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Abstract
By jointly learning multiple tasks, multi-task
learning (MTL) can leverage the shared knowl-
edge across tasks, resulting in improved data effi-
ciency and generalization performance. However,
a major challenge in MTL lies in the presence of
conflicting gradients, which can hinder the fair
optimization of some tasks and subsequently im-
pede MTL’s ability to achieve better overall per-
formance. Inspired by fair resource allocation
in communication networks, we formulate the
optimization of MTL as a utility maximization
problem, where the loss decreases across tasks are
maximized under different fairness measurements.
To address the problem, we propose FairGrad, a
novel optimization objective. FairGrad not only
enables flexible emphasis on certain tasks but also
achieves a theoretical convergence guarantee. Ex-
tensive experiments demonstrate that our method
can achieve state-of-the-art performance among
gradient manipulation methods on a suite of multi-
task benchmarks in supervised learning and rein-
forcement learning. Furthermore, we incorporate
the idea of α-fairness into the loss functions of var-
ious MTL methods. Extensive empirical studies
demonstrate that their performance can be signif-
icantly enhanced. Code is available at https:
//github.com/OptMN-Lab/fairgrad.

1. Introduction
By aggregating labeled data for various tasks, multi-task
learning (MTL) can not only capture the latent relationship
across tasks but also reduce the computational overhead
compared to training individual models for each task (Caru-
ana, 1997; Evgeniou & Pontil, 2004; Thung & Wee, 2018).
As a result, MTL has been successfully applied in various
fields like natural language processing (Liu et al., 2016a;
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Zhang et al., 2023; Radford et al., 2019), computer vision
(Zhang et al., 2014; Dai et al., 2016; Vandenhende et al.,
2021), autonomous driving (Chen et al., 2018a; Ishihara
et al., 2021; Yu et al., 2020a), and recommendation systems
(Bansal et al., 2016; Li et al., 2020; Wang et al., 2020a).
Research has shown that MTL is capable of learning robust
representations, which in turn helps avoid overfitting certain
individual tasks (Lounici et al., 2009; Zhang & Yang, 2021;
Ruder, 2017; Liu et al., 2016b), and hence often achieves
better generalization than the single-task counterparts.

MTL often solves the average loss across tasks in many real-
world scenarios. However, it has been shown that there may
exist conflicting gradients (Yu et al., 2020b; Liu et al., 2021;
Wang et al., 2020b; Sener & Koltun, 2018) among tasks that
exhibit different directions and magnitudes. If directly opti-
mizing the average loss, the final update direction will often
be dominated by the largest gradient, which can degrade
the overall performance of MTL. To alleviate this negative
impact, a series of gradient manipulation methods have been
proposed to find a compromised direction (Désidéri, 2012;
Chen et al., 2018b; Yu et al., 2020b; Liu et al., 2021; Navon
et al., 2022; Xiao et al., 2023; Liu et al., 2023). In this paper,
we view these methods from a novel fairness perspective.
For example, MGDA (Désidéri, 2012) and its variants such
as (Xiao et al., 2023; Fernando et al., 2022; Liu et al., 2021;
2023) tends to strike a max-min fairness among tasks, where
the least-fortune tasks (i.e., with the lowest progress) are
the most important. Nash-MTL (Navon et al., 2022) aims
to achieve proportional fairness among tasks by formulat-
ing the problem as a bargaining game, attaining a balanced
solution that is not dominated by any single large gradient.

However, different applications may favor different types of
task fairness, and there is currently no unified framework
in MTL that allows for the incorporation of diverse fairness
concepts beyond those previously mentioned. To fill this
gap, we propose a novel fair MTL framework, as well as ef-
ficient algorithms with performance guarantee. Our specific
contributions are summarized below.

• We first draw an important connection between MTL
and fair resource allocation in communication net-
works (Jain et al., 1984; Kelly, 1997; Mo & Walrand,
2000; Radunovic & Le Boudec, 2007; Srikant & Ying,
2013; Ju & Zhang, 2014; Liu & Xia, 2015), where we
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think of the common search direction d shared by all
tasks as a resource to minimize their losses, and the
service quality is measure by the loss decrease after
performing a gradient descent along d. Inspired by this
connection, we model MTL as a utility maximization
problem, where each task is associated with α-fair util-
ity function and different α yields different ideas of
fairness including max-min, proportional, minimum
potential delay fairness, etc.

• We propose a novel algorithm named FairGrad to
solve the α-fair MTL utility maximization problem.
FairGrad is easy to implement, allows for a flexible
selection of α, and guarantees convergence to a Parato
stationary point under mild assumptions.

• Extensive experiments show that our FairGrad method
can achieve state-of-the-art overall performance among
gradient manipulation methods on 5 benchmarks in
supervised learning and reinforcement learning with
the number of tasks from 2 to 40.

• Finally, we incorporate our idea of α-fairness into the
loss functions of existing methods including Linear
Scalarization, RLW, DWA, UW, MGDA, PCGrad, and
CAGrad, and demonstrate that it can significantly im-
prove their overall performance.

2. Related Work
Multi-Task Learning. MTL has drawn significant attention
both in theory and practice. One class of studies is designing
sophisticated model architectures. These studies can be
mainly divided into two categories, hard parameter sharing
where task-specific layers are built on a common feature
space (Liu et al., 2019; Kokkinos, 2017), and soft parameter
sharing which couples related parameters through certain
constraints (Ruder et al., 2019; Gao et al., 2020). Another
line of research aims to capture the relationship among
tasks to guide knowledge transfer effectively (Zhao et al.,
2020; Ciliberto et al., 2017). Additionally, the magnitudes
of losses for different tasks may vary, posing challenges
to the optimization of MTL. A group of studies seeks to
balance tasks through heuristic re-weighting rules such as
task-dependent uncertainty (Kendall et al., 2018), gradient
magnitudes (Chen et al., 2018b), and the rate of change of
loss for each task (Liu et al., 2019).

As MTL is one of the important applications of multi-
objective optimization (MOO), several MOO-based gradient
manipulation methods have been explored recently to ad-
dress the challenge of conflicting gradients. (Désidéri, 2012)
proposed MGDA, and show it guarantees the convergence to
the Pareto front under certain assumptions. (Sener & Koltun,
2018) cast MTL as a MOO problem and refined MGDA for

optimization in the context of deep neural networks. (Yu
et al., 2020b) determined the update by projecting a task’s
gradient onto the normal plane of other conflicting gradients.
(Liu et al., 2021) limited the update to a neighborhood of the
average gradient. (Navon et al., 2022) considered finding
the update as a bargaining game across all tasks. (Liu et al.,
2023) searched for the update with the largest worst-case
loss improvement rate to ensure that all tasks are optimized
with approximately similar progress.

Theoretically, (Hu et al., 2023) showed that Linear Scalar-
ization cannot fully explore the Pareto front compared
with MGDA-variant methods. (Zhou et al., 2022) pro-
posed a correlation-reduced stochastic gradient manipu-
lation method to address the non-convergence issue of
MGDA, CAGrad, and PCGrad in the stochastic setting.
(Fernando et al., 2022) introduced a stochastic variant of
MGDA with guaranteed convergence. (Xiao et al., 2023)
proposed a simple and provable SGD-type method that ben-
efits from direction-oriented improvements like (Liu et al.,
2021). (Chen et al., 2023) offered a framework for analyz-
ing stochastic MOO algorithms, considering the trade-off
among optimization, generalization, and conflict-avoidance.

Fairness in Resource Allocation. Fair resource alloca-
tion has been studied for decades in wireless communica-
tion (Nandagopal et al., 2000; Eryilmaz & Srikant, 2006;
Lan et al., 2010; Huaizhou et al., 2013; Noor-A-Rahim
et al., 2020; Xu et al., 2021), where limited resources such
as power and communication bandwidth need to be fairly
allocated to users of the networks. Various fairness crite-
ria have been proposed to improve the service quality for
all users without sacrificing the overall network through-
put. For example, Jain’s fairness index (Jain et al., 1984)
prefers all users to share the resources equally. Proportional
fairness (Kelly, 1997) distributes resources proportional to
user demands or priorities. Max-min fairness (Radunovic &
Le Boudec, 2007) attempts to protect the user who receives
the least amount of resources by providing them with the
maximum possible allocation. The α-fairness framework
was proposed to unify multiple fairness criteria, where dif-
ferent choices of α lead to different ideas of fairness (Mo
& Walrand, 2000; Lan et al., 2010). Recent research has
explored the application of fair resource allocation in fed-
erated learning (Li et al., 2019; Zhang et al., 2022). In this
paper, we connect MTL with fair resource allocation and
further propose an α-fair utility maximization problem as
well as an efficient algorithm to solve it.

3. Preliminaries
3.1. Multiple Objectives and Pareto Concepts

MTL involves multiple objective functions, denoted as
L(θ) = (l1(θ), · · · , lK(θ)), where θ represents model pa-
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(a) FairGrad (without fairness) (b) FairGrad (proportionally fair) (c) FairGrad (MPD fair) (d) FairGrad (max-min fair)

Figure 1. An illustrative two-task example from (Navon et al., 2022) to show the convergence of FairGrad to Pareto front from different
initialization points (black dots •). The optimization trajectories are colored from orange to purple. The bold gray line represents the
Pareto front. The illustration showcases four fairness concepts (from left to right): simple average (i.e., Linear Scalarization (LS)),
proportional fairness, minimum potential delay (MPD) fairness, and max-min fairness. It can be seen that LS is inclined towards the task
2 with a larger gradient. FairGrad with proportional fairness resembles Nash-MTL (Navon et al., 2022), and can find more balanced
solutions along the Pareto front. MPD fairness aims to minimize the overall time for all tasks to converge, and shifts slightly more
attention to some struggling tasks with smaller gradients. Max-min fairness emphasizes more on the less-fortune task with a smaller
gradient magnitude. Also, observe that our FairGrad ensures the convergence to the Pareto front from all different initialization points.

rameters, K is the number of tasks, and li refers to the loss
function of the i-th task.

Given two points θ1, θ2 ∈ Rm, we say that θ1 dominates
θ2 if li(θ1) ≤ li(θ2) for all i ∈ [K] and L(θ1) ̸= L(θ2).
A point is considered Pareto optimal if it is not dominated
by any other point. This means that no improvement can
be made in any one objective without negatively affect-
ing at least one other objective. The set of all Pareto opti-
mal points form into the Pareto front. A point θ ∈ Rm

is Pareto stationary if minw∈W ∥G(θ)w∥ = 0, where
G(θ) = [g1(θ), · · · , gK(θ)] ∈ Rm×K is the matrix with
each column gi(θ) denoting the gradient of i-th objective,
and W is the probability simplex defined on [K]. Pareto
stationarity is a necessary condition for Pareto optimality.

3.2. α-Fair Resource Allocation

In the context of fair resource allocation in communication
networks with K users, the goal is to properly allocate
resources (e.g., channel bandwidth, transmission rate) to
maximize the total user utility (e.g., throughput) under the
link capacity constraints. A generic overall objective for the
network is given by

max
x1,...,xK∈D

∑
i∈[K]

u(xi) :=
x1−α
i

1− α
, (1)

where x1−α
i

1−α is the α-fair function with α ∈ [0, 1)∪(1,+∞),
and xi denotes the packet transmission rate, and D denotes
the convex link capacity constraints. Different α implements
different ideas of fairness, as elaborated below. Let x∗

i be
the solution of the utility maximization problem.

Proportional Fairness. This type of fairness is achieved
when α → 1. To see this, the user utility function then
becomes log xi, and it can be shown (see Appendix B.1)
that

∑
i
xi−x⋆

i

x⋆
i

≤ 0 for any xi ∈ D. This inequality indi-
cates that if the amount of resource assigned to one user
is increased, then the sum of the proportional changes of
all other users is non-positive and hence there is at least
one other user with a negative proportional change. Thus,
x∗
i , i = 1, ...,K are called proportionally fair.

Minimum Potential Delay Fairness. When α = 2, the
utility function is − 1

xi
and hence the overall objective is

to minimize
∑

i
1
xi

. Since xi is the transmission rate in
networks, 1

xi
can be reviewed as the delay of transferring a

file with unit size, and hence this case is called minimum
potential delay fairness.

Max-Min Fairness. When α → +∞, it is shown from Ap-
pendix B.1 that for any feasible allocation xi, i = 1, ...,K ∈
D, if xi > x⋆

i for some user i then there exists another user
j such that x⋆

j ≤ x⋆
i and xj < x⋆

j , which further indicates
that mini x

⋆
i ≥ mini xi. Thus, max-min fairness tends to

protect the user who receives the least amount of resources
by providing them with the maximum possible allocation.

4. FairGrad: Fair Resource Allocation in MTL
Inspired by the fair resource allocation over networks in
Section 3.2, we now provide an α-fair framework for MTL.
Let d be the updating direction for all tasks within the ball
Bϵ centered at 0 with a radius of ϵ, and gi be the gradient for
task i. Then, based on the first-order Taylor approximation
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of li(θ), we have for a small stepsize η

1

η
[li(θ)− li(θ − ηd)] ≈ g⊤i d,

and hence g⊤i d can be regarded as the loss decreasing rate
that plays a role similar to the transmission rate xi in com-
munication networks. Towards this end, we define the α-fair
utility for each user i as (g⊤

i d)1−α

1−α , and hence the overall
objective is to maximize the following total utilities of all
tasks:

max
d∈Bϵ

∑
i∈[K]

(g⊤i d)
1−α

1− α

s.t. g⊤i d ≥ 0,

(2)

where α ∈ [0, 1)∪(1,+∞). Note that our α-fair framework
takes the same spirit as Linear Scalarization (LS), Nash-
MTL, and MGDA when we take α → 0, 1,∞, respectively,
and provides the coverage over other fairness ideas.

4.1. Analogy

Utility. For each user i in a communication network, it usu-
ally holds that the larger the allocated transmission rate xi,
the higher the user’s level of satisfaction. However, the total
link capacity in a communication network is constrained.
For each task i in MTL scenarios, the larger the loss decreas-
ing rate g⊤i d, the more optimized the task becomes. As we
consider the update direction d within a ball Bϵ centered at 0
with a radius of ϵ, the feasible update progress for each task
is also constrained. In a communication network, increasing
the allocated transmission rate for one user may decrease
the rate of other users. Similarly, conflicting gradients may
occur in MTL.

Capacity Constraint. In the network resource allocation,
the convex link capacity constraint refers to the constraints
imposed on individual network links to ensure the packet
transmission rate across each link does not exceed its capac-
ity. It can be formulated as follows:∑

i∈L

xi < C,

where xi ≥ 0, C represents the capacity of the network link,
and L denotes the users who transmit their packets on this
link. In Equation (2), the loss decrease rate g⊤i d is modeled
as a utility. The feasible update direction d in the ball Bϵ.
This is similar to the capacity constraint in network resource
allocation because d here cannot be arbitrarily large and
then has capacity in MTL. In addition, the constraint on d
in our case is: g⊤i d ≥ 0 and d ∈ Bϵ for all i, which turns
out to be convex, as in network resource allocation where
the capacity constraint is convex.

Algorithm 1 FairGrad for MTL
1: Input: Model parameters θ0, α, learning rate {ηt}
2: for t = 1 to T − 1 do
3: Compute gradients G(θt) = [g1(θt), · · · , gK(θt)]
4: Solve Equation (4) to obtain wt

5: Compute dt = G(θt)wt

6: Update the parameters θt+1 = θt − ηdt
7: end for

4.2. Method

We next take the following steps to solve the problem in
Equation (2). First note that the objective function is non-
decreasing with respect to any feasible d. Thus, if d lies in
the interior of Bϵ, then there must exist a point along the
same direction but on the boundary of Bϵ, which achieves
a larger overall utility. Thus, it can be concluded that the
optimal d∗ lies on the boundary, and the gradient of the
overall objective is aligned with d∗, i.e.,∑

i

gi(g
⊤
i d)

−α = cd (3)

for some constant c > 0. Following Nash-MTL (Navon
et al., 2022), we take c = 1 for simplicity, and assume that
the gradients of tasks are linearly independent when not at a
Pareto stationary point θ such that d can be represented as a
linear combination of task gradients: d =

∑
i wigi, where

w := (w1, ..., wK)⊤ ∈ RK
+ denotes the weights. Then,

we obtain from Equation (3) that (g⊤i d)
−α = wi, which

combined with d =
∑

i wigi, implies that

G⊤Gw = w−1/α, (4)

where α ̸= 0 and the power −1/α is applied elementwisely.
It is evident that we have wi = 1 for all i ∈ [K] when
α = 0. Differently from Nash-MTL that approximates the
solution using a sequence of convex optimization problems,
we treat Equation (4) as a simple constrained nonlinear least
square problem

min
w

∑
i

f(w)2i

s.t. f(w) = G⊤Gw − w−1/α w ∈ RK
+ ,

which is solved by scipy.optimize.least squares efficiently.
The complete procedure of our algorithm is summarized in
Algorithm 1.

5. Empirical Results
We first use a toy example to elaborate how FairGrad bal-
ances the tasks by incorporating different fairness criteria.
Then we conduct extensive experiments under both super-
vised learning and reinforcement learning settings to demon-
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Table 1. Results on CelebA (40-task) and QM9 (11-task) datasets.
Each experiment is repeated 3 times with different random seeds
and the average is reported.

METHOD
CELEBA QM9

MR ↓ ∆m% ↓ MR ↓ ∆m% ↓
LS 6.53 4.15 8.18 177.6
SI 8.00 7.20 4.82 77.8
RLW 5.40 1.46 9.55 203.8
DWA 7.23 3.20 7.82 175.3
UW 6.00 3.23 6.18 108.0
MGDA 11.05 14.85 7.73 120.5
PCGRAD 6.98 3.17 6.36 125.7
CAGRAD 6.53 2.48 7.18 112.8
IMTL-G 4.95 0.84 6.09 77.2
NASH-MTL 5.38 2.84 3.64 62.0
FAMO 5.03 1.21 4.73 58.5

FAIRGRAD 4.95 0.37 3.82 57.9

strate the effectiveness of our proposed method. Full experi-
mental details and more empirical studies can be found in
Appendix A.

5.1. Toy Example

We adopt the 2-task toy example introduced in (Navon et al.,
2022), where the objectives of the 2 tasks, denoted as L1

and L2, have different scales. More details are provided in
Appendix A.1. We select 5 starting points and illustrate the
optimization trajectories of FairGrad with different fairness
criteria in Figure 1.

Obviously, without fairness (Linear Scalarization), the algo-
rithm may not converge to a Pareto stationary point. How-
ever, in other cases where fairness is involved, the algorithm
can converge. Furthermore, in the experiment setting, objec-
tive L2 exhibits a larger scale than objective L1, resulting
in a larger gradient magnitude. If there is no fairness, task
2 will dominate the optimization process. When the algo-
rithm converges, it will always converge to a stationary point
where L2 is smaller than L1, as shown in Figure 1. On the
other hand, with max-min fairness, the least fortunate task
will be prioritized. The algorithm tends to converge to a
stationary point with a smaller L1. Proportional fairness
and MPD fairness will lead to a more balanced solution.

5.2. Supervised Learning

We evaluate the performance of our method in three different
supervised learning scenarios described as follows.

Image-Level Classification. CelebA (Liu et al., 2015) is
a large-scale face attributes dataset, containing over 200K
celebrity images. Each image is annotated with 40 attributes,
such as smiling, wavy hair, mustache, etc. We can consider

the dataset as an image-level 40-task MTL classification
problem, with each task predicting the presence of a spe-
cific attribute. This setting assesses the capability of MTL
methods in handling a large number of tasks. We follow the
experiment setup in (Liu et al., 2023). We employ a network
containing a 9-layer convolutional neural network (CNN)
as the backbone and a specific linear layer for each task. We
train our method for 15 epochs, using Adam optimizer with
learning rate 3e-4. The batch size is 256.

Regression. QM9 (Ramakrishnan et al., 2014) is a widely-
used benchmark in graph neural networks. It comprises over
130k organic molecules, which are organized as graphs with
annotated node and edge features. The goal of predicting
11 properties with different measurement scales is to see if
MTL methods can effectively balance the variations present
across these tasks. Following (Navon et al., 2022; Liu et al.,
2023), we use the example provided in Pytorch Geometric
(Fey & Lenssen, 2019), and use 110k molecules for training,
10k for validation, and the rest 10k for testing. We train our
method for 300 epochs with a batch size of 120. The initial
learning rate is 1e-3, and a scheduler is used to reduce the
learning rate once the improvement of validation stagnates.

Dense Prediction. NYU-v2 (Silberman et al., 2012) con-
tains 1449 densely annotated images that have been col-
lected from video sequences of various indoor scenes. It in-
volves one pixel-level classification task and two pixel-level
regression tasks, which correspond to 13-class semantic
segmentation, depth estimation, and surface normal predic-
tion, respectively. Similarly, Cityscapes (Cordts et al., 2016)
contains 5000 street-scene images with two tasks: 7-class
semantic segmentation and depth estimation. This scenario
evaluates the effectiveness of MTL methods in tackling com-
plex situations. We follow (Liu et al., 2021; Navon et al.,
2022; Liu et al., 2023) and adopt the backbone of MTAN
(Liu et al., 2019), which adds task-specific attention mod-
ules on SegNet (Badrinarayanan et al., 2017). We train our
method for 200 epochs with batch size 2 for NYU-v2 and
8 for Cityscapes. The learning rate is 1e-4 for the first 100
epochs, then decayed by half for the rest.

Evaluation. For image-level classification and regression,
we compare our FairGrad with Linear Scalarization (LS)
which minimizes the sum of task losses, Scale-Invariant (SI)
which minimizes the sum of logarithmic losses, Random
Loss Weighting (RLW) (Lin et al., 2021), Dynamic Weigh
Average (DWA) (Liu et al., 2019), Uncertainty weighting
(UW) (Kendall et al., 2018), MGDA (Sener & Koltun, 2018),
PCGrad (Yu et al., 2020b), CAGrad (Liu et al., 2021), IMTL-
G (Liu et al., 2020), Nash-MTL (Navon et al., 2022), and
FAMO (Liu et al., 2023). For dense prediction, we also
compare with GradDrop (Chen et al., 2020), and MoCo
(Fernando et al., 2022). We consider two metrics to repre-
sent the overall performance of the MTL method m. (1)
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Table 2. Results on NYU-v2 (3-task) dataset. Each experiment is repeated 3 times with different random seeds and the average is reported.

METHOD
SEGMENTATION DEPTH SURFACE NORMAL

MR ↓ ∆m% ↓
MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓ ANGLE DISTANCE ↓ WITHIN t◦ ↑

MEAN MEDIAN 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 10.67 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 9.44 4.39
RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 13.11 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 9.44 3.57
UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 9.22 4.05
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 7.11 1.38
PCGRAD 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 9.78 3.97
GRADDROP 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 8.78 3.58
CAGRAD 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 5.78 0.20
IMTL-G 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 5.11 -0.76
MOCO 40.30 66.07 0.5575 0.2135 26.67 21.83 25.61 51.78 64.85 5.44 0.16
NASH-MTL 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 3.11 -4.04
FAMO 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 4.44 -4.10

FAIRGRAD 39.74 66.01 0.5377 0.2236 24.84 19.60 29.26 56.58 69.16 2.67 -4.66

∆m%, the average per-task performance drop against the
single-task (STL) baseline b:

∆m% =
1

K

K∑
i=1

(−1)δk(Mm,k −Mb,k)/Mb,k × 100,

where Mb,k denotes the value of metric Mk from baseline
b, Mm,k denotes the value of metric Mk from the compared
method m, and δk = 1 if metric Mk prefers a higher value.
(2) Mean Rank (MR), the average rank of each metric
across tasks.

Results. The experiment results are shown in Table 1, Ta-
ble 2, and Table 3. Each experiment is repeated 3 times
with different random seeds and the average is computed.
It can be seen from Table 1 that the proposed FairGrad
outperforms existing methods on the CelebA dataset with
40 tasks, indicating that it performs effectively when faced
with a substantial number of tasks. Table 1 shows that Fair-
Grad also achieves the best overall performance drop ∆m%
on the QM9 dataset, while attaining a mean rank of 3.82
comparable to the best 3.64 of Nash-MTL. In addition, Ta-
ble 2 and Table 3 show that FairGrad outperforms all the
baselines on the NYU-v2 and Cityscapes datasets w.r.t. MR
and ∆m%, demonstrating its effectiveness in learning from
scene understanding scenarios.

Furthermore, there are some other interesting findings from
the results presented in Table 2. LS performs poorly in the
surface normal prediction (SNP) task compared to the other
two tasks. This is because LS does not take the fairness
among tasks into consideration, and hence the gradient of
the SNP task is dominated by the others. On the contrary,
MGDA (Sener & Koltun, 2018) obtains the best perfor-

mance in the SNP task among all three tasks by enforcing
the max-min fairness. Meanwhile, the performance of Nash-
MTL (Navon et al., 2022), which embodies proportional
fairness, is more balanced across all tasks. As a comparison,
our FairGrad can find a more balanced solution than LS and
MGDA, while placing greater emphasis on the challenging
SNP tasks than Nash-MTL.

5.3. Reinforcement Learning

We further evaluate our method on the MT10, a benchmark
including 10 robotic manipulation tasks from the MetaWorld
environment (Yu et al., 2020c), where the objective is to
learn one policy that generalizes to different tasks such
as pick and place, open door, etc. We follow (Liu et al.,
2021; Navon et al., 2022; Liu et al., 2023) and adopt Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) as the underly-
ing algorithm. We implement with MTRL codebase (Sha-
gun Sodhani, 2021) and train our method for 2 million steps
with a batch size of 1280.

Evaluation. We compare our FairGrad with Multi-task
SAC (MTL SAC) (Yu et al., 2020c), Multi-task SAC with
task encoder (MTL SAC + TE) (Yu et al., 2020c), Multi-
headed SAC (MH SAC) (Yu et al., 2020c), PCGrad (Yu
et al., 2020b), CAGrad (Liu et al., 2021), MoCo (Fernando
et al., 2022), Nash-MTL (Navon et al., 2022), and FAMO
(Liu et al., 2023).

Results. The results are shown in Table 4. Each method
is evaluated once every 10,000 steps, and the best average
success rate over 10 random seeds throughout the entire
training course is reported. We could not reproduce the
MTRL result in the original paper of Nash-MTL exactly,
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Table 3. Results on Cityscapes (2-task) dataset. Each experiment is repeated 3 times with different random seeds and the average is
reported.

METHOD
SEGMENTATION DEPTH MR ↓ ∆m% ↓

MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓
STL 74.01 93.16 0.0125 27.77

LS 75.18 93.49 0.0155 46.77 8.50 22.60
SI 70.95 91.73 0.0161 33.83 10.50 14.11
RLW 74.57 93.41 0.0158 47.79 10.75 24.38
DWA 75.24 93.52 0.0160 44.37 8.50 21.45
UW 72.02 92.85 0.0140 30.13 6.75 5.89
MGDA 68.84 91.54 0.0309 33.50 11.00 44.14
PCGRAD 75.13 93.48 0.0154 42.07 8.50 18.29
GRADDROP 75.27 93.53 0.0157 47.54 8.00 23.73
CAGRAD 75.16 93.48 0.0141 37.60 7.00 11.64
IMTL-G 75.33 93.49 0.0135 38.41 5.50 11.10
MOCO 75.42 93.55 0.0149 34.19 4.50 9.90
NASH-MTL 75.41 93.66 0.0129 35.02 3.25 6.82
FAMO 74.54 93.29 0.0145 32.59 7.25 8.13

FAIRGRAD 75.72 93.68 0.0134 32.25 1.50 5.18

Table 4. Results on MT10 benchmark. Average over 10 random
seeds. Nash-MTL⋆ denotes the result reported in the original paper
(Navon et al., 2022). While Nash-MTL (reproduced) denotes the
reproduced result in (Liu et al., 2023).

METHOD
SUCCESS RATE
(MEAN ± STDERR)

STL 0.90 ± 0.03

MTL SAC 0.49 ± 0.07
MTL SAC + TE 0.54 ± 0.05
MH SAC 0.61 ± 0.04
PCGRAD 0.72 ± 0.02
CAGRAD 0.83 ± 0.05
MOCO 0.75 ± 0.05
NASH-MTL⋆ 0.91 ± 0.03
NASH-MTL (REPRODUCED) 0.80 ± 0.13
FAMO 0.83 ± 0.05

FAIRGRAD 0.84 ± 0.07

and hence we adopt the reproduced result of Nash-MTL in
(Liu et al., 2023). It is evident that our method performs
competitively when compared to other methods.

5.4. Effect of Different Fairness Criteria

We investigate the effect of different fairness criteria
on NYU-v2 and Cityscapes datasets by setting α →
[1, 2, 5, 10], which corresponds to the proportional fairness,
minimum potential delay fairness, and approximate max-
min fairness. The results are presented in Table 5. The
results show that different fairness criteria prioritize differ-
ent tasks, and thus lead to different overall performance. In
particular, the minimum potential delay fairness with α = 2

achieves the best ∆m% among all fairness criteria.

Also note that although the best ∆m% reported in Table 5 is
better than that reported in Table 2 and Table 3, their results
w.r.t. MR are worse than those in Table 2 and Table 3. This
is because an improved ∆m% may result in a lower rank
for certain tasks, causing a significant degradation in the
average rank. See Appendix A.3 for more details.

Table 5. ∆m% of different fairness criteria on NYU-v2 (3-task)
and Cityscapes (2-task) datasets.

METHOD NYU-V2 CITYSCAPES

FAIRGRAD (α = 1) -2.79 6.73
FAIRGRAD (α = 2) -4.96 3.90
FAIRGRAD (α = 5) -3.03 6.87
FAIRGRAD (α = 10) -1.00 10.54

5.5. Discussion on Practical Implementation

Supervised Learning. For experiments on QM9, NYU-v2,
and Cityscapes, we implement our method based on the
codes released by (Navon et al., 2022). For experiments
on CelebA, our implementation is based on the codes pro-
vided by (Liu et al., 2023), consistent with all the baselines
presented in Table 1.

Reinforcement Learning. We find it time-consuming to
solve the constrained nonlinear least square problem dis-
cussed in Section 4 under the reinforcement learning setting.
Therefore, we use SGD to approximately solve the problem
and accelerate the training process. Specifically, we use
SGD optimizer with a learning rate of 0.1, momentum of
0.5, and train 20 epochs.
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Choice of α. We first search with α ∈ [1, 2, 5, 10] and
evaluate which choice is better. Then we narrow down the
search space and continue to execute a grid search with a
step size of 0.1 until we determine an appropriate value.

In practice, the choice depends on the specific needs or
preferences. If there are no requirements for fairness and
tasks with larger gradients are allowed to finish first, we
can simply set α = 0 to allow for quick training. If tasks
with struggling progress are prioritized (e.g., in some meta-
learning setups, some harder-to-train tasks may play more
important roles in deciding final test accuracy), then the
max-min fairness (with a larger α) is desired. From our
observation, if aiming to achieve the most balanced overall
performance, MPD fairness with α = 2 is preferable. After
fairness criteria are selected, some slight finetuning on α can
also be conducted to further improve the overall accuracy.

6. Applying α-Fairness to Existing Methods
In MTL, tasks often exhibit variations in difficulty, resulting
in losses that may vary in scale. Since the idea of α-fairness
provides a framework unifying different fairness criteria, we
argue that it can be directly applied in many MTL methods
to mitigate the problem of varying loss scales by replacing
the task losses (l1, · · · , lK) with( l1−α

1

1− α
, · · · ,

l1−α
K

1− α

)
, (5)

where α ∈ (−∞, 1) and i ∈ [K]. Note that the meaning
of α here differs from that used in Section 4. FairGrad
aims to address the issue of varying loss decreasing rates,
while applying α-fairness to existing methods tries to deal
with the issue of varying loss scales. Although the ideas of
α-fairness are the same, the goals are different.

Here we omit the model parameter θ for simplicity. It can be
observed that the gradient changes from gi to gi/l

α
i , where

α controls the emphasis placed on tasks with different levels
of difficulty. Take the example of simply summing α-fair
losses of all tasks

min
∑
i∈[K]

l1−α
i

1− α
.

If we choose α = 0, the objective is reduced to Linear
Scalarization (LS) which minimizes the sum of all losses. If
α → 1, the objective tends to minimize the sum of the loga-
rithmic losses, which shares similarity with Scale-Invariant
(SI). If α → −∞, the objective exhibits the notion of the
minimax fairness (Radunovic & Le Boudec, 2007), which
aims to minimize the maximum loss among all tasks.

Proposition 6.1. The Pareto front of the α-fair loss func-
tions in Equation (5) is the same as that of original loss
functions (l1, ..., lK).

According to Proposition 6.1, transforming each li to its
α-fair counterpart does not change the Pareto front, and
allows us to find an improved solution along this front under
a proper selection of fairness.

We then apply this α-fair loss transformation to a series
of MTL methods including LS, RLW (Lin et al., 2021),
DWA (Liu et al., 2019), UW (Kendall et al., 2018), MGDA
(Sener & Koltun, 2018), PCGrad (Yu et al., 2020b), CAGrad
(Liu et al., 2021), and test the performance on NYU-v2 and
Cityscapes datasets. We simply choose α = 0.5 for all the
experiments. Other experiment settings remain the same
with Section 5.2. The results presented in Table 6 and Ta-
ble 7 clearly demonstrate that the α-fair loss transformation
improves the performance of these MTL methods via a large
margin.

Additionally, we also test the applicability of α-fair loss
transformation to FairGrad. It can be seen from Table 7 that
compared to other MTL methods, applying this transfor-
mation to FairGrad provides only a marginal improvement.
This shows that FairGrad can mitigate the issue of varying
loss scales by incorporating fairness-based utility functions.

7. Theoretical Analysis
In this section, we provide a theoretical analysis of our
method on the convergence to a Pareto stationary point,
at which some convex combination of task gradients is 0.
As mentioned before, we assume that the gradients of dif-
ferent tasks are linearly independent when not reaching a
Pareto stationary point. Formally, we make the following
assumption, as also adopted by (Navon et al., 2022).

Assumption 7.1. For the output sequence {θt} generated by
the proposed method, the gradients of all tasks are linearly
independent while not at a Pareto stationary point.

The following assumption imposes differentiability and Lip-
schitz continuity on the loss functions, as also adopted
by (Liu et al., 2021; Navon et al., 2022).

Assumption 7.2. For each task, the loss function li(θ) is dif-
ferentiable and L-smooth such that ∥∇li(θ1)−∇li(θ2)∥ ≤
L∥θ1 − θ2∥ for any two points θ1, θ2.

Then, we obtain the following convergence theorem.

Theorem 7.3. Suppose Assumptions 7.1-7.2 are satisfied.

Set the stepsize ηt =
∑

i w
−1/α
t,i

LK
∑

i w
1−1/α
t,i

, Then, there exists a sub-

sequence {θtj} of the output sequence {θt} that converges
to a Pareto stationary point θ⋆.

Proof skecth. We first show that the average loss L(θt) =
1
K

∑
i li(θt) is monotonically decreasing. Then, we show

that the smallest singular value of the Gram matrix, denoted
as σK(G(θt)

⊤G(θt)), is upper bounded and approaches 0
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Table 6. Results of α-fair loss transformation on NYU-v2 (3-task) dataset. Each experiment is repeated 3 times with different random
seeds and the average is reported. We simply choose α = 0.5.

METHOD
SEGMENTATION DEPTH SURFACE NORMAL

∆m% ↓
MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓ ANGLE DISTANCE ↓ WITHIN t◦ ↑

MEAN MEDIAN 11.25 22.5 30

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59
FAIR-LS 38.64 64.96 0.5422 0.2255 27.14 22.64 24.05 50.14 63.53 2.85

RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 7.78
FAIR-RLW 37.29 63.58 0.5481 0.2263 27.67 23.33 23.38 48.72 62.12 5.00

DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 3.57
FAIR-DWA 39.03 65.18 0.5404 0.2266 27.20 22.63 24.31 50.14 63.45 2.65

UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 4.05
FAIR-UW 38.51 64.56 0.5423 0.2274 27.23 22.92 23.62 49.52 63.23 3.56

MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38
FAIR-MGDA 35.91 63.19 0.5646 0.2260 24.75 19.24 30.04 57.30 69.55 -3.26

PCGRAD 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
FAIR-PCGRAD 39.26 65.08 0.5257 0.2177 26.88 22.26 24.74 50.85 64.18 1.23

CAGRAD 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
FAIR-CAGRAD 39.32 65.36 0.5290 0.2221 25.50 20.32 28.06 54.94 67.65 -2.91

Table 7. Results of α-fair loss transformation on Cityscapes (2-
task) dataset. We simply choose α = 0.5.

METHOD
SEGMENTATION DEPTH

∆m% ↓
MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓

LS 75.18 93.49 0.0155 46.77 22.60
FAIR-LS 74.91 93.48 0.0137 37.51 10.86

RLW 74.57 93.41 0.0158 47.79 24.38
FAIR-RLW 74.32 93.36 0.0140 37.46 11.64

DWA 75.24 93.52 0.0160 44.37 21.45
FAIR-DWA 75.06 93.46 0.0147 35.34 10.74

MGDA 68.84 91.54 0.0309 33.50 44.14
FAIR-MGDA 74.45 93.50 0.0131 37.64 9.91

PCGRAD 75.13 93.48 0.0154 42.07 18.29
FAIR-PCGRAD 75.25 93.51 0.0140 37.00 10.71

CAGRAD 75.16 93.48 0.0141 37.60 11.64
FAIR-CAGRAD 74.74 93.39 0.0134 33.04 6.23

FAIRGRAD 75.72 93.68 0.0134 32.25 5.18
FAIR-FAIRGRAD 75.50 93.51 0.0131 32.54 4.92

as the number of training steps increases. Consequently,
the output sequence {θt} has a subsequence converging to
a point θ⋆, where the matrix G(θ⋆)⊤G(θ⋆) has a zero sin-
gular value and hence the gradients of all tasks are linearly
dependent. This immediately indicates the attainment of a
Pareto stationary point.

8. Conclusion
We first discuss the connection between MTL and fair re-
source allocation in communication networks and model
the optimization of MTL as a utility maximization problem

by leveraging the concept of α-fairness. Then, we intro-
duce FairGrad, a novel MTL method offering the flexibility
to balance different tasks through different selections of
α, and provide it with a theoretical convergence analysis.
Our extensive experiments demonstrate not only the promis-
ing performance of FairGrad, but also the power of the
α-fairness idea in enhancing existing MTL methods.

For future studies, we will explore the performance of Fair-
Grad in more challenging MTL settings with significantly
diverse tasks. Theoretically, we will study the impact of
varying levels of difficulty across tasks on the final conver-
gence and generalization performance.

Impact Statement
This paper discusses the fairness in optimization methods for
multi-task learning (MTL). There are some potential societal
consequences, none of which we feel must be specifically
highlighted here.
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A. Experiments
A.1. Toy Example

Following (Navon et al., 2022; Liu et al., 2023), we use a slightly modified version of the 2-task toy example provided in
(Liu et al., 2021). The two tasks L1(x) and L2(x) are defined on x = (x1, x2)

⊤ ∈ R2,

L1(x) = 0.1 · (f1(x)g1(x) + f2(x)h1(x))

L2(x) = f1(x)g2(x) + f2(x)h2(x),

where the functions are given by

f1(x) = max
(
tanh(0.5x2), 0

)
f2(x) = max

(
tanh(−0.5x2), 0

)
g1(x) = log

(
max

(
|0.5(−x1 − 7)− tanh(−x2)|, 0.000005

))
+ 6

g2(x) = log
(
max

(
|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005

))
+ 6

h1(x) =
(
(−x1 + 7)2 + 0.1(−x1 − 8)2

)
/10− 20

h2(x) =
(
(−x1 − 7)2 + 0.1(−x1 − 8)2

)
/10− 20.

The magnitude of the gradient of L2(x) is larger than L1(x), posing challenges to the optimization of MTL methods.
By choosing different values of α, our method covers different ideas of fairness. We use five different starting points
{(−8.5, 7.5), (0, 0), (9.0, 9.0), (−7.5,−0.5), (9.0,−1.0)}. We use Adam optimizer with a learning rate of 1e-3. The
training process stops when the Pareto front is reached. The optimization trajectories illustrated in Figure 1 demonstrate that
the proposed FairGrad can not only converge to the Pareto front but also exhibit different types of fairness under different
choices of α.

A.2. Detailed Results on Multi-Task Regression

We provide more details about per-task results on the QM9 dataset in Table 8. Our FairGrad obtains the best ∆m%. In
addition, as a special case of α-fair loss transformation, SI outperforms other methods in 7 tasks, indicating the effectiveness
of the transformation.

Table 8. Detailed results of on QM9 (11-task) dataset. Each experiment is repeated 3 times with different random seeds and the average is
reported.

METHOD
µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv MR↓ ∆m% ↓

MAE ↓
STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072

LS 0.106 0.325 73.57 89.67 5.19 14.06 143.4 144.2 144.6 140.3 0.128 8.18 177.6
SI 0.309 0.345 149.8 135.7 1.00 4.50 55.3 55.75 55.82 55.27 0.112 4.82 77.8
RLW 0.113 0.340 76.95 92.76 5.86 15.46 156.3 157.1 157.6 153.0 0.137 9.55 203.8
DWA 0.107 0.325 74.06 90.61 5.09 13.99 142.3 143.0 143.4 139.3 0.125 7.82 175.3
UW 0.386 0.425 166.2 155.8 1.06 4.99 66.4 66.78 66.80 66.24 0.122 6.18 108.0
MGDA 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.4 89.32 88.01 0.120 7.73 120.5
PCGRAD 0.106 0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 114.5 0.110 6.36 125.7
CAGRAD 0.118 0.321 83.51 94.81 3.21 6.93 113.99 114.3 114.5 112.3 0.116 7.18 112.8
IMTL-G 0.136 0.287 98.31 93.96 1.75 5.69 101.4 102.4 102.0 100.1 0.096 6.09 77.2
NASH-MTL 0.102 0.248 82.95 81.89 2.42 5.38 74.5 75.02 75.10 74.16 0.093 3.64 62.0
FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 4.73 58.5

FAIRGRAD 0.117 0.253 87.57 84.00 2.15 5.07 70.89 71.17 71.21 70.88 0.095 3.82 57.9

A.3. Detailed Results on Effect of Different Fairness Criteria

We provide additional results of different fairness criteria discussed in Section 5.4 in Table 9 and Table 10. As α changes,
the algorithm will prioritize certain tasks over others. Hence, an overall performance drop may be observed. However, tasks
with lower priority may get higher ranks, then leading to a higher MR value.
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Table 9. Results of Different Fairness Criteria on Cityscapes (2-task) dataset. Each experiment is repeated 3 times with different random
seeds and the average is reported.

METHOD
SEGMENTATION DEPTH MR ↓ ∆m% ↓

MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓
FAIRGRAD (α = 1) 75.94 93.65 0.0138 33.13 2.25 6.73
FAIRGRAD (α = 2) 74.10 93.03 0.0135 29.92 5.75 3.90
FAIRGRAD (α = 5) 67.30 90.23 0.0134 30.01 7.25 6.87
FAIRGRAD (α = 10) 62.77 88.00 0.0151 28.05 8.50 10.54

Table 10. Results of Different Fairness Criteria on NYU-v2 (3-task) dataset. Each experiment is repeated 3 times with different random
seeds and the average is reported.

METHOD
SEGMENTATION DEPTH SURFACE NORMAL

MR ↓ ∆m% ↓
MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓ ANGLE DISTANCE ↓ WITHIN t◦ ↑

MEAN MEDIAN 11.25 22.5 30

FAIRGRAD (α = 1) 40.64 67.20 0.5671 0.2434 25.18 20.05 28.35 55.61 68.37 4.78 -2.79
FAIRGRAD (α = 2) 38.80 65.29 0.5572 0.2322 24.55 18.97 30.50 57.94 70.14 4.78 -4.96
FAIRGRAD (α = 5) 34.05 62.82 0.5853 0.2375 24.40 18.70 30.96 58.48 70.45 6.22 -3.03
FAIRGRAD (α = 10) 31.45 61.43 0.5948 0.2341 24.80 19.08 30.10 57.58 69.69 6.22 -1.00

Table 11. Results of Different Methods for Solving Sub-problems of Nash-MTL on Cityscapes (2-task) dataset. Each experiment is
repeated 3 times with different random seeds and the average is reported.

METHOD
SEGMENTATION DEPTH

∆m% ↓
MIOU ↑ PIX ACC ↑ ABS ERR ↓ REL ERR ↓

NASH-MTL (ORIGINAL) 75.41 93.66 0.0129 35.02 6.82
NASH-MTL (OURS) 75.26 93.71 0.0129 34.45 6.28

A.4. Difference Between FairGrad and Nash-MTL

Although FairGrad with proportional fairness shares similarities with Nash-MTL, there are many differences. The high-
level ideas are different. Nash-MTL is developed from the perspective of game theory, whereas our FairGrad is inspired
by fair resource allocation in communication networks. Thus, this allows us to incorporate the advances from network
resource allocation into MTL. FairGrad incorporates other different notions of fairness that Nash-MTL cannot cover. From
our empirical studies on Cityscapes and NYUv2 datasets, the performance of MDP fairness is significantly better than
proportional fairness. This indicates that proportional fairness may not always be the most suitable choice for different
applications and scenarios. This greatly highlights the importance of incorporating other fairness ideas. Unlike Nash-MTL,
our proposed FairGrad offers the flexibility to explore different fairness criteria.

Technically, algorithmic designs are different. We propose to solve weights w1, ..., wK from our objective through a simple
nonlinear least square problem. Solving this problem is efficient, and it turns out that the results are good enough. As a
comparison, Nash-MTL solves weights from a different constrained objective via a variation of concave-convex-procedure
(CCP) that solves a sequence of simple constrained problems. Our approach that solves a nonlinear least square equation
can also be applied to Nash-MTL.

We experiment on the Cityscapes dataset using the codes from the Nash-MTL paper. The results are presented in Table 11,
where Nash-MTL (original) denotes the original method, and Nash-MTL (ours) denotes the method using our approach to
solve the sub-problems. The results demonstrated that our approach can not only be applied to Nash-MTL, but also achieve
slightly better performance.
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B. Proofs
B.1. α-fairness

Different values of α yield different ideas of fairness. Recall from Equation (1) the following utilization maximization
objective

max
x1,...,xK∈D

∑
i∈[K]

u(xi) :=
x1−α
i

1− α
,

where xi denotes the transmission rate of user i, u(xi) =
x1−α
i

1−α is a concave utility function with α ∈ [0, 1) ∪ (1,+∞), and
D is the convex link capacity constraints.

When α = 0, the objective is

max
x1,...,xK∈D

∑
i∈[K]

u(xi) := xi,

Note that in our MTL setting, it is similar to the Linear Scalarization.

When α → 1, the utilization maximization objective Equation (1) captures the proportional fairness. First note that

max
x1,...,xK∈D

∑
i∈[K]

x1−α
i

1− α
= max

x1,...,xK∈D

∑
i∈[K]

x1−α
i − 1

1− α
.

By applying L’Hospital’s rule, we have

lim
α→1

x1−α
i − 1

1− α
= log xi.

Then, the current objective is

max
x1,...,xK∈D

∑
i∈[K]

log xi.

For a concave function f(x) over a domain D, it is shown in (Srikant & Ying, 2013) that

∇f(x⋆)(x− x⋆) ≤ 0 ∀x ∈ D. (6)

Clearly, since the objective
∑

i∈[K] log xi is concave, applying Equation (6) yields

∑
i∈[K]

xi − x⋆
i

x⋆
i

≤ 0.

If the proportion of one user increases, then there will be at least one other user whose proportional change decreases. The
allocation {x⋆} captures the proportional fairness. In the MTL setting, the objective becomes

max
d∈Bϵ

∑
i∈[K]

log g⊤i d

s.t. g⊤i d ≥ 0,

which corresponds to Nash-MTL (Navon et al., 2022).

When α → ∞, the utilization maximization objective Equation (1) yields the max-min fairness. The following proofs
follow Section 2.2.1 in (Srikant & Ying, 2013). Let x⋆(α) be the α-fair allocation. Assume x⋆

i (α) → x⋆ as α → ∞ and
x⋆
1 < x⋆

2 < · · · < x⋆
K . Let ϵ be the minimum difference of {x⋆}. That is, ϵ = mini |x⋆

i+1 − x⋆
i |, i ∈ [K − 1]. When α is
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sufficiently large, we then have |x⋆
i (α) − x⋆

i | ≤ ϵ/4, which also implies x⋆
1(α) < x⋆

2(α) < · · · < x⋆
K(α). According to

Equation (6), we have ∑
i∈[K]

xi − x⋆
i (α)

x⋆α
i (α)

≤ 0.

For any j ∈ [K], the following inequality always holds

j∑
i=1

(xi − x⋆
i (α))

x⋆α
j (α)

x⋆α
i (α)

+ (xj − x⋆
j (α)) +

K∑
i=j+1

(xi − x⋆
i (α))

x⋆α
j (α)

x⋆α
i (α)

≤ 0.

Since we have |x⋆
i (α)− x⋆

i | ≤ ϵ/4, we then get

j∑
i=1

(xi − x⋆
i (α))

x⋆α
j (α)

x⋆α
i (α)

+ (xj − x⋆
j (α))−

K∑
i=j+1

|xi − x⋆
i (α)|

(x⋆
j + ϵ/4)α

(x⋆
i − ϵ/4)α

≤ 0,

where (xi − ϵ/4)− (x⋆
j + ϵ/4) ≥ ϵ/2 for any i > j. Therefore, when α becomes large enough, the last term in the above

inequality will be negligible. Consequently, if xj > x⋆
j (α), then the allocation for at least one user i < j will decrease.

That is, the allocation approaches the max-min fairness when α → ∞. In the context of MTL, this takes the same spirit as
MGDA and its variants that aim to maximize the loss decrease for the least-fortune task.

B.2. Convergence

Theorem B.1 (Restatement of Theorem 7.3). Suppose Assumptions 7.1-7.2 are satisfied. Set the stepsize ηt =
∑

i w
−1/α
t,i

LK
∑

i w
1−1/α
t,i

,

Then, there exists a subsequence {θtj} of the output sequence {θt} that converges to a Pareto stationary point θ⋆.

Proof. Since (g⊤i d)
−α = wi and d =

∑
i wigi in each iteration, we have the norm ∥d∥2 =

∑
i wig

⊤
i d =

∑
i w

1− 1
α

i .

Each loss function li(θ) is L-smooth. Then, we have

li(θt+1) ≤ li(θt)− ηtg
⊤
t,idt +

L

2
∥ηtdt∥2

= li(θt)− ηtw
− 1

α
t,i +

L

2
η2t ∥dt∥2

= li(θt)− ηtw
− 1

α
t,i +

Lη2t
2

(

K∑
j=1

w
1− 1

α
t,j ).

Set the learning rate ηt =
∑K

i=1 w
−1/α
t,i

LK
∑K

i=1 w
1−1/α
t,i

. Consider the averaged loss function L(θ) = 1
K

∑
i li(θ), we have

L(θt+1) ≤ L(θt)− ηt
1

K

K∑
i=1

w
− 1

α
t,i +

Lη2t
2

(

K∑
i=1

w
1− 1

α
t,i )

= L(θt)− Lη2t (

K∑
i=1

w
1− 1

α
t,i ) +

Lη2t
2

(

K∑
i=1

w
1− 1

α
t,i )

= L(θt)−
Lη2t
2

(

K∑
i=1

w
1− 1

α
t,i ).

It can be observed that
∑t

τ=0
Lη2

τ

2 (
∑K

i=1 w
1− 1

α
τ,i ) ≤ L(θ0)− L(θt+1). Then, we get

∞∑
τ=0

Lη2τ
2

(

K∑
i=1

w
1− 1

α
τ,i ) =

1

2LK2

∞∑
τ=0

(
∑K

i=1 w
− 1

α
τ,i )2∑K

i=1 w
1− 1

α
τ,i

< ∞.
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Then, it can be obtained that

lim
τ→∞

(
∑K

i=1 w
− 1

α
τ,i )2∑K

i=1 w
1− 1

α
τ,i

= 0. (7)

From Equation (4), we get

∥w− 1
α

t ∥ ≥ σK(G⊤
t Gt)∥wt∥,

where σK(G⊤
t Gt) is the smallest singular value of matrix G⊤

t Gt. Denote 1 = [1, · · · , 1]⊤ as the length-K vector whose
elements are all 1. Note that we have

∥w∥2 =

K∑
i=1

w2
i ≤

K∑
i=1

wi ·
K∑
i=1

wi = ∥w∥21,

∥w∥1 = 1⊤w ≤ ∥1∥ · ∥w∥ =
√
K∥w∥.

Combine the above inequalities, we get

∥w− 1
α

t ∥1 ≥ ∥w− 1
α

t ∥ ≥ σK(G⊤
t Gt)∥wt∥ ≥ 1√

K
σK(G⊤

t Gt)∥wt∥1.

Then, we have ∑K
i=1 w

− 1
α

t,i∑K
i=1 wt,i

≥ 1√
K

σK(G⊤
t Gt). (8)

Furthermore, ∑K
i=1 w

− 1
α

t,i∑K
i=1 wt,i

=
(
∑K

i=1 w
− 1

α
t,i )2

(
∑K

i=1 wt,i) · (
∑K

i=1 w
− 1

α
t,i )

=
(
∑K

i=1 w
− 1

α
t,i )2∑K

i=1 w
1− 1

α
t,i +

∑K
i=1

∑K
j=1,j ̸=i wt,iw

− 1
α

t,j

≤
(
∑K

i=1 w
− 1

α
t,i )2∑K

i=1 w
1− 1

α
t,i

.

(9)

For any fixed K, it can be concluded from Equation (7), Equation (8), and Equation (9) that

lim
τ→∞

σK(G⊤
τ Gτ ) = 0.

Since the sequence L(θt) is monotonically decreasing, we know the sequence θt is in the compact sublevel set {θ|L(θ) ≤
L(θ0)}. Then, there exists a subsequence θtj that converges to θ⋆ where we have σK(G⊤

⋆ G⋆) = 0 and G⋆ denotes the
matrix of multiple gradients at θ⋆. Therefore, the gradients at θ⋆ are linearly dependent, and θ⋆ is Pareto stationary.

B.3. α-fair loss transformation

Proposition B.2 (Restatement of Proposition 6.1). The Pareto front of the α-fair loss functions in Equation (5) is the same
as that of original loss functions (l1, ..., lK).

Proof. If θ⋆ is a Pareto optimal point of L(θ), then there exists no point θ dominating θ⋆. That is, we have li(θ⋆) ≤ li(θ) for
all i ∈ [K] and L(θ⋆) ̸= L(θ). Note that the function f(x) = x1−α

1−α with x > 0 and α ∈ [0, 1) ∪ (1,+∞) is monotonically

increasing. It is evident that l1−α
i (θ⋆)

1−α ≤ l1−α
i (θ)

1−α for all i ∈ [K]. Thus, θ⋆ is also a Pareto optimal point of L1−α(θ)
1−α . Similarly,

it can be shown that if θ⋆ is a Pareto optimal point of L1−α(θ)
1−α , it is also a Pareto optimal point of L(θ).
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