∑B
k=1 ∇̃Hk(θn)

B
) + C2

B

]
,

where the last inequality is due to condition 3 of Assumption J.4. Then, (31) can be further derived as

E[H(θ†) − H(θ̄)] ≤ 1
2N

N−1∑
n=0

E

[
1

n + 1 Varθn
(
∑B

k=1 ∇̃Hk(θn)
B

) + 1
n + 1CB

]
.

As a result,

E[H(θ∗
∆t) − H(θ̄)]

=E[H(θ∗
∆t) − H(θ†) + H(θ†) − H(θ̄)]

≤H(θ∗
∆t) − H(θ†) + CB log(N)

2N

+ E
N−1∑
n=0

η[(1 − λ)2Var θn

(
∇̃Vk(θn)

)
+ λ2Var θn

(
∇̃Lk(θn)

)
]

BN(n + 1)

+ E
N−1∑
n=0

η[2λ(1 − λ)Covθn(∇̃Vk(θn), ∇̃Lk(θn))]
BN(n + 1)

}
.
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Taking the results back to (29) we finish the proof.

K Extended Results for Synthetic Experiments

For synthetic portfolio optimization, we provide details for drift and volatility (Appendix K.1), data generation
(Appendix K.2), hyperparameter tuning (Appendix K.3), and extended experimental results (Appendix K.4).
We consider 21-day trading, and generate 1000 trajectories with 21 observations for training, 1000 for
validation, and 1000 for testing. To compare different methods, we calculate the average terminal utility as
the metric.

K.1 Drift and Volatility

Drift and volatility are two important concepts characterising the strength of signal and noise in financial
markets. To demonstrate this, for an asset price Si

t and time interval ∆t, define return as:

returni
t =

Si
t+∆t − Si

t

Si
t

.

The returni
t can be daily, monthly or yearly, depending on the length of ∆t. For a specific asset, drift

(f i(Xt; θ∗
S) in (2)) is approximately the expectation of the return, while volatility (gi(Xt; θ∗

S)) is approximately
the return’s standard deviation. Given multiple assets, drift (f(Xt; θ∗

S)) is a vector and volatility (g(Xt; θ∗
S))

is a matrix. When generating synthetic data (Appendix K.2), we fix the scale of drift and vary the scale of
volatility, which is defined as the average value of each component.

K.2 Data Generation

We simulate data for St and Xt following SDE (6). To this end, drift and volatility are randomly picked
while mimicking the historical stock price data, with an average annual return around as 0.1 and aver-
age annual volatility in {0.1, 0.2, 0.3}, leading to a daily return around 0.1

252 and a daily volatility around
{0.1/252, 0.2/252, 0.3/252}. The true representation function is selected as a component-wise exponential oper-
ation. Then, we discritize the SDE following the explicit Euler method, and generate data accordingly (Beskos
& Roberts, 2005).

The specific configurations for data generation is:

• Define two scalars: Cd, and Cv determining the scale of drift and volatility:

Cd = 0.1/252, , and Cv ∈ {0.1/252, 0.2/252, 0.3/252} .

• σ is selected as a random matrix, whose components follow a uniform distribution in [0.5Cv, 1.5Cv].

• v is selected as a random matrix, whose components follow a uniform distribution in
[−1.5CdCv, 1.5CdCv].

• µ is selected as a diagonal matrix whose diagonal components follow a uniform distribution in [0.9, 1].

• The initial values of X are randomly generated from a uniform distribution on [−2Cd, 2Cd].

• The initial prices of assets are randomly generated from a uniform distribution in [20, 30].

Note that the design makes sure that the simulated price has approximately a yearly return of 0.1 and yearly
volatility in {0.1, 0.2, 0.3}. Table 4 reports the experimental setup parameters.
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Experiment Configurations Values

Time Interval ∆t 1 (Day)
Terminal Time T 21

Scale of Annual Drift 0.1
Scale of Annual Volatility {0.1, 0.2, 0.3}

Number of Simulated Trajectories 1000
Utility Function {Power, Exponential}
Risk Aversion γ {0.1, 3, 5, 10}

Number of Replications under Each Hyperparameter 5
Compute Resources AWS ec2 m5ad.24xlarge

Table 4: Setup for synthetic experiments

K.3 Early Stopping and Hyperparameter Tuning

For better performance, we conduct early stopping for all methods using the average validation utility with
the patience as 5 steps. The considered hyperparameters include the learning rate, λ, and batch size. For
each configuration, we conduct training for 5 times, and average the results. Then, we pick the configuration
providing the best average validation utility, and test it on the test data and calculate the average test utility
per trajectory. The tuning process is conducted using the software wandb (Biewald, 2020). Table 5 reports
the hyperparameter values.

Hyperparameters Values

Batch Size {100, 50}
λ {0, 05, 0.1, 0.9}

Learning Rate {0.0005, 0.001, 0.01, 0.1}

Table 5: Hyperparameters for synthetic experiments

K.4 Synthetic Experiment Results

To gain a more holistic understanding of the performance of FaLPO in a variety of settings, we conduct
experiments under different number of stocks to be traded (Appendix K.4.1), different risk preferences
(Appendix K.4.2), and alternative utility functions (Appendix K.4.3). Finally, we also compare the performance
of various methods under the Merton model as a sanity check (Appendix K.4.4).

K.4.1 Synthetic Experiment Results with Different Dimensions

Tables 6 and 7 report the synthetic experiment results with the number of simulated stocks (dS) varying in
{10, 15}. The performance is not strictly negatively correlated with the number of dimensions of the problem
or the annual volatility in simulation. The reason is that the noise in the problem is indeed determined by the
whole volatility matrix σ, which is randomly generated in the synthetic experiment (Appendix K.2). In other
words, the dimension and average scale cannot fully characterize the extent of the noise in a synthetic task.
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Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −0.465 ± 0.446 −1.35 ± 0.155 −2.737 ± 0.219
DDPG −1.650 ± 0.456 −3.30 ± 1.294 −5.495 ± 1.269
SLAC −0.750 ± 0.210 −5.50 ± 0.011 −6.160 ± 0.012
RichID −3.350 ± 0.111 −5.65 ± 0.102 −6.325 ± 0.048

CT-MB-RL −2.850 ± 0.014 −5.35 ± 0.020 −6.160 ± 0.026
MMMC −4.723 ± 7.619 −5.602 ± 4.299 −6.124 ± 3.217

Table 6: Average terminal utility after tuning with standard deviation for synthetic data with dS = 10 and dW = 10.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −2.463 ± 3.744 −1.021 ± 0.278 −2.243 ± 0.547
DDPG −3.976 ± 1.428 −1.443 ± 0.751 −5.205 ± 1.858
SLAC −4.749 ± 0.139 −6.129 ± 0.016 −6.526 ± 0.012
RichID −4.973 ± 0.448 −6.321 ± 0.038 −6.641 ± 0.022

CT-MB-RL −3.074 ± 0.014 −5.714 ± 0.023 −6.363 ± 0.021
MMMC −5.388 ± 5.688 −6.465 ± 4.978 −7.155 ± 5.965

Table 7: Average terminal utility after tuning with standard deviation for synthetic data with dS = 15 and dW = 15.

K.4.2 Synthetic Experiment Results with Different values of γ

Tables 8 and 9 report experimental results with dS = 10, dW = 10, and γ ∈ {3, 10} for an exponential utility.
FaLPO outperforms the competing methods in most scenarios.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −0.003 ± 0.0021 −0.0055 ± 0.0008 −0.0132 ± 0.0028
DDPG −0.003 ± 0.001 −0.0105 ± 0.006 −0.0205 ± 0.0034
SLAC −0.003 ± 0.0007 −0.0153 ± 0.0013 −0.0192 ± 0.0011
RichID −0.012 ± 0.0005 −0.0188 ± 0.0002 −0.0211 ± 0.0

CT-MB-RL −0.01 ± 0.0 −0.0179 ± 0.0 −0.0206 ± 0.0
MMMC −0.0162 ± 0.0212 −0.0194 ± 0.0135 −0.0210 ± 0.0102

Table 8: Average terminal utility after tuning with standard deviation for synthetic data with γ = 10.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −4.575 ± 3.325 −17.9358 ± 2.3349 −56.0405 ± 13.0502
DDPG −23.113 ± 4.3472 −51.6559 ± 11.7981 −50.0399 ± 13.8451
SLAC −23.514 ± 11.7077 −68.6816 ± 0.0254 −76.1371 ± 0.0355
RichID −44.629 ± 1.8797 −69.481 ± 0.9413 −77.232 ± 0.1091

CT-MB-RL −34.842 ± 0.4686 −65.41 ± 0.1331 −75.4364 ± 0.122
MMMC −59.2338 ± 77.4511 −70.8667 ± 49.2500 −76.8619 ± 37.448

Table 9: Average terminal utility after tuning with standard deviation for synthetic data with γ = 3.

K.4.3 Synthetic Experiment Results with Power Utility

We also conduct synthetic experiments maximizing the expected power utility for portfolio optimization. The
results are summarized in Figure 5.
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Figure 5: Average Terminal Power Utility

K.4.4 Synthetic Experiment for the Merton Case

As a sanity check, we study a Merton problem where the optimal performance can be mathematically derived,
in order to compare the performance of FaLPO to the optimal one. We simulate data following a Merton
model in Appendix F.1, with dS = 10, dW = 10. With an exponential utility function with γ = 5, according
to Lemma F.1, the optimal policy can be derived as

π̃∗ = µ(σσ⊤)−1

Zt
. (32)

Further, by taking (32) back into (14), we can derive the optimal expected terminal utility as

max
π̃t

Eπ̃[U(Z π̃
T )|z0] = −e−γz0

γ
e− 1

2 µ⊤(σσ⊤)−1µT ,

which is the theoretically optimal performance. Then, to implement FaLPO, we generate fake factors which
are independent from the asset prices: the optimal policy is not dependent on these factors. Ideally, FaLPO
should be able to automatically ignore the fake factors, and deliver performance similar to the theoretically
optimal derivation. The results of FaLPO, MMMC, and the theoretically optimal derivation are reported in
Figure 6. Note that FaLPO achieves slightly worse performance compared to the other two. The reason for
the slight suboptimality of FaLPO in the Merton case is twofold: i. the expected terminal utility is derived
for a continuous-time policy while FaLPO learns a discrete-time policy with time interval ∆t; ii. FaLPO uses
an over-complicated model with stochastic factors, while the true data generating process follows a Merton
model without stochastic factors.
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Figure 6: Negative average terminal utility of FaLPO and MMMC, and negative expected optimal terminal utility. The smaller
the better.

L Extended Results of Real-World Stock Trading

L.1 Protocol

We consider 21-day stock trading in four different stock sectors using the daily stock price data from Yahoo
finance between January 4, 2006 and April 1, 2022. More specifically, we use the adjusted close price as
the daily trading price. For factors, we consider economic indexes, technical analysis indexes (generated
by python package TA), and sector-specific factors such as oil prices, gold prices, and related ETF prices,
leading to around 30 factors for each sector. In each sector we select 10 stocks according to the availability
and trading volume in the considered time range. The considered sectors, stocks, and the factors are provided
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in Table 10. We consider the same competing methods in Section 5.1 and compare the performance using the
average achieved terminal utility over different trajectories as the metric. The larger the utility the better.

Sectors Stocks Factors

Energy APA, COP, CVX, HAL, HES,
MRO, OKE, OXY, VLO, WMB

SP500 returns, MACD of stock prices,
RSI of stock prices, oil prices, gasoline prices

US Dollar/USDX - Index - Cash (DX-Y.NYB)

Industrial BA, CAT, DE, EMR, ETN,
GE, HON, LMT, LUV, PNR,

SP500 returns, MACD of stock prices,
RSI of stock prices,

ETF prices including DIA, EXI, IYJ and VIS

Materials APD, AVY, BLL, DD, ECL,
FMC, IFF, IP, NEM, VMC

SP500 returns, MACD of stock prices,
RSI of stock prices, gold prices, silver prices,

ETF prices including IYM and VAW

Table 10: Selected stocks and factors

L.2 Extra Penalties

For real-world experiments, we consider two extra penalty terms for better stability. The first penalty
is the model calibration loss discussed in Appendix E.3. Given a trajectory with time interval ∆t, τ :=
{ti, sti , xti | i ∈ [m]}, it is defined as

−λ1 min
C,b

m∑
i=1

∥∥ϕ(Xti+1) − Cϕ(Xti) − b
∥∥2

2 ,

where C is a matrix and b a vector of proper dimensions. As discussed in Appendix E.3, this penalty
encourages a simple representation function ϕ. The second penalty is the negative sample variance of the
terminal wealth, with the parameter λ2 determining its strength. The intuition of this penalty is to further
penalize the instability of the algorithm performance. The second penalty is implemented for all the competing
methods except MMMC for a fair comparison.

L.3 Train-Validation-Test Split by Sliding Window

We detail the sliding window method for train-validation-test split for real-world portfolio optimization
experiments (Figure 7). In financial markets, the dynamics under asset prices and factors vary over time,
leading us to construct a sliding window on the dataset for training, validation and testing. Specifically, given
a dataset of asset prices and observed factors, we construct several windows of observations of equal length.
We divide each window into three contiguous periods, the first used for training, the second for validation,
and the third for testing. We refer to the length (in days) of the training period as the training size (same for
validation and test periods).

After constructing one window, we move the start time point by a fixed number of days (the window gap),
and construct the second window. A given method is trained on the training set of each window separately,
and then validated and tested on the corresponding validation and test sets. The final validation and test
performances are calculated by averaging over each window. The experimental setup is summarized in
Table 11. We report the considered hyperparameter values in Table 12.
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Figure 7: Demonstration of sliding window.

Experiment Configurations Values

Time Interval ∆t 1 (Day)
Terminal Time T 21
Utility Function Exponential

Risk Aversion γ 5
Number of Replications under Each Hyperparameter 10

Compute Resources AWS ec2 m5ad.24xlarge

Table 11: Setup for real-world experiments.

Hyperparameters Values

Batch Size {100, 200, 400}
λ {0.1, 0.5, 0.9}

Learning Rate {0.0005, 0.001, 0.01, 0.1}
Window Gap {63, 126}

Train Size {1260}
Validation Size {63}

Test Size {63}

Table 12: Hyperparameters for real-world experiments

L.4 Sensitivity Analysis on λ

According to (5), the value of λ determines the weight of the FaLPO model calibration. In this section, we
conduct sensitivity analysis of FaLPO on λ. Under the same protocol as the experiments in Section 5.2, we
also report FaLPO with different values of λ when applied to different sectors. The results are reported
in Figure 8. Compared to the case without model calibration (λ = 0), a small non-zero λ provides higher
terminal utilities and lower variance. This observation justifies our method of incorporating model calibration
into policy learning. Then, when λ gets bigger and close to one, the performance of FaLPO decays while the
variance also gets smaller.
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Figure 8: Sensitivity analysis for λ

L.5 More Information for Competing Methods

Here we provide more information for the implemented competing methods. First of all, we focus on policy
learning methods, without studying other performance improving techniques like data augmentation or feature
engineering. (See Appendix A.2 for a review of such methods.) Such techniques can be easily applied to
FaLPO. Further, for a thorough comparison, we summarize the existing policy-learning methods for portfolio
optimization with the following four representatives. Note that, all the following methods take asset price
data and factors as the input for a fair comparison.

• DDPG is implemented with the gradient estimation detailed in Appendix C and also discussed in
Nan et al. (2022); Xiong et al. (2018); Jiang et al. (2017). This design makes sure that DDPG can
leverage offline data without exploration.

• SLAC (Lee et al., 2020) learns a representation of factors jointly with policy learning. But in this
process, no parametric models are used.

• RichID (Mhammedi et al., 2020) falls into the category of model-based policy learning like Yu et al.
(2019). It first learns the representation of factors and then conduct policy learning. In this process,
both steps take advantage of a parametric model. For better performance in portfolio optimization,
we pick Kim-Omberg model as the used model, instead of the LQR model original proposed with
this method.

• CT-MB-RL is a policy gradient method optimizing the performance objective using the policy
functional form derived from continuous-time models, but without factor representation learning.

We also implement MMMC as a representative of continuous-time finance methods. More complicated and
advanced continuous-time finance methods are hard to implement for two reasons. First, to implement such
methods, we need to estimate all the parameters of a multivariate SDE (like σ, v, µ and ω in Section 3.3). It
is challenging since the derivation of likelihood requires solving multivariate stochastic integrals (Ait-Sahalia
& Kimmel, 2010), Second, deriving explicit optimal policy functions is also difficult, which involves solving
high-dimensional PDEs (like k2(t) and k3(t) in Lemma F.2). Further, such pure continuous-time models are
expected to underperform, since they assume that the data exactly follow a parametric SDE and tend to
underfit. This can also be seen by our comparison with CT-MB-RL (Section 5), which is a model-based
RL method by relying on a Kim-Omberg model. As a result, we focus our empirical comparison to more
competitive RL methods.

Note that FaLPO circumvents the two aforementioned challenges. First, our model calibration does not
aim to fit all the parameters in an SDE, but only those related to learning θϕ and θπ. That is why our
model calibration loss in Section 3.3 has such an easy-to-calculate form with the parameter θS as a simple
vector. Second, FaLPO does not need a fully derived closed-form solution for the optimal policy. Like
in Section 3.3, we use neural networks to parameterize K(t) and ϕ(), instead of fully deriving them like
continuous-time finance methods. Being able to bridge this gap between continuous-time finance models and
high multidimensional stock trading problems is one of our contributions.
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L.6 Experiments with Transaction Costs

In this section, we consider the case with transaction costs. Usually, the cost of borrowing a stock to short can
vary but typically ranges from 0.3% to 3% per year. Therefore, we take 1% annual transaction cost for short
selling an asset. (The fees are applied daily.) Under this setting, we replicate our real-world experiments for
the oil sector, using the same protocol. After the tuning procedure in Appendix L.3, the achieved results are
reported in Table 13. It should be noticed that the results are consistent with those without transaction costs.

Methods Average Utility

FaLPO −2.25 ± 1.649
DDPG −6.795 ± 0.8247
SLAC −7.115 ± 0.8872
RichID −6.365 ± 0.5989

CT-MB-RL −5.57 ± 5.036

Table 13: Average terminal utility in oil sector with transaction costs

L.7 Experiment Results in Sharpe Ratio and Largest Drawdown

To provide a more thorough review for the real-world experiment, we provide the annual Sharpe ratio and
maximum drawdowns for the real-world experiments conducted in the mixed sector.

Methods Sharpe Ratio Largest Drawdown

FaLPO 4.705 -1105.046
DDPG 2.828 -4778.342
SLAC 0.6434 -5262.523
RichID 0.418 -643.062

CT-MB-RL 4.467 -993.661

Table 14: Annual Sharpe ratio and maximum drawdowns for the real-world experiments in the mixed sector

FaLPO achieves superior returns and Sharpe ratios compared to competing methods. However, we emphasize
that utility is a more appropriate metric than returns or Sharpe ratios for portfolio optimization. Return
alone is not a reliable metric for comparing portfolios, as it fails to account for risk. The utility function
addresses this limitation by incorporating risk into the evaluation (see Line 128 and Figure 2). This is a
critical feature in portfolio optimization. Utility is widely recognized as a foundational concept in portfolio
optimization, underpinned by numerous seminal works (Merton, 1969). Many finance models explicitly rely
on utility. To effectively leverage such models, utility becomes an indispensable metric. Portfolio optimization
is defined as maximizing expected utility. Therefore, comparing methods based on other metrics (e.g., average
returns or Sharpe ratio) may not be meaningful, as these metrics are not directly equivalent to utility. A
policy excelling in utility may not necessarily yield high average returns or a high Sharpe ratio, as discussed
in Appendix B. For this reason, our submission focuses on utility when comparing different methods.

L.8 Experiments with Different Initial Wealth

We vary the initial wealth in {3000, 5000, 8000, 1000} for portfolio optimization using stocks in the oil sector
following the same protocol as the experiments in Section 5.2. The results are summarized in Table 15.
Specifically, FaLPO achieves superior performance to the competing methods with different initial wealth.
Also, it should be noticed that all the methods achieve higher terminal utility given more initial wealth.
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Initial Wealth 3000 5000 8000 10000

FaLPO −21.08 ± 16.775 −2.4 ± 1.9 −0.243 ± 0.1209 −0.03595 ± 0.008896
DDPG −909.5 ± 3443.846 −6.6 ± 1.2 −0.34665 ± 0.01809 −0.046755 ± 0.00444
SLAC −11865 ± 47260.664 −6.8 ± 0.2 0.35465 ± 0.07427 −0.04558 ± 0.00142
RichID −45.51 ± 8.368 −6.5 ± 0.1 −0.33125 ± 0.009791 −0.045365 ± 0.0001446

CT-MB-RL −28.715 ± 18.303 −4.2 ± 6.2 −0.30995 ± 0.1441 −0.043055 ± 0.002061

Table 15: Average terminal utility in oil sector with different initial wealth

L.9 Experiments with Different Continuous-Time Models

As demonstrated in Appendix F, FaLPO is compatible with various continuous-time financial models. In this
section, we evaluate its performance on a real-world oil sector dataset, comparing results across three SDE
families: the Merton model, the Kim–Omberg model, and the EVE model.

Sectors Average Utility
Kim-Omberg −2.4

Merton −8.5
EVE −2.5

L.10 Computation Time and Memory Usage

In this section, we report the memory usage and computation time of FaLPO. All experiments are conducted
on AWS EC2 instances of type m5ad.24xlarge, using CPUs only. The experiments require less than 3 GB of
CPU memory. The computation times are summarized in Figure 9.
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Figure 9: Histograms for computation time of synthetic and real-world experiments under all the considered hyperparameters.

L.11 Performance of FaLPO over Different Market Regimes

As the market regime arguably changes before and after 2020, we delve deeper into the performance of
FaLPO across these two periods. Specifically, we report the return and standard deviation of FaLPO on the
oil sector before and after 2020 in Table 16. While a performance decline is observed after 2020, the decrease
is relatively mild.
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Period Return (%) Std (%)

Before 2020 7.8 2.8
After 2020 7.0 3.6

Table 16: Performance of FaLPO Before and After 2020
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