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ABSTRACT

The construction of accurate enzyme-constrained genome-scale models
(ecGEMs) remains a critical challenge in systems biology, limited by sparse
kinetic data and the need for biologically meaningful representations. This work
presents an integrated framework combining CPI-Pred, a deep learning model
to predict kinetic parameters (kcat, KM , KI , and kcat/KM ) from sequence
and compound embeddings, with kinGEMs, a pipeline to incorporate these
parameters into ecGEMs for metabolic optimization. By leveraging representa-
tions at multiple scales, the approach captures sequence, structure, and kinetic
data to enhance model generalizability and accuracy. Rigorous benchmarking
demonstrates the framework’s capability to predict growth rates and fluxes that
are consistent with experimental observations, reduce median flux variability by
3 fold, and enable better-defined predictive and interpretable metabolic models.
These innovations open new avenues for metabolic engineering and synthetic
biology, offering robust tools to explore biological perturbations and guiding
experimental designs.

1 INTRODUCTION

The rapid expansion of biological datasets, ranging from genomic sequences to metabolic profiles,
has highlighted the need for computational frameworks capable of extracting meaningful insights
from these complex systems. Among these challenges, the construction of enzyme-constrained
genome-scale models (ecGEMs) has emerged as a crucial task for understanding cellular metabolism
(Figure 1). These models enable the simulation of metabolic fluxes and growth rates under varying
environmental and genetic conditions, offering valuable findings for metabolic engineering and syn-
thetic biology through an interpretable lens, which is often not possible with deep learning-based
methods of sequence-to-function prediction. However, the utility of ecGEMs is often hindered by
the limited availability of accurate kinetic parameters, such as kcat values, which are essential to
constrain reaction rates.

Recent advances in machine learning have provided new avenues for addressing this bottleneck.
Deep learning models, particularly those that leverage biological sequence embeddings, have shown
promise in predicting enzyme kinetics from sequence and structural data. For example, models
such as ESM (Rives et al., 2021) and ProtTrans (Elnaggar et al., 2021) have successfully demon-
strated the ability of transformer-based architectures to extract meaningful sequence representations
for downstream tasks, including the prediction of enzyme functions. Similarly, compound represen-
tations such as d-MPNN outputs (Yang et al., 2019) and ECFP (Rogers & Hahn, 2010) have been
instrumental in predicting molecular interactions. Despite these advances, there remain significant
gaps in translating these predictions into actionable insights within genome-scale models (GEMs).
Current approaches, such as sMOMENT (Bekiaris & Klamt, 2020) and GECKO (Chen et al., 2024),
integrate enzyme kinetics but often rely on sparse or manually curated datasets. Even when deep
learning models are employed to predict missing parameters, these methods often face issues such
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Figure 1: Schematic representation of genome-scale metabolic modeling with enzyme con-
straints (ecGEMs). Integrating enzyme turnover rates (kcat) into reaction flux constraints gen-
erates an ecGEM from a baseline GEM.

as unrealistic enzyme constraints, limiting their scalability and generalizability (Chen et al., 2024).
Another critical limitation lies in the evaluation of these models. While some studies focus on met-
rics like prediction accuracy for kinetic parameters (Li et al., 2022), there is a lack of standardized
benchmarks that link these predictions to downstream tasks (Sánchez et al., 2017; Kroll et al., 2023;
Li et al., 2022), such as constraint-based modeling (CBM) for phenotypic prediction stemming from
genetic perturbations (Orth et al., 2010). This inconsistency hampers the ability to compare models
and assess their utility in biological contexts.

Moreover, the interpretability of learned representations remains an open question, particularly when
integrating multi-scale data spanning sequence and metabolic pathway kinetics. In this work, we
present an integrated framework that combines CPI-Pred (Xu et al., 2025), a deep learning model
for Compound-Protein Interaction Prediction, and more specifically, for kinetic parameter predic-
tion, with kinGEMs (kinetically-constrained GEnome-scale Models), a computational pipeline for
constructing and optimizing ecGEMs. CPI-Pred leverages advanced sequence embeddings and com-
pound encodings to predict kcat, KM , KI , and kcat/KM values (although we will only focus on kcat
results in this paper), while kinGEMs integrates these parameters into GEMs to simulate metabolic
behaviors. This study makes several key contributions:

1. Accurate and Generalizable Kinetic Predictions: Demonstrate the ability of CPI-Pred
to generate accurate and generalizable kinetic parameters.

2. Enhancing GEMs with Predicted Kinetics: Improve the performance and interpretability
of GEMs by integrating CPI-Pred predictions through the kinGEMs pipeline. Develop an
optimization framework that tunes kinetic parameters using experimental growth rates, with
potential expansion to metabolic fluxes & other omics data.

3. Benchmarking Framework for Model Evaluation: Establish a robust benchmark-
ing framework to evaluate model performance against experimental genetic perturbation
datasets.

Our findings have significant implications for the broader field of systems biology and representation
learning. By combining machine learning with metabolic modeling, this work highlights the poten-
tial for developing scalable and interpretable frameworks that bridge molecular-level data, whole
cell modeling, and organismal-level predictions.
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Figure 2: Distribution of available kinetic parameter (kcat) data from the BRENDA database.
The histogram highlights the abundance of kcat values across diverse organisms (green) compared
to those specifically available for E. coli (pink). Despite E. coli being a well-studied organism,
the pie chart reveals that when utilizing kcat values from BRENDA, an overwhelming majority of
enzymes in the iML1515 GEM remain unannotated, underscoring a critical gap in kinetic parameter
coverage.

2 METHODOLOGY

KINETIC PARAMETER TRAINING DATASET

Accurate kinetic parameter data is essential for constructing ecGEMs, yet a significant portion of
kinetic parameter entries in BRENDA (Schomburg et al., 2003)—approximately 60%—lack anno-
tated UniProt IDs, creating a disconnect between enzyme sequence and functional data. To bridge
this gap, we utilize the KinMod database (Haddadi et al., 2022), which provides a hierarchical repre-
sentation of metabolic regulatory networks across 9,814 organisms. This structure captures relation-
ships between proteins and kinetic information derived from from in vitro experiments, with a par-
ticular focus on the small regulatory network (SMRN). Using KinMod, we assign protein sequences
to BRENDA entries with missing UniProt IDs based on EC number and species. This approach
enables the creation of “core” datasets, containing entries with complete UniProt annotations, and
“pangenomic” datasets, which augment the core data with the KinMod-assigned sequences for en-
tries lacking UniProt IDs. This integration of KinMod and BRENDA enhances dataset completeness
and strengthens the foundation for downstream modeling.

CPI-PRED ARCHITECTURE

The CPI-Pred model employs a deep learning architecture to predict compound-protein interactions
to gap-fill for sparse kcat data in ecGEMs (Figure 2). It begins by processing protein sequences
and compound SMILES as inputs into a multi-expert ensemble model and outputs the predicted ki-
netic parameter as a functional descriptor. First, the protein sequences are processed by generating
embeddings using pre-trained protein language models (pLMs), including ESM-2 (Lin et al., 2022),
ProtTrans (Elnaggar et al., 2021), Ankh (Elnaggar et al., 2023), and CARP (Yang et al., 2024). These
models extract robust functional and structural representations, with ESM-2 embeddings primarily
used for performance evaluation and other pLMs validating robustness across sequence-to-function
tasks. To manage the high-dimensionality of sequence embeddings, CPI-Pred integrates multiple in-
dependent dimensionality reduction techniques. Self-attention pooling, LSTM variational encoder
pooling, and 1D convolutional pooling are all utilized (independently in different models) as meth-
ods for reducing the dimension of the pLM embeddings and converting them to size-consistent 1D
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Figure 3: Overview of the CPI-Pred and kinGEMs framework for multi-scale modeling of en-
zyme kinetics and genome-scale metabolism. Panel A illustrates the CPI-Pred workflow, which
predicts kinetic parameters (kcat) by combining protein sequence embeddings (e.g., ESM-2) and
compound SMILES representations through advanced neural network architectures. These pre-
dicted parameters are integrated into GEMs as shown in panel B, where kinGEMs refines the GEM
to generate ecGEMs. Panel C highlights the application of kinGEMs in predicting fitness and growth
across gene expression libraries, enabling the simulation of metabolic outcomes under diverse con-
ditions. Finally, panel D demonstrates the iterative learning process for refining kinetic parameters,
incorporating model predictions, experimental validation, and parameter optimization to enhance
the accuracy and utility of ecGEMs. This multi-scale pipeline bridges molecular-level predictions
with metabolic-scale applications, providing a robust framework for enzyme and strain design.

vectors. These methods enhance prediction accuracy across diverse datasets. On the compound
side, CPI-Pred uses a message passing neural network (MPNN) to encode molecular representa-
tions, leveraging the full covalent graph view of a molecule. This integration strengthens the model’s
ability to capture nuanced compound-protein interactions, even with smaller datasets. CPI-Pred in-
corporates a cross-attention mechanism to dynamically align and integrate protein and compound
representations. Unlike conventional two-stage pipelines (Li et al., 2022; Kroll et al., 2023; Boorla
& Maranas, 2024), where protein and compound representations are concatenated and processed
through a feed-forward neural network, this approach aims to incorporate a learnable component
for multi-modal interaction modeling. Finally, an ensemble strategy aggregates outputs from four
models, combining self-attention, LSTM, convolutional pooling, and cross-attention, maximizing
robustness and accuracy in predictions.

KINGEMS FRAMEWORK

kinGEMs builds upon established ecGEM methodologies that incorporate quantitative proteomics
data (Adadi et al., 2012; Sánchez et al., 2017; Bekiaris & Klamt, 2020) with the constraints pre-
sented in Supplementary Figure S1. GEMs can be represented as a system of linear equations that
describe the flux of the reactions and metabolites that compromise the metabolic network of an or-
ganism. This formulation embedded into kinGEMs accounts for isoenzymes, protein complexes
and functional enzyme activities using Boolean rules (further described in Supplementary Informa-
tion section A.1). The kinGEMs framework begins by identifying the substrates and enzymes in a
pre-existing GEM, by looking at the annotated reactions and its gene-protein-reaction (GPR) asso-
ciations. Subsequently, kcat values for the enzymes are predicted using CPI-Pred to address the lack
of data (Figure 2) and integrated back into the ecGEM to fulfill its constraints (panels A and B in
Figure 3).
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Figure 4: Overview of the simulated annealing algorithm for optimizing the kcat values that
parametrize kinGEMs. The framework starts by using CPI-Pred kcat values and solving for the
objective function. If the objective function is not satisfactory, simulated annealing begins.

Simulating biological perturbations is performed through CBM (Orth et al., 2010; Sánchez et al.,
2017; Bekiaris & Klamt, 2020). CBM incorporates available stoichiometric information into a ma-
trix and the metabolic network is assumed to operate under quasi-steady state conditions (Supple-
mentary Figure S1). This assumption allows the formulation of an optimization problem to max-
imize or minimize a specified biological objective, such as biomass production. To evaluate the
predictive accuracy of kinGEMs, we compared the predicted cell growth rates against experimental
data. In this case, biomass formation was set as the objective function to maximize for the E. coli
iML1515 model (Monk et al., 2017). This model was selected for its extensive documentation and
the abundance of experimental data available in the literature for evaluation purposes. The optimiza-
tion problem was implemented using the Pyomo library (Bynum et al., 2021), with iPOPT (Wächter
& Biegler, 2006) as the solver of choice. If substantial deviations occur between the simulation out-
comes and experimental data, a simulated annealing algorithm is applied to optimize the kcat values
of the metabolic enzymes, as described in Figure 4.

To evaluate kinGEMs’ ability to predict genetic perturbations, we benchmarked its performance on
the E. coli iML1515 model against the baseline GEM using the protocol described by Bernstein
et al. (2023). The dataset utilized for this analysis, derived from RB-TnSeq experiments, measured
fitness values across 25 carbon sources for 3,985 genes in E. coli BW25113 (Wetmore et al., 2015;
Price et al., 2018). Of these, 1,332 genes were matched to the iML1515 model, resulting in a 1,332×
25 dataset. In this dataset, fitness values are compared to growth rates, where a fitness score of 0
indicates that mutants grew as well as the wild-type, while scores below -2 signify a strong fitness
effect, indicative of no growth. Using this dataset, we simulated genetic perturbations along with
the carbon source conditions and predicted whether E. coli grew or not (Figure 3D).
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Figure 5: Prediction performance (Pearson’s correlation coefficient) of CPI-Pred on compound
and protein design tasks for kcat. KNN and DLkcat were used for benchmarking against the same
(core) dataset splits. The results correspond to averages and standard deviations across models
trained using 5-fold cross validation.

BENCHMARKING METRICS

To evaluate prediction accuracy, generalizability, and biological plausibility across our multi-scale
pipeline, we employed rigorous benchmarking metrics tailored to each stage. For CPI-Pred, we used
Pearson’s correlation with error bars derived from 5-fold cross-validation to ensure robust perfor-
mance evaluation. CPI-Pred’s performance was benchmarked against DLkcat (Li et al., 2022) and a
k-Nearest Neighbors (KNN) model. To test generalizability, CPI-Pred was further evaluated using
two design tasks: the protein design task and the compound design task. Protein sequences were
clustered with CD-HIT (Li & Godzik, 2006) at 80% and 60% similarity thresholds to introduce vary-
ing levels of difficulty, with 5-fold cross-validation ensuring diverse and non-overlapping clusters
across folds. Similarly, compounds were clustered based on Tanimoto similarity (Tanimoto, 1958)
at thresholds of 0.2 and 0.4, creating structurally distinct clusters. These tasks rigorously tested
the model’s ability to predict kinetic parameters for novel proteins and compounds, reinforcing its
applicability in enzyme engineering and discovery.

For kinGEMs, we assessed biological plausibility and modeling precision through flux variability
analysis (FVA) (Mahadevan & Schilling, 2003) and genetic lethality predictions. FVA was used to
evaluate the cumulative distribution of flux variability across all reactions in the E. coli iML1515
GEM, with median flux variability serving as an indicator of model constraint precision. Addi-
tionally, a kinGEMs-enhanced ecGEM (E. coli iML1515) was benchmarked against experimental
genetic lethality datasets as described by Bernstein et al. (2023), measuring their ability to predict
growth outcomes for gene knockouts under varying carbon sources using metrics like AUC-ROC
and accuracy. These evaluations demonstrated the framework’s capacity to reduce uncertainty and
improve biological relevance in genome-scale models.

3 RESULTS AND DISCUSSION

3.1 CPI-PRED DEMONSTRATES SUPERIOR GENERALIZATION TO NOVEL PROTEINS AND
COMPOUNDS COMPARED TO BASELINE MODELS

The performance of CPI-Pred in predicting kinetic parameters highlights its ability to generalize
effectively across datasets containing novel proteins and compounds. Figure 5 demonstrates that
CPI-Pred, particularly the one trained on the pangenomic variant, consistently outperforms baseline
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models such as DLkcat and KNN across key evaluation metrics (Pearson’s correlation, with more
metrics reported in Supplementary Table S2). The pangenomic variant’s incorporation of additional
KinMod-augmented sequences provides a broader representation of enzyme diversity, contributing
to improved generalization. This superior performance is particularly evident in the context of the
protein and compound design tasks. By leveraging clustered protein sequences with CD-HIT at 80%
and 60% similarity thresholds and clustering compounds based on Tanimoto similarity at thresholds
of 0.2 and 0.4, these tasks introduced varying levels of difficulty. CPI-Pred’s ability to maintain high
predictive accuracy across these conditions underscores its robustness and versatility in handling
structurally diverse proteins and compounds. The results confirm that CPI-Pred excels in capturing
the intricate relationships between sequences and molecular interactions even when presented with
novel datasets. In comparison, DLkcat and KNN exhibited lower performance, particularly under the
more challenging conditions of lower sequence and compound similarity. These results emphasize
the limitations of traditional approaches in capturing complex protein-compound interactions and
their inability to generalize to novel datasets.

3.2 KINGEMS REDUCES FLUX VARIABILITY AND CONSTRAINS GEM SOLUTION SPACE

An FVA was performed to evaluate the degree of flexibility across the model’s solution space for a
given objective function, with results presented in Figure 6. FVA determines the range of possible
flux distributions in both optimal and suboptimal states, identifying redundancies and alternative
pathways in metabolic networks (Mahadevan & Schilling, 2003) (further discussed in Supplemen-
tary Information section A.3). Our findings reveal that incorporating kcat values, followed by opti-
mization through the simulated annealing algorithm, significantly reduces variability in the solution
space. Fewer variable reactions in a metabolic network minimize the uncertainty and enhance model
predictability, further validating the biological relevance of CPI-Pred predictions.

3.3 PREDICTING GENETIC PERTURBATIONS FOR E. coli USING KINGEMS

Understanding the impact of integrating machine learning-predicted kinetic parameters into
genome-scale models is crucial for improving predictions of biological responses to genetic per-
turbations. In this section, we evaluate the predictive performance of the kinGEMs-enhanced E. coli
iML1515 model compared to its baseline counterpart in a single-gene mutation prediction problem,
where growth serves as the phenotype. Our evaluation focuses on precision-recall and accuracy
metrics to assess the model’s ability to capture the effects of genetic perturbations.

Incorporating the kinGEMs’ produced model improved the AUC-ROC from 0.613 to 0.633 and the
accuracy from 0.938 to 0.944. These results, though modest, demonstrate kinGEMs’ capability to
enhance predictive performance for genetic perturbation tasks, even for a well-established GEM
like E. coli iML1515. The slight improvement is likely attributable to iML1515’s highly refined and
extensively studied nature, leaving limited room for additional enhancement under the constraint-
based set-up.

This analysis highlights kinGEMs’ potential for modeling biological perturbations and predicting or-
ganismal responses. More substantial gains are anticipated for less-defined GEMs of under-studied
organisms, where the integration of kinetic parameters through kinGEMs could fill critical knowl-
edge gaps. This application and its implications for expanding kinGEMs to other organisms will be
explored further in the next section.

4 CONCLUSION AND FUTURE DIRECTIONS

In this work, we present a novel framework that integrates ML-predicted kinetic parameters into
ecGEMs, addressing critical gaps in metabolic modeling. Unlike regular GEMs, which rely solely
on stoichiometric constraints and often yield a broad solution space, the incorporation of enzyme
kinetics improves model specificity. CPI-Pred’s use of advanced sequence embeddings, dimension-
ality reduction techniques, and molecular representation positions makes it a robust tool for ad-
dressing the challenges of generalization in kinetic parameter prediction. By combining CPI-Pred’s
predictive insights with the kinGEMs’ mechanistic modeling, we establish a robust framework for
assessing prediction accuracy, model generalizability, and biological plausibility. This approach not
only enhances the precision and interpretability of ecGEMs but also demonstrates utility in real-
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Figure 6: FVA results for E. coli iML1515 ecGEMs constructed with kinGEMs with biomass
maximization set as the objective. Panel A shows a box plot of the flux variability ranges for
a baseline GEM as well as kinGEMs-produced GEMs with CPI-Pred and BRENDA sourced kcat
values, with and without simulated annealing. Panel B depicts the median flux variability range for
the different GEMs, with a lower value signifying less model uncertainty. Panel C depicts the %
decrease in median flux variability for the kinGEMs models when applying simulated annealing,
where higher values signify better performance. Panel D depicts the % of totally variable reac-
tions—those that operate across the entire range of their predefined lower and upper bounds—with
lower percentages signifying better models with more defined operations.

world applications, such as predicting genetic perturbations and improving biological relevance of
metabolic networks. Looking ahead, several avenues for future work could further enhance this
framework. First, feedback from kinGEMs’ perturbation results can be used to refine CPI-Pred’s ki-
netic predictions, creating an iterative loop that improves accuracy over time. Additionally, integrat-
ing causal and multi-modal representation learning into kinGEMs could deepen its ability to model
complex biological interactions and improve generalizability to under-studied organisms. Further-
more, the practical impact of kinGEMs can be assessed through simulations that explicitly depend
on kinetic parameters, such as estimating enzyme costs when screening pathway efficiencies for tar-
get molecule production (Noor et al., 2016). Finally, fostering collaborations for dataset sharing and
benchmark standardization will enable broader adoption and validation of this approach, facilitating
advancements in both computational modeling and experimental biology. Together, these direc-
tions hold promise for extending the applicability and impact of kinGEMs in the fields of metabolic
engineering and systems biology.
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MEANINGFULNESS STATEMENT

This research contributes to shaping a meaningful representation of life by leveraging foundation
models capable of predicting enzyme kinetics, which are subsequently integrated into genome-scale
metabolic models. Our framework establishes a connection between molecular-level data, given by
kinetic parameters, and biological-level outcomes, represented by metabolic fluxes and growth rates.
This enables multi-scale data utilization by effectively linking distinct levels of biological organiza-
tion. Finally, the interpretability of these models is enhanced by linking predictions to downstream
tasks like phenotypic prediction of genetic perturbations, enabling a more comprehensive and func-
tional understanding of biological systems.
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A SUPPLEMENTARY INFORMATION

A.1 GENOME-SCALE MODEL CONSTRAINTS & CONSTRUCTION

Genome-scale models, or GEMs, are mathematical representations of the metabolic network of an
organism. Adding kinetic constraints to the reaction fluxes of the GEM turns it into an enzyme-
constrained GEM, or ecGEM (Supplementary Figure S1). We also take into account multiple sce-
narios of enzymatic reactions, including those in which there is a single enzyme catalyzing a single
reaction, ones where there are multiple enzymes catalyzing a single reaction, and those in which
there are single enzymes catalyzing multiple reactions (Supplementary Table S1).

Figure S1: Schematic representation of genome-scale metabolic modeling with ecGEMs. In-
tegrating enzyme turnover rates (kcat) into reaction flux (vj) bounds generates an ecGEM (1 + 2)
from a baseline GEM (1).

Scenario Enzymes Reaction Flux Formulation kcat value if multiple substrates

Baseline single single vi ≤ kcat,i[Ei] kcat,i = max(kcat,s)

Isoenzymes (OR) multiple single vi ≤
∑
j

kcat,ij [Eij ] kcat,ij = max(kcat,s)

Enzyme complex (AND) multiple single vi ≤ kcat,i min
(

[Eij ]
sj

)
kcat,i = max(kcat,s)

Promiscuous Enzymes single multiple
∑
i

vi
kcat,ij

≤ [Ej ] kcat,ij = max(kcat,s)

Table S1: Comparison of different enzyme scenarios and their flux constraints, where i, j, and s
annotate reactions, enzymes, and substrates, respectively.

A.2 CPI-PRED

Supplementary Figure S2 shows the general architecture of CPI-Pred, a deep learning framework for
compound-protein interaction prediction. Protein sequences are processed using ESM-2 to generate
residue-level embeddings. To obtain fixed-length representations, self-attention pooling extracts
global contextual dependencies, preserving essential residue-specific features. Conv-1D filtering
captures local sequence motifs, refining embeddings by detecting short-range dependencies. LSTM
variational encoder pooling compresses variable-length embeddings into consistent latent vectors,
mitigating padding effects and improving computational efficiency. Substrate structures are encoded
using a message-passing neural network (MPNN) to learn atom-level representations. The protein
and substrate embeddings are then concatenated and passed through a feedforward neural network
(FFNN) to predict kcat values.
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Figure S2: Schematic of the CPI-Pred model for compound-protein interaction prediction.
Protein sequences are encoded using protein language models (i.e., ESM-2), followed by an embed-
ding pooling block. Compound structures are processed through a message-passing neural network
(MPNN) to generate atom-level embeddings. The resulting protein and compound representations
are concatenated and passed through a feedforward neural network (FFNN) to predict interaction
properties.

Supplementary Table S2 summarizes the prediction performance of CPI-Pred compared to baseline
models (KNN and DLkcat) on various compound and protein design tasks involving kcat predic-
tion. Results show that CPI-Pred consistently outperforms baselines across all metrics (Pearson’s
R, Spearman’s ρ, and R2), particularly under challenging thresholds and sequence identity cutoffs,
demonstrating its robustness and generalizability.

Table S2: Prediction performance of CPI-Pred on compound and protein design tasks of kinetic
parameters for kcat, with KNN and DLkcat used for benchmarking. Only core validation datasets
were used for testing. The results correspond to averages and standard deviations across models
trained using 5-fold cross-validation.

Metric Model Simple Task Compound Design Compound Design Protein Design Protein Design

(Threshold: 0.2) (Threshold: 0.4) (Identity: 80%) (Identity: 60%)

Pearson’s R

CPI-Pred (pangemonic) 0.786±0.008 0.747±0.008 0.730±0.049 0.527±0.071 0.472±0.050

CPI-Pred (core) 0.781±0.005 0.725±0.006 0.615±0.054 0.536±0.050 0.498±0.046

KNN 0.726±0.023 0.670±0.028 0.571±0.034 0.380±0.071 0.396±0.040

DLkcat 0.453±0.033 0.390±0.039 0.435±0.052 0.407±0.056 0.407±0.056

Spearman’s ρ

CPI-Pred (pangenomic) 0.767±0.010 0.733±0.009 0.705±0.042 0.511±0.065 0.468±0.060

CPI-Pred (core) 0.758±0.008 0.718±0.011 0.592±0.062 0.513±0.061 0.487±0.052

KNN 0.711±0.021 0.678±0.031 0.569±0.041 0.355±0.079 0.369±0.038

DLkcat 0.380±0.022 0.360±0.035 0.391±0.045 0.371±0.051 0.381±0.043

R2

CPI-Pred (pangenomic) 0.619±0.016 0.558±0.022 0.532±0.030 0.277±0.074 0.219±0.070

CPI-Pred (core) 0.609±0.014 0.561±0.019 0.417±0.075 0.315±0.065 0.302±0.055

KNN 0.526±0.034 0.448±0.037 0.338±0.043 0.144±0.069 0.152±0.058

DLkcat 0.206±0.023 0.166±0.029 0.209±0.031 0.151±0.038 0.155±0.035
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A.3 FLUX VARIABILITY ANALYSIS

Flux Variability Analysis (FVA) is a mathematical approach used in constraint-based metabolic
modeling to determine the possible range of flux values for each reaction in a metabolic network
while maintaining a given optimal objective function (e.g., biomass production). It helps identify
essential and variable reactions under different conditions.

FVA solves two linear optimization problems for each reaction vi in the system, subject to the mass
balance constraints:

S · v = 0

where S is the stoichiometric matrix, and v is the flux vector. The fluxes are constrained by lower
and upper bounds:

vmin,i ≤ vi ≤ vmax,i

For each reaction vi, FVA computes the minimum and maximum flux values while keeping the
objective function Z (e.g., biomass production) within a certain threshold (often its optimal value
Z∗):

min vi, subject to Z ≥ αZ∗

max vi, subject to Z ≥ αZ∗

where α is typically set to 0.9 or 1 to ensure near-optimal or optimal growth. The resulting flux
ranges provide insights into essential reactions, alternative pathways, and metabolic flexibility. For
our results highlighted in this paper, we kept the the objective function at the maximum (optimum)
value (alpha = 1).

A cumulative distribution plot of the FVA results is highlighted in Supplementary Figure S3. The
point ⋆ (top right) denotes the low percentage of variable reactions in each case study constructed
with kinGEMs; ranging from 1.42% (using experimental kcat values) as low as 0.13% (using CPI-
Pred kcat values). This represents a large reduction from the 35.29% variable reactions for the
unconstrained baseline GEM (blue line). The baseline GEM achieves a high biomass formation
(blue horizontal line) due to the minimal constraints applied to the model, in comparison to the
kinGEMs models (other horizontal dashed lines). However, the simulated annealing process gives
the user the opportunity to tune the kcat values until a satisfactory growth rate is achieved, which
was around 0.2/hr for the CPI-Pred kinGEMs model (green horizontal line) for the experiments
presented in Supplementary Figure S3.
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Figure S3: FVA results for E. coli iML1515 ecGEMs constructed with kinGEMs with biomass
maximization set as the objective. The left y-axis shows the cumulative probability, where curves
to the right of the plot suggest higher variability. The right y-axis represents the maximum biomass
formation rates achieved in each case, marked by the dashed horizontal lines. Case studies with
different kcat values were conducted: experimental values from (Schomburg et al., 2003) (red and
purple lines), and CPI-Pred values (yellow and green lines). The use of the simulated annealing
algorithm showcases a significant reduction in the median variability (gray line) for each case; this
reduction is particularly significant when comparing the results of the kinGEMs framework against
the baseline GEM without constraints (blue lines).
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