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Abstract

The same question can often be presented in different ways, depending on the
audience and the intent with which it is being posed. To determine whether large
language models (LLMs) demonstrate preferences for one phrasing over another
regardless of semantic content, we introduce Self-Select, a method for selection
of a preferred instruction template, and generation of high-quality synthetic data
samples. This algorithm makes use of a meta-prompt to decide on an instruction
template, given a task and candidate templates then generates n new samples using
the chosen template. We evaluate Self-Select on numerical reasoning and sentiment
classification tasks, using a variety of instruction-tuned and base models, providing
insights into their abilities and biases. We find that permuting the instruction
template ordering in the prompt leads to vastly different choice distributions,
suggesting that selections of a specific template can be attributed to inductive
biases rather than semantic understanding, even after instruction-tuning.

1 Introduction

Large Language Models (LLMs) have demonstrated their ability to both generate seemingly novel
data as well as critique generated responses ([11], [15], [25], [3]). At the same time, many models
require large amounts of human labeled training data, motivating recent exploration of methods
for synthetic data generation. That is, using model generated data to improve performance on a
downstream task, largely by fine-tuning a model on a data mixture consisting of an existing corpus
for the task and the synthetically generated data.

For a given task, instructions can be presented with several possible structures, which we call
templates, and new data may be generated using many of these possible templates ([23]). Therefore,
by framing this decision problem as one posed to the model for a particular task, we can gain valuable
insights into the ability of the instruction-tuned models to distinguish between prompt templates, and
biases which may attributed to the nature of their instruction-tuning.

In our work, we propose a new algorithm, Self-Select, for generation of synthetic data samples
corresponding to a model-selected instruction template. In the first module, SELECT, we introduce
a meta-prompt for the model to consider the set of provided templates, and choose the template
it perceives to be the best. Then, in the GENERATE module, we fit in-context exemplars to the
chosen template, and prompt the model to generate new samples that follow the same structure as the
exemplars. To ensure that the final n samples outputted are of sufficient quality, we propose verifying
them relative to a reference benchmark, which may be defined as a metric (with an admittance
threshold) or even a model-generated label of response quality, depending on the task. If the sample
is deemed to be of insufficient quality, we propose prompting the model to refine its response
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conditioned on the previous output, and the new response takes its place as a candidate. Upon the
termination of Self-Select, n samples per task of interest will be obtained, which may be used to
fine-tune the model, or be applied as exemplars for in-context learning.

We evaluate the Self-Select algorithm on two tasks – numerical reasoning (arithmetic) and sentiment
classification, and benchmark the performance of each model in zero-shot and few-shot prompted
settings, with and without model fine-tuning. Our results show that models are able to successfully
identify the template it deems to be optimal, and can generate high-quality samples corresponding to
the a hand selected prompt structure. This provides preliminary evidence of the ability for LLMs to
optimize instruction selection via meta-prompts, building on the recent findings of [24].

Algorithm 1: Self-Select Algorithm
Inputs : Large Language ModelM
T ← Set of tasks
St ← Set of candidate templates for task t
Xt ← Set of in-context exemplars for initial generation for task t
Rt ← Set of in-context exemplars for refinement for task t
µt : Response quality metric for task t with quality threshold λt

mp, gp, rp : meta-prompt, generation-prompt, refinement-prompt
n: Number of samples to generate per task

for each task t ∈ T :
τ =M(mp | t, St) ▷ Meta-prompt yields selected instruction
F ,W = {}
for each iteration i ∈ 1, 2, . . . n:

yi =M(gp | τ,Xt) ▷ Sample responses, given template
W =W ∪ {yi}

end for
while |W | ≠ {}

if max refinement iterations reached: ▷ 2nd Stopping criterion for refinement
return F

γi = µt(yi)
if γi ≥ λt: ▷ Response quality check

F = F ∪ {yi}
W =W \ {yi}

else:
y′i =M(rp | yi, Rt) ▷ Response refinement
W = W ∪ {y′i} \ {yi}

end while
return F

end for

Figure 1: The Self-Select algorithm and the assumed notation. Please see Section 2 (Algorithmic
Approach) for a more comprehensive discussion of the method.

2 Algorithmic Approach

Given a set of possible instruction templates for a task, such as those manually curated in FLAN
([21]), Self-Select firstly chooses the instruction it deems to be most appropriate for the task, given
the task description, generates new data which fit the structure of the template (with regards to the
terms to be "filled in"), and then uses a quality control criterion to re-sample responses if they are
of insufficient quality. This mechanism to determine when refinement is necessary may be defined
several ways by the user, and can be specified for the particular task.
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2.1 Instruction Template Selection

For the given task t, we wish to consider the set of potential candidate instruction templates, in order
to select the best one; this set is denoted as St. The SELECT module involves querying the model
using a meta-prompt, given the |St| template options:

τ =M(mp | t, St) (1)
We define the meta-prompt as follows, yielding a prompt index, which in turn is mapped to the
particular template within the St set:

"The following templates correspond to different problems. Choose which one best fits
the problem above. Respond with Template: <NUM>"

It is to be noted that meta-prompting using the above query may be done with either zero-shot of
few-shot settings, wherein one can provide demonstrations of a human annotator-chosen optimal
template for framing a particular problem as an instruction, perhaps subject to certain desirable
criteria. However, this is beyond the present scope of our empirical exploration, given the emphasis of
this work is on the comparison of the behaviors between base models and instruction-tuned models,
and their respective abilities to perform template selection as a means to elicit their instruction
preferences.

2.2 Synthetic Data Generation and Refinement

The GENERATE module encompasses both generation of new samples (a user-defined value of n,
per task) and refinement based on a user-defined metric, subject to a scoring threshold per sample. In
this module, we sample a new response for the refinement prompt, conditioned on both the previous
response and a small set of manually-curated examples for refinement for that particular task. For
example, for arithmetic tasks, refinement only occurs when the provided answer is incorrect, and thus
the in-context example set, Rt, consists of ⟨(xi, yi), (xi, y

′
i)⟩ pairs, where yi is an incorrect response

and y′i is correct.
y′i =M(rp | yi, Rt) (2)

3 Experimental Setup and Results

3.1 Numerical Reasoning

For numerical reasoning, we selected two-number addition with one to five digit numbers, using
the prompt in Figure 2. We experimented with the Llama-2 7B and 13B variants, with and without
chat-tuning [18], as well as MPT-7B and MPT-7B-instruct [17] and find that these smaller models
struggle to perform instruction selection, instead generating seemingly random code segments. We
believe this result to be tied to the use of curly brackets (i.e. {}) as a means to specify an argument
to be filled in its place for a given template – this choice was done to maintain the ambiguity of
the argument to be inserted, with an emphasis on the structure implied by the template. That being
said, curly brackets most often occur in programming languages (hence the term "curly-bracket
languages") such as C and C++. Thus, it is likely that models that have seen some program synthesis
data would interpret the template as code, when presented with the options in the meta-prompt, and
thus generate code in response.

We ran the template selection task 50 times per model (45 times for GPT-4 with unshuffled template
choices, due to query rate limits), with the GPT-3.5, GPT-4, and Llama-2-70B-Chat models. We also
performed this experiment with the aforementioned smaller models, but found their generations to be
highly inconsistent and noisy with code samples, rather than a proper template selection. It is worth
noting that of these three models, GPT-4 often elaborated on its logic even when unprompted to do so
– behaviors in desirable templates from GPT-4’s perspective include simplicity, straightforwardness,
being "the most general", and clarity. As a result, on occasion, GPT-4 would output multiple potential
options for its instruction of choice, based on its reasoning path to classify certain characteristics of
groups of templates; for example, "Templates 0, 2, 4, and 6 provide explanatory text followed by a
simple format for the problem."
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SELECTION:The following templates correspond to different problems.

Choose which one best fits addition. Respond with Template: <NUM>

Template 0 : Addition; Problem: {} + {} = ; Answer: {}

Template 1 : Addition;
Problem: {} + {} = {}

Template 2 : Addition; Generate a problem following this template:
{} + {} = {}

Template 3 : Generate an addition problem using the following template:
num_1 + num_2 = answer

Template 4 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are integers

Template 5 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are numbers

Template 6 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are real numbers

Choose the best template by returning its number.

Figure 2: Above is the prompt used for the numerical reasoning task, with 7 manually curated
templates for performing addition, with slight differences in how the prolem is phrased.
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Figure 3: Results on instruction template selection for the numerical reasoning task. The bars with
the striped lines correspond to the same model as the solid bar, but where the striped bars are results
with shuffled instruction options, mapped back to their original template numbering.

Prior literature demonstrates LLMs’ sensitivities to the order of choices in making decisions in
multiple choice questions ([13]), in-context examples ([26]), and response critique and evaluation
([20]). Thus, we shuffled the instruction template options; if models maintained the same option
as before this would indicate a degree of semantic understanding of the underlying templates. In
both the unshuffled (Table 1) and shuffled (Table 2) settings, we found that small models had trouble
following instructions, while the large instruction-tuned and/or chat-tuned models demonstrated a
near deterministic preference for a specific template.

We additionally generated 9,600 examples using a similar template to the ones given above, validate
the feasibility of our proposed GENERATE module. Our model was able to generate data which
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consistently tracked both the requested format and digit requirements for many of our samples, even
with the Llama-2-7B-Chat model, in line with the current state of generative models.

3.2 Sentiment Classification

We experimented on the sentiment classification task using 10 templates corresponding to the IMDB
dataset ([10]), from the FLAN ([21]) work. These include "How would you describe the sentiment of
this review?", "Generate a movie review with answer sentiment.", and "Would you say this review is
positive or negative?" (note that these are paraphrased). Similar to the numerical reasoning task, we
also consider both unshuffled and shuffled template choices, to further examine models’ consistency.

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 50% 0% 0%
Template 1 20% 2.04% 96%
Template 2 30% 30.61% 0%
Template 3 0% 67.35% 0%
Template 4 0% 0% 0%
Template 5 0% 0% 4%
Template 6 0% 6% 0%
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%
Total 100% 100% 100%

Table 1: Results on instruction template selection for the sentiment classification task, with unshuffled
options, with 50 samples (49 for GPT-4, as indecisive responses were omitted).

GPT-4 similarly attempts to provide a line of reasoning for its choices: its criterion includes looking for
the most direct, unambiguous, clear, and neutral template. The inclusion of "neutral" is particularly
noteworthy, as it suggests GPT-4’s inherent understanding of the requirements of the sentiment
analysis task, and the objective to be unbiased in a certain direction with the instruction itself. We
find that both GPT-3.5 and GPT-4 have a higher degree of variability for this task as compared to the
numerical reasoning task, across 3 options.

Once again, we find that shuffling the instruction options results in a vastly different "preference"
distribution, with only GPT-4 maintaining its primary choice from the unshuffled setting. Furthermore,
we find that the smaller 7B and 13B models still struggle to produce outputs in the desired format
(i.e. a template number) and hallucinate information, rendering them unable to consistently perform
instruction selection (albeit, Llama-2-13B-Chat can still generate valid template numbers on rare
occasion).

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 0% 6% 0%
Template 1 0% 2% 0%
Template 2 0% 0% 0%
Template 3 94% 92% 42%
Template 4 0% 0% 0%
Template 5 0% 0% 0%
Template 6 6% 0% 58%
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%
Total 100% 100% 100%

Table 2: Results on instruction template selection for the sentiment classification task, with shuffled
options, mapped back to their original unshuffled numbering.
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4 Related Work

Several prior works demonstrate the effectiveness of instruction tuning as a promising framework
for yielding greater generalization to a wide variety of tasks ([21], [14], [12], [8], [2]). Recently,
there has been growing interest in minimizing the amount of instruction-following data necessary to
still obtain strong instruction-tuned models ([16], [5], [1]). On a similar lens, it has been shown that
small but well-curated datasets can lead to strong alignment to human preferences ([27]). However,
open questions remain on what level of semantic understanding, rather than simply superficial
pattern following can be learned by instruction tuning [7]. Some models tuned via instruction tuning
exhibit good performance in tasks in the specific corpus, but fail to meaningfully improve on robust
benchmarks due to a lack of data [4]. Our work aims to continue the exploration into effective
generation of high-quality synthetic instruction-following data, such that even a relatively small
number of samples, which when distilled, can yield strong instruction-tuned models.

Chain-of-Thought (CoT) prompting was introduced in [22], which induces the model to generate
step-by-step rationales, which provided insights into their ability to perform more complex, multi-step
reasoning tasks. [6] found evidence of the effectiveness of zero-shot chain-of-thought prompting
through "Let’s think step by step"; the Optimization by Prompting (OPRO) algorithm introduced in
[24], when applied to prompt optimization, shows that for the PaLM-2 model, "Take a deep breath
and work on this problem step-by-step" is the most effective prompt for the GSM8K dataset. [9] uses
symbolic reasoning chains as a means to induce faithful explanations, which motivates our future line
of exploration into the reasons LLMs provide to attribute their instruction selection decisions.

5 Discussion

The distribution shifts present in these data as a result of shuffling the order raises questions about the
causal factors behind LLM preferences for template selection and beyond. Self-introspection and
critique as in Self-Refine [11] may clarify whether models exhibit semantic understanding, versus
simple pattern matching via inductive biases, perhaps related to multiple choice problem in either the
pre-training or instruction-tuning corpus, resulting in biased preferences. This may also shed new
insights on the trustworthiness of knowledge distillation from larger instruction-tuned models. We
would like to further explore the notion of refinement with different models given synthetic samples
and deterministic quality metrics.

Further study into instruction selection from a semantic understanding perspective can dive into
the role of self-attention; perhaps mechanistic interpretability could prove to be a valuable lens,
in parallel to ties to cognitive neuroscience literature ([19]). Prior behavioral studies suggest that
humans who excel in multiple-choice test scenarios, which are inherently similar to the instruction
selection problem, appear to shift their attention to more relevant examples over time, and given the
impact of the change in ordering on LLMs’ performance, this shift does not appear to be replicated.

6 Conclusion

In this work, we present Self-Select, a procedure for large language models to select their preferred
instruction template, and generate high-quality synthetic data, which may be used for self-training,
knowledge distillation, or in-context learning. We find that large language models, even strong
instruction-tuned models, are unable to consistently reason semantically about the structure and
contents of their instructions especially in a permutation-invariant manner. Shuffling the order of
templates led to substantial changes in the distribution of chosen templates for numerical reasoning.
Before shuffling, each model had a strong preference for a different template, while after shuffling,
they now expressed a preference for the same instruction. The distribution also shifted substantially
upon shuffling for the sentiment classification task. In both tasks, at least one model demonstrated
a near-deterministic preference among the template options. We thus conclude that in order for
LLMs to exhibit semantic understanding they must be exposed to the same data in several orderings,
motivating data augmentation strategies using permutations. By demonstrating the order dependence
on the instruction selection outcomes, we hope for this work to spark further discussions on the biases
and implications of knowledge distillation from instruction-tuned models on robustness.
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