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ABSTRACT

Offline reinforcement learning, which seeks to utilize offline/historical data to
optimize sequential decision-making strategies, has gained surging prominence
in recent studies. Due to the advantage that appropriate function approximators
can help mitigate the sample complexity burden in modern reinforcement learning
problems, existing endeavors usually enforce powerful function representation
models (e.g. neural networks) to learn the optimal policies. However, a precise
understanding of the statistical limits with function representations, remains elusive,
even when such a representation is linear.
Towards this goal, we study the statistical limits of offline reinforcement learning
with linear model representations. To derive the tight offline learning bound, we
design the variance-aware pessimistic value iteration (VAPVI), which adopts the
conditional variance information of the value function for time-inhomogeneous
episodic linear Markov decision processes (MDPs). VAPVI leverages estimated
variances of the value functions to reweight the Bellman residuals in the least-
square pessimistic value iteration and provides improved offline learning bounds
over the best-known existing results (whereas the Bellman residuals are equally
weighted by design). More importantly, our learning bounds are expressed in terms
of system quantities, which provide natural instance-dependent characterizations
that previous results are short of. We hope our results draw a clearer picture of
what offline learning should look like when linear representations are provided.

1 INTRODUCTION

Offline reinforcement learning (offline RL or batch RL Lange et al. (2012); Levine et al. (2020))
is the framework for learning a reward-maximizing policy in an unknown environment (Markov
Decision Process or MDP)1 using the logged data coming from some behavior policy µ. Function
approximations, on the other hand, are well-known for generalization in the standard supervised
learning. Offline RL with function representation/approximation, as a result, provides generalization
across large state-action spaces for the challenging sequential decision-making problems when no
iteration is allowed (as opposed to online learning). This paradigm is crucial to the success of modern
RL problems as many deep RL algorithms find their prototypes in the literature of offline RL. For
example, Xie and Jiang (2020) provides a view that Fitted Q-Iteration (Gordon, 1999; Ernst et al.,
2005) can be considered as the theoretical prototype of the deep Q-networks algorithm (DQN) Mnih
et al. (2015) with neural networks being the function representors. On the empirical side, there are
a huge body of deep RL-based algorithms (Mnih et al., 2015; Silver et al., 2017; Fujimoto et al.,
2019; Kumar et al., 2019; Wu et al., 2019; Kidambi et al., 2020; Yu et al., 2020; Kumar et al., 2020;
Janner et al., 2021; Chen et al., 2021a; Kostrikov et al., 2022) that utilize function approximations to
achieve respective successes in the offline regime. However, it is also realized that practical function
approximation schemes can be quite sample inefficient (e.g. millions of samples are needed for deep
Q-network to solve certain Atari games Mnih et al. (2015)).

1The environment could have other forms as well, e.g. partially-observed MDP (POMDP) or non-markovian
decision process (NMDP).
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To understand this phenomenon, there are numerous studies consider how to achieve sample efficiency
with function approximation from the theoretical side, as researchers find sample efficient algorithms
are possible with particular model representations, in either online RL (e.g. Yang and Wang (2019;
2020); Modi et al. (2020); Jin et al. (2020); Ayoub et al. (2020); Jiang et al. (2017); Du et al. (2019);
Sun et al. (2019); Zanette et al. (2020); Zhou et al. (2021a); Jin et al. (2021a); Du et al. (2021)) or
offline RL (e.g. Munos (2003); Chen and Jiang (2019); Xie and Jiang (2020); Jin et al. (2021b); Xie
et al. (2021a); Min et al. (2021); Duan et al. (2021); Nguyen-Tang et al. (2021); Zanette et al. (2021)).

Among them, the linear MDP model (Yang and Wang, 2020; Jin et al., 2020), where the transition is
represented as a linear combinations of the given d-dimensional feature, is (arguably) the most studied
setting in function approximation and there are plenty of extensions based upon it (e.g. generalized
linear model (Wang et al., 2021b), reward-free RL (Wang et al., 2020), gap-dependent analysis (He
et al., 2021) or generative adversarial learning (Liu et al., 2021)). Given its prosperity, however, there
are still unknowns for understanding function representations in RL, especially in the offline case.

• While there are surging researches in showing provable sample efficiency (polynomial
sample complexity is possible) under a variety of function approximation schemes, how
to improve the sample efficiency for a given class of function representations remains
understudied. For instance, given a neural network approximation class, an algorithm that
learns the optimal policy with complexity O(H10) is far worse than the one that can learn
in O(H3) sample complexity, despite that both algorithms are considered sample efficient.
Therefore, how to achieve the optimal/tight sample complexity when function approximation
is provided is a valuable question to consider. On the other hand, it is known that tight
sample complexity, due to the limit of the existing statistical analysis tools, can be very
tough to establish when function representation has a very complicated form. However, does
this mean tight analysis is not hopeful even when the representation is linear?

• Second, in the existing analysis of offline RL (with function approximation or simply the
tabular MDPs), the learning bounds depend either explicitly on the data-coverage quantities
(e.g. uniform concentrability coefficients Chen and Jiang (2019); Xie and Jiang (2020),
uniform visitation measure Yin et al. (2021); Yin and Wang (2021a) and single concen-
trability Rashidinejad et al. (2021); Xie et al. (2021b)) or the horizon length H (Jin et al.,
2021b; Uehara and Sun, 2021). While those results are valuable as they do not depend on
the structure of the particular problem (therefore, remain valid even for pathological MDPs),
in practice, the empirical performances of offline reinforcement learning are often far better
than those non-adaptive bounds would indicate. Can the learning bounds reflect the nature
of individual MDP instances when the MDP model has a certain function representation?

In this work, we think about offline RL from the above two aspects. In particular, we consider the
fundamental linear model representations and ask the following question of interest:

Can we achieve the statistical limits for offline RL when models have linear representations?

1.1 RELATED WORKS

Offline RL with general function representations. The finite sample analysis of offline RL with
function approximation is initially conducted by Fitted Q-Iteration (FQI) type algorithms and can
be dated back to (Munos, 2003; Szepesvári and Munos, 2005; Antos et al., 2008a;b). Later, Chen
and Jiang (2019); Le et al. (2019); Xie and Jiang (2020) follow this line of research and derive the
improved learning results. However, owing to the aim for tackling general function approximation,
those learning bounds are expressed in terms of the stringent concentrability coefficients (therefore,
are less adaptive to individual instances) and are usually only information-theoretical, due to the
computational intractability of the optimization procedure over the general function classes. Other
works impose weaker assumptions (e.g. partial coverage (Liu et al., 2020; Kidambi et al., 2020;
Uehara and Sun, 2021)), and their finite sample analysis are generally suboptimal in terms of H or
the effective horizon (1− γ)−1.

Offline RL with tabular models. For tabular MDPs, tight learning bounds can be achieved under
several data-coverage assumptions. For the class of problems with uniform data-visitation measure
dm, the near-optimal sample complexity bound has the rate O(H3/dmε

2) for time-inhomogeneous
MDPs (Yin et al., 2021) and O(H2/dmε) for time-homogeneous MDPs (Yin and Wang, 2021a; Ren
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et al., 2021). Under the single concentrability assumption, the tight rate O(H3SC?/ε2) is obtained
by Xie et al. (2021b). In particular, the recent study Yin and Wang (2021b) introduces the intrinsic
offline learning bound that is not only instance-dependent but also subsumes previous optimal results.

Offline RL with linear model representations. Recently, there is more focus on studying the
provable efficient offline RL under the linear model representations. Jin et al. (2021b) first shows
offline RL with linear MDP is provably efficient by the pessimistic value iteration. Their analysis
deviates from their lower bound by a factor of d ·H (check their Theorem 4.4 and 4.6). Later, Xie
et al. (2021a) considers function approximation under the Bellman-consistent assumptions, and,
when realized to linear MDP setting, improves the sample complexity guarantee of Jin et al. (2021b)
by an order O(d) (Theorem 3.2).2 However, their improvement only holds for finite action space
(due to the dependence log |A|) and by the direct reduction (from Theorem 3.1) their result does not
imply a computationally tractable algorithm with the same guarantee. Concurrently, Zanette et al.
(2021) considers the Linear Bellman Complete model and designs the actor-critic style algorithm
that achieves tight result under the assumption that the value function is bounded by 1. While their
algorithm is efficient (which is based on solving a sequence of second-order cone programs), the
resulting learning bound requires the action space to be finite due to the mirror descent updates in
the Actor procedure (Agarwal et al., 2021). Besides, assuming the value function to be less than 1
simplifies the challenges in dealing with horizon H since when rescaling their result to [0, H], there
is a H factor blow-up, which makes no horizon improvement comparing to Jin et al. (2021b). As a
result, none of the existing algorithms can achieve the statistical limit for the well-structured linear
MDP model with the general (infinite or continuous) state-action spaces. On the other hand, Wang
et al. (2021a); Zanette (2021) study the statistical hardness of offline RL with linear representations
by proving the exponential lower bounds. Recently, Foster et al. (2021) shows realizability and
concentrability are not sufficient for offline learning when state space is arbitrary large.

Variance-aware studies. Talebi and Maillard (2018) first incorporates the variance structure in online
tabular MDPs and Zanette and Brunskill (2019) tightens the result. For linear mixture MDPs, Zhou
et al. (2021a) first uses variance structure to achieve near-optimal result and the Weighted OFUL
incorporates the variance structure explicitly in the regret bound. Recently, Variance-awareness is
also considered in Zhang et al. (2021) for horizon-free setting and for OPE problem (Min et al., 2021).
In particular, We point out that Min et al. (2021) is the first work that uses variance reweighting
for policy evaluation in offline RL, which inspires our study for policy optimization problem. The
guarantee of Min et al. (2021) strictly improves over Duan et al. (2020) for OPE problem.

1.2 OUR CONTRIBUTION

In this work, we study offline RL for time-inhomogeneous episodic linear Markov decision processes.
Linear MDPs serve as one critical step towards understanding function approximation in RL since: 1.
unlike general function representation, linear MDP representation has the well-structured form by
the given feature representors, which makes delicate statistical analysis hopeful; 2. unlike tabular
representation, which only works for finite models, linear MDP provides generalization as it adapts to
infinite or continuous state-action spaces. Especially, we design the variance-aware pessimistic value
iteration (VAPVI, Algorithm 1) which incorporates the conditional variance information of the value
function and, by the variance structure, Theorem 3.2 is able to improve over the aforementioned state-
of-the-art guarantees. In addition, we further improve the state-action guarantee by designing an even
tighter bonus (4). VAPVI-Improved (Theorem 3.3) is near-minimax optimal as indicated by our lower
bound (Theorem 3.5). Importantly, the resulting learning bounds from VAPVI/VAPVI-Improved
are able to characterize the adaptive nature of individual instances and yield different convergence
rates for different problems. Algorithmically, our algorithm builds upon the nice Min et al. (2021)
with pessimism as we use the estimated variances to reweight the Bellman residual learning objective
so that the (training) samples with high uncertainty get less attention (Section 3). This is the key to
obtaining instance-adaptive guarantees.

2 PRELIMINARIES

2This comparison is based on translating their infinite horizon discounted setting to the finite-horizon case.
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2.1 PROBLEM SETTINGS

Episodic time-inhomogeneous linear Markov decision process. A finite-horizon Markov Decision
Process (MDP) is denoted as M = (S,A, P, r,H, d1) (Sutton and Barto, 2018), where S is the
arbitrary state space and A is the arbitrary action space which can be infinite or even continuous.
A time-inhomogeneous transition kernel Ph : S ×A 7→ ∆S (∆S represents a probability simplex)
maps each state action(sh, ah) to a probability distribution Ph(·|sh, ah) and Ph can be different
across time. In addition, r : S × A 7→ R is the mean reward function satisfying 0 ≤ r ≤ 1. d1

is the initial state distribution. H is the horizon. A policy π = (π1, . . . , πH) assigns each state
sh ∈ S a probability distribution over actions according to the map sh 7→ πh(·|sh) ∀h ∈ [H] and
induces a random trajectory s1, a1, r1, . . . , sH , aH , rH , sH+1 with s1 ∼ d1, ah ∼ π(·|sh), sh+1 ∼
Ph(·|sh, ah),∀h ∈ [H]. In particular, we adopts the linear MDP protocol from Jin et al. (2020;
2021b), meaning that the transition kernel and the mean reward function admit linear structures in the
feature map.
Definition 2.1 (Linear MDPs). 3 An episodic MDP (S,A, H, P, r) is called a linear MDP with
a known (unsigned) feature map φ : S × A → Rd if there exist d unknown (unsigned) measures
νh = (ν

(1)
h , . . . , ν

(d)
h ) over S and an unknown vector θh ∈ Rd such that

Ph (s′ | s, a) = 〈φ(s, a), νh (s′)〉 , rh (s, a) = 〈φ(x, a), θh〉 , ∀s′, s ∈ S, a ∈ A, h ∈ [H].

where ‖νh(S)‖2 ≤
√
d and max(‖φ(s, a)‖2 , ‖θh‖2) ≤ 1 for all h ∈ [H] and ∀s, a ∈ S × A.

‖µh(S)‖ =
∫
S ‖µh(s)‖ ds.

V -values and Q-values. For any policy π, the V -value functions V πh (·) ∈ RS and Q-value functions
Qπh(·, ·) ∈ RS×A are defined as: V πh (s) = Eπ[

∑H
t=h rt|sh = s], Qπh(s, a) = Eπ[

∑H
t=h rt|sh, ah =

s, a], ∀s, a, h ∈ S,A, [H]. The performance measure is defined as vπ := Ed1 [V π1 ] = Eπ,d1
[∑H

t=1 rt
]
.

The Bellman (optimality) equations follow ∀h ∈ [H]: Qπh = rh + PhV
π
h+1, V πh = Ea∼πh [Qπh], Q?h =

rh + PhV
?
h+1, V

?
h = maxaQ

?
h(·, a) (where Qh, Vh, Ph are vectors). By Definition 2.1, the Q-values

also admit linear structures, i.e. Qπh = 〈φ,wπh〉 for some wπh ∈ Rd (Lemma H.9). Lastly, for a policy
π, we denote the induced occupancy measure over the state-action space at any time h ∈ [H] to be:
for any E ⊆ S ×A, dπh(E) := E[(sh, ah) ∈ E|s1 ∼ d1, ai ∼ π(·|si), si ∼ Pi−1(·|si−1, ai−1), 1 ≤
i ≤ h] and Eπ,h[f(s, a)] :=

∫
S×A f(s, a)dπh(s, a)dsda. Here for notation simplicity we abuse dπh(·)

to denote either probability measure or density function.

Offline learning setting. Offline RL requires the agent to learn the policy π that maximizes vπ,
provided with the historical dataD = {(sτh, aτh, rτh, sτh+1)}h∈[H]

τ∈[K] rolled out from some behavior policy µ.
The offline nature requires we cannot change µ and in particular we do not know the data generating
distribution of µ. To sum up, the agent seeks to find a policy πalg such that v? − vπalg ≤ ε for the
given batch data D and a given targeted accuracy ε > 0.

2.2 ASSUMPTIONS

It is known that learning a near-optimal policy from the offline data D cannot be sample efficient
without certain data-coverage assumptions (Wang et al., 2021a; Yin and Wang, 2021b). To begin
with, we define the population covariance matrix under the behavior policy µ for all h ∈ [H]:

Σph := Eµ,h
[
φ(s, a)φ(s, a)>

]
, (1)

since Σph measure the coverage of state-action space for data D, we make the following assumption.
Assumption 2.2 (Feature Coverage). The data distributions µ satisfy the minimum eigenvalue
condition: ∀h ∈ [H], κh := λmin(Σph) > 0 and denote κ = minh κh. Note κ is a system-dependent
(non-universal) quantity as it is upper bounded by 1/d (Assumption 2 in Wang et al. (2021a)).

We make this assumption for the following reasons. First of all, our offline learning guarantee
(Theorem 3.2) provides simultaneously comparison to all the policies, which is stronger than only
competing with the optimal policy (whereas relaxed assumption suffices, e.g. supx∈Rd

xΣπ?x
>

xΣµx>
<∞

3This definition is a standard extension over the tabular MDPs by referencing the similar notions from the
bandit literature, i.e. from Multi-armed Bandit to Linear Bandit (Lattimore and Szepesvári, 2020).
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(Uehara and Sun, 2021)). As a consequence, the behavior distribution µ must be able to explore each
feature dimension for the result to be valid. Second, even if Assumption 2.2 does not hold, we can
always restrict our algorithmic design to the effective subspan of Σph, which causes the alternative
notion of κ := minh∈[H]{κh : s.t. κh = smallest positive eigenvalue at time h} (see Appendix G.1
for detailed discussions). In this scenario, learning the optimal policy cannot be guaranteed as a
constant suboptimality gap needs to be suffered due to the lack of coverage and this is formed as
assumption-free RL in Yin and Wang (2021b). Lastly, previous works analyzing the linear MDPs
impose very similar assumptions, e.g. Xie et al. (2021a) Theorem 3.2 where Σ−1

D exists and Min et al.
(2021) for the OPE problem.

Next, for any function Vh+1(·) ∈ [0, H−h], we define the conditional variance σVh+1
: S×A → R+

as σVh+1
(s, a)2 := max{1,VarPh(Vh+1)(s, a)}.4 Based on this definition, we can define the

variance-involved population covariance matrices as:Λph := Eµ,h
[
σVh+1(s, a)−2φ(s, a)φ(s, a)>

]
. In

particular, when Vh = V ?h , we use the notation Λ?ph instead.

3 ALGORITHM

Least square regression is usually considered as one of the “default” tools for handling problems
with linear structures (e.g. LinUCB algorithm for linear Bandits) and finds its popularity in RL as
well since Least-Square Value Iteration (LSVI, Jin et al. (2020)) is shown to be provably efficient for
linear MDPs, due to that Vh+1(s′) is an unbiased estimator of [PhVh+1](s, a). Concretely, it solves
the ridge regression problems at each time steps (with λ > 0 being the regularization parameter):

ŵh := argmin
w∈Rd

λ‖w‖22 +

K∑
k=1

[
〈φ(skh, a

k
h), w〉 − rkh − Vh+1(s′kh+1)

]2
(2)

and has the closed-form solution ŵh = Σ−1
h

∑K
k=1 φ(skh, a

k
h)[rk,h + Vh+1(s′kh )] with Σ−1

h =∑K
k=1 φ(skh, a

k
h)φ(skh, a

k
h)> + λI . In offline RL, this has also been leveraged in pessimistic value

iteration (Jin et al., 2021b) and fitted Q-evaluation (Duan et al., 2020). Nevertheless, LSVI could
only yield suboptimal guarantees, as illustrated by the following example.

Example 3.1. Instantiate PEVI (Theorem 4.4 in Jin et al. (2021b)) with φ(s, a) = 1s,a (i.e. tabular
MDPs)5, by direct calculation the learning bound has the formO(dH·

∑
h,s,a d

π?

h (s, a)
√

1
K·dµ

h
(s,a)

) and

the optimal result (Yin and Wang (2021b) Theorem 4.1) gives O(
∑
h,s,a d

π?

h (s, a)

√
VarPs,a (r+V ?

h+1
)

K·dµ
h

(s,a)
).

The former has the horizon dependence H2 and the latter is H3/2 by law of total variance.

Motivation. By comparing the above two expressions, it can be seen that PEVI cannot get rid of
the explicit H factor due to missing the variance information (w.r.t V ?). If we go deeper, one could
find that it might not be all that ideal to put equal weights on all the training samples in the least
square objective (2), since, unlike linear regression where the randomness coming from one source
distribution, we are regressing over a sequence of distributions in RL (i.e. each sh, ah corresponds
to a different distribution P (·|sh, ah) and there are possibly infinite many of them). Therefore,
conceptually, the sample piece (sh, ah, sh+1) that has higher variance distribution P (·|sh, ah) tends
to be less “reliable” than the one (s′h, a

′
h, s
′
h+1) with lower variance (hence should not have equal

weight in (2)). This suggests reweighting scheme might help improve the learning guarantee and
reweighting over the variance of the value function stands as a natural choice.

3.1 VARIANCE-AWARE PESSIMISTIC VALUE ITERATION

Now we explain our framework that incorporates the variance information. Our design is motivated
by previous Zhou et al. (2021a) (for online learning) and Min et al. (2021) (for policy evaluation).
By the offline nature, we can use the independent episodic data D′ = {(s̄τh, āτh, r̄τh, s̄τ ′h )}h∈[H]

τ∈[K] (from
µ) to estimate the conditional variance of any V -values Vh+1 via the definition [VarhVh+1](s, a) =

4The max(1, ·) applied here is for technical reason only. In general, it suffices to think σ2
Vh+1

≈ VarhVh+1.
5This provides a valid illustration since tabular MDP is a special case of linear MDPs.
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[Ph(Vh+1)2](s, a)− ([PhVh+1](s, a))2. For the second order moment, by Definition 2.1, it holds[
PhV

2
h+1

]
(s, a) =

∫
S
V 2
h+1

(
s′
)

dPh
(
s′ | s, a

)
= φ(s, a)>

∫
S
V 2
h+1

(
s′
)

dνh
(
s′
)
.

Denote βh :=
∫
S V

2
h+1 (s′) dνh (s′), then PhV 2

h+1 = 〈φ, βh〉 and we can estimator it via:

β̄h = argmin
β∈Rd

K∑
k=1

[〈
φ(s̄kh, ā

k
h), β

〉
− V 2

h+1

(
s̄kh+1

)]2
+ λ‖β‖22 = Σ̄−1

h

K∑
k=1

φ(s̄kh, ā
k
h)V 2

h+1

(
s̄kh+1

)
and, similarly, the first order moment PhVh+1 := 〈φ, θh〉 can be estimated via:

θ̄h = argmin
θ∈Rd

K∑
k=1

[〈
φ(s̄kh, ā

k
h), θ

〉
− Vh+1

(
s̄kh+1

)]2
+ λ‖θ‖22 = Σ̄−1

h

K∑
k=1

φ(s̄kh, ā
k
h)Vh+1

(
s̄kh+1

)
The final estimator is defined as σ̂2

Vh
(·, ·) := max{1, V̂arhVh+1(·, ·)} with V̂arhVh+1(·, ·) =

〈φ(·, ·), β̄h〉[0,(H−h+1)2] −
[
〈φ(·, ·), θ̄h〉[0,H−h+1]

]2
.6 In particular, when setting Vh+1 = V̂h+1,

it recovers σ̂h in Algorithm 1 line 8. Here Σ̄h =
∑K
τ=1 φ(s̄τh, ā

τ
h)φ(s̄τh, ā

τ
h)> + λId.

Variance-weighted LSVI. The idea of LSVI (2) is based on approximate the Bellman updates:
Th(V )(s, a) = rh(s, a) + (PhV )(s, a). With variance estimator σ̂h at hand, we can modify (2) to
solve the variance-weighted LSVI instead (Line 10 of Algorithm 1)

ŵh := argmin
w∈Rd

λ‖w‖22 +

K∑
k=1

[
〈φ(skh, a

k
h), w〉 − rkh − V̂h+1(s′kh+1)

]2
σ̂2
h(skh, a

k
h)

= Λ̂
−1
h

K∑
k=1

φ
(
skh, a

k
h

)
·
[
rkh + V̂h+1

(
skh+1

)]
σ̂2(skh, a

k
h)

where Λ̂h =
∑K
k=1 φ(skh, a

k
h)φ(skh, a

k
h)>/σ̂2

h(skh, a
k
h) + λId. The estimated Bellman update T̂h (acts

on V̂h+1) is defined as: (T̂hV̂h+1)(·, ·) = φ(·, ·)>ŵh and the pessimism Γh is assigned to update
Q̂h ≈ T̂hV̂h+1 − Γh, i.e. Bellman update + Pessimism (Line 10-12 in Algorithm 1).

Tighter Pessimistic Design. To improve the learning guarantee, we create a tighter penalty design
that includes Λ̂−1

h rather than Σ̄−1
h and an extra higher order O( 1

K ) term:

Γh ← O
(√

d · (φ(·, ·)>Λ̂−1
h φ(·, ·))1/2

)
+

2H3
√
d

K

Note such a design admits no explicit factor in H in the main term (as opposed to Jin et al. (2021b))
therefore is the key for achieving adaptive/problem-dependent results (as we shall discuss later).
The full algorithm VAPVI is stated in Algorithm 1. In particular, we halve the offline data into two
independent parts with D = {(sτh, aτh, rτh, sτ ′h )}h∈[H]

τ∈[K] and D′ = {(s̄τh, āτh, r̄τh, s̄τ ′h )}h∈[H]
τ∈[K] for different

purposes (estimating variance and updating Q-values).

3.2 MAIN RESULT

We denote quantitiesM1,M2,M3,M4 as in the notation list A. Then VAPVI provides the following
result. The complete proof is provided in Appendix C.

Theorem 3.2. Let K be the number of episodes. If K > max{M1,M2,M3,M4} and
√
d > ξ,

where ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣. Then for any 0 < λ < κ, with

probability 1− δ, for all policy π simultaneously, the output π̂ of Algorithm 1 satisfies

vπ − vπ̂ ≤ Õ
(√
d ·

H∑
h=1

Eπ
[√

φ(·, ·)>Λ−1
h φ(·, ·)

])
+

2H4
√
d

K

where Λh =
∑K
k=1

φ(skh,a
k
h)·φ(skh,a

k
h)>

σ2

V̂h+1(sk
h
,ak
h
)

+ λId. In particular, we have with probability 1− δ,

v? − vπ̂ ≤ Õ
(√
d ·

H∑
h=1

Eπ?
[√

φ(·, ·)>Λ?−1
h φ(·, ·)

])
+

2H4
√
d

K
(3)

where Λ?h =
∑K
k=1

φ(skh,a
k
h)·φ(skh,a

k
h)>

σ2

V ?
h+1

(sk
h
,ak
h
)

+ λId and Õ hides universal constants and the Polylog terms.

6The truncation used here is a standard treatment for making the estimator to be within the valid range.
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Algorithm 1 Variance-Aware Pessimistic Value Iteration (VAPVI)
1: Input: Dataset D = {(sτh, aτh, rτh)}K,Hτ,h=1 D

′ = {(s̄τh, āτh, r̄τh)}K,Hτ,h=1. Universal constant C.

2: Initialization: Set V̂H+1(·)← 0.
3: for h = H,H − 1, . . . , 1 do
4: � Phase1: Regular Least-square Value Iteration for conditional variances
5: Set Σ̄h ←

∑K
τ=1 φ(s̄τh, ā

τ
h)φ(s̄τh, ā

τ
h)> + λI

6: Set β̄h ← Σ̄−1
h

∑K
τ=1 φ(s̄τh, ā

τ
h) · V̂h+1(s̄τh+1)2

7: Set θ̄h ← Σ̄−1
h

∑K
τ=1 φ(s̄τh, ā

τ
h) · V̂h+1(s̄τh+1)

8: Set
[
V̂arhV̂h+1

]
(·, ·) =

〈
φ(·, ·), β̄h

〉
[0,(H−h+1)2] −

[〈
φ(·, ·), θ̄h

〉
[0,H−h+1]

]2
9: Set σ̂h(·, ·)2 ← max{1, V̂arPh V̂h+1(·, ·)}

10: � Phase2: Weighted Least-square Value Iteration for pessimistic updates
11: Set Λ̂h ←

∑K
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)> /σ̂2(sτh, a

τ
h) + λ · I ,

12: Set ŵh ← Λ̂−1
h

(∑K
τ=1 φ (sτh, a

τ
h) ·

(
rτh + V̂h+1 (sτh+1)

)
/σ̂2(sτh, a

τ
h)
)

13: Set Γh(·, ·)← C
√
d ·
(
φ(·, ·)>Λ̂−1

h φ(·, ·)
)1/2

+ 2H3
√
d

K
(Use ΓIh for the improved version)

14: Set Q̄h(·, ·)← φ(·, ·)>ŵh − Γh(·, ·)
15: Set Q̂h(·, ·)← min

{
Q̄h(·, ·), H − h+ 1

}+

16: Set π̂h(· | ·)← arg maxπh
〈
Q̂h(·, ·), πh(· | ·)

〉
A, V̂h(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

17: end for
18: Output: {π̂h}Hh=1.

Theorem 3.2 provides improvements over the existing best-known results and we now explain it.
However, before that, we first discuss about our theorem condition.

Comparing to Zhou et al. (2021a). In the online regime, Zhou et al. (2021a) is the first result
that achieves optimal regret rate with O(dH

√
T ) in the linear (mixture) MDPs. However, this

result requires the condition d ≥ H (their Theorem 6 and Remark 7). In offline RL, VAPVI only
requires a milder condition

√
d > ξ comparing to d ≥ H (since for any fixed V ∈ [0, H], the

standardized quantity r+V (s′)−(ThV )(s,a)
σV (s,a) is bounded by constant with high probability, e.g. by

chebyshev inequality), which makes our result apply to a wider range of linear MDPs.

Comparing to Jin et al. (2021b). Jin et al. (2021b) first shows pessimistic value iteration (PEVI)
is provably efficient for Linear MDPs in offline RL. VAPVI improves PEVI over O(

√
d) on

the feature dimension, and improves the horizon dependence as Λh < 1
H2 Σh implies Λ−1

h 4
H2Σ−1

h . In addition, when instantiate to the tabular case, i.e. φ(s, a) = 1s,a, VAPVI gives

O(
√
d
∑
h,s,a d

π?

h (s, a)

√
VarPs,a (r+V ?

h+1
)

K·dµ
h

(s,a)
), which enjoys O(

√
H) improvement over PEVI (recall

Example 3.1) and the order O(H3/2) is tight (check Section G for the detailed derivation).

Comparing to Xie et al. (2021a). Their linear MDP guarantee in Theorem 3.2. enjoys the same
rate as VAPVI in feature dimension but the horizon dependence is essentially the same as Jin et al.
(2021b) (by translating H ≈ O( 1

1−γ )) therefore is not optimal. The general function approximation
scheme in Xie et al. (2021a) provides elegant characterizations for on-support error and off-support
error, but the algorithmic framework is information-theoretical only (and the practical version PSPI
will not yield the same learning guarantee). Also, due to the use finite function class and policy class,
the reduction to linear MDP only works with finite action space. As a comparison, VAPVI has no
constraints on any of these.

Comparing to Zanette et al. (2021). Concurrently, Zanette et al. (2021) considers offline RL with
the linear Bellman complete model, which is more general than linear MDPs and, with the assumption
Qπ ≤ 1, their PACLE algorithm provides near-minimax optimal guarantee in this setting. However,
when recovering to the standard setting Qπ ∈ [0, H], their bound will rescale by an H factor,7 which
could be suboptimal due to the variance-unawareness. The reason behind this is: when Qπ ≤ 1,
lack of variance information encoding will not matter, since in this case VarP (V π) ≤ 1 has constant

7Check their Footnote 2 in Page 9.

7



Published as a conference paper at ICLR 2022

order (therefore will not affect the optimal rate); when Qπ ∈ [0, H], VarP (V π) can be as large as
H2, effectively leveraging the variance information can help improve the sample efficiency, e.g. via
law of total variances, just like VAPVI does. On the other hand, their guarantee also requires finite
action space, due to the mirror descent style analysis. Nevertheless, we do point out Zanette et al.
(2021) has improved state-action measure than VAPVI, as ‖Eπ[φ(·, ·)]‖M−1 ≤ Eπ[‖φ(·, ·)‖M−1 ] by
Jensen’s inequality and that norm ‖·‖M−1 is convex for some positive-definite matrix M .

Adaptive characterization and faster convergence. Comparing to existing works, one major

improvement is that the main term for VAPVI
√
d
∑H
h=1 Eπ?

[√
φ(·, ·)>Λ?−1

h φ(·, ·)
]

admits no
explicit dependence on H , which provides a more adaptive/instance-dependent characterization. For
instance, if we ignore the technical treatment by taking λ = 0 and σ?h ≈ VarP (V ?h+1), then for the
partially deterministic systems (where there are t stochastic Ph’s and H − t deterministic Ph’s), the

main term diminishes to
√
d
∑t
i=1 Eπ?

[√
φ(·, ·)>Λ?−1

hi
φ(·, ·)

]
with hi ∈ {h : s.t. Ph is stochastic}

and can be a much smaller quantity when t� H . Furthermore, for the fully deterministic system,
VAPVI automatically provides faster convergence rate O( 1

K ) from the higher order term, given that
the main term degenerates to 0. Those adaptive/instance-dependent features are not enjoyed by (Xie
et al., 2021a; Zanette et al., 2021), as they always provide the standard statistical rate O( 1√

K
) (also

check Remark C.9 for a related discussion).

3.3 VAPVI-IMPROVED: FURTHER IMPROVEMENT IN STATE-ACTION DIMENSION

Can we further improve the VAPVI? Indeed, by deploying a carefully tuned tighter penalty, we are
able to further improve the state-action dependence if the feature is non-negative (φ ≥ 0). Concretely,
we replace the following ΓIh in Algorithm 1 instead, and call the algorithm VAPVI-Improved (or
VAPVI-I for short). The proof can be found in Appendix D.

ΓIh(s, a)← φ(s, a)>
∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1 (sτh+1)−

(
T̂hV̂h+1

)
(sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣+Õ(
H3d/κ

K
) (4)

Theorem 3.3. Suppose the feature is non-negative (φ ≥ 0). Let K be the number of episodes. If
K > max{M1,M2,M3,M4} and

√
d > ξ. Deploying ΓIh (4) in Algorithm 1. Then for any

0 < λ < κ, with probability 1 − δ, for all policy π simultaneously, the output π̂ of Algorithm 1
(VAPVI-I) satisfies

vπ − vπ̂ ≤ Õ
(√
d ·

H∑
h=1

√
Eπ[φ(·, ·)]>Λ−1

h Eπ[φ(·, ·)]
)

+ Õ(
H4d/κ

K
)

In particular, when choosing π = π?, the above guarantee holds true with Λ−1
h replaced by Λ?−1

h .
Here Λ−1

h , Λ?−1
h , ξ are defined the same as Theorem 3.2.

Theorem 3.3 maintains nearly all the features of Theorem 3.2 (except higher order term is slightly
worse) and the dominate term evolves from Eπ ‖φ‖Λ−1

h
to ‖Eπ[φ]‖Λ−1

h
. Clearly, the two bounds

differ by the magnitude of Jensen’s inequality. To provide a concrete view of how much improvement
is made, we check the parameter dependence in the context of tabular MDPs (where we ignore the
higher order term for conciseness). In particular, we compare the results under the single-policy
concentrability.
Assumption 3.4 (Rashidinejad et al. (2021); Xie et al. (2021b)). There exists a optimal policy π?, s.t.
suph,s,a d

π?

h (s, a)/dµh(s, a) := C? <∞, where dπ is the marginal state-action probability under π.

In tabular RL, φ(s, a) = 1s,a and d = S ·A (S,A be the finite state, action cardinality), then

Theorem 3.2→
√
SA

H∑
h

∑
s,a

dπ
?

h (s, a)

√
VarPs,a(r + V ?h+1)

K · dµh(s, a)
≤
√
H3C?S2A

K
;

Theorem 3.3→
√
SA

H∑
h

√√√√∑
s,a

dπ
?

h (s, a)2
VarPs,a(r + V ?h+1)

K · dµh(s, a)
≤
√
H3C?SA

K
.

(5)
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Theorem 3.3 enjoys a S state improvement over Theorem 3.2 and nearly recovers the minimax rate√
H3C?S
K (Xie et al., 2021b). The detailed derivation can be found in Appendix G. Also, to show our

result is near-optimal, we provide the corresponding lower bound. The proof is in Appendix E.
Theorem 3.5 (Minimax lower bound). There exist a pair of universal constants c, c′ > 0 such that
given dimension d, horizon H and sample size K > c′d3, one can always find a family of linear
MDP instances M such that (where Λ?h =

∑K
k=1

φ(skh,a
k
h)·φ(skh,a

k
h)>

Varh(V ?h+1)(skh,a
k
h)

satisfies (Λ?h)−1 exists and

Varh(V ?h+1)(skh, a
k
h) > 0 ∀M ∈M)

inf
π̂

sup
M∈M

EM
[
v? − vπ̂

]/(√
d ·

H∑
h=1

√
Eπ? [φ]>(Λ?h)−1Eπ? [φ]

)
≥ c. (6)

Theorem 3.5 nearly matches the main term in VAPVI-I (Theorem 3.3) and certifies it is near-optimal.

4 PROOF OVERVIEW

Due to the space constraint, we could only provide a brief overview of the key proving ideas of the
theorems. We begin with Theorem 3.2. First, by the extended value difference lemma (Lemma H.7),
we can convert bounding the suboptimality gap of v? − vπ̂ to bounding

∑H
h=1 2 · Eπ [Γh(sh, ah)],

given that |(ThV̂h+1 − T̂hV̂h+1)(s, a)| ≤ Γh(s, a) for all s, a, h. To bound ThV̂h+1 − T̂hV̂h+1, by
decomposing it reduces to bounding the key quantity

φ(s, a)>Λ̂−1
h

[ K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

]
(7)

The term is treated in two steps. First, we bound the gap of
∥∥∥σ2

V̂h+1
− σ̂2

h

∥∥∥ so we can convert σ̂2
h to

σ2
V̂h+1

. Next, since Var
[
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h) | sτh, aτh

]
≈ σ2

V̂h+1
, therefore by

the variance-weighted scheme in (equation 7), we can leverage the recent technical development
Bernstein inequality for self-normalized martingale (Lemma H.3) for acquiring the tight result, in
contrast to the previous treatment of Hoeffding inequality for self-normalized martingale + Covering.8
For the second part, one needs to further convert σ2

V̂h+1
to σ?2h (Λ−1

h to Λ?−1
h ) with appropriate

concentrations. The proof of Theorem 3.3 is similar but with more complicated computations and
relies on using the linear representation of φ in ΓIh (4), so that the expectation over π is inside the
square root by taking expectation over the linear representation at the beginning. The lower bound
proof uses a simple modification of Zanette et al. (2021) which consists of the reduction from learning
to testing with Assouad’s method, and the use of standard information inequalities (e.g. from total
variation to KL divergence). For completeness, we provide the full proof in Appendix E.

5 DISCUSSION AND CONCLUSION

This work studies offline RL with linear MDP representation and contributes Variance Aware
Pessimistic Value Iteration (VAPVI) which adopts the conditional variance information of the value
function. VAPVI uses the estimated variances to reweight the Bellman residuals in the least-square
pessimistic value iteration and provides improved offline learning bounds over the existing best-known
results. VAPVI-I further improves over VAPVI in the state-action dimension and is near-minimax
optimal. One highlight of the theorems is that our learning bounds are expressed in terms of system
quantities, which automatically provide natural instance-dependent characterizations that previous
results are short of.

On the other hand, while VAPVI/VAPVI-I close the existing gap from previous literature (Jin et al.,
2021b; Xie et al., 2021a), the optimal guarantee is in the minimax sense. Although our upper bounds
possess instance-dependent characterizations, the lower bound only holds true for a class of hard
instances. In this sense, whether “instance-dependent optimality” can be achieved remains elusive in
the current linear MDP setting (such a discussion is recently initiated in MAB problems (Xiao et al.,
2021)). We leave this as future work.

8Variance-reweighting in (7) is important, since applying Bernstein inequality for self-normalized martingale
(Lemma H.3) without variance-reweighting cannot provide any improvement.
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András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning, 71
(1):89–129, 2008b.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pages
463–474. PMLR, 2020.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021a.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player markov
games with linear function approximation. arXiv preprint arXiv:2102.07404, 2021b.

Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. Internet
Mathematics, 3(1):79–127, 2006.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient rl with rich observations via latent state decoding. In International Conference
on Machine Learning, pages 1665–1674. PMLR, 2019.

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. International
Conference on Machine Learning, 2021.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, pages 8334–8342, 2020.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in batch reinforcement
learning. International Conference on Machine Learning, 2021.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

10



Published as a conference paper at ICLR 2022

Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement
learning: Fundamental barriers for value function approximation. arXiv preprint arXiv:2111.10919,
2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052–2062. PMLR, 2019.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear
markov decision process with low switching cost. arXiv preprint arXiv:2101.00494, 2021.

Geoffrey J Gordon. Approximate solutions to Markov decision processes. Carnegie Mellon University,
1999.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pages 4171–
4180. PMLR, 2021.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039, 2021.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. In International Conference on
Machine Learning-Volume 70, pages 1704–1713, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143.
PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. arXiv preprint arXiv:2102.00815, 2021a.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021b.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in Neural Information Processing Systems, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with in-sample
q-learning. In International Conference on Learning Representations, 2022.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement learning with rich
observations. Advances in neural information processing systems, 2016.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. Advances in Neural Information Processing Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning, pages 3703–3712, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

11



Published as a conference paper at ICLR 2022

Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Provably efficient genera-
tive adversarial imitation learning for online and offline setting with linear function approximation.
arXiv preprint arXiv:2108.08765, 2021.

Yifei Min, Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Variance-aware off-policy evaluation
with linear function approximation. Advances in neural information processing systems, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics, pages 2010–2020. PMLR, 2020.
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Appendix

A NOTATION LIST

Σph Eµ,h
[
φ(s, a)φ(s, a)>

]
Λph Eµ,h

[
σVh+1

(s, a)−2φ(s, a)φ(s, a)>
]

κ minh λmin(Σph)

ι minh λmin(Λph) ≥ κ/H2 for any Vh
σ2
V (s, a) max{1,VarPh(V )(s, a)} for any V

σ2
Vh+1

(s, a) max{1,VarPh(Vh+1)(s, a)}
σ̂2
Vh

(s, a) max{1, V̂arhVh+1(s, a)}
Σ̄h

∑K
τ=1 φ(s̄τh, ā

τ
h)φ(s̄τh, ā

τ
h)> + λId

Λ̂h
∑K
k=1 φ(skh, a

k
h)φ(skh, a

k
h)>/σ̂2

h(skh, a
k
h) + λId

M1 max{2λ, 128 log(2d/δ), 128H4 log(2d/δ)/κ2}
M2 max{ λ2

κ log((λ+K)H/λδ) , 962H12d log((λ+K)H/λδ)/κ5}
M3 max

{
512H4/κ2 log

(
2d
δ

)
, 4λH2/κ

}
M4 12

√
H4d log((λ+K)H/λδ)/κ

δ Failure probability

ξ supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣
CH,d,κ,K 36

√
H4d3

κ log
(

(λ+K)2KdH2

λδ

)
+ 12λH

2
√
d

κ

B EXTENDED LITERATURE REVIEW

B.1 LINEAR MODEL REPRESENTATION AND ITS EXTENSION IN ONLINE RL

There are numerous works in online RL that study linear model representations. Yang and Wang
(2019; 2020); Jin et al. (2020) propose Linear MDP, which assumes the transition kernel and the
reward are linear in given features. Cai et al. (2020); Ayoub et al. (2020); Modi et al. (2020); Zhou
et al. (2021b) propose Linear mixture MDP, which assumes the transition probability is a linear
combination of some base kernels. Linear Bellman Complete model (Zanette et al., 2020) generalizes
linear MDP model by allowing linear functions to approximate the Q-function and the function class
is closed under the Bellman update. The notion of low Bellman rank (Jiang et al., 2017) subsumes
not only linear MDPs but also models including linear quadratic regulator (LQR), Reactive POMDP
(Krishnamurthy et al., 2016) and Block MDP (Du et al., 2019). There are also other models, e.g.
factored MDP (Sun et al., 2019), Bellman Eluder dimension (Jin et al., 2021a) and Bilinear class (Du
et al., 2021). With the linear MDP model itself, there are also fruitful extensions, e.g. gap-dependent
analysis with logarithmic regret (He et al., 2021), low-switching cost RL (Gao et al., 2021), safe RL
(Amani et al., 2021), reward-free RL (Wang et al., 2020), generalized linear model (GLM) (Wang
et al., 2021b), two-player markov game (Chen et al., 2021b) and generative adversarial learning (Liu
et al., 2021). In particular, Zhou et al. (2021a) shows UCRL-VTR+ is near-minimax optimal when
feature dimension d ≥ H .

B.2 EXISTING RESULTS IN OFFLINE RL WITH MODEL REPRESENTATIONS

Offline RL with general function representations. The finite sample analysis of offline RL with
function approximation is initially conducted by Fitted Q-Iteration (FQI) type algorithms and can
be dated back to (Munos, 2003; Szepesvári and Munos, 2005; Antos et al., 2008a;b). Later, Chen
and Jiang (2019); Le et al. (2019); Xie and Jiang (2020) follow this line of research and derive the
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improved learning results. However, owing to the aim for tackling general function approximation,
those learning bounds are expressed in terms of the stringent concentrability coefficients (therefore,
are less adaptive to individual instances) and are usually only information-theoretical, due to the
computational intractability of the optimization procedure over the general function classes. Other
works impose weaker assumptions (e.g. partial coverage (Liu et al., 2020; Kidambi et al., 2020;
Uehara and Sun, 2021)), and their finite sample analysis are generally suboptimal in terms of H or
the effective horizon (1− γ)−1.

Offline RL with tabular models. For tabular MDPs, tight learning bounds can be achieved under
several data-coverage assumptions. For the class of problems with uniform data-visitation measure
dm, the near-optimal sample complexity bound has the rate O(H3/dmε

2) for time-inhomogeneous
MDPs (Yin et al., 2021) and O(H2/dmε) for time-homogeneous MDPs (Yin and Wang, 2021a; Ren
et al., 2021). Under the single concentrability assumption, the tight rate O(H3SC?/ε2) is obtained
by Xie et al. (2021b). In particular, the recent study Yin and Wang (2021b) introduces the intrinsic
offline learning bound that is not only instance-dependent but also subsumes previous optimal results.
More recently, Shi et al. (2022) uses model-free approach to achieve minimax rate with a larger
ε-range.

Offline RL with linear model representations. Recently, there are more focus on studying the
provable efficient offline RL under the linear model representations. Jin et al. (2021b) first shows
offline RL with linear MDP is provably efficient by the pessimistic value iteration (PEVI), which
is an offline counterpart of LSVI-UCB in Jin et al. (2020). Their analysis deviates from their lower
bound by a factor of d ·H (check their Theorem 4.4 and 4.6). Later, Xie et al. (2021a) considers
function approximation under the Bellman-consistent assumptions, and, when realized to linear MDP
setting, improve the sample complexity guarantee of Jin et al. (2021b) by a order O(d) (Theorem 3.2).
However, their improvement only holds for finite action space (due to the dependence log |A|) and
by the direct reduction (from Theorem 3.1) their result does not imply a computationally tractable
algorithm. In addition, there is no improvement on the horizon dependence. Concurrently, Zanette
et al. (2021) considers the Linear Bellman Complete model (which originates from its online version
Zanette et al. (2020)) and designs the actor-critic style algorithm that achieves tight result under
the assumption that the value function is bounded by 1. While their algorithm is efficient (which is
based on solving a sequence of second-order cone programs), the resulting learning bound requires
the action space to be finite due to the mirror descent/natural policy gradient updates in the Actor
procedure (Agarwal et al., 2021). Besides, assuming the value function to be less than 1 simplifies
the challenges in dealing with horizon H since when rescale their result to [0, H], there is a H factor
blow-up, which makes no improvement in the horizon dependence comparing to Jin et al. (2021b).
On the other hand, Wang et al. (2021a); Zanette (2021) study the statistical hardness of offline RL
with linear representations by proofing the exponential lower bounds. As a result, none of the existing
algorithms can achieve the statistical limit for the well-structured linear MDP model with the general
(infinite or continuous) state-action spaces in the offline regime.

C PROOFS IN SECTION 3.2

Instead of proofing the result for v? − vπ̂ , in most parts of the proof we deal with V ?1 − V π̂1 , which is
more general.

C.1 SOME PREPARATIONS

Define the Bellman update error ζh(s, a) := (ThV̂h+1)(s, a) − Q̂h(s, a) and recall π̂h(s) =

arg maxπh〈Q̂h(s, ·), πh(· | s)〉A, then by the direct application of Lemma H.8

V π1 (s)− V π̂1 (s) ≤
H∑
h=1

Eπ [ζh(sh, ah) | s1 = s]−
H∑
h=1

Eπ̂ [ζh(sh, ah) | s1 = s] . (8)

The next lemma shows it is sufficient to bound the pessimistic penalty, which is the key in the proof.

Lemma C.1. Suppose with probability 1− δ, it holds for all h, s, a ∈ [H]×S ×A that |(ThV̂h+1 −
T̂hV̂h+1)(s, a)| ≤ Γh(s, a), then it implies ∀s, a, h ∈ S × A × [H], 0 ≤ ζh(s, a) ≤ 2Γh(s, a).
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Furthermore, it holds for any policy π simultaneously, with probability 1− δ,

V π1 (s)− V π̂1 (s) ≤
H∑
h=1

2 · Eπ [Γh(sh, ah) | s1 = s] .

Proof of Lemma C.1. We first show given |(ThV̂h+1 − T̂hV̂h+1)(s, a)| ≤ Γh(s, a), then 0 ≤
ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].

Step1: we first show 0 ≤ ζh(s, a), ∀s, a, h ∈ S ×A× [H].

Indeed, if Q̄h(s, a) ≤ 0, then by definition Q̂h(s, a) = 0 and in this case ζh(s, a) :=

(ThV̂h+1)(s, a) − Q̂h(s, a) = (ThV̂h+1)(s, a) ≥ 0; if Q̄h(s, a) > 0, then Q̂h(s, a) ≤ Q̄h(s, a)
and

ζh(s, a) :=(ThV̂h+1)(s, a)− Q̂h(s, a) ≥ (ThV̂h+1)(s, a)− Q̄h(s, a)

=(ThV̂h+1)(s, a)− (T̂hV̂h+1)(s, a) + Γh(s, a) ≥ 0.

Step2: next we show ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S ×A× [H].

Indeed, we have Q̂h(s, a) = max(Q̄h(s, a), 0) and this is because: Q̄h(x, a) = (T̂hV̂h+1)(x, a)−
Γh(x, a) ≤ (ThV̂h+1)(x, a) ≤ H − h+ 1. Therefore, in this case we have:

ζh(s, a) :=(ThV̂h+1)(s, a)− Q̂h(s, a) ≤ (ThV̂h+1)(s, a)− Q̄h(s, a)

=(ThV̂h+1)(s, a)− (T̂hV̂h+1)(s, a) + Γh(s, a) ≤ 2 · Γh(s, a).

For the last statement, denote F := {0 ≤ ζh(s, a) ≤ 2Γh(s, a), ∀s, a, h ∈ S × A × [H]}. Note
conditional on F, then by equation 8, V π1 (s)− V π̂1 (s) ≤

∑H
h=1 2 ·Eπ[Γh(sh, ah) | s1 = s] holds for

any policy π almost surely. Therefore,

P

[
∀π, V π1 (s)− V π̂1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s].

]

=P

[
∀π, V π1 (s)− V π̂1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F]

+P

[
∀π, V π1 (s)− V π̂1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣Fc
]
· P[Fc]

≥P

[
∀π, V π1 (s)− V π̂1 (s) ≤

H∑
h=1

2 · Eπ[Γh(sh, ah) | s1 = s]

∣∣∣∣∣F
]
· P[F] ≥ 1 · P[F] ≥ 1− δ,

which finishes the proof.

C.2 BOUNDING
∣∣∣(ThV̂h+1)(s, a)− (T̂hV̂h+1)(s, a)

∣∣∣.
By Lemma C.1, it remains to bound |(ThV̂h+1)(s, a)−(T̂hV̂h+1)(s, a)|. Supposewh is the coefficient
corresponding to the ThV̂h+1 (such wh exists by Lemma H.9), i.e. ThV̂h+1 = φ>wh, and recall
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(T̂hV̂h+1)(s, a) = φ(s, a)>ŵh, then:(
ThV̂h+1

)
(s, a)−

(
T̂hV̂h+1

)
(s, a) = φ(s, a)> (wh − ŵh)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

))
/σ̂2

h(sτh, a
τ
h)

)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(i)

+ φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(ii)

.

(9)

The term (i) is dealt by the following lemma.

Lemma C.2. Recall κ in Assumption 2.2. Suppose K ≥ max
{

512H4/κ2 log
(

2d
δ

)
, 4λH2/κ

}
,

then with probability 1− δ, for all s, a, h ∈ S ×A× [H]∣∣∣∣∣φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2(sτh, a

τ
h)

)∣∣∣∣∣ ≤ 2λH3
√
d/κ

K
.

Proof. Recall ThV̂h+1 = φ>wh and apply Lemma H.6, we obtain with probability 1 − δ, for all
s, a, h ∈ S ×A× [H],

φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2(sτh, a

τ
h)

)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) · φ(sτh, a

τ
h)>wh/σ̂

2(sτh, a
τ
h)

)
=φ(s, a)>wh − φ(s, a)>Λ̂−1

h

(
Λ̂h − λI

)
wh = λ · φ(s, a)>Λ̂−1

h wh

≤λ ‖φ(s, a)‖Λ̂−1
h
· ‖wh‖Λ̂−1

h
≤ λ

K
‖φ(s, a)‖(Λ̃ph)−1 · ‖wh‖(Λ̃ph)−1

≤ λ

K
1 ·
√∥∥∥(Λ̃ph)−1

∥∥∥ · 2H√d ·√∥∥∥(Λ̃ph)−1
∥∥∥

where Λ̃ph := Eµ,h
[
σ̂h(s, a)−2φ(s, a)φ(s, a)>

]
and the second inequality is by Lemma H.6 (with

φ′ = φ/σ̂h and ‖φ/σ̂h‖ ≤ ‖φ‖ ≤ 1 := C) and the third inequality uses
√
a> ·A · a ≤√

‖a‖2 ‖A‖2 ‖a‖2 = ‖a‖2
√
‖A‖2 with a to be either φ or wh. Moreover, λmin(Λ̃ph) ≥

κ/maxh,s,a σ̂h(s, a)2 ≥ κ/H2 implies
∥∥∥(Λ̃ph)−1

∥∥∥ ≤ H2/κ, therefore for all s, a, h ∈ S ×A× [H],
with probability 1− δ∣∣∣∣∣φ(s, a)>wh − φ(s, a)>Λ̂−1

h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2(sτh, a

τ
h)

)∣∣∣∣∣ ≤ 2λH3
√
d/κ

K
.
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For term (ii), denote: xτ =
φ(sτh,a

τ
h)

σ̂(sτh,a
τ
h) , ητ =

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂(sτh, a

τ
h),

then by Cauchy inequality it follows

∣∣∣∣∣φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)∣∣∣∣∣
≤
√
φ(s, a)>Λ̂−1

h φ(s, a) · ||
K∑
τ=1

xτητ ||Λ̂−1
h

(10)

C.2.1 ANALYZING THE TERM

√
φ(s, a)Λ̂−1

h φ(s, a)

Recall (in Theorem 3.2) the estimated Λ̂h =
∑K
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)
>
/σ̂2(sτh, a

τ
h) + λ · I and

Λh =
∑K
τ=1 φ(sτh, a

τ
h)>φ(sτh, a

τ
h)/σ2

V̂h+1
(sτh, a

τ
h) + λI . Then we have the following lemma to

control the term
√
φ(s, a)Λ̂−1

h φ(s, a).

Lemma C.3. Denote the quantities C1 = max{2λ, 128 log(2d/δ), 128H4 log(2d/δ)/κ2} and
C2 = max{ λ2

κ log((λ+K)H/λδ) , 962H12d log((λ + K)H/λδ)/κ5}. Suppose the number of episode
K satisfies K > max{C1, C2}, then with probability 1− δ,

√
φ(s, a)Λ̂−1

h φ(s, a) ≤ 2
√
φ(s, a)Λ−1

h φ(s, a), ∀s, a ∈ S ×A.

Proof of Lemma C.3. By definition
√
φ(s, a)Λ̂−1

h φ(s, a) = ‖φ(s, a)‖Λ̂−1
h

. Then denote

Λ̂′h =
1

K
Λ̂h, Λ′h =

1

K
Λh,

where Λh =
∑K
τ=1 φ(sτh, a

τ
h)>φ(sτh, a

τ
h)/σ2

V̂h+1
(sτh, a

τ
h) + λI . Under the condition of K, by

Lemma C.7, with probability 1− δ

∥∥∥Λ̂′h − Λ′h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥φ(s, a)φ(s, a)>

σ̂2
h(s, a)

− φ(s, a)φ(s, a)>

σ2
V̂h+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣ σ̂
2
h(s, a)− σ2

V̂h+1
(s, a)

σ̂2
h(s, a)σ2

V̂h+1
(s, a)

∣∣∣∣∣ · ‖φ(s, a)‖2 ≤ sup
s,a

∣∣∣∣∣ σ̂
2
h(s, a)− σ2

V̂h+1
(s, a)

1

∣∣∣∣∣ · 1
≤ 12

√
H4d

κK
log

(
(λ+K)H

λδ

)
+ 12λ

H2
√
d

κK
.

(11)

Next by Lemma H.5 (with φ to be φ/σV̂h+1
and C = 1), it holds with probability 1− δ,

∥∥∥∥Λ′h −
(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V̂h+1
(s, a)] +

λ

K
Id

)∥∥∥∥ ≤ 4
√

2√
K

(
log

2d

δ

)1/2

.
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Therefore by Weyl’s spectrum theorem and the condition K >
max{2λ, 128 log(2d/δ), 128H4 log(2d/δ)/κ2}, the above implies

‖Λ′h‖ =λmax(Λ′h) ≤ λmax

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V̂h+1
(s, a)]

)
+
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

=
∥∥∥Eµ,h[φ(s, a)φ(s, a)>/σ2

V̂h+1
(s, a)]

∥∥∥
2

+
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤‖φ(s, a)‖2 +
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤ 1 +
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤ 2,

λmin(Λ′h) ≥λmin

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V̂h+1
(s, a)]

)
+
λ

K
− 4
√

2√
K

(
log

2d

δ

)1/2

≥λmin

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V̂h+1
(s, a)]

)
− 4
√

2√
K

(
log

2d

δ

)1/2

≥ κ

H2
− 4
√

2√
K

(
log

2d

δ

)1/2

≥ κ

2H2
.

Hence with probability 1− δ, ‖Λ′h‖ ≤ 2 and
∥∥Λ′−1

h

∥∥ = 1/λmin(Λ′h) ≤ 2H2/κ. Similarly, one can

show
∥∥∥Λ̂′−1

h

∥∥∥ ≤ 2H2/κ with high probability.

Now apply Lemma H.4 to Λ̂′h and Λ′h and a union bound, we obtain with probability 1− δ, for all s, a

‖φ(s, a)‖Λ̂′−1
h
≤

[
1 +

√∥∥Λ′−1
h

∥∥ ‖Λ′h‖ · ∥∥∥Λ̂′−1
h

∥∥∥ · ∥∥∥Λ̂′h − Λ′h

∥∥∥] · ‖φ(s, a)‖Λ′−1
h

≤

[
1 +

√
2H2

κ
· 1 · 2H2

κ
·
∥∥∥Λ̂′h − Λ′h

∥∥∥] · ‖φ(s, a)‖Λ′−1
h

≤

1 +

√√√√48H4

κ2

(√
H4d

κK
log

(
(λ+K)H

λδ

)
+ λ

H2
√
d

κK

) · ‖φ(s, a)‖Λ′−1
h

≤

1 +

√√√√96H4

κ2

√
H4d

κK
log

(
(λ+K)H

λδ

) · ‖φ(s, a)‖Λ′−1
h
≤ 2 ‖φ(s, a)‖Λ′−1

h

where the third inequality uses equation 11 and the last and the second last inequality use
K > max{ λ2

κ log((λ+K)H/λδ) , 962H12d log((λ + K)H/λδ)/κ5}. Note the above is equivalent to√
φ(s, a)Λ̂−1

h φ(s, a) ≤ 2
√
φ(s, a)Λ−1

h φ(s, a) by multiplying 1/
√
K on both sides.

C.2.2 ANALYZING THE TERM ||
∑K
τ=1 xτητ ||Λ̂−1

Lemma C.4. Recall xτ =
φ(sτh,a

τ
h)

σ̂(sτh,a
τ
h) and ητ =

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂(sτh, a

τ
h).

Let CH,d,κ,K := 36

√
H4d3

κ log
(

(λ+K)2KdH2

λδ

)
+ 12λH

2
√
d

κ and denote

ξ := sup
V ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣rh + V (s′)− (ThV ) (s, a)

σV (s, a)

∣∣∣∣ .
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If K ≥ 4C2
H,d,κ,K and K ≥ Õ(H6d/κ), then with probability 1− δ,∥∥∥∥∥

K∑
τ=1

xτητ

∥∥∥∥∥
Λ̂−1

≤ 16

√
d log

(
1 +

K

λd

)
· log

(
4K2

δ

)
+ 4ξ log

(
4K2

δ

)
≤ Õmax

{√
d, ξ
}
,

where Õ absorbs the constants and Polylog terms.

Proof of Lemma C.4. By construction, we have ‖xτ‖ ≤ ‖φ/σ̂‖ ≤ 1 and by Lemma C.7, with
probability 1− δ/3,

∥∥∥σV̂h+1
− σ̂h

∥∥∥
∞

= sup
s,a

∣∣∣σ2
V̂h+1

(s, a)− σ̂2
h(s, a)

∣∣∣∣∣∣σV̂h+1
(s, a) + σ̂h(s, a)

∣∣∣ ≤ 1

2

∥∥∥σ2
V̂h+1

− σ̂2
h

∥∥∥
∞
≤ CH,d,κ,K

√
1

K

Therefore, when K ≥ 4C2
H,d,κ,K , CH,d,κ,K

√
1
K ≤ 1/2 ≤ σV̂h+1

(sτh, a
τ
h)/2 and hence

|ητ | ≤

∣∣∣∣∣∣
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)

σV̂h+1
(sτh, a

τ
h)− CH,d,κ,K

K1/2

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)

σV̂h+1
(sτh, a

τ
h)

∣∣∣∣∣∣
≤ 2 sup

V ∈[0,H], s′∼Ph(s,a)

∣∣∣∣r + V (s′)− (ThV ) (s, a)

σV (s, a)

∣∣∣∣ := ξ.

Next, for a fixed function V , we define the Bellman error as Bh(V )(s, a) = rh+V (s′)−(ThV )(s, a),
then

Var [ητ |Fτ−1] =
Var

[
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
∣∣∣Fτ−1

]
σ̂2(sτh, a

τ
h)

=
Var

[
BhV̂h+1(sτh, a

τ
h)− BhV ?h+1(sτh, a

τ
h) + BhV ?h+1(sτh, a

τ
h)
∣∣∣Fτ−1

]
σ̂2(sτh, a

τ
h)

≤
Var

[
BhV ?h+1(sτh, a

τ
h)
∣∣Fτ−1

]
+ 8H

∥∥∥BhV̂h+1 − BhV ?h+1

∥∥∥
∞

σ̂2(sτh, a
τ
h)

≤
Var

[
BhV ?h+1(sτh, a

τ
h)
∣∣Fτ−1

]
+ 16H

∥∥∥V̂h+1 − V ?h+1

∥∥∥
∞

σ̂2(sτh, a
τ
h)

≤
Var

[
BhV ?h+1(sτh, a

τ
h)
∣∣Fτ−1

]
+ Õ(H

3
√
d√

κK
)

σ̂2(sτh, a
τ
h)

=
Var

[
BhV ?h+1(sτh, a

τ
h)
∣∣sτh, aτh]+ Õ(H

3
√
d√

κK
)

σ̂2(sτh, a
τ
h)

=
VarV ?h+1

(sτh, a
τ
h) + Õ(H

3
√
d√

κK
)

σ̂2(sτh, a
τ
h)

≤
2VarV ?h+1

(sτh, a
τ
h) + Õ(H

3
√
d√

κK
)

σ?2(sτh, a
τ
h)

≤ 2 +
Õ(H

3
√
d√

κK
)

σ?2(sτh, a
τ
h)

≤Õ(1)

where the first inequality is by Lemma H.11, the second inequality is by Th is non-expansive,
the third inequality is by Lemma C.8, the next equality is by Markovian property, and the fourth
inequality is by Lemma C.7 and Lemma C.10. The fifth inequality uses definition σh,V (s, a)2 :=

max{1,VarPh(V )(s, a)} and the last one is by condition K ≥ Õ(H6d/κ) and σh,V ?(s, a)2 :=
max{1,VarPh(V ?)(s, a)} ≥ 1. Thus, by Bernstein inequality for self-normalized martingale
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(Lemma H.3),9 with probability 1− δ,∥∥∥∥∥
K∑
τ=1

xτητ

∥∥∥∥∥
Λ̂−1

≤ Õ

(√
d log

(
1 +

K

λd

)
· log

(
4K2

δ

))
+ 4ξ log

(
4K2

δ

)
≤ Õmax

{√
d, ξ
}

where Õ absorbs the constants and Polylog terms.

RecallM1,M2,M3,M4 in List A. Based on the above results, we have the following key lemma:

Lemma C.5. Assume K > max{M1,M2,M3,M4}, for any 0 < λ < κ, suppose
√
d > ξ,

where ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣. Then with probability 1− δ, for all

h, s, a ∈ [H]× S ×A,∣∣∣(ThV̂h+1 − T̂hV̂h+1)(s, a)
∣∣∣ ≤ Õ(√d√φ(s, a)Λ−1

h φ(s, a)

)
+

2H3
√
d

K
,

where Λh =
∑K
τ=1 φ(sτh, a

τ
h)>φ(sτh, a

τ
h)/σ2

V̂h+1
(sτh, a

τ
h)+λI and Õ absorbs the universal constants

and Polylog terms.

Proof of Lemma C.5. Combing equation 9, Lemma C.2, equation 10, Lemma C.3 and C.4 and a
union bound to finish the proof.

C.3 PROOF OF THE FIRST PART OF THEOREM 3.2

Theorem C.6 (First part of Theorem 3.2). Let K be the number of episodes. Suppose
√
d > ξ, where

ξ := supV ∈[0,H], s′∼Ph(s,a), h∈[H]

∣∣∣∣ rh+V (s′)−(ThV )(s,a)

σV (s,a)

∣∣∣∣ and K > max{M1,M2,M3,M4}10.

Then for any 0 < λ < κ, with probability 1 − δ, for all policy π simultaneously, the output π̂ of
Algorithm 1 satisfies

vπ − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ
[(
φ(·, ·)>Λ−1

h φ(·, ·)
)1/2])

+
2H4
√
d

K

where Λh =
∑K
τ=1

φ(sτh,a
τ
h)·φ(sτh,a

τ
h)>

σ2
V̂h+1(sτ

h
,aτ
h
)

+ λId and Õ absorbs the universal constants and the Polylog

terms.

Proof of Theorem C.6. Combing Lemma C.1 and Lemma C.5, we directly have with probability
1− δ, for all policy π simultaneously,

V π1 (s)− V π̂1 (s) ≤ Õ

(
√
d ·

H∑
h=1

Eπ
[(
φ(·, ·)>Λ−1

h φ(·, ·)
)1/2∣∣∣s1 = s

])
+

2H4
√
d

K
, (12)

now take the initial distribution d1 on both sides to get the stated result.

C.4 TWO INTERMEDIATE RESULTS

The next two lemmas provide intermediate results in finishing the whole proofs.

9To be rigorous, Lemma H.3 needs to be modified since the absolute value bound and the variance bound
here are in the high probability sense. However, this will not affect the validity of the result as the weaker version
can also be obtained (see Chung and Lu (2006) and a related discussion in Yin et al. (2021) Remark E.7.) To
make the proof more readable, we do not include them here to avoid over-technicality.

10The definition ofMi is in List A.
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C.4.1 BOUNDING THE VARIANCE

Lemma C.7. Recall the definition σ̂h(·, ·)2 = max{1, V̂arPh V̂h+1(·, ·)} + 1 and σV̂h+1
(·, ·)2 :=

max{1,VarPh V̂h+1(·, ·)} + 1. Moreover,
[
V̂arhV̂h+1

]
(·, ·) =

〈
φ(·, ·), β̄h

〉
[0,(H−h+1)2] −[〈

φ(·, ·), θ̄h
〉

[0,H−h+1]

]2 (where β̄h and θ̄h are defined in Algorithm 1). Let K ≥
max

{
512(1/κ)2 log

(
4Hd
δ

)
, 4λ/κ

}
, then with probability 1− δ,

sup
h
||σ̂2

h − σ2
V̂h+1
||∞ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
+ 12λ

H2
√
d

κK
.

Proof. Step1: we first show for all h, s, a ∈ [H]× S ×A, with probability 1− δ∣∣∣〈φ(s, a), β̄h〉[0,(H−h+1)2] − Ph(V̂h+1)2(s, a)
∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
+4λ

H2
√
d

κK
.

Proof of Step1. Note∣∣∣〈φ(s, a), β̄h〉[0,(H−h+1)2] − Ph(V̂h+1)2(s, a)
∣∣∣ ≤ ∣∣∣〈φ(s, a), β̄h〉 − Ph(V̂h+1)2(s, a)

∣∣∣
=

∣∣∣∣∣φ(s, a)>Σ̄−1
h

K∑
τ=1

φ(s̄τh, ā
τ
h) · V̂h+1(s̄τh+1)2 − Ph(V̂h+1)2(s, a)

∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>Σ̄−1
h

K∑
τ=1

φ(s̄τh, ā
τ
h) · V̂h+1(s̄τh+1)2 − φ(s, a)>

∫
S

(V̂h+1)2(s′)dνh(s′)

∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>Σ̄−1
h

K∑
τ=1

φ(s̄τh, ā
τ
h) · V̂h+1(s̄τh+1)2 − φ(s, a)>Σ̄−1

h (

K∑
τ=1

φ(s̄τh, ā
τ
h)φ(s̄τh, ā

τ
h)> + λI)

∫
S

(V̂h+1)2(s′)dνh(s′)

∣∣∣∣∣
≤

∣∣∣∣∣φ(s, a)>Σ̄−1
h

K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
V̂h+1(s̄τh+1)2 − Ph(V̂h+1)2(s̄τh, ā

τ
h)
)∣∣∣∣∣︸ ︷︷ ︸

1

+λ

∣∣∣∣φ(s, a)>Σ̄−1
h

∫
S

(V̂h+1)2(s′)dνh(s′)

∣∣∣∣︸ ︷︷ ︸
2

For 2 , since K ≥ max
{

512(1/κ)2 log
(

4Hd
δ

)
, 4λ/κ

}
, by Lemma H.6 and a union bound over

h ∈ [H], with probability 1− δ for all h, s, a ∈ [H]× S ×A,

2 ≤λ ‖φ(s, a)‖Σ̄−1
h

∥∥∥∥∫
S

(V̂h+1)2(s′)dνh(s′)

∥∥∥∥
Σ̄−1
h

≤λ 2√
K
‖φ(s, a)‖(Σph)−1

2√
K

∥∥∥∥∫
S

(V̂h+1)2(s′)dνh(s′)

∥∥∥∥
(Σph)−1

≤ 4λ
∥∥(Σph)−1

∥∥ H2
√
d

K
≤ 4λ

H2
√
d

κK
.

(13)

For 1 , we have

1 ≤ ‖φ(s, a)‖Σ̄−1
h

∥∥∥∥∥
K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
V̂h+1(s̄τh+1)2 − Ph(V̂h+1)2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

(14)

Bounding using covering. Note for any fix Vh+1, we can define xτ = φ(s̄τh, ā
τ
h) (‖φ‖2 ≤ 1) and

ητ = Vh+1(s̄τh+1)2 − Ph(Vh+1)2(s̄τh, ā
τ
h) is H2-subgaussian, by Lemma H.2 (where t = K and

L = 1) with probability 1− δ,∥∥∥∥∥
K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄τh+1)2 − Ph(Vh+1)2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ

)

let Nh(ε) be the minimal ε-cover (with respect the supremum norm) of Vh := {Vh : Vh(·) =

maxa∈A

{
min{φ(s, a)>θ − C1

√
d · φ(·, ·)>Λ̂−1

h φ(·, ·)− C2, H − h+ 1}+}
}

. That is, for any
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V ∈ Vh, there exists a value function V ′ ∈ Nh(ε) such that sups∈S |V (s)− V ′(s)| < ε. Now by a
union bound, we obtain with probability 1− δ

sup
Vh+1∈Nh+1(ε)

∥∥∥∥∥
K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
Vh+1(s̄τh+1)2 − Ph(Vh+1)2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ε)|

)
which implies ∥∥∥∥∥

K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
V̂h+1(s̄τh+1)2 − Ph(V̂h+1)2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤

√
8H4 · d

2
log

(
λ+K

λδ
|Nh+1(ε)|

)
+ 4H2

√
ε2K2/λ

choosing ε = d
√
λ/K, applying Lemma B.3 of Jin et al. (2021b)11 to the covering number Nh+1(ε)

w.r.t. Vh+1, we can further bound above by

≤

√
8H4 · d

3

2
log

(
λ+K

λδ
2dHK

)
+ 4H2

√
d2 ≤ 6

√
H4 · d3 log

(
λ+K

λδ
2dHK

)
Apply a union bound for h ∈ [H], we have with probability 1− δ, for all h ∈ [H],∥∥∥∥∥

K∑
τ=1

φ(s̄τh, ā
τ
h) ·

(
V̂h+1(s̄τh+1)2 − Ph(V̂h+1)2(s̄τh, ā

τ
h)
)∥∥∥∥∥

Σ̄−1
h

≤ 6

√
H4d3 log

(
(λ+K)2KdH2

λδ

)
(15)

and similar to 2 , with probability 1− δ for all h, s, a ∈ [H]× S ×A,

‖φ(s, a)‖Σ̄−1
h
≤

2
∥∥(Σph)−1

∥∥1/2

√
K

≤ 2√
κK

. (16)

Combing equation 13, equation 14, equation 15 and equation 16 we obtain with probability 1− δ for
all h, s, a ∈ [H]× S ×A,∣∣∣〈φ(s, a), β̄h〉[0,(H−h+1)2] − Ph(V̂h+1)2(s, a)

∣∣∣ ≤ 12

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
+4λ

H2
√
d

κK
.

Step2: we show for all h, s, a ∈ [H]× S ×A, with probability 1− δ∣∣∣〈φ(s, a), θ̄h〉[0,H−h+1] − Ph(V̂h+1)(s, a)
∣∣∣ ≤ 12

√
H2d3

κK
log

(
(λ+K)2KdH2

λδ

)
+ 4λ

H
√
d

κK
.

(17)

The proof of Step2 follows nearly the identical way as Step1 except V̂ 2
h is replaced by V̂h.

Step3: We prove suph||σ̂2
h − σ2

V̂h
||∞ ≤ 36

√
H4d3

κK log
(

(λ+K)2KdH2

λδ

)
+ 12λH

2
√
d

κK .

Proof of Step3. By equation 17,∣∣∣[〈φ(·, ·), θ̄h
〉

[0,H−h+1]

]2 − [Ph(V̂h+1)(s, a)
]2∣∣∣

=
∣∣∣〈φ(s, a), θ̄h〉[0,H−h+1] + Ph(V̂h+1)(s, a)

∣∣∣ · ∣∣∣〈φ(s, a), θ̄h〉[0,H−h+1] − Ph(V̂h+1)(s, a)
∣∣∣

≤2H ·
∣∣∣〈φ(s, a), θ̄h〉[0,H−h+1] − Ph(V̂h+1)(s, a)

∣∣∣ ≤ 24

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
+ 8λ

H2
√
d

κK
.

11Note the same result in Jin et al. (2021b) applies even though we have an extra constant C2.
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Combining this with Step1 we receive ∀h, s, a ∈ [H]× S ×A, with probability 1− δ∣∣∣∣V̂arhV̂h+1(s, a)−VarPh V̂h+1(s, a)

∣∣∣∣ ≤ 36

√
H4d3

κK
log

(
(λ+K)2KdH2

λδ

)
+ 12λ

H2
√
d

κK
.

Finally, by the non-expansiveness of operator max{1, ·}, we have the stated result.

C.4.2 A CRUDE BOUND ON suph||V ?h − V̂h||∞.

Lemma C.8. Define σ̂h(s, a) =

√
max

{
1, V̂arPh V̂h+1(s, a)

}
+ 1, if K ≥

max{M1,M2,M3,M4} and K > C ·H4κ2, then with probability at least 1− δ,

sup
h

∥∥∥V ?h − V̂h∥∥∥∞ ≤ Õ
(
H2
√
d√

κK

)
.

Proof. Step1: We show with probability at least 1− δ, suph
∥∥V ?h − V π̂h ∥∥∞ ≤ Õ (H2

√
d√

κK

)
.

Indeed, combing Lemma C.1 and Lemma C.5, similar to the proof of Theorem C.6, we directly have
with probability 1− δ, for all policy π simultaneously, and for all s ∈ S, h ∈ [H]

V πh (s)− V π̂h (s) ≤ Õ

(
√
d ·

H∑
t=h

Eπ
[(
φ(·, ·)>Λ−1

t φ(·, ·)
)1/2∣∣∣sh = s

])
+

2H4
√
d

K
, (18)

Next, since K ≥ max
{

512(1/κ)2 log
(

4Hd
δ

)
, 4λ/κ

}
, by Lemma H.6 and a union bound over

h ∈ [H], with probability 1− δ

sup
s,a
‖φ(s, a)‖Λ̂−1

h
≤ 2√

K
sup
s,a
‖φ(s, a)‖Λp−1

h
≤ 2H√

κK
, ∀h ∈ [H].

Lastly, taking π = π? in equation 18 to obtain

0 ≤ V π
?

h (s)− V π̂h (s) ≤Õ

(
√
d ·

H∑
t=h

Eπ?
[(
φ(·, ·)>Λ−1

t φ(·, ·)
)1/2∣∣∣sh = s

])
+

2H4
√
d

K

≤Õ

(
H2
√
d√

κK

)
+

2H4
√
d

K
.

(19)

This implies by using the condition K > C ·H4κ2, we finish the proof of Step1.

Step2: We show with probability 1− δ, suph

∥∥∥V̂h − V π̂h ∥∥∥∞ ≤ Õ (H2
√
d√

κK

)
.

Indeed, applying Extended Value Difference Lemma H.7 for π = π′ = π̂, then with probability 1− δ,
for all s, h ∣∣∣V̂h(s)− V π̂h (s)

∣∣∣ =

∣∣∣∣∣
H∑
t=h

Eπ̂
[
Q̂h(sh, ah)−

(
ThV̂h+1

)
(sh, ah)

∣∣∣sh = s
]∣∣∣∣∣

≤
H∑
t=h

∥∥∥(T̂hV̂h+1 − ThV̂h+1)(s, a)
∥∥∥+ ‖Γh(s, a)‖

≤Õ
(
H
√
d

∥∥∥∥√φ(s, a)Λ−1
h φ(s, a)

∥∥∥∥)+
4H4
√
d

K
≤ Õ

(
H2
√
d√

κK

)
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where the second inequality uses Lemma C.512 and the last inequality follows the same procedure as
Step1.

Step3: Combine Step1 and Step2, by triangular inequality and a union bound we finish the proof of
the lemma.

Remark C.9. Note as an intermediate calculation, equation 19 ensures a learning bound with order
Õ(H

2
√
d√

κK
). Here, the convergence rate is the standard statistical rate 1√

K
and the H2 dependence

is loose. However, the feature dependence
√
d/κ is roughly tight, since, in the well-explored case

(Assumption 2 of Wang et al. (2021a)), κ = 1/d and the
√
d/κ =

√
d2 recovers the optimal feature

dependence dH
√
T in the online setting (Zhou et al., 2021a). If κ� 1/d, then doing offline learning

requires sample size proportional to d/κ, which reveals offline RL is harder when the exploration
of behavior policy is insufficient. When κ = 0, learning the optimal policy accurately cannot be
guaranteed even if the sample/episode size K →∞.

C.5 PROOF OF THE SECOND PART OF THEOREM 3.2

Lemma C.10. Recall σ̂h =

√
max

{
1, V̂arPh V̂h+1

}
+ 1 and σ?h =

√
max

{
1,VarPhV

?
h+1

}
+ 1.

Let K ≥ max
{

512(1/κ)2 log
(

4Hd
δ

)
, 4λ/κ

}
and K ≥ max{M1,M2,M3,M4}, then with prob-

ability 1− δ,

sup
h
||σ̂2

h − σ?2h ||∞ ≤ Õ

(
H3
√
d√

κK

)
.

Proof. By definition and the non-expansiveness of max{1, ·}+ 1, we have∥∥∥σ2
V̂h+1

− σ?2h
∥∥∥
∞
≤
∥∥∥VarV̂h+1 −VarV ?h+1

∥∥∥
∞

≤
∥∥∥Ph (V̂ 2

h+1 − V ?2h+1

)∥∥∥
∞

+
∥∥∥(PhV̂h+1)2 − (PhV ?h+1)2

∥∥∥
∞

≤
∥∥∥V̂ 2

h+1 − V ?2h+1

∥∥∥
∞

+
∥∥∥(PhV̂h+1 + PhV ?h+1)(PhV̂h+1 − PhV ?h+1)

∥∥∥
∞

≤2H
∥∥∥V̂h+1 − V ?h+1

∥∥∥
∞

+ 2H
∥∥∥PhV̂h+1 − PhV ?h+1

∥∥∥
∞
≤ Õ

(
H3
√
d√

κK

)
.

with probability 1− δ for all h ∈ [H], where the last inequality comes from Lemma C.8. Combining
this with Lemma C.7, we have the stated result.

Lemma C.11. Denote the quantities C1 = max{2λ, 128 log(2d/δ), 128H4 log(2d/δ)/κ2} and
C2 = max{ λ2

κ log((λ+K)H/λδ) , 962H12d log((λ + K)H/λδ)/κ5}. Suppose the number of episode
K satisfies K > max{C1, C2}, then with probability 1− δ,√

φ(s, a)Λ−1
h φ(s, a) ≤ 2

√
φ(s, a)Λ?−1

h φ(s, a), ∀s, a ∈ S ×A,

Proof of Lemma C.11. By definition
√
φ(s, a)Λ−1

h φ(s, a) = ‖φ(s, a)‖Λ−1
h

. Then denote

Λ′h =
1

K
Λh, Λ?

′

h =
1

K
Λ?h,

12To be absolutely rigorous, we cannot directly apply Lemma C.5 here since the crude bound has already
been used in Lemma C.4. However, this can be resolved completely by first deriving an even cruder bound for
suph||V ?h − V̂h||∞ that has 1/

√
K rate without using Lemma C.5 (which we call it Lemma C.8∗), and we can

use Lemma C.8∗ to show a similar result Lemma C.5∗. Finally, we can use Lemma C.5∗ here to finish the proof
of this Lemma C.8. However, we avoid explicitly doing this to prevent over-technicality.
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where Λh =
∑K
τ=1 φ(sτh, a

τ
h)>φ(sτh, a

τ
h)/σ2

V ?h+1
(sτh, a

τ
h) + λI . Under the condition of K, by

Lemma C.10, with probability 1− δ∥∥∥Λ?
′

h − Λ′h

∥∥∥ ≤ sup
s,a

∥∥∥∥∥φ(s, a)φ(s, a)>

σ?2h (s, a)
− φ(s, a)φ(s, a)>

σ2
V̂h+1

(s, a)

∥∥∥∥∥
≤ sup

s,a

∣∣∣∣∣σ
?2
h (s, a)− σ2

V̂h+1
(s, a)

σ?2h (s, a)σ2
V̂h+1

(s, a)

∣∣∣∣∣ · ‖φ(s, a)‖2 ≤ sup
s,a

∣∣∣∣∣σ
?2
h (s, a)− σ2

V̂h+1
(s, a)

1

∣∣∣∣∣ · 1
≤ Õ

(
H3
√
d√

κK

)
.

(20)

Next by Lemma H.5 (with φ to be φ/σV ?h+1
and C = 1), it holds with probability 1− δ,∥∥∥∥Λ?

′

h −
(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V ?h+1
(s, a)] +

λ

K
Id

)∥∥∥∥ ≤ 4
√

2√
K

(
log

2d

δ

)1/2

.

Therefore by Weyl’s spectrum theorem and the condition K >
max{2λ, 128 log(2d/δ), 128H4 log(2d/δ)/κ2}, the above implies∥∥∥Λ?

′

h

∥∥∥ =λmax(Λ?
′

h ) ≤ λmax

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V ?h+1
(s, a)]

)
+
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤
∥∥∥Eµ,h[φ(s, a)φ(s, a)>/σ2

V ?h+1
(s, a)]

∥∥∥+
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤‖φ(s, a)‖2 +
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤ 1 +
λ

K
+

4
√

2√
K

(
log

2d

δ

)1/2

≤ 2,

λmin(Λ?
′

h ) ≥λmin

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V ?h+1
(s, a)]

)
+
λ

K
− 4
√

2√
K

(
log

2d

δ

)1/2

≥λmin

(
Eµ,h[φ(s, a)φ(s, a)>/σ2

V ?h+1
(s, a)]

)
− 4
√

2√
K

(
log

2d

δ

)1/2

≥ κ

H2
− 4
√

2√
K

(
log

2d

δ

)1/2

≥ κ

2H2
.

Hence with probability 1 − δ,
∥∥∥Λ?

′

h

∥∥∥ ≤ 2 and
∥∥∥Λ?

′−1
h

∥∥∥ = 1/λmin(Λ?
′

h ) ≤ 2H2/κ. Similarly,∥∥∥Λ
′−1
h

∥∥∥ ≤ 2H2/κ with high probability.

Now apply Lemma H.4 to Λ?
′

h and Λ′h and a union bound, we obtain with probability 1− δ, for all
s, a

‖φ(s, a)‖Λ′−1
h
≤
[
1 +

√∥∥Λ?
′−1
h

∥∥ ∥∥Λ?
′
h

∥∥ · ∥∥Λ′−1
h

∥∥ · ∥∥Λ?
′
h − Λ′h

∥∥] · ‖φ(s, a)‖
Λ?
′−1
h

≤

[
1 +

√
2H2

κ
· 1 · 2H2

κ
·
∥∥Λ?

′
h − Λ′h

∥∥] · ‖φ(s, a)‖
Λ?
′−1
h

≤

1 +

√√√√H4

κ2

[
Õ

(
H3
√
d√

κK

)] · ‖φ(s, a)‖
Λ?
′−1
h

≤ 2 ‖φ(s, a)‖
Λ?
′−1
h

where the third inequality uses equation 20 and the last inequality uses K >

max{ λ2

κ log((λ+K)H/λδ) , 962H12d log((λ+K)H/λδ)/κ5}. The claimed result follows straightfor-

wardly by multiplying 1/
√
K on both sides of the above.
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Proof of Theorem 3.2. The first part of the theorem has been shown in Theorem C.6. For the second
part, apply Theorem C.6 with π = π?, then with probability 1− δ,

vπ
?

− vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ?
[(
φ(·, ·)>Λ−1

h φ(·, ·)
)1/2])

+
2H4
√
d

K
,

Now apply Lemma C.11 and a union bound, with probability 1− δ,

0 ≤ v? − vπ̂ ≤ Õ

(
√
d ·

H∑
h=1

Eπ?
[(
φ(·, ·)>Λ?−1

h φ(·, ·)
)1/2])

+
2H4
√
d

K
.

D PROOF OF THEOREM 3.3

First of all, we show the following lemma.
Lemma D.1. Suppose K > max{M1,M2,M3,M4}. Plug

ΓIh(s, a)← φ(s, a)>

∣∣∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
T̂hV̂h+1

)
(sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣∣∣+Õ(
H3d/κ

K
)

in Algorithm 1 and let Th be the Bellman operator and T̂h be the approximated Bellman operator.
Then we have with probability 1− δ:

|(ThV̂h+1 − T̂hV̂h+1)(s, a)| ≤ ΓIh(s, a), ∀s, a ∈ S ×A.

Proof of Lemma D.1. Suppose wh is the coefficient corresponding to the ThV̂h+1 (such wh exists by
Lemma H.9), i.e. ThV̂h+1 = φ>wh, and recall (T̂hV̂h+1)(s, a) = φ(s, a)>ŵh, then:(
ThV̂h+1

)
(s, a)−

(
T̂hV̂h+1

)
(s, a) = φ(s, a)> (wh − ŵh)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

))
/σ̂2

h(sτh, a
τ
h)

)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(i)

+ φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
T̂hV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(ii)

+ φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

((
T̂hV̂h+1

)
(sτh, a

τ
h)−

(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(iii)

(21)

For term (i), by Lemma C.2 it is bounded by 2λH3
√
d/κ

K with probability 1− δ/2.13

For term (ii), it is bounded by

φ(s, a)>

∣∣∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
T̂hV̂h+1

)
(sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣∣∣ .
13Note Here Lemma C.2 still applies even if the Γh changes since it works for all V̂h ∈ [0, H] so that

‖wh‖2 ≤ 2H
√
d and the truncation (Line 13 in Algorithm 1) guarantees this.
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For term (iii), by Cauchy inequality

φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

((
T̂hV̂h+1

)
(sτh, a

τ
h)−

(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)

≤‖φ(s, a)‖Λ̂−1
h
·

∥∥∥∥∥
K∑
τ=1

φ (sτh, a
τ
h) ·

((
T̂hV̂h+1

)
(sτh, a

τ
h)−

(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

∥∥∥∥∥
Λ̂−1
h

≤ 2H√
κK
·

∥∥∥∥∥
K∑
τ=1

φ (sτh, a
τ
h) ·

((
T̂hV̂h+1

)
(sτh, a

τ
h)−

(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

∥∥∥∥∥
Λ̂−1
h

≤ 2H√
κK
· Õ(

H2
√
d/κ√
K

) ·
√
d = Õ(

H3d/κ

K
)

where the first inequality is by Lemma H.6 (with φ′ = φ/σ̂h and ‖φ/σ̂h‖ ≤ ‖φ‖ ≤ 1 := C) and the
third inequality uses

√
a> ·A · a ≤

√
‖a‖2 ‖A‖2 ‖a‖2 = ‖a‖2

√
‖A‖2 with a to be either φ or wh.

Moreover, λmin(Λ̃ph) ≥ κ/maxh,s,a σ̂h(s, a)2 ≥ κ/H2 implies
∥∥∥(Λ̃ph)−1

∥∥∥ ≤ H2/κ.

The second inequality is true by denoting xτ = φ(sτh, a
τ
h)/σ̂(sτh, a

τ
h) and

ητ =
((
T̂hV̂h+1

)
(sτh, a

τ
h)−

(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂h(sτh, a

τ
h)

and use Lemma H.10 as the condition for applying Lemma H.2. By collecting those three terms
together we have the result.

D.1 PROOF OF THEOREM 3.3

Proof. Use Lemma D.1 as the condition for Lemma C.1 and average over initial distribution d1, we
obtain with probability 1− δ,

vπ − vπ̂ ≤
H∑
h=1

Eπh [φ(s, a)]
>

∣∣∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
T̂hV̂h+1

)
(sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣∣∣+ Õ(
H4d/κ

K
)

(22)

Denote Ah :=
∑K
τ=1

φ(sτh,a
τ
h)·(rτh+V̂h+1(sτh+1)−(ThV̂h+1)(sτh,a

τ
h))

σ̂2
h(sτh,a

τ
h)

, then

Eπh [φ(s, a)]
>

∣∣∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
T̂hV̂h+1

)
(sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣∣∣
≤Eπh [φ]

> ·
∣∣∣Λ̂−1
h Ah

∣∣∣+ Eπh [φ]
>

∣∣∣∣∣∣Λ̂−1
h

K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1 (sτh, a

τ
h)− T̂hV̂h+1 (sτh, a

τ
h)
)

σ̂2
h(sτh, a

τ
h)

∣∣∣∣∣∣
For the second term, it can be bounded similar to term (iii) in Lemma D.1 and for the first term we
have the following:

Eπh [φ]
> ·
∣∣∣Λ̂−1
h Ah

∣∣∣ = Eπh [φ]
> · Λ̂−1

h · Λ̂h
∣∣∣Λ̂−1
h Ah

∣∣∣ ≤ ‖Eπh [φ]‖Λ̂−1
h
·
∥∥∥Λ̂h|Λ̂−1

h Ah|
∥∥∥

Λ̂−1
h

≤‖Eπh [φ]‖Λ̂−1
h
· ‖|Ah|‖Λ̂−1

h
≤ Õ(

√
d) ‖Eπh [φ]‖Λ̂−1

h
≤ Õ(

√
d ‖Eπh [φ]‖Λ−1

h
),

where the first inequality uses Cauchy’s inequality, the second inequality uses Λ̂h is coordinate-wise
positive (since we assume here φ ≥ 0), the third inequality is identical to the analysis in Section C.2.2
and the fourth inequality is identical to the analysis in Section C.2.1 with φ replaced by E[φ]. Plug
this back to equation 22 we finish the proof for the first part. For the second part, converting Λ−1

h to
Λ?−1
h is identical to Section C.5. This finishes the proof.

29



Published as a conference paper at ICLR 2022

E PROOF OF MINIMAX LOWER BOUND THEOREM 3.5

The proof follows the lower bound proof of Zanette et al. (2021). For completeness, we provide all
the details in below.

E.1 CONSTRUCTION

Similar to the proof of [Zanette et al. (2021), Theorem 2], we construct a family of MDPs, each
parameterized by a Boolean vector u = (u1, . . . , uH) with each uh ∈ {−1,+1}d−2 for h ∈ [H].
The MDPs share the same transition kernel and are only different in the reward observations.

State space: At each time step h, there are two states S = {+1,−1}.
Action space: The action space A = {−1, 0,+1}d−2.
Feature map: The feature map φ : S ×A 7→ Rd is given by

φ(+1, a) =

 a√
2d
1√
2

0

 ∈ Rd, φ(−1, a) =

 a√
2d
0
1√
2

 ∈ Rd.

The construction ensures the condition ‖φ(s, a)‖2 ≤ 1 for any (s, a) ∈ S ×A.
Transition kernel: The transition probability Ph(s′ | s, a) is independent of action a. In other

words, the Markov decision process reduces to a homogeneous Markov chain with transition
matrix

P =

(
1
2

1
2

1
2

1
2

)
∈ R2.

By letting

νh(+1) = νh(−1) =

0d−2
1√
2

1√
2

 ∈ Rd,

we have Ph(s′ | s, a) = 〈φ(s, a), νh(s′)〉 to be a valid probability transition.
Reward observations: For any MDP Mu, at each times step h, the reward follows a Gaussian

distribution with

Ru,h(s, a) ∼ N
(
s√
6

+
δ√
2d
〈a, uh〉, 1

)
,

where δ ∈
[
0, 1√

3d

]
determines to what extent the MDP models are different from each

other. The mean reward function satisfies ru,h(s, a) = 〈φ(s, a), θu,h〉 with

θu,h =

 δuh
1√
3

− 1√
3

 ∈ Rd.

Offline data collection Scheme: The dataset D = {(sτh, aτh, rτh, sτh+1)}h∈[H]
τ∈[K] consist of K i.i.d.

trajectories. All the trajectories initiate from uniform distribution. We take a behavior policy
µ(· | s) that is independent of state s. Let {e1, e2, . . . , ed−2} be the canonical bases of
Rd−2 and 0d−2 ∈ Rd−2 be the zero vector. The behavior policy µ is set as

µ(ej | s) = 1
d for any j ∈ [d− 2] and µ(0d−2 | s) = 2

d .

E.2 OVERVIEW OF PROOF

The proof of the theorem is based on Assouad’s method, where we first reduce the problem to binary
hypothesis tests (Lemmas E.1 and E.2) and then connect the testing error to the uncertainty quantity
in the upper bound (Lemma E.3).
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Lemma E.1 (Reduction to testing). There exists a universal constant c1 > 0 such thata

inf
π̂

max
u∈U

Eu
[
V ?u − V π̂u

]
≥ c1 δ

√
dH min

u,u′∈U :DH(u′;u)=1
inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
, (23)

where π̂ denotes the output of any algorithm that maps from observations to an estimated policy. ψ is
any test function for parameter u and DH is the hamming distance.

Lemma E.2. There exists a universal constant c2 > 0 such that when taking δ := c2 d√
K

, we have

min
u,u′∈U :DH(u′;u)=1

inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
≥ 1

2
. (24)

When K & d3, δ := c2 d√
K

ensures that δ ≤ 1/
√

3d. Combining Lemmas E.1 and E.2 yields a lower
bound

inf
π̂

max
u∈U

Eu
[
V ?u − V π̂u

]
≥ c d

√
dH√
K

, (25)

where c > 0 is a universal constant. We then use the following Lemma E.3 to connect the above
lower bound to the uncertainty term

√
d ·
∑H
h=1

√
Eπ? [φ]>(Λ?h)−1Eπ? [φ] for the chosen linear MDP

instances classM.

Lemma E.3. There exists a universal constant c3 > 0 such that for all M ∈M,

H∑
h=1

√
Eπ? [φ]>(Λ?h)−1Eπ? [φ] ≤ c3

dH√
K
. (26)

Plugging inequality equation E.3 into the bound equation 25, we obtain the minimax lower bound equa-
tion 6 in the statement of theorem.

E.3 REDUCTION TO TESTING VIA ASSOUAD’S METHOD

Proof of Lemma E.1. For any index vector u = (u1, . . . , uH) ∈ U = {−1,+1}(d−2)×H , the optimal
policy for MDP instance Mu is simply

π?h(·) = uh for h ∈ [H].

Similar to the proof of Lemma 9 in Zanette et al. (2021), we can show that the value suboptimality of
policy π on MDP Mu is given by

V ?u − V πu =
δ√
2d

H∑
h=1

∥∥uh − Eπ[ah]
∥∥

1
.

Define uπ = (uπ1 , . . . , u
π
H) with uπh := sign

(
Eπ[ah]

)
, then the `1-norm is lower bounded as∥∥uh − Eπ[ah]

∥∥
1
≥ DH(uπh;uh),

where DH(·; ·) denotes the Hamming distance. It follows that

V ?u − V πu ≥
δ√
2d
DH(uπ;u). (27)

We then apply Assouad’s method (Lemma 2.12 in Sampson and Guttorp (1992)) and obtain that

inf
û∈U

max
u∈U

Eu
[
DH(û;u)

]
≥ (d− 2)H

2
min

u,u′∈U :DH(u′;u)=1
inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
, (28)

where ψ is any test functions mapping from observations to {u, u′}. Combining inequalities equa-
tion 27 and equation 28, we finish the proof.
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E.4 LOWER BOUND ON THE TESTING ERROR

Proof of Lemma E.2. The proof of Lemma E.2 is similar to that of Lemma 10 in Zanette et al. (2021).
We first apply Theorem 2.12 in Sampson and Guttorp (1992) to lower bound the testing error using
Kullback–Leibler divergence and obtain

min
u,u′∈U :DH(u′;u)=1

inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
≥ 1−

(
1
2 max
u,u′∈U :DH(u′;u)=1

DKL(Qu‖Qu′)
)1/2

.

(29)

It only remains to estimate DKL(Qu‖Qu′).

The probability density Qu takes the form

Qu(D) =

K∏
k=1

ξ1(sk1)

H∏
h=1

µ
(
akh | skh)

[
Ru,h(skh, a

k
h)
]
(rkh) Ph(skh+1 | skh, akh)

where ξ1 =
[

1
2 ,

1
2

]
is the initial distribution. It follows that

DKL(Qu‖Qu′) = Eu
[

log(Qu/Qu′)
]

= K ·
H∑
h=1

Eu
[

log
([
Ru,h(s1

h, a
1
h)
]
(r1
h)
/[
Ru′,h(s1

h, a
1
h)
]
(r1
h)
)]

=
K

d

d−2∑
j=1

DKL

(
N
(

δ√
2d
〈ej , uh〉, 1

) ∥∥∥ N ( δ√
2d
〈ej , u′h〉, 1

))
.

If we take δ = c2 d√
K

, then inequality equation 29 ensures inequality equation 24, as claimed in the
statement of the lemma.

E.5 CONNECTION TO THE UNCERTAINTY TERM

Proof of Lemma E.3. We first calculate the explicit form of the inverse of variance-rescaled covari-
ance matrix Λ?,ph . For each time step h ∈ [H], the value function V ?u,h+1 takes the form

V ?u,h+1 = Eπ?ru,h+1 +
(
Pπ

?

h+1V
?
u,h+2

)
.

Since
(
Ph+1V

?
u,h+2

)
(+1) =

(
Ph+1V

?
u,h+2

)
(−1) and ru,h+1(+1, a)− ru,h+1(−1, a) = 2/

√
6, we

have

VarPh(V ?u,h+1)(+1, a) = VarPh(Eπ?ru,h+1)(+1, a) =
1

6
.

Similarly,

VarPh(V ?u,h+1)(−1, a) = VarPh(V ?u,h+1)(+1, a) =
1

6
.

By routine calculation, we find that the population-level rescaled covariance matrix takes the form

Λ?,ph =
3K

2

(
2
d2 Id−2

1
d
√
d
1(d−2)×2

1
d
√
d
12×(d−2) I2

)
∈ Rd×d

for any h ∈ [H]. Applying Gaussian elimination on Λ?,ph , we have

(Λ?,ph )−1 =
2

3K

d2

2

{
Id−2 + 1

d−21(d−2)×(d−2)

}
− d

√
d

2(d−2)1(d−2)×2

− d
√
d

2(d−2)12×(d−2)
1
d−2

(
d− 1 1

1 d− 1

) .
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For each time step h ∈ [H], we have (by Jensen’s inequality)√
Eπ? [φ]>(Λ?h)−1Eπ? [φ] ≤ 1

2

∥∥φ(+1, uh)
∥∥

(Λ?,ph )−1 +
1

2

∥∥φ(−1, uh)
∥∥

(Λ?,ph )−1 .

Recall that by our construction,

φ(+1, uh) =

 uh√
2d
1√
2

0

 ∈ Rd, φ(−1, uh) =

 uh√
2d
0
1√
2

 ∈ Rd.

It follows that∥∥φ(+1, uh)
∥∥2

(Λ?,ph )−1 =
∥∥φ(−1, uh)

∥∥2

(Λ?,ph )−1

=
2

3K

{
d

4
u>h
{
Id−2 + 1

d−21(d−2)×(d−2)

}
uh −

d

2(d− 2)
1>d−2uh +

d− 1

2(d− 2)

}
=

2

3K

{
d2

4
+

d

4(d− 2)

(
1− 1>d−2uh

)2
+

1

4

}
≤ 2

3K

{
d2

4
+
d(d− 1)2

4(d− 2)
+

1

4

}
=

2

3K

{
d2

2
+

d− 1

2(d− 2)

}
. d2/K.

Therefore, √
Eπ? [φ]>(Λ?h)−1Eπ? [φ] . d/

√
K.

Taking the summation over h ∈ [H], we obtain the bound equation 26 as claimed in the lemma
statement.

F A NUMERICAL SIMULATION

F.1 A LINEAR MDP CONSTRUCTION

We consider a synthetic linear MDP example that is similar to Min et al. (2021) but with some
modifications for the offline learning task. The MDP instance we use consists of |S| = 2 states and
|A| = 100 actions, and feature dimension d = 100. We set S = {0, 1} and A = {0, 1, . . . , 99}
respectively. For each action a ∈ {0, 1, . . . , 99}, we use binary encoding to obtain a vec-
tor a ∈ R8 using its binary representation (i.e. each coordinate is either 0 or 1). we inter-
changebly use a and and its vector representation a for the ease of explanation. We first define

δ(s, a) =

{
1 if 1{s = 0} = 1{a = 0}
0 otherwise

, then the non-stationary linear MDP is specified by the

following configuration

• Feature mapping:
φ(s, a) =

(
a>, δ(s, a), 1− δ(s, a)

)> ∈ R10

• The true measure νh

νh(s) = (0, . . . , 0, (1− s)⊕ αh, s⊕ αh) ,

where {αh}h∈[H] is a sequence of integers taking values 0 or 1 and ⊕ is the standard XOR
operator. We define

θh ≡ (0, . . . , 0, r, 1− r) ∈ R10

with the choice of r = 0.9. The transition follows Ph(s′|s, a) = 〈φ(s, a), νh(s′)〉 and the
mean reward function rh(s, a) = 〈φ(s, a), θh〉.

• Behavior policy: always choose action a = 0 with probability p, and other actions uniformly
with probability (1 − p)/99. The initial distribution chooses s = 0 and s = 1 with equal
probability 1/2. We use p = 0.6.
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Figure 1: Comparison between PEVI and VAPVI in the non-stationary linear MDP instance described
above. In each figure, y-axis denotes suboptimality gap v? − vπ̂ , x-axis denotes number of episodes
K. The problem horizons are fixed to be H = 20, 30, 50. The solid line denotes the average
suboptimality gap over 50 trials and the error bar area is the corresponding standard deviation. The
range of K is from 5 to 1000.

F.2 EMPIRICAL COMPARISON BETWEEN PEVI AND VAPVI ON THE CONSTRUCTED LINEAR
MDP

We compare Pessimistic Value Iteration (PEVI) in Jin et al. (2021b) and our VAPVI Algorithm 1 in
Figure 1, with horizon to be H = 20, 30, 50. In addition, we add the non-pessimistic version for both
algorithms, i.e. least-square value iteration (LSVI) and variance-aware value iteration (VAVI). The
true optimal value v? is computed via value iteration using the underlying transition kernels. For
the empirical validation of VAPVI, we do not split the data and, in particular, in all the methods we
choose λ = 0.01 (instead of λ = 1 used in theory (Jin et al., 2021b) which causes over-regularization
in the simulation).

We can observe VAPVI outperforms PEVI and the gap becomes larger when horizon H increases.
One main reason for this to happen is due to the bonus used in PEVI (Jin et al., 2021b)

O

[
dH ·

(
φ(·, ·)>Σ−1

h φ(·, ·)
)1/2

]
is overly pessimistic comparing to our

O

[√
d ·
(
φ(·, ·)>Λ−1

h φ(·, ·)
)1/2

]
when H becomes larger and this could potentially make the learning less accurate. In addition, both
non-pessimistic algorithms exhibit similar accuracy, and this is partially owing to our truncation
scheme σ̂h(·, ·)2 ← max{1, V̂arPh V̂h+1(·, ·)} so σ̂h(·, ·)2 will just be 1 when the estimated variance
is small. Lastly, variance-aware pessimism eventually outperforms non-pessimism algorithms when
sample size is large and this might come from that the pessimistic bonus is estimated more accurately
when more samples are collected.

G SOME MISSING DERIVATIONS AND DISCUSSIONS

G.1 REGARDING COVERAGE ASSUMPTION

Now we discuss the feature coverage assumption. Indeed, even if Assumption 2.2 is not satisfied,
we can still learn in the effective subspan of Σph := Eµ,h

[
φ(s, a)φ(s, a)>

]
. Concretely, since Σph is

symmetric, by orthogonal decomposition we have Σph = ZhΛZ>h , where Zh (can be estimated using
the samples for practical purpose) consists of orthogonal basis and Λ consists of eigenvalues of Σph in
the diagonal. Suppose we do not have a full coverage, i.e.

Λ = diag[λ1, λ2, ..., λd′ , 0, ..., 0] with d′ < d,

then we can create transformed features φ′h(s, a) = Zh · φh(s, a), and then

Eµ,h
[
φ′h(s, a)φ′h(s, a)>

]
= Λ = diag[λ1, λ2, ..., λd′ , 0, ..., 0].

Then we can do learning w.r.t. the truncated features φ′h|1:d′ ’s instead of the original φ. It reduces to
the weaker notion of κ := minh∈[H]{κh : s.t. κh = smallest positive eigenvalue at time h}.
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G.2 DERIVATION OF EQUATION 5

When reducing Theorem 3.2,3.3 to the tabular case, set φ(s, a) = 1s,a, d = SA, λ = 0, and recall
by Assumption 3.4 (let’s assume π? is a deterministic policy as it always exists in tabular MDP)
C? := suph,s,a d

π?

h (s, a)/dµh(s, a), then for Theorem 3.2

√
d ·

H∑
h=1

Eπ?
[√

φ(·, ·)>Λ?−1
h φ(·, ·)

]
=
√
d ·

H∑
h=1

∑
s,a

dπ
?

h (s, a)
√

1>s,aΛ?−1
h 1s,a

=
√
SA ·

H∑
h=1

∑
s,a

dπ
?

h (s, a)

√
1>s,adiag

{
VarP·,·(V

?
h+1)

nh,·,·

}
1s,a

=
√
SA ·

H∑
h=1

∑
s,a

dπ
?

h (s, a)

√
VarPs,a(V ?h+1)

nh,s,a
nh,s,a :=

K∑
τ=1

1[sτh, a
τ
h = s, a]

.
√
SA ·

H∑
h=1

∑
s,a

dπ
?

h (s, a)

√
VarPs,a(V ?h+1)

K · dµh(s, a)
≤
√
SAC?/K ·

H∑
h=1

∑
s,a

√
dπ

?

h (s, a)VarPs,a(V ?h+1)

=
√
SAC?/K ·

H∑
h=1

∑
s

√
dπ

?

h (s, π?(s))VarPs,π?(s)(V
?
h+1)

≤
√
SAC?/K ·

H∑
h=1

√
S ·
∑
s

dπ
?

h (s, π?(s))VarPs,π?(s)(V
?
h+1)

≤
√
S2AC?/K ·

√√√√H

H∑
h=1

∑
s

dπ
?

h (s, π?(s))VarPs,π?(s)(V
?
h+1)

=
√
S2AC?/K ·

√√√√H ·
H∑
h=1

Eπ?
h
[VarP(·,·)(V

?
h+1)] ≤

√
H3S2AC?/K

where the first inequality is by Chernoff bound and the last one is by Lemma 3.4. of Yin and Wang
(2020) (Law of total variances). The rest of them are from Cauchy’s inequality. Similarly, for
Theorem 3.3, we also have

√
d ·

H∑
h=1

√
Eπ? [φ]>Λ?−1

h Eπ? [φ] =
√
d ·

H∑
h=1

√
Vec{dπ?}Λ?−1

h Vec{dπ?}

=
√
d ·

H∑
h=1

√
Vec{dπ?}diag

{
VarP·,·(V

?
h+1)

nh,·,·

}
Vec{dπ?}

=
√
SA ·

H∑
h=1

√√√√∑
s,a

dπ
?

h (s, a)2
VarPs,a(V ?h+1)

nh,s,a

.
√
SA ·

H∑
h=1

√√√√∑
s,a

dπ
?

h (s, a)2
VarPs,a(V ?h+1)

K · dµh(s, a)

≤
√
SAC?/K ·

H∑
h=1

√∑
s,a

dπ
?

h (s, a)VarPs,a(V ?h+1)

=
√
SAC?/K ·

H∑
h=1

√∑
s

dπ
?

h (s, π?(s))VarPs,π?(s)(V
?
h+1)

≤
√
SAC?/K ·

√√√√H ·
H∑
h=1

Eπ?
h
[VarP(·,·)(V

?
h+1)] ≤

√
H3SAC?/K.
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H AUXILIARY LEMMAS

Lemma H.1 (Matrix McDiarmid inequality / Matrix Chernoff bound (Tropp, 2012)). Let zk, k =
1, . . . ,K be independent random vectors in Rd, and let H be a mapping that maps K vectors to a
d× d symmetric matrix. Assume there exists a sequence of fixed symmetric matrices {Ak}k∈[K] such
that for zk, z′k ranges over all possible values for each k ∈ [K], it holds

(H(z1, . . . , zk, . . . , zK)−H(z1, . . . , z
′
k, . . . , zK))2 � A2

k.

Define σ2 :=
∥∥∑

k A
2
k

∥∥. Then for any t > 0,

P {‖H(z1, . . . , zK)− EH(z1, . . . , zK)‖ ≥ t} ≤ d · exp

(
−t2

8σ2

)
Lemma H.2 (Hoeffding inequality for self-normalized martingales (Abbasi-Yadkori et al., 2011)).
Let {ηt}∞t=1 be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-
measurable. Assume ηt also satisfies ηt given Ft−1 is zero-mean and R-subgaussian, i.e.

∀λ ∈ R, E
[
eληt | Ft−1

]
≤ eλ

2R2/2

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ‖xt‖ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

>
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
2

Λ−1
t

≤ 8R2 · d
2

log

(
λ+ tL

λδ

)
.

Lemma H.3 (Bernstein inequality for self-normalized martingales (Zhou et al., 2021a)). Let {ηt}∞t=1
be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable.
Assume ηt also satisfies

|ηt| ≤ R,E [ηt | Ft−1] = 0,E
[
η2
t | Ft−1

]
≤ σ2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ‖xt‖ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

>
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
Λ−1
t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
Lemma H.4 (Converting the variance under the matrix norm). Let Λ1 and Λ2 ∈ Rd×d are two
positive semi-definite matrices. Then:∥∥Λ−1

1

∥∥ ≤ ∥∥Λ−1
2

∥∥+
∥∥Λ−1

1

∥∥ · ∥∥Λ−1
2

∥∥ · ‖Λ1 − Λ2‖
and

‖φ‖Λ−1
1
≤
[
1 +

√∥∥Λ−1
2

∥∥ ‖Λ2‖ ·
∥∥Λ−1

1

∥∥ · ‖Λ1 − Λ2‖
]
· ‖φ‖Λ−1

2
.

for all φ ∈ Rd.

Proof. For the first part, note∥∥Λ−1
1

∥∥ ≤ ∥∥Λ−1
2

∥∥+
∥∥Λ−1

1 − Λ−1
2

∥∥ ≤ ∥∥Λ−1
2

∥∥+
∥∥Λ−1

2

∥∥ ‖Λ1 − Λ2‖
∥∥Λ−1

1

∥∥
For the second one,

‖φ‖Λ−1
1

=

√
φ>Λ−1

1 φ =
√
φ>
(
Λ−1

1 − Λ−1
2

)
φ+ φ>Λ−1

2 φ

=

√
φ>Λ

−1/2
2

(
Λ

1/2
2 Λ−1

1 Λ
1/2
2 − I + I

)
Λ
−1/2
2 φ ≤

√
‖φ‖Λ−1

2
·
(

1 +
∥∥∥Λ

1/2
2 Λ−1

1 Λ
1/2
2 − I

∥∥∥) ‖φ‖Λ−1
2

≤
(

1 +
∥∥∥Λ

1/2
2 Λ−1

1 Λ
1/2
2 − I

∥∥∥1/2
)
· ‖φ‖Λ−1

2
=

(
1 +

∥∥∥Λ
1/2
2 Λ−1

1 (Λ2 − Λ1) Λ−1
2 Λ

1/2
2

∥∥∥1/2
)
· ‖φ‖Λ−1

2

≤
(

1 +
√
‖Λ2‖

∥∥Λ−1
1

∥∥ ∥∥Λ−1
2

∥∥ ‖Λ1 − Λ2‖
)
· ‖φ‖Λ−1

2
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Lemma H.5 (Lemma H.4 of Min et al. (2021)). let φ : S × A → Rd satisfies ‖φ(s, a)‖ ≤ C for
all s, a ∈ S × A. For any K > 0, λ > 0, define ḠK =

∑K
k=1 φ(sk, ak)φ(sk, ak)> + λId where

(sk, ak)’s are i.i.d samples from some distribution ν. Then with probability 1− δ,∥∥∥∥ ḠKK − Eν
[
ḠK
K

]∥∥∥∥ ≤ 4
√

2C2

√
K

(
log

2d

δ

)1/2

.

Proof of Lemma H.5. For completeness, we provide the proof of Lemma H.5. Let xk = φ(sk, ak).
Denote Σ̃h as the matrix obtained by replacing the k-th vector xk in Σ̂h by x̃k and leaving the rest
K − 1 vectors unchanged. Then(

Σ̂h
K
− Σ̃h
K

)2

=

(
xkx

>
k − x̃kx̃>k
K

)
� 1

K2

(
2xkx

>
k xkx

>
k + 2x̃kx̃

>
k x̃kx̃

>
k

)
� 4C4

K2
Id := A2

k.

Notice that
∥∥∥∑K

k A
2
k

∥∥∥ = 4C4

K , by Lemma H.1 we have the result.

Lemma H.6 (Lemma H.5. of Min et al. (2021)). Let φ : S × A → Rd be a bounded function s.t.
‖φ‖2 ≤ C. Define ḠK =

∑K
k=1 φ(sk, ak)φ(sk, ak)> + λId where (sk, ak)’s are i.i.d samples from

some distribution ν. Let G = Eν [φ(s, a)φ(s, a)>]. Then for any δ ∈ (0, 1), if K satisfies

K ≥ max

{
512C4

∥∥G−1
∥∥2

log

(
2d

δ

)
, 4λ

∥∥G−1
∥∥} .

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

‖u‖Ḡ−1
K
≤ 2√

K
‖u‖G−1 .

Lemma H.7 (Extended Value Difference (Section B.1 in Cai et al. (2020))). Let π = {πh}Hh=1 and
π′ = {π′h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions. Then define
V̂h(s) := 〈Q̂h(s, ·), πh(· | s)〉 for all s ∈ S. Then for all s ∈ S,

V̂1(s)− V π
′

1 (s) =

H∑
h=1

Eπ′
[
〈Q̂h (sh, ·) , πh (· | sh)− π′h (· | sh)〉 | s1 = s

]
+

H∑
h=1

Eπ′
[
Q̂h (sh, ah)−

(
ThV̂h+1

)
(sh, ah) | s1 = s

] (30)

where (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS .

Proof. Denote ξh = Q̂h − ThV̂h+1. For any h ∈ [H], we have

V̂h − V π
′

h = 〈Q̂h, πh〉 − 〈Qπ
′

h , π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Q̂h −Qπ
′

h , π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Ph(V̂h+1 − V π
′

h+1) + ξh, π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Ph(V̂h+1 − V π
′

h+1), π′h〉+ 〈ξh, π′h〉

recursively apply the above for V̂h+1 − V π
′

h+1 and use the Eπ′ notation (instead of the inner product
of Ph, π′h) we can finish the prove of this lemma.

Lemma H.8. Let π̂ = {π̂h}Hh=1 and Q̂h(·, ·) be the arbitrary policy and Q-function and also
V̂h(s) = 〈Q̂h(s, ·), π̂h(·|s)〉 ∀s ∈ S. and ζh(s, a) := (ThV̂h+1)(s, a) − Q̂h(s, a) (element-wisely)
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to be the Bellman update error. Then for any arbitrary π, we have

V π1 (s)− V π̂1 (s) =

H∑
h=1

Eπ [ζh(sh, ah) | s1 = s]−
H∑
h=1

Eπ̂ [ζh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ
[
〈Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)〉 | s1 = x

]
where the expectation are taken over sh, ah.

Proof. Note the gap can be rewritten as

V π1 (s)− V π̂1 (s) = V π1 (s)− V̂1(s) + V̂1(s)− V π̂1 (s).

By Lemma H.7 with π = π̂, π′ = π, we directly have

V π1 (s)−V̂1(s) =

H∑
h=1

Eπ [ζh(sh, ah) | s1 = s]+

H∑
h=1

Eπ
[
〈Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)〉 | s1 = s

]
(31)

Next apply Lemma H.7 again with π = π′ = π̂, we directly have

V̂1(s)− V π̂1 (s) = −
H∑
h=1

Eπ̂ [ζh(sh, ah) | s1 = s] . (32)

Combine the above two results we prove the stated result.

Lemma H.9. For a linear MDP, for any 0 ≤ V (·) ≤ H , then there exists a wh ∈ Rd s.t. ThV =

〈φ,wh〉 and ‖wh‖2 ≤ 2H
√
d for all h ∈ [H]. Here Th(V )(s, a) = rh(x, a) + (PhV )(s, a).

Similarly, for any π, there exists wπh ∈ Rd, such that Qπh = 〈φ,wπh〉 with ‖wπh‖2 ≤ 2(H − h+ 1)
√
d.

Proof. By definition,

ThV = rh + (PhV ) = 〈φ, θh〉+ 〈φ,
∫
S
V (s)dνh(s)〉

⇒ wh = θh +

∫
S
V (s)dνh(s),

therefore ‖wh‖2 ≤ ‖θh‖2 + H · ‖νh(S)‖ ≤ 1 + H
√
d ≤ 2H

√
d. The proof of the second part is

similar by backward induction and the fact V πh ≤ H − h+ 1 for any π.

Lemma H.10. For any pessimistic bonus design Γh, suppose K > max{M1,M2,M3,M4}, then
with probability 1− δ, Algorithm 1 yields

∥∥∥ThV̂h+1 − T̂hV̂h+1

∥∥∥
∞
≤ Õ(

H2
√
d/κ√
K

)
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Proof of Lemma H.10. Suppose wh is the coefficient corresponding to the ThV̂h+1 (such wh exists
by Lemma H.9), i.e. ThV̂h+1 = φ>wh, and recall (T̂hV̂h+1)(s, a) = φ(s, a)>ŵh, then:(
ThV̂h+1

)
(s, a)−

(
T̂hV̂h+1

)
(s, a) = φ(s, a)> (wh − ŵh)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

))
/σ̂2

h(sτh, a
τ
h)

)

=φ(s, a)>wh − φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
ThV̂h+1

)
(sτh, a

τ
h) /σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(i)

+ φ(s, a)>Λ̂−1
h

(
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

)
︸ ︷︷ ︸

(ii)

.

(33)

For term (i), it is bounded by 2λH3
√
d/κ

K with probability 1− δ by Lemma C.2.

For term (ii), by Cauchy inequality it is bounded by

‖φ(s, a)‖Λ̂−1
h
·

∥∥∥∥∥
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

∥∥∥∥∥
Λ̂−1
h

≤ 2H√
κK

∥∥∥∥∥
K∑
τ=1

φ (sτh, a
τ
h) ·

(
rτh + V̂h+1

(
sτh+1

)
−
(
ThV̂h+1

)
(sτh, a

τ
h)
)
/σ̂2

h(sτh, a
τ
h)

∥∥∥∥∥
Λ̂−1
h

≤ 2H√
κK
· Õ(H

√
d) = Õ(

H2
√
d/κ√
K

),

where the first inequality is by Lemma H.6 (with φ′ = φ/σ̂h and ‖φ/σ̂h‖ ≤ ‖φ‖ ≤ 1 := C)
and the third inequality uses

√
a> ·A · a ≤

√
‖a‖2 ‖A‖2 ‖a‖2 = ‖a‖2

√
‖A‖2 with a to be either

φ or wh. Moreover, λmin(Λ̃ph) ≥ κ/maxh,s,a σ̂h(s, a)2 ≥ κ/H2 implies
∥∥∥(Λ̃ph)−1

∥∥∥ ≤ H2/κ.

The second inequality comes from Lemma H.2 with R = H since |ητ | = |(rτh + V̂h+1

(
sτh+1

)
−

(ThV̂h+1)(sτh, a
τ
h))/σ̂h(sτh, a

τ
h)| ≤ H and |xτ | = |φ(sτh, a

τ
h)/σ̂h(sτh, a

τ
h)| ≤ 1.

The final result is obtained by absorbing the term (i) via the condition K >
max{M1,M2,M3,M4}.

Lemma H.11. Suppose random variables ‖X‖∞ ≤ 2H , ‖Y ‖∞ ≤ 2H , then

|Var(X)−Var(Y )| ≤ 8H · ‖X − Y ‖∞ .

Proof of Lemma H.11.

|Var(X)−Var(Y )| =|E[X2]− E[Y 2]− (E[X]2 − E[Y ]2)| = |E[(X + Y )(X − Y )]− (E[X + Y ])(E[X − Y ])|
≤E[|X + Y | · |X − Y |] + 4H · ‖X − Y ‖∞
≤4HE[|X − Y |] + 4H · ‖X − Y ‖∞ = 8H · ‖X − Y ‖∞ .

39


	Introduction
	Related works
	Our contribution

	Preliminaries 
	Problem settings
	Assumptions

	Algorithm
	Variance-Aware Pessimistic Value Iteration
	Main result
	VAPVI-Improved: Further improvement in state-action dimension

	Proof Overview
	Discussion and Conclusion
	Notation List
	Extended Literature Review
	Linear model representation and its extension in online RL
	Existing results in offline RL with model representations

	Proofs in Section 3.2
	Some preparations
	Bounding |(Th V"0362Vh+1)(s, a)-(T"0362Th V"0362Vh+1)(s, a)|.
	Analyzing the term (s,a)"0362h-1(s,a)
	Analyzing the term =1K x"0362-1

	Proof of the first part of Theorem 3.2
	Two Intermediate results
	Bounding the variance
	A crude bound on suphVh-V"0362Vh.

	Proof of the second part of Theorem 3.2

	Proof of Theorem 3.3
	Proof of Theorem 3.3

	Proof of Minimax Lower bound Theorem 3.5 
	Construction
	Overview of proof
	Reduction to testing via Assouad's method
	Lower bound on the testing error
	Connection to the uncertainty term

	A Numerical Simulation
	A Linear MDP construction
	Empirical comparison between PEVI and VAPVI on the constructed linear MDP

	Some missing derivations and discussions
	Regarding coverage assumption
	Derivation of equation 5

	Auxiliary Lemmas

