
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOMATING HIGH-QUALITY CONCEPT BANKS:
LEVERAGING LLMS AND MULTIMODAL EVALUATION
METRICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interpretablility in recent deep learning models has become an epicenter of re-
search particularly in sensitive domains such as healthcare, and finance. Concept
bottleneck models have emerged as a promising approach for achieving trans-
parency and interpretability by leveraging a set of human-understandable con-
cepts as an intermediate representation before the prediction layer. However,
manual concept annotation is discouraged due to the time and effort involved.
Our work explores the potential of large language models (LLMs) for gener- ating
high-quality concept banks and proposes a multimodal evaluation metric to assess
the quality of generated concepts. We investigate three key research questions:
the ability of LLMs to generate concept banks comparable to existing knowl-
edge bases like ConceptNet, the sufficiency of unimodal text-based seman- tic
similarity for evaluating concept-class label associations, and the effectiveness of
multimodal information in quantifying concept generation quality compared to
unimodal concept-label semantic similarity. Our findings reveal that multimodal
models outperform unimodal approaches in capturing concept-class label simi-
larity. Furthermore, our generated concepts for the CIFAR-10 and CIFAR-100
datasets surpass those obtained from ConceptNet and the baseline comparison,
demonstrating the standalone capability of LLMs in generating high-quality con-
cepts. Being able to automatically generate and evaluate high-quality concepts
will enable researchers to quickly adapt and iterate to a newer dataset with little to
no effort before they can feed that into concept bottleneck models.

1 INTRODUCTION

In recent years, large-scale machine learning models, particularly deep neural networks, have
achieved remarkable improvements in accuracy across various domains. However, these advance-
ments have often come at the expense of interpretability and transparency, making it challenging to
understand the internal decision-making processes of these models. This lack of clarity and inter-
pretability poses significant limitations to their deployment in critical areas where the consequences
of incorrect predictions can be severe. In domains such as medical diagnostics, healthcare, public
infrastructure safety, and visual inspection for civil engineering, the ability to explain and justify the
decisions made by these models is of utmost importance (Li et al., 2022b). Stakeholders in these
fields require a clear understanding of the reasoning behind the model’s predictions to ensure that
the outcomes align with established domain knowledge and best practices. Without this level of
transparency, the trustworthiness and reliability of these models come into question, hindering their
widespread adoption in safety-critical applications (Gao & Guan, 2023).

To address this challenge, researchers and practitioners are actively exploring methods to enhance
the interpretability of machine learning models while maintaining their impressive performance
(Singh et al., 2020). Techniques such as feature importance analysis, SHAP, rule extraction, and vi-
sual explanations aim to provide insights into the factors influencing the model’s predictions (Zhang
et al., 2021; Bujwid & Sullivan, 2021; Lundberg & Lee, 2017). By bridging the gap between the
model’s internal workings and human understanding, these approaches seek to achieve greater con-
fidence in the use of machine learning in high-stakes scenarios.
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Concept Bottleneck Models (CBMs) is one of the techniques to have gained significant attention in
the field of Artificial Intelligence due to their ability to provide interpretable explanations for model
predictions. Just before the classification layer, Concept-Bottleneck models have a bottleneck layer
that comprise of human-interpretable concepts (Oikarinen et al., 2023; Yang et al., 2023). Concept
Activation Vectors (CAVs) also provide human-friedly interpretation of the existing classification
models (Kim et al., 2018a). A recent modification of CBM known as Counterfactual CBM is pro-
posed which uses counterfactual explanations by emphasizing not only on ”why” but also on ”what
if” by providing alternate counterfactuals concepts (Dominici et al., 2024). While aforementioned
approaches are promising and highly interpretable, they suffer from two major challenges: 1) Con-
cept generation turns out to be a key challenge in concept-bottleneck models as high number of
related concepts generally tend to produce better bottleneck layer resulting in more interpretabil-
ity; 2) There is limited literature on independently evaluating, and hence improving concept quality
before feeding them to the CBM pipeline.

In order to overcome the aforementioned challenges, there have been attempts to automate concept
generation and quality improvement. For generating high quality concepts, earlier methods have
mostly relied on manual concept annotation (Koh et al., 2020). While this method may generate
concepts of reasonable quality, it has huge resource limitations and relies completely on human
understanding of the underlying classes. Moreover, this method cannot be generalized across newer
datasets as new class labels will require concept annotation from scratch. To alleviate this problem,
some researchers have also proposed the idea of augmenting the base human-labelled concepts by
using LLMs via in-context learning (Tan et al., 2024). A few researchers have also focused on
leveraging concept annotations in datasets where it is readily available and utilise multimodal models
to learn or discover new set of concepts (Wang et al., 2023; Yuksekgonul et al., 2022). Recent
advancements in Large Language Models (LLMs) have shown promising results in various natural
language processing tasks (Kojima et al., 2022). LLMs, such as GPT-3 have the ability to generate
coherent and meaningful text based on a given prompt. This capability can be leveraged to automate
the concept generation process in CBMs, reducing the manual effort required and improving the
overall efficiency of the model (Yang et al., 2023).

While concept generation has been automated by the use of pre-trained LLMs, the quality assess-
ment of the generated concepts still remains to be a challenge. Current approaches rely on run-
ning end-to-end pipeline for CBM in order to assess the quality of the generated concepts. Higher
scores in CBM classification predictions are automatically interpreted as a generating good con-
cepts (Oikarinen et al., 2023; Yuksekgonul et al., 2022). This approach does not directly quantify
the quality of generated concepts. Moreover, it also requires extensive resources as running complete
end-to-end pipeline is not computationally inexpensive.

In this research, we propose an unsupervised concept generation and evaluation technique which
could help evaluate and iterate on the generated concepts at an early stage of CBM classification.
Our method aims to eliminate the reliance on manual annotation and improving the interpretability
of CBMs. We also evaluate text-based model for concept quality evaluation to see how well can
it quantify the overall concept quality. Our work is inspired by some of the approaches that have
achieved success in similar tasks (Semenov et al., 2024; Bhaskar et al., 2017; Kritharoula et al.,
2023).

We emphasize on the following three Research Questions in the given research:

• RQ1: Can large language models without visual information generate good enough con-
cept bank as compared to the existing knowledge bases such as ConceptNet?

• RQ2: Is unimodal text-based semantic similarity enough to evaluate the association be-
tween concepts and class labels?

• RQ3: Is multimodal information enough to quantify the quality of the concept generation
as opposed to the unimodal concept-labels semantic similarity?

2 LITERATURE REVIEW

Concept Bottleneck models have been used to add a layer of interpretability to the black-box deep
learning-based classification algorithms. However their performance comparatively remains to be
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limited due to the lack of good quality concepts. There are various approaches for improving per-
formance of concept-bottleneck models.

Early approaches rely heavily on manually hand-crafted concepts which may result in good hu-
man interpretation but are not scalable and require manual labor (Koh et al., 2020). Moreover, the
concepts are limited to human’s capability and understanding of the domain and are likely to miss
some important concepts (Shang et al., 2024). Iterating and evaluating these concepts requires more
manual intervention which becomes infeasible due to the lack of time and resources. Addition-
ally, manual concept generation is subjective and the quality of concepts may rely on the individual
brilliance of the annotators.

A few researchers propose methods to partially eliminate the manual annotation by proposing to
learn concepts from the dataset. For instance, (Wang et al., 2023) uses self-supervision to simulta-
neously learn concepts and classification objective. It uses slot attention-based mechanism to spot
the region where corresponding concept is found. It learns a set of k concepts while k is a hyper-
parameter and is set to 5. Their experiments demonstrate that contrastive loss with self-supervision
really contribute to concept discovery. The authors evaluate the accuracy of their proposed approach
by generating synthetic dataset proposed in . There is one limitation of this approach and is as-
sociated with tuning the number of k-concepts for each dataset which hurts the scalability across
datasets.

Another approach relies on base high-quality human annotated concepts to create a seed concept
bank. These concepts are incrementally bootstrapped by learning and optimizing learnable vectors
initalized from multimodal model such as CLIP (Radford et al., 2021). These ambiguous and unclear
vectors are then translated into potentially meaningful concepts by using concept discovery module.
Lastly, they introduce a metric to evaluate concept utilisation efficiency (Shang et al., 2024). While
their approach seems to marginally outperform existing models, it relies on high quality initial seed
concept bank which requires manual effort.

Hierarchical concept learning has also been explored to improve the performance of concept-
bottleneck models by aiming to produce better concepts (Sun et al., 2024). The idea here is to
avoid information leakage issue by introducing supervised learning in concept prediction. The au-
thors establish notable improvements in model performance as concept prediction results in better
concepts.

Due to the widening popularity of LLMs for unsupervised learning, recent articles have also dived
deeper into utilising them for concept generation. A recent study Oikarinen et al. (2023) proposed
a label-free concept bottleneck mechanism to generate models using GPT-3 model. They also filter
concepts by utilising vision and text encoders to compute similarities between concepts and classes.
A similar approach is proposed by Yang et al. (2023) where the concepts are generated automat-
ically by LLM. However, concept filtering is performed by using submodular optimization which
tends to be more effective compared to the static rules applied in the former approach. While these
methods do alleviate the manual effort of generating concepts, they rely on a paid GPT-3 API. These
approaches also evaluate concept quality based solely on the final results of classification which
is resource intensive. Moreover, their models do not outperform existing model such as Standard
sparse model on CUB-200 dataset.

Another popular approach is the use of TCAV (Testing with Concept Activation Vectors) for in-
terpreting neural network decisions, the researchers demonstrated several key findings (Kim et al.,
2018b). TCAV provides a human-friendly linear interpretation of deep learning models, offering
insights into model decisions through natural high-level concepts that do not need to be predefined
during training. The approach supports accessibility, customization, plug-in readiness, and global
quantification, making it a versatile tool that requires minimal machine learning expertise to em-
ploy. Unfortunately, the assumption of linearity between concept and predictions does not always
hold true resulting in performance degradation where non-linear dependencies need to be captured.

ConceptSHAP improves the assessment of concept importance in model explanations by adapting
Shapley values to fairly assign the importance of each concept (Yeh et al., 2020). This adaptation
allows it to uniquely satisfy desired axioms such as efficiency, symmetry, dummy, and additivity.
Specifically, ConceptSHAP measures how much each individual concept contributes to the over-
all completeness score of the model, which helps in evaluating the importance of each discovered
concept in explaining the model’s decisions. By providing both global attribution and per-class
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saliency, ConceptSHAP offers a more nuanced and interpretable understanding of how different
concepts contribute to model predictions. This approach is validated through metrics and user stud-
ies on synthetic and real-world datasets, demonstrating its effectiveness in finding complete and
interpretable concept explanations.

Multimodal models have also shown great improvements in tasks that involve multiple modalities
such as vision and text (Li et al., 2022a). The idea of using multimodal models for concept an-
notation by leveraging multimodal models to obtain concept representations is also explored (Yuk-
sekgonul et al., 2022). This involves learning the concept bank by training a linear SVM for each
concept. The vector normal to the boundary is used to represent the concept. Multimodal model
(CLIP Radford et al. (2021)) is then used to map each concept to a vector using text encoder. This
method has a number of limitations. Firstly, it necessitates the creation of a predefined library of
initial concepts, which may involve concept pruning, requiring human intervention via annotation.
Secondly, this approach relies on preexisting knowledge graphs, such as ConceptNet (Speer et al.,
2017), to identify relationships between classes and related concepts. While these knowledge graphs
provide valuable information, they may not always capture the nuances and context-specific relation-
ships present in the particular task or dataset at hand. Lastly, it also requires supervised training of
a classifier the tuning of which also requires additional effort when adapting to a newer dataset.
Consequently, the effectiveness of this approach may be limited by the quality and relevance of the
utilized knowledge graphs.

A recent approach proposes a hypothesis for quantifying concept similarity using an algorithm
called Concept Matrix Search (CMS) algorithm (Semenov et al., 2024). It generates concepts using
ConceptNet, a popular freely-available commonsense knowledgebase, and utilises CLIP model for
computing concept-image and concept-labels similarity matrices. It predicts the class label by us-
ing cosine similarity for k-th image-concept and image-class concept. While the hypothesis seems
reasonable, it relies on the fact that textual embeddings for class-concept have closer semantic ad-
herence to the image-concept mapping which may not always be true due to the abstract nature of
the concepts. For example, the distance between an image of class label ”apple” and the image of
a red apple may be closely associated while the semantics between the label ”apple” and concept
”red” may not be close enough in the embeddings space. Moreover, ConceptNet is does not provide
comprehensive concepts for multi-word phrase classes.

In conclusion, various approaches have been proposed to improve the performance of concept-
bottleneck models. These methods aim to enhance concept discovery, reduce information leakage,
and automate concept generation. While some approaches, such as self-supervision and hierarchical
concept learning, have shown notable improvements in model performance, others, like label-free
concept bottleneck mechanisms using GPT-3, still face challenges in terms of concept quality and
cost-effectiveness. Additionally, methods that rely on predefined concept libraries and knowledge
graphs may be limited by the relevance, accuracy, and completeness of these resources. Although
there are developments to this field, there remains room for further research and development in this
area to address the limitations and improve the scalability and generalizability of concept-bottleneck
models across different datasets and tasks.

3 METHODOLOGY & IMPLEMENTATION

To answer the aforementioned research questions, we need to establish benchmark datasets to quan-
tify and compare the quality of two or more concept generation sources. Once we obtain these sets
of concepts against respective classes, we can apply the proposed metric to compare and evaluate
their quality. Our core methodology tends to be completely unsupervised as generate we rely on
LLMs for concept set generation. For concept quality evaluation, we propose a metric that relies
on exploiting the pretrained knowledge of the multimodal model like CLIP for making the predic-
tions. This results in a ”training-free” methodology which may help scale to any dataset without the
need for additional training and dataset-specific manual labelling. The proposed approach will help
us quantify the quality of concept bank and iterate over them fast before feeding them to a larger
concept-bottleneck based architecture.
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3.1 CONCEPT SET GENERATION

We generate class-wise concepts using ConceptNet and recent Large Language Models. Specifically,
we generate three set of concepts as listed below:

• Random concepts (via prompting)
• ConceptNet-based concepts to serve as baseline
• LLM-generated concepts

ConceptNet-based Concepts: We use ConceptNet API to generate relevant concept against each
class. Following the footsteps of Semenov et al. (2024), we keep only the concepts having HasA,
IsA, PartOf, HasProperty, MadeOf, and AtLocation relationships with the class labels. We generate
as many concepts as possible. Due to API limitations, we use Sentence Transformer’s roberta-based
1) model and find more concepts using algorithm similar to (Oikarinen et al., 2023).

LLM-generated Concepts: For automated concept generation using LLMs, we prompt recent
LLMs like LLaMa3-70B AI@Meta (2024) and Qwen2-72B Bai et al. (2023) using various prompts.
We used special technique in prompting to generate more granular and abstract concepts. We achieve
this by prompting model in the following manner:

{<class label>} {<is/has relationship>}
attribute/characteristic

This technique generates phrases ending with unique attributes of the given class label. We then
parse and keep only the attribute at the end of the phrase. We also prompt model to generate a single
word or two-word phrase as suggested by Shang et al. (2024) to help achieve concept utilization.
These concepts are generated against each class label individually. We restrict prompt to generate
at most 15 concepts as we observe that higher number of concepts may introduce redundancy. For
CUB-200, we slightly modify the prompt to generate data more specific to the attributes of birds.
We notice that this approach helps generate more distinguishable concepts resulting in better per-
formance. This also underscores the significance of task-specific prompt tuning. For the sake of
reproducibility, we set temperature to 0 for generation.

Random Concepts: In order to assess the reliability of our proposed concept evaluation metric, we
also generate a random set of concepts. We prompt LLaMA3 to generate irrelevant and unrelated
concepts given a class label.

All the prompts can also be found in Appendix A.1.

3.2 CONCEPT FILTERING

Once the concepts are generated, we retain only the diverse set of concepts without losing much nov-
elty ensuring high quality subset of concepts. We apply filtering criteria such as length of characters
per concept in order to remove unnecessarily long concepts. Specifically, we remove any concepts
smaller than 3 characters and the ones larger than 32 characters. We also preprocess and remove
the concepts which can be matched with class label as a subword. Table 1 below summarizes the
number of concepts after filtering against each dataset.

3.3 CONCEPT QUALITY EVALUATION

3.3.1 EXPERIMENTAL SETUP

In order to evaluate the proposed solution, we declare the an experimental setup which contains three
set of concepts against three popular image classification datasets including CIFAR-10, CIFAR-100
Krizhevsky et al. (2009), and CUB-200. We randomly sample a set of fifty images per class from

1We use model available here: https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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Table 1: Number of unique concepts across datasets after filtering

Dataset Random ConceptNet LLM-generated

CIFAR-10 457 223 180
CIFAR-100 1240 1096 1365
CUB-200 1020 869 1292

each dataset to do class-level feature representation. The goal here is to avoid using the complete
dataset and only using the sample for faster pipeline iteration.

We hypothesize that if a certain concept evaluation metric is reliable, there will be no significant
difference between the scores of randomly generated concepts when compared with ones generated
via LLMs and ConceptNet.

3.3.2 BERT-SCORE BASED EVALUATION

In order to evaluate the effectiveness of a unimodal text similarity model, we use a popular metric
called BERTScore (Zhang et al., 2019). BERTScore, as the name suggests is based on BERT Devlin
et al. (2018) model, and has been extensively used to compute text similarity between two sentences
or words. We first compute class and concept embedding matrices using BERTScore and then
compute cosine similarity between both matrices. Then we find the top-k concepts against each
class and match those top concepts with the ground truth. We compute the accuracy based on the
number of matches and divide by the total number classes available. The results of the experiments
are detailed in Table 2 of results Section.

Figure 1: Proposed System Architecture Diagram

3.3.3 CONCEPT-DRIVEN CLASS LABEL PREDICTION USING CLIP

We propose a concept-driven class label prediction scheme that relies on multimodal features. The
fundamental thought process behind the idea is to predict class label by image-concept similarities
as illustrated in the Figure 1.

Preprocessing Concepts: Before passing the concepts to the embedder, we make the concepts
unique. The goal here is to avoid redundancy in the resulting image-concept similarity matrix.

Prefix Prompting: We use OpenAI’s CLIP model (ViT-B/322) for mapping image and text embed-
dings to a shared embedding space. The embedder projects images and concepts into an embedding
with each embedding having 512 dimensions. Before embedding concepts, we prepend a prefix

2We use openclip’s implementation found here: https://github.com/mlfoundations/open_
clip
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Algorithm 1 Concept-driven class label prediction
Input: Set of concepts C, Image embedding matrix V , Number of top concepts k
Output: Image-concept similarity matrix Mv , Set of top-k concepts T , Predicted classes
Cunique ← uniqueElements(C) {Make concepts unique}
Cembedded ← embedConcepts(Cunique, prefix) {Embed concepts}
Mv ← ∅ {Initialize similarity matrix}
for each image embedding vi ∈ V do

for each concept embedding cj ∈ Cembedded do
sij ← vi·cj

|vi||cj | {Normalized dot product}
Mv[i, j]← sij {Store similarity score}

end for
end for
T ← topKConcepts(Mv, k) {Find top-k concepts}
classes← matchConceptsToClasses(T ) {Match to classes}
return Mv, T, classes

Table 2: Comparison of Accuracy (%) by top-7 concepts using BERTScore

Method CIFAR10 CIFAR100 CUB200

Random concepts 20.0 7.0 6.0
ConceptNet concepts 60.0 24.0 10.0
LLM-generated concepts 50.0 21.0 11.0

to see if they impact the image-concept similarity score. We experiment with different prefixes as
given below:

• The object in the image is/has {concept}
• The object in image comprises of {concept}
• The object in the image features {concept}

To our surprise, the prefix tuning results in higher scores as compared to embedding concept without
any prefix. This also significantly impacts the semantic similarity scores, hence resulting in the final
results.

We represent image embedding matrix with V and concepts matrix with C. We find dot product
between sampled images and all the concepts Mv and normalize by the dot product of their norms.
Now Mv is a matrix containing similarity scores between image-concept similarities. We find top-k
concepts with highest similarity across images. The top concepts are then matched back to find the
right class. It must be noted that our approach also helps with concepts matching if they are being
shared across multiple classes which means that a concept appearing in multiple classes can be used
to predict all of those classes. The results of the experiments using Algorithm 2 are reported in
Section 4.

4 EVALUATION AND DISCUSSION

We report the results against the three main datasets including CIFAR-10, CIFAR-100, and CUB-
200 as mandated in earlier sections. For RQ2, we report the results achieved via BERTScore against
the three set of concepts from different source including Random, ConceptNet, and LLM-generated
concepts in Table 2. We choose the value of k as 7 for the top-k concepts. As evident from the
table, there is no significant difference between the scores for CUB-200 dataset across three set of
concepts. For CIFAR-100 dataset, we can also observe that the results are poor. This gives an idea
of fundamental lack of understanding between concepts and class labels.

In order to delve into RQ3, we asses the proposed concept-driven multimodal CLIP-based approach
over the same experimental setup. We also compare our results with Semenov et al. (2024) which is

7
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Table 3: Accuracy (%) comparison against top-7 concepts using proposed approach

Method CIFAR10 CIFAR100 CUB200

Random concepts 16.40 3.78 6.15
ConceptNet concepts 89.40 55.90 42.02
CMS (baseline) (Semenov et al., 2024) 85.03 62.95 67.17
LLM + CLIP (Ours) 98.20 64.06 34.40

similar to our proposed technique as they also propose a training-free system for concept evaluation.
Our results exhibit superior performance to their methodology across two datasets: CIFAR10 and
CIFAR100. However, our approach lags behind against theirs in CUB-200 dataset. For RQ2, we
can see that there is a huge disparity between the scores of randomly generated concepts and the
concepts we generated via LLM in the results table. This outlines the reliability of our proposed
evaluation metric. We further provide supportive evidence by plotting the similarity scores against
the samples from CIFAR-100 and CUB-200 predictions in the Appendix A.3. Moreover, our LLM-
generated concepts also outperform ConceptNet-based concepts in all three datasets showcasing the
superiority of the LLMs as opposed to a knowledge based such as ConceptNet reflecting on RQ1.

We also evaluate our proposed technique over different values of k for top-k concepts across all
datasets. The results can be seen in Figure A.2, 2 and 3 of the Appendix. We can see that the
trend of accuracy is monotonically increasing as we increase the value of k. However, the statistical
significance of results will drop drastically as we go beyond the value of 7 as we have maintained
an average number of concepts per class to be 15.

METHODOLOGY FOR IDENTIFYING TOP-CONCEPTS ACROSS CLASSES

In order to identify the most representative concepts for each class, we employ a multi-step approach
that leverages classwise similarity scores between images and concepts. The process is outlined as
follows:

1. Classwise Similarity Score Computation: For each class, we calculate the similarity
scores between the images belonging to that class and the entire set of concepts.

2. Classwise Mode Determination: Once the classwise similarity scores are obtained, we
determine the mode (most frequently occurring value) for each class in order to get the
highest level of similarity across the images within a particular class.

3. Top-k Concept Selection: Based on the classwise modes, we select the top-k concepts for
each class corresponding their mode values.

4. Concept Retrieval: Finally, we retrieve the concepts associated with the top-k mode values
for each class.

By following this methodology, we are able to effectively identify the top-concepts across classes,
providing a concise and meaningful representation of the visual content within each class. This
approach enables us to gain insights into the key concepts that are statistically most relevant and
discriminative for each class, facilitating further analysis and understanding of the underlying data.

The identification of top concepts across classes plays a crucial role in various applications, such as
image classification, retrieval, and understanding. By focusing on the most representative concepts
for each class, we can develop more efficient and accurate models that capture the essential charac-
teristics of the visual data, ultimately leading to improved performance in downstream tasks. Top
concepts against selected class labels for CIFAR-100 and CUB-200 can be found in Table 4 and 5
respectively.

5 CONCLUSION

In this research we explored the potential of large language models (LLMs) for generating concept
banks and evaluated the effectiveness of unimodal and multimodal approaches for assessing the qual-
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Algorithm 2 Identifying Top-Concepts Across Classes
Input: Set of images I , Set of concepts C, Number of top concepts K
Output: Set of top-concepts T for each class
for each class ci ∈ C do
Si ← ∅ {Initialize similarity scores for ci}
for each image Ij ∈ I belonging to class ci do

for each concept ck ∈ C do
sjk ← Similarity(Ij , ck)
Si ← Si ∪ {sjk}

end for
end for
mi ← Mode(Si) {Mode of similarity scores}

end for
M ← {m1,m2, . . . ,m|C|} {Set of classwise modes}
T ← ∅ {Initialize set of top-concepts}
for each class ci ∈ C do

Ti ← TopK(M,K, ci) {Select top-K concepts}
end for
return T

ity of generated concepts. Our investigation was guided by three research questions: (RQ1) whether
LLMs are capable of generating concept banks that are comparable to existing knowledge bases
such as ConceptNet, (RQ2) whether unimodal text-based semantic similarity is sufficient for evalu-
ating the association between concepts and class labels, and (RQ3) whether multimodal information
can effectively quantify the quality of concept generation compared to unimodal concept-label se-
mantic similarity. To address RQ1, we generated concepts using both ConceptNet as a baseline and
LLMs through prompting techniques. For RQ2, we employed the BERTScore metric to evaluate the
generated concepts based on their semantic similarity to the class labels. Moving forward, to tackle
RQ3, we proposed a novel metric based on multimodal models such as CLIP and assessed the gen-
erated concepts using this approach. Our findings demonstrate that multimodal models are indeed
necessary for accurately capturing the similarity between concepts and class labels, surpassing the
performance of unimodal methods like BERTScore as well as the baseline. Furthermore, our gener-
ated concepts for the CIFAR-10 and CIFAR-100 datasets outperformed those obtained solely from
ConceptNet, indicating the standalone ability of LLMs to generate high-quality concepts. However,
it is worth noting that our generated concepts for the CUB-200 dataset did not surpass those from
ConceptNet, highlighting the need for further investigation and improvement in this specific domain.
The implications of our research are significant for the field of concept generation and evaluation.
We have shown that LLMs possess the capability to generate concept banks that are competitive with
existing knowledge bases, opening up new possibilities for automated concept generation. More-
over, our proposed multimodal metric provides a more comprehensive and effective approach for
assessing the quality of generated concepts, taking into account both textual and visual information.

In conclusion, our research contributes to the understanding of concept generation using LLMs and
emphasizes the importance of multimodal evaluation metrics. The findings suggest that LLMs have
the potential to generate effective enough concepts, while multimodal models offer a more robust
and accurate means of assessing concept quality. Future work can build upon these insights, explor-
ing the usage of multimodal vision-text langauge models to generate better concepts for complex
datasets like CUB-200 and refining multimodal evaluation metrics to enhance their performance
across diverse datasets and domains.
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A APPENDIX

A.1 PROMPTS

Relevant Concepts Prompt

Class Label: {object}
Task: Generate a list of descriptive concepts and attributes that comprehensively charac-
terize the physical properties, appearance, and features of the given class label. Consider
wings, tail, pattern, shape, size, color, texture, material, and any other relevant physical as-
pects. Aim to create a rich set of concepts that could be used to create a detailed visual
representation or description of the class. Provide a minimum of 15 concepts per class. Do
not provide explanations, only word or two-word phrase
Create concept in the format: {class label} {is/has relationship}
attribute/characteristic
Concepts: 1. 2. 3. 4. 5. 6. 7. 8.

CUB-200 Relevant Concepts Prompt

Task: Generate a list of descriptive concepts and attributes that comprehensively characterize
the physical properties, appearance, and features of the given bird. Consider the shape,
size, color, texture, pattern of the beak, wings, tail, feet and any other relevant physical
aspects. Aim to create a rich set of concepts that could be used to create a detailed visual
representation or description of the class. Provide a comprehensive set of 15 concepts per
class. Do not provide explanations, only word or two-word phrase. Think step by step and
then write the descriptions
Create concept in the format: {class label} {is/has relationship}
attribute/characteristic
Concepts: 1. 2. 3. 4. 5. 6. 7. 8.

A.2 TOP-K HITS PLOTS FOR DIFFERENT VALUES OF K

A.3 RESULTS INTERPRETATION

We analyze the top concept scores against the misclassifications for the proposed methodology. We
pick random samples from both CIFAR-100 and CUB-200 dataset. We observe that majority of the
concepts match well with the image. The reason, hence, for the misclassification can be attributed
for the lack of presence of those concepts in the LLM-generated ground truth. Editing the ground-
truth can fix these classification mistakes.
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Figure 2: CIFAR100 - Accuracy results for different values of top-k

Figure 3: CUB200 - Accuracy results for different values of top-k

Figure 4: Top concepts for misclassified Apple
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Figure 5: Top concepts for misclassified Bear

Figure 6: Top concepts for misclassified Bus

Figure 7: Top concepts for misclassified Butterfly
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Figure 8: Top concepts for misclassified Clock

Figure 9: Top concepts for misclassified Can

Figure 10: Top concepts for misclassified Lysan Albatross
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Figure 11: Top concepts for misclassified Red-winged Blackbird

Figure 12: Top concepts for misclassified Summer Tanager
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Table 4: Top Concepts for selected classes in CIFAR-100 dataset

Class Labels ConceptNet LLM-generated
Tulip flower, flowering plant, sweet bell-shaped flower, anthers,

smelling flower, garden shallow depth, spring bloom,
pollinating flowers diverse flora

Tiger big cat, felid, wild animal, sharp claw, claws, long ears,
zoo, pack animal, mammal mammal, distinctive roar

Whale cetacean, marine animal, large dorsal fin, prominent
tail fin, sea world, ocean dorsal fin, caudal fin

Snake snake pit, cutworms, chain, annular markings, scaly tail,
long tail, tusks spiral shape, scaly texture,

cord, winding-key

Maple Tree trees, angiospermous tree, orange fall color, yellow fall
forest, group of trees tree, red oak variety,

deciduous leaves, tall trees

Chair furniture item, table, armrests, backrest, saddle
table cloth seat, seating arrangement,

adjustable height
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Table 5: Top Concepts for selected classes in CUB-200 dataset

Class Labels ConceptNet LLM-generated
Lazuli Bunting small common songbird, greenish-blue bill, vivid blue

migratory bird, corvine plumage, rufous sides, rufous
bird, passerine, coloration, orange bill,
columbiform bird, finch bright red crest

Cardinal corvine bird, columbiform bright red plumage, bright red
bird, finch, bird genus, beak, red plumage, red bill
migratory bird, piciform tip, bright red crest,
bird, small common songbird orange-red bill base

Red-faced podicipitiform seabird, black perching feet, feathered
cormorant gaviiform seabird, legs, distinctive breeding

pelecaniform seabird, plumage, black webbed feet,
shore bird, sea duck, black beak, glossy black
bird genus plumage

American Crow corvine bird, New World annular markings, scaly tail,
blackbird, columbiform spiral shape, scaly texture,
bird, thrush, piciform cord, winding-key
bird, apodiform bird

Black-billed New World flycatcher, white throat, white throat
Cuckoo columbiform bird, New patch, yellow throat, white,

World warbler, corvine rufous-edged tail, rufous
bird, migratory bird, undertail coverts, rufous
finch tinge, rufous sides

Purple Finch small common songbird, pinkish bill, pinkish bill
finch, piciform bird, base, bright red crest, red
apodiform bird, corvine bill, bright red beak
bird, bird genus,
columbiform bird
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