Self-Select: Optimizing Instruction Selection for
Large Language Models

Alexander Kyimpopkin' Keshav Ramji'
University of Pennsylvania University of Pennsylvania
alxkp@upenn.edu keshavr@upenn.edu

 denotes equal contributions.

Abstract

The same question can often be presented in different ways, depending on the
audience and the intent with which it is being posed. To determine whether large
language models (LLMs) demonstrate preferences for one phrasing over another
regardless of semantic content, we introduce Self-Select, a method for selection
of a preferred instruction template, and generation of high-quality synthetic data
samples. This algorithm makes use of a meta-prompt to decide on an instruction
template, given a task and candidate templates then generates n new samples using
the chosen template. We evaluate Self-Select on numerical reasoning and sentiment
classification tasks, using a variety of instruction-tuned and base models, providing
insights into their abilities and biases. We find that permuting the instruction
template ordering in the prompt leads to vastly different choice distributions,
suggesting that selections of a specific template can be attributed to inductive
biases rather than semantic understanding, even after instruction-tuning.

1 Introduction

Large Language Models (LLMs) have demonstrated their ability to both generate seemingly novel
data as well as critique generated responses ([[L1]], [L5], [25], [3]). At the same time, many models
require large amounts of human labeled training data, motivating recent exploration of methods
for synthetic data generation. That is, using model generated data to improve performance on a
downstream task, largely by fine-tuning a model on a data mixture consisting of an existing corpus
for the task and the synthetically generated data.

For a given task, instructions can be presented with several possible structures, which we call
templates, and new data may be generated using many of these possible templates ([23]). Therefore,
by framing this decision problem as one posed to the model for a particular task, we can gain valuable
insights into the ability of the instruction-tuned models to distinguish between prompt templates, and
biases which may attributed to the nature of their instruction-tuning.

In our work, we propose a new algorithm, Self-Select, for generation of synthetic data samples
corresponding to a model-selected instruction template. In the first module, SELECT, we introduce
a meta-prompt for the model to consider the set of provided templates, and choose the template
it perceives to be the best. Then, in the GENERATE module, we fit in-context exemplars to the
chosen template, and prompt the model to generate new samples that follow the same structure as the
exemplars. To ensure that the final n samples outputted are of sufficient quality, we propose verifying
them relative to a reference benchmark, which may be defined as a metric (with an admittance
threshold) or even a model-generated label of response quality, depending on the task. If the sample
is deemed to be of insufficient quality, we propose prompting the model to refine its response

ATTRIB: Workshop on Attributing Model Behavior at Scale at NeurIPS 2023.

conditioned on the previous output, and the new response takes its place as a candidate. Upon the
termination of Self-Select, n samples per task of interest will be obtained, which may be used to
fine-tune the model, or be applied as exemplars for in-context learning.

We evaluate the Self-Select algorithm on two tasks — numerical reasoning (arithmetic) and sentiment
classification, and benchmark the performance of each model in zero-shot and few-shot prompted
settings, with and without model fine-tuning. Our results show that models are able to successfully
identify the template it deems to be optimal, and can generate high-quality samples corresponding to
the a hand selected prompt structure. This provides preliminary evidence of the ability for LLMs to
optimize instruction selection via meta-prompts, building on the recent findings of [24].

Algorithm 1: Self-Select Algorithm

Inputs : Large Language Model M
T < Set of tasks
S; «+ Set of candidate templates for task t
X, < Set of in-context exemplars for initial generation for task t
R; < Set of in-context exemplars for refinement for task t
1t : Response quality metric for task t with quality threshold Ay
mp, gp, Tp : meta-prompt, generation-prompt, refinement-prompt
n: Number of samples to generate per task

for each task t € T:

T=M(mp|t,S) > Meta-prompt yields selected instruction
FwW={}
for each iterationi € 1,2,...n:
yi = M(gp | 7, &) > Sample responses, given template
W =W U {y;}
end for
while |WW| # {}
if max refinement iterations reached: > 2™ Stopping criterion for refinement
return F
vi = pe(Yi)
if v; > A\ > Response quality check
F=FU{y}
W =W {y:}
else:
yi = M(rp | yi, Rt) > Response refinement
W =W Uy} \{v:}
end while
return F
end for

Figure 1: The Self-Select algorithm and the assumed notation. Please see Section 2 (Algorithmic
Approach) for a more comprehensive discussion of the method.

2 Algorithmic Approach

Given a set of possible instruction templates for a task, such as those manually curated in FLAN
([211]), Self-Select firstly chooses the instruction it deems to be most appropriate for the task, given
the task description, generates new data which fit the structure of the template (with regards to the
terms to be "filled in"), and then uses a quality control criterion to re-sample responses if they are
of insufficient quality. This mechanism to determine when refinement is necessary may be defined
several ways by the user, and can be specified for the particular task.

2.1 Instruction Template Selection

For the given task ¢, we wish to consider the set of potential candidate instruction templates, in order
to select the best one; this set is denoted as S;. The SELECT module involves querying the model
using a meta-prompt, given the |S; | template options:

T=M(mp|t,S) (D

We define the meta-prompt as follows, yielding a prompt index, which in turn is mapped to the
particular template within the S; set:

"The following templates correspond to different problems. Choose which one best fits
the problem above. Respond with Template: <NUM>"

It is to be noted that meta-prompting using the above query may be done with either zero-shot of
few-shot settings, wherein one can provide demonstrations of a human annotator-chosen optimal
template for framing a particular problem as an instruction, perhaps subject to certain desirable
criteria. However, this is beyond the present scope of our empirical exploration, given the emphasis of
this work is on the comparison of the behaviors between base models and instruction-tuned models,
and their respective abilities to perform template selection as a means to elicit their instruction
preferences.

2.2 Synthetic Data Generation and Refinement

The GENERATE module encompasses both generation of new samples (a user-defined value of n,
per task) and refinement based on a user-defined metric, subject to a scoring threshold per sample. In
this module, we sample a new response for the refinement prompt, conditioned on both the previous
response and a small set of manually-curated examples for refinement for that particular task. For
example, for arithmetic tasks, refinement only occurs when the provided answer is incorrect, and thus
the in-context example set, Ry, consists of ((x;,y;), (x4, y;)) pairs, where y; is an incorrect response
and y, is correct.

y; = M(rp | yi, Ry) 2)

3 Experimental Setup and Results

3.1 Numerical Reasoning

For numerical reasoning, we selected two-number addition with one to five digit numbers, using
the prompt in Figure 2. We experimented with the Llama-2 7B and 13B variants, with and without
chat-tuning [18]], as well as MPT-7B and MPT-7B-instruct [[17] and find that these smaller models
struggle to perform instruction selection, instead generating seemingly random code segments. We
believe this result to be tied to the use of curly brackets (i.e. {}) as a means to specify an argument
to be filled in its place for a given template — this choice was done to maintain the ambiguity of
the argument to be inserted, with an emphasis on the structure implied by the template. That being
said, curly brackets most often occur in programming languages (hence the term "curly-bracket
languages") such as C and C++. Thus, it is likely that models that have seen some program synthesis
data would interpret the template as code, when presented with the options in the meta-prompt, and
thus generate code in response.

We ran the template selection task 50 times per model (45 times for GPT-4 with unshuffled template
choices, due to query rate limits), with the GPT-3.5, GPT-4, and Llama-2-70B-Chat models. We also
performed this experiment with the aforementioned smaller models, but found their generations to be
highly inconsistent and noisy with code samples, rather than a proper template selection. It is worth
noting that of these three models, GPT-4 often elaborated on its logic even when unprompted to do so
— behaviors in desirable templates from GPT-4’s perspective include simplicity, straightforwardness,
being "the most general”, and clarity. As a result, on occasion, GPT-4 would output multiple potential
options for its instruction of choice, based on its reasoning path to classify certain characteristics of
groups of templates; for example, "Templates 0, 2, 4, and 6 provide explanatory text followed by a
simple format for the problem."

SELECTION:The following templates correspond to different problems.
Choose which one best fits addition. Respond with Template: <NUM>
Template O : Addition; Problem: {} + {} = ; Answer: {}

Template 1 : Addition;
Problem: {} + {} = {}

Template 2 : Addition; Generate a problem following this template:
O+40=4

Template 3 : Generate an addition problem using the following template:
num_1 + num_2 = answer

Template 4 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are integers

Template 5 : Generate an addition problem using the following template:
num_1 + num_2 = answer
where num_1, num_2, and answer are numbers

Template 6 : Generate an addition problem using the following template:
num_1 + num_2 = answer

where num_1, num_2, and answer are real numbers

Choose the best template by returning its number.

\. J

Figure 2: Above is the prompt used for the numerical reasoning task, with 7 manually curated
templates for performing addition, with slight differences in how the prolem is phrased.

100 [A B

80 [n

60 [n

% Choice

40 n

N|

T T T T T T T T
0 1 2 3 4 5 6
Template Number

I Llama-2-70B-Chat 0B GPT-35 [0 GPT4
i Llama-2-70B Chat (Sh.) UOGPT-3.5 (Sh.) U0 GPT-4 (Sh.)

Figure 3: Results on instruction template selection for the numerical reasoning task. The bars with
the striped lines correspond to the same model as the solid bar, but where the striped bars are results
with shuffled instruction options, mapped back to their original template numbering.

Prior literature demonstrates LLMs’ sensitivities to the order of choices in making decisions in
multiple choice questions ([[13]]), in-context examples ([26]), and response critique and evaluation
([20]). Thus, we shuffled the instruction template options; if models maintained the same option
as before this would indicate a degree of semantic understanding of the underlying templates. In
both the unshuffled (Table 1) and shuffled (Table 2) settings, we found that small models had trouble
following instructions, while the large instruction-tuned and/or chat-tuned models demonstrated a
near deterministic preference for a specific template.

We additionally generated 9,600 examples using a similar template to the ones given above, validate
the feasibility of our proposed GENERATE module. Our model was able to generate data which

consistently tracked both the requested format and digit requirements for many of our samples, even
with the Llama-2-7B-Chat model, in line with the current state of generative models.

3.2 Sentiment Classification

We experimented on the sentiment classification task using 10 templates corresponding to the IMDB
dataset ([10]]), from the FLAN ([21]]) work. These include "How would you describe the sentiment of
this review?", "Generate a movie review with answer sentiment.", and "Would you say this review is
positive or negative?" (note that these are paraphrased). Similar to the numerical reasoning task, we
also consider both unshuffled and shuffled template choices, to further examine models’ consistency.

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 50% 0% 0%
Template 1 20% 2.04% 96 %
Template 2 30% 30.61% 0%
Template 3 0% 67.35% 0%
Template 4 0% 0% 0%
Template 5 0% 0% 4%
Template 6 0% 6% 0%
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%
Total 100% 100% 100%

Table 1: Results on instruction template selection for the sentiment classification task, with unshuffled
options, with 50 samples (49 for GPT-4, as indecisive responses were omitted).

GPT-4 similarly attempts to provide a line of reasoning for its choices: its criterion includes looking for
the most direct, unambiguous, clear, and neutral template. The inclusion of "neutral" is particularly
noteworthy, as it suggests GPT-4’s inherent understanding of the requirements of the sentiment
analysis task, and the objective to be unbiased in a certain direction with the instruction itself. We
find that both GPT-3.5 and GPT-4 have a higher degree of variability for this task as compared to the
numerical reasoning task, across 3 options.

Once again, we find that shuffling the instruction options results in a vastly different "preference”
distribution, with only GPT-4 maintaining its primary choice from the unshuffled setting. Furthermore,
we find that the smaller 7B and 13B models still struggle to produce outputs in the desired format
(i.e. a template number) and hallucinate information, rendering them unable to consistently perform
instruction selection (albeit, Llama-2-13B-Chat can still generate valid template numbers on rare
occasion).

Template (Unshuffled) GPT-3.5 GPT-4 Llama-2-70B-Chat

Template 0 0% 6% 0%
Template 1 0% 2% 0%
Template 2 0% 0% 0%
Template 3 94 % 92 % 42%
Template 4 0% 0% 0%
Template 5 0% 0% 0%
Template 6 6% 0% 58 %
Template 7 0% 0% 0%
Template 8 0% 0% 0%
Template 9 0% 0% 0%
Total 100% 100% 100%

Table 2: Results on instruction template selection for the sentiment classification task, with shuffled
options, mapped back to their original unshuffled numbering.

5

4 Related Work

Several prior works demonstrate the effectiveness of instruction tuning as a promising framework
for yielding greater generalization to a wide variety of tasks ([211], [14], [12]], [8], [2]). Recently,
there has been growing interest in minimizing the amount of instruction-following data necessary to
still obtain strong instruction-tuned models ([L6], [S], [1]). On a similar lens, it has been shown that
small but well-curated datasets can lead to strong alignment to human preferences ([27]]). However,
open questions remain on what level of semantic understanding, rather than simply superficial
pattern following can be learned by instruction tuning [7]. Some models tuned via instruction tuning
exhibit good performance in tasks in the specific corpus, but fail to meaningfully improve on robust
benchmarks due to a lack of data [4]. Our work aims to continue the exploration into effective
generation of high-quality synthetic instruction-following data, such that even a relatively small
number of samples, which when distilled, can yield strong instruction-tuned models.

Chain-of-Thought (CoT) prompting was introduced in [22], which induces the model to generate
step-by-step rationales, which provided insights into their ability to perform more complex, multi-step
reasoning tasks. [6] found evidence of the effectiveness of zero-shot chain-of-thought prompting
through "Let’s think step by step"; the Optimization by Prompting (OPRO) algorithm introduced in
[24], when applied to prompt optimization, shows that for the PALM-2 model, "Take a deep breath
and work on this problem step-by-step" is the most effective prompt for the GSM8K dataset. [9] uses
symbolic reasoning chains as a means to induce faithful explanations, which motivates our future line
of exploration into the reasons LLMs provide to attribute their instruction selection decisions.

5 Discussion

The distribution shifts present in these data as a result of shuffling the order raises questions about the
causal factors behind LLM preferences for template selection and beyond. Self-introspection and
critique as in Self-Refine [11] may clarify whether models exhibit semantic understanding, versus
simple pattern matching via inductive biases, perhaps related to multiple choice problem in either the
pre-training or instruction-tuning corpus, resulting in biased preferences. This may also shed new
insights on the trustworthiness of knowledge distillation from larger instruction-tuned models. We
would like to further explore the notion of refinement with different models given synthetic samples
and deterministic quality metrics.

Further study into instruction selection from a semantic understanding perspective can dive into
the role of self-attention; perhaps mechanistic interpretability could prove to be a valuable lens,
in parallel to ties to cognitive neuroscience literature ([[19]). Prior behavioral studies suggest that
humans who excel in multiple-choice test scenarios, which are inherently similar to the instruction
selection problem, appear to shift their attention to more relevant examples over time, and given the
impact of the change in ordering on LLMs’ performance, this shift does not appear to be replicated.

6 Conclusion

In this work, we present Self-Select, a procedure for large language models to select their preferred
instruction template, and generate high-quality synthetic data, which may be used for self-training,
knowledge distillation, or in-context learning. We find that large language models, even strong
instruction-tuned models, are unable to consistently reason semantically about the structure and
contents of their instructions especially in a permutation-invariant manner. Shuffling the order of
templates led to substantial changes in the distribution of chosen templates for numerical reasoning.
Before shuffling, each model had a strong preference for a different template, while after shuffling,
they now expressed a preference for the same instruction. The distribution also shifted substantially
upon shuffling for the sentiment classification task. In both tasks, at least one model demonstrated
a near-deterministic preference among the template options. We thus conclude that in order for
LLM:s to exhibit semantic understanding they must be exposed to the same data in several orderings,
motivating data augmentation strategies using permutations. By demonstrating the order dependence
on the instruction selection outcomes, we hope for this work to spark further discussions on the biases
and implications of knowledge distillation from instruction-tuned models on robustness.

Acknowledgements

The authors would like to thank Bronco Al for computational resources. We thank the anonymous
reviewers for their feedback and suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Yihan Cao, Yanbin Kang, and Lichao Sun. Instruction mining: High-quality instruction data
selection for large language models, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing, 2023.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms, 2023.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2022.

Po-Nien Kung and Nanyun Peng. Do models really learn to follow instructions? an empirical
study of instruction tuning, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data
and methods for effective instruction tuning, 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages
142-150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of
options in multiple-choice questions, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan
Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,

Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,
Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush.
Multitask prompted training enables zero-shot task generalization, 2021.

[15] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, 2022.

[16] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[17] MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially
usable 1lms, 2023. Accessed: 2023-03-28.

[18] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[19] Meng-Jung Tsai, Huei-Tse Hou, Meng-Lung Lai, Wan-Yi Liu, and Fang-Ying Yang. Visual
attention for solving multiple-choice science problem: An eye-tracking analysis. Computers
Education, 58(1):375-385, 2012.

[20] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu,
Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators, 2023.

[21] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2021.

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2022.

[23] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions,
2023.

[24] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2023.

[25] Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, and Minjoon
Seo. Selfee: Iterative self-revising llm empowered by self-feedback generation. Blog post, May
2023.

[26] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 12697-12706. PMLR, 18-24 Jul 2021.

[27] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer
Levy. Lima: Less is more for alignment, 2023.

https://github.com/tatsu-lab/stanford_alpaca

	Introduction
	Algorithmic Approach
	Instruction Template Selection
	Synthetic Data Generation and Refinement

	Experimental Setup and Results
	Numerical Reasoning
	Sentiment Classification

	Related Work
	Discussion
	Conclusion

