Under review as a conference paper at ICLR 2025

SWIFTKV: FAST PREFILL-OPTIMIZED INFERENCE WITH
KNOWLEDGE-PRESERVING MODEL TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM inference for popular enterprise use cases, such as summarization, RAG, and
code-generation, typically observes orders of magnitude longer prompt lengths than
generation lengths. This characteristic leads to high cost of prefill and increased re-
sponse latency. In this paper, we present SwiftK'V, a novel model transformation and
distillation procedure specifically designed to reduce the time and cost of processing
prompt tokens while preserving high quality of generated tokens. SwiftK'V combines
three key mechanisms: i) SingleInputK'V, which prefills later layers’ KV cache using
a much earlier layer’s output, allowing prompt tokens to skip much of the model
computation, ii) AcrossKV, which merges the KV caches of neighboring layers to
reduce the memory footprint and support larger batch size for higher throughput, and
iii) a knowledge-preserving distillation procedure that can adapt existing LLMs for
SwiftK'V with minimal accuracy impact and low compute and data requirement. For
Llama-3.1-8B and 70B, SwiftKV reduces the compute requirement of prefill by 50%
and the memory requirement of the KV cache by 62.5% while incurring minimum
quality degradation across a wide range of tasks. In the end-to-end inference serving
using an optimized vLLM implementation, SwiftK'V realizes up to 2x higher aggre-
gate throughput and 60% lower time per output token. It can achieve a staggering 560
TFlops/GPU of normalized inference throughput, which translates to 16K tokens/s
for Llama-3.1-70B in 16-bit precision on 4 x H100 GPUs. Our training, inference,
and model implementations are open-sourced atht tps://anonymized. link.

1 INTRODUCTION

Large Language Models (LLMs) are quickly becoming an integral enabler of enterprise applications and
offerings, including code and data co-pilots (Chen et al., 2021; Pourreza & Rafiei, 2024), retrieval aug-
mented generation (RAG) (Lewis et al., 2020; Lin et al., 2024), summarization (Pu et al., 2023; Zhang
et al., 2024), and agentic workflows (Wang et al., 2024; Schick et al., 2023). While it is clear that LLMs
can add value to these applications, the cost and speed of inference determine their practicality. There-
fore, improving the aggregate throughput and reducing latency of LLM inference has become an increas-
ingly important topic of interest, with various efforts (Sec. 2) tackling the problem from multiple angles.

In this paper, we take a unique approach to improving LLM inference for enterprise applications based
on the key observation that typical enterprise workloads process many more input tokens than output
tokens. For example, tasks like code completion, text-to-SQL, summarization and RAG each submit
long prompts but produce a small number of generated tokens, and a majority of enterprise LLM use
cases incur a 10:1 ratio between prompt and generated tokens. '

Based on this observation, we designed SwiftKV, which improves throughput and latency by: i)
reducing the computation required to pre-fill the KV cache for input tokens, and ii) enabling memory
savings to support larger batch sizes needed to serve LLMs more cost effectively (Sheng et al., 2023;
Pope et al., 2022; Yu et al., 2022). SwiftKV (Fig. 1) consists of four key components:

SingleInputKYV. SingleInputKV rewires an existing model so that the pre-fill stage during inference can
skip a number of later layers in the network, and their KV cache are computed by a single earlier layer.
SingleInputKV is motivated by the observation that the output hidden states of the later transformer lay-
ers do not change significantly (see Sec. 3.2, also independently discovered by Liu et al. (2024c¢)). With

"Exact use cases hidden to preserve anonymity but will be included in final paper.

https://anonymized.link

Under review as a conference paper at ICLR 2025

Layer 1 Layer 2 Layer 3 Layer4 Prefill Layer5 Layer 6 Layer 7 Layer 8
tokens LM
exit Head pjgiill from
wq Wwq wq Original
tin n tn tin
Wk
i]
|
E KV Cache |
I
C] Trainedin |
Distillation
I
C] Frozen in 1
Distillation 1

50% SingleInputKV 2-way AcrossKV

Figure 1: [llustration of SwiftKV with 50% SingleInputKV and 2-way AcrossKV. After distillation,
the KV cache of layers 58 can all be populated using the hidden state outputs of layer 4. For prefill
tokens, layers 5—-8 may be skipped altogether, while decode tokens complete all layers. Existing models
may be efficiently adapted for SwiftKV by distilling from the original unmodified model using a small
dataset. Model knowledge is preserved by keeping the trainable parameters limited to the Q, K, and V
projections of the layers affected by SingleInputKV.

SinglelnputKYV, the computation required for pre-fill is reduced by approximately the number of layers
skipped. We found that it is possible to skip at least 50% of the layers without significantly impacting the
model quality (Sec. 4.2), which translates to a 50% reduction of the pre-fill computation in inference.

AcrossKV. While SingleInputKV reduces the pre-fill computation, it does not reduce the KV cache
memory requirement. AcrossKV combines the KV projections from multiple adjacent layers into
a single one, and share the KV cache across these layers to reduce its size in memory. AcrossKV
allows significant memory savings, which unlocks higher throughput by enabling larger batches during
inference. In Sec. 3, we show that AcrossKV can reduce the KV cache size by 25% with less than
a 1% quality gap. We also show in ablation studies (Sec. 5) that AcrossKV is compatible with existing
KV cache quantization methods, which combine to unlock 62.5% reduction in KV cache size.

Knowledge Recovery. Although SingleInputKV and AcrossKV can be applied to existing LLMs
with minimal changes to their architectures, we found that the resulting model parameters should
still be adapted to the new architecture to recover their original prediction quality. This can be done
via distillation from the original model. With SwiftKV, we found that a lightweight distillation is
sufficient, with only a fraction of the model (Q, K, and V projections of the affected layers) trained
on 680M tokens, which takes less than 3 hours on a single 8 x H100 node for Llama-3.1-8B.

SwiftKV Optimized Inference. To realize the computation and memory reductions of SingleInputKV
and AcrossKYV into end-to-end throughput and latency improvements, we implemented SwiftKV in
vLLM (Kwon et al., 2023). Our implementation includes several additional optimizations, including
fusing all KV-projections beyond layer [into a single GEMM operation, and integrated memory
management needed to lower the KV cache memory footprint achievable via AcrossKV.

SwiftKV increases the aggregate throughput of enterprise workloads by up to 2%, while reducing time-
to-first-token (TTFT) and time-per-output-token (TPOT) by up to 50% and 60%, respectively. In fact,
for Llama-3.1-70B, SwiftKV can achieve a normalized throughput of 560 TFLops/GPU?. This is an
unprecedented 56.6% MFU utilization for inference (Sec. 4.3). We show that SwiftKV incurs minimal
quality degradation averaged across a wide range of tasks (Sec. 4.2), including ARC-Challenge (Clark
etal., 2018), Winogrande (Sakaguchi et al., 2019), HellaSwag (Zellers et al., 2019), Truthful QA (Lin
etal., 2022), MMLU (Hendrycks et al., 2021), and GSM8K (Cobbe et al., 2021).

In addition to these main results, in Sec. 5 we discuss the impact of distillation, datasets, choice
of trainable parameters for training SwiftKV. We also present our analysis of the hidden state
similarities, and how AcrossKV can be extended and combined with other KV cache compression

*Normalized throughput and MFU is based on number of floating point operations in the baseline model.

Under review as a conference paper at ICLR 2025

works. Additionally, we also discuss how SingleInputKV can enable compute savings not just during
pre-fill but also during decoding phase.

Lastly, we open-sourced the training and inference code for SwiftKV that can be used to fully
reproduce our results at ht tps://anonymized. 1ink, as well as several SwiftKV models that
can be used directly by the community at https://anonymized. link.

2 RELATED WORK

Hardware and System Optimizations. Lower-precision quantization techniques like FP8 (Kuzmin
et al., 2024) can enable the use of tensor-cores to accelerate inference (Luo et al., 2024). System
approaches like PagedAttention (Kwon et al., 2023), Tensor-Parallelism(Shoeybi et al., 2020),
Split-Fuse (Holmes et al., 2024; Agrawal et al., 2024), Flash Attention (Dao et al., 2024), and
their optimized implementations in TensorRT (NVIDIA, 2019), FasterTransformer (NVIDIA,
2021), vLLM (Kwon et al., 2023), and DeepSpeed-Inference (Aminabadi et al., 2022) enable better
parallelization, batching, and scheduling to eliminate performance overheads and achieve better
hardware peak utilization without impacting model quality.

Memory Compression. A wide range of techniques have been developed to reduce the memory
footprint for inference. Lower-precision quantization techniques like FP8/FP4 can reduce the memory
footprint for both KV cache and parameters (Hooper et al., 2024). Attention optimization techniques
like MQA (Shazeer, 2019), GQA (Ainslie et al., 2023b), low-rank attention (Chang et al., 2024) also
reduce the KV Cache. All of these approaches are complementary to SwiftKV.

Similar to our work AcrossKV, MiniCache (Liu et al. (2024b)) reduces KV Cache by consolidating
adjacent layers of KV cache. While both consolidate KV cache across adjacent layers, AcrossKV
enables consolidating more than just two layers, allowing for higher level of compression. Furthermore,
due to the distillation based fine-tuning, AcrossKV does not require any token retention strategy
where distinct KV caches are stored for special tokens even for consolidated layers. The simplicity of
AcrossKV makes it easier to translate the KV cache savings into real world performance improvements.

Other Inference Optimizations. Speculative Decoding based approaches (Cai et al. (2024); Xia et al.
(2024)) reduce the number of decoding steps to speed up the generation phase of inference, but it does
not reduce prefill computation. Model distillation techniques (e.g., Sreenivas et al. (2024)) transfer the
knowledge of a large teacher model into a smaller student model, reducing inference computation by
decreasing the number of parameters. However, these methods require significant retraining over long
token horizons, and typically incur a significant quality degradation from the teacher to the student
model. In contrast, SwiftKV reduces the computation of the model, not its number of parameters,
by approximating the KV cache of later layers, and aims to fully recover the model performance using
distillation. Moreover, it requires minimal training resources including compute and data.

3 SWIFTKV: DESIGN AND IMPLEMENTATION

3.1 PRELIMINARIES

In transformer models (Vaswani et al., 2017), attention enables each token to focus on other
tokens by comparing queries (Q) with keys (K) and using values (V) to compute the final
representation. For a sequence of input tokens z(1) ..., 2(") | the projections are defined as follows:
Q=XWq, K=XWg, V =XWy, where X € R"™*4 are the input embeddings, and
Wq e R4¥4k and Wy , Wy € R4%%s are trained model parameters with d |d.. Hereafter, we may also
refer to W and Wy as a single matrix Wy € Ré*2dk

During the prefill phase of inference, the model processes the entire input sequence at once, computing
K and V for all tokens in parallel (or in chunks in the case of Split-Fuse (Holmes et al., 2024; Agrawal
etal., 2024)). This typically occurs when the model handles an initial prompt or context.

During the decoding phase of inference, new tokens are generated one at a time. When predicting
the next token, only the query (Q(**1)) for the new token needs to be computed, while the model must
attend to the keys and values (K1) ..., K® V(U v ®))of all previously processed tokens.

https://anonymized.link
https://anonymized.link

Under review as a conference paper at ICLR 2025

—— LLaMa-3.1-8B-Instruct M SingleInputKV (1=1/4) M SingleInputKV (I = 3L/4)
Mistral-7B-Instruct-v0.1 SingleInputKV (1=L/2) Baseline
08l — Qwen2.5-7B-Instruct
: 350
300
X 061 z
E é 250
o
A 2 200
€ 8
& 0.4 T 150
£
I 100
" " I I
(U | I | I i
128 256 512 1024 2048
0 5 10 15 20 25 30
Layer Batch size (tokens)

Figure 2: LEFT: the input similarity of several smaller scale models (Fig. A.1 in the Appendix
shows a similar observation for larger models). RIGHT: The time per forward pass of Llama-3.1-8B.
SingleInputKV effectively reduces the forward pass processing time across a range of batch sizes.

To optimize efficiency in the decoding phase, KV caching is employed. After processing each token
t, the newly computed & () and V() are stored in a cache. For the next token ¢+ 1, only the new query
QD) key K(“+1), and value V(*+1) are computed. The attention computation will then utilize the
cached K and V from all prior tokens, allowing for reduced computational overhead during inference.

3.2 SINGLEINPUTKYV: PROJECT KV CACHE FROM A SINGLE LAYER

Assume the input of [-th layer is x;, and its ¢-th token is xl(i). Prior studies (Liu et al., 2024¢; Gromov

et al., 2024) showed that x; becomes more similar as the depth grows. Here, we conduct a similar study.

We compute the average input similarity between [-th layer’s input and all remaining layers’ input, i.e.,

Z§:l+18imilarity(xl,xj)
L-1 ’

SimScore(x;) =

ey

where L is the number of layers in the model and Similarity(x,x;) is the average cosine similarity
between all x* and x*) tokens.
l J

We use 50 random training examples from HuggingFaceH4/ultrachat_200k to estimate
SimScore(x;), and the results of Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.1, and Qwen2.5-7B-
Instruct are shown in the left of Fig. 2. As the layers get deeper, SimScore(x;) gets higher. Particularly,
around half of the depth, the average similarity of x; with x~; is above 0.5 for all models, which shows
that the difference of input hidden states are small in deeper layers.

Based on this observation, the first key component of SwiftKV is to use [-th layer’s output x;4; to
compute the KV cache for all remaining layers. More specifically, SwiftKV retains the standard
transformer architecture up to and including the /-th layer, but the KV cache for all remaining layers
are computed immediately using x;1, i.e.

KVj:W%(VXH‘l’ for a11]>l, (2)

where K'V; is the KV cache for j-th layer and Wi(v is its KV projection weight matrix.

Prefill Compute Reduction. SingleInputKV can enable significant reduction in prefill computation
during LLM inference. Originally, all input tokens need to be processed by all transformer layers
in order to generate the first new token. Using SingleInputKYV, after layer [, since all the required KV
cache are computed, for all remaining layers (>), we only need to process the last token in the input.
When prefill computation dominates generated token computation, this reduces the total inference
computation to approximately [/ L. See Appendix B for more details.

Under review as a conference paper at ICLR 2025

3.3 ACROSSKV: SHARING KV CACHE FOR CONSECUTIVE LAYERS

GQA (Ainslie et al., 2023a), one of the most widely adopted KV cache compression methods, showed
that the KV cache can be easily shared within a transformer layer. Later, Liu et al. (2024a) showed
that the KV cache can be merged for certain pairs of adjacent layers. AcrossKV extends the ideas
to cross-layer KV cache sharing.

Particularly, instead of computing KV cache for all of the remaining layers as shown in equation 2,
AcrossKV selectively chooses one layer to compute the KV cache for several consecutive layers and
share it within the small group. The key idea is shown in Fig. 1. As AcrossKV can combine multiple
layers” KV caches into a single one rather than just two adjacent layers, it offers higher potential
reduction ratio compared to Liu et al. (2024a) while simplifying the implementation to realize the
benefits of the KV cache reduction. (See Sec. 2 for more detailed comparison with Liu et al. (2024a)).

3.4 KNOWLEDGE RECOVERY

While SingleInputKV preserves all the original parameters, it re-wires the architecture so that the
KV cache projections may receive different inputs. We found that this re-wiring (and AcrossKV)
requires fine-tuning to recover the original capabilities from the modified model. As we only change
the computation of the attention part for layer >, this can be achieved by fine-tune just the W g v/
weight matrices from the (I + 1)-th layer onwards. However, instead of directly fine-tuning these
parameters using standard LM loss, we find that distilling using the output logits of the original model
allows for better knowledge recovery (see Sec. 5 for more details).

Implementing the Distillation. Since only a few W g iy parameters need fine-tuning, we are able
to do a memory efficient parameter-sharing based distillation. More specifically, we keep a single copy
of the original model weights in memory that are frozen during training, and add an extra trainable
copy of the W iy parameters for layers > [initialized using the original model (See Fig. 1).

During the training, we create two forward modes for the later layers > [, one with original frozen
parameters using original architecture, and another with the SwiftKV re-wiring using new QKV
projections i.e.,

Viteacher = M(X,Swi ft KV = False), and ystudent = M(x,Swift KV =True), 3)

where y. is the final logits, M is the model, and x is the input. Afterwards, we apply the standard
distillation loss (L) upon the outputs with temperature (7) using (Hinton et al., 2015). After the
distillation, the original KV projection layers > are discarded during inference.

This method allows us to perform the distillation for Llama-3.1-8B-Instruct on 680M tokens of datain 3
hours using 8 HI00 GPUs, and Llama-3.1-70B-Instruct in 5 hours using 32 H100 GPUs across 4 nodes.

3.5 OPTIMIZED IMPLEMENTATION FOR INFERENCE

LLM serving systems can be complex and incorporate many simultaneous optimizations at multiple
layers of the stack, such as PagedAttention (Kwon et al., 2023), Speculative Decoding (Leviathan et al.,
2023), SplitFuse (Holmes et al., 2024; Agrawal et al., 2024), and more. One benefit of SwiftK'V is that
it makes minimal changes to the model architecture, limited to only a few linear projection layers. This
means that SwiftK'V can easily be integrated into existing serving systems without implementing new
kernels (e.g. for custom attention operations or sparse computation) or novel inference procedures.

Implementation in vLLM. To realize the performance benefits of SwiftKV, we integrated it with
vLLM . Our implementation is compatible with vLLM’s chunked prefill, which processes prefill
tokens in chunks and may mix prefills and decodes in each minibatch. During each forward pass, after
completing layer [, the KV-cache for the remaining layers (>[) are immediately computed, and only
the decode tokens are propagated through the rest of the model layers.

GEMM and Memory Optimizations. Upon this basic implementation, we implemented two
additional optimizations. First, SingleInputKV fusion: instead of computing the KV cache K'V; for
each layer j > [one at a time, we fused all WY, into one large weight matrix W?‘ﬁ so that their
KV cache can be computed with a single efficient GEMM operation. Second, AcrossKV reduction:
we modified vLLM to only allocate one layer’s KV-cache for each group of merged layers, which

realizes the memory gains of AcrossKV.

Under review as a conference paper at ICLR 2025

4 MAIN RESULTS

4.1 SETUP

Training and Evaluation. We use Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct as our base
models for SwiftK'V. Our training datasets include a mixture of the full supervised training data from
HuggingFaceH4/ultrachat_200k (Ding et al,, 2023) and teknium/OpenHermes-2.5
(Teknium, 2023). We evaluated model quality using a modified LM-Eval-Harness (Gao et al.,
2024)* due to its support for the custom prompt format of Llama-3.1, particularly for MMLU and
MMLU-CoT (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), and Arc-Challenge (Clark et al.,
2018). For more details, please see Appendix C.

Compression Metrics. For prefill computation, we report the approximate reduction as (L —1)/L
due to SingleInputKV, and for KV cache, we report the exact memory reduction due to AcrossKV.
For example, SwiftKV with SingleInputKV (I = L /2) and 4-way AcrossKV is reported as 50% prefill
compute reduction and 37.5% KV cache memory reduction. We further study how these theoretical
compute and memory reductions translate into end-to-end inference improvements in Sec. 4.3.

Inference Performance. In our inference evaluation, we focus on two common scenarios:
batch-inference for cost sensitive scenarios and interactive-inference for latency sensitive scenario.

Batch-Inference When processing text in bulk or when serving a model under high usage demand, it is
important to achieve high combined throughput in terms of input + output tokens processed per second.
For bulk processing, the combined throughput determines the time it takes to finish the job. For interac-
tive use, it determines the volume of concurrent users and requests that can be supported per unit of hard-
ware. In both scenarios, the combined throughput is a key determinant of the cost of serving the model.

Interactive-Inference In interactive scenarios (e.g., chatbots, copilots), not only the combined
throughput is important, but also metrics that define the end-user experience. Chief upon them are
the time-to-first-token (TTFT) and time-per-output-token (TPOT). TTFT is the time between the
user sending a message and receiving the first token in the response. TPOT is the time between each
output token after the first token has been received. Low TTFT and TPOT are desirable by interactive
applications to deliver smooth usage experiences.

For all experiments on Llama-3.1-8B-Instruct, we use 1 NVIDIA H100 GPU with 80GB of memory,
and for all experiments on Llama-3.1-70B-Instruct, we use 4 NVIDIA H100 GPUs running the model
with 4-way tensor parallelism. We provide the full hardware and vLLM configurations in Appendix C.2

4.2 MODEL QUALITY WITH COMPRESSION

Llama-3.1-8B-Instruct. The top rows of Table 1 show that SwiftKV can preserve model quality well
until 50% prefill reduction using SingleInputK'V. For 25% prefill reduction, the accuracy degradation
is only about 0.12 points and for 50% reduction, the gap is about 1 point *. When we push to 62.5%
reduction (i.e. SingleInputKV with [=12 and L = 32), the accuracy drops to 66.09 points, which
is significantly lower than the baseline. This can be explained by the drop in activation similarity from
0.61 to 0.51 between layer 16 to layer 12 (Fig. 2).

The bottom rows of Table 1 show the model quality when adding AcrossKV to 50% SingleInputKV.
From pure SingleInputKV to 2-way AcrossKV, the accuracy drops about 0.9 points with 25% KV
cache reduction. The accuracy drops by another 0.32, going from 2-way to 8-way sharing, and 0.62
when going all the way to 16-way sharing. Particularly, for the extreme case, i.e., using a single KV
cache for all remaining layers, the accuracy is only about 2.5 points lower than pure SingleInputKV,
and could be useful for more memory constrained cases, e.g., embedding and/or mobile devices.

Furthermore, the design of AcrossKV is complementary to many existing KV cache compression
methods. In Sec. 5.4, we show that AcrossKV can be combined with quantization to achieve 62.5%
reduction in KV cache memory with only a 1-point accuracy gap compared to SingleInputKV only.

31'1ttps ://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct
“Note that we did not try to find the best training recipe, regarding to either training data (e.g., we did not
include any math or coding datasets) or training pipeline (e.g., we did not include reinforce-learning rated steps,

https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct

Under review as a conference paper at ICLR 2025

Table 1: Llama-3.1-8B-Instruct

Model SingleInputKV AcrossKV Arc-Challenge Winogrande HelloSwag truthfulga MMLU MMLU-CoT GSM-8K A
(Prefill Reduction) (Cache Reduction) 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Ve
Baseline N/A N/A 82.00 71.90 80.40 54.56 67.90 70.63 82.56 73.71
SwiftKV v (25%) X 82.08 71.98 80.63 54.59 67.95 70.45 81.43 73.59
SwiftKV v (50%) X 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
SwiftKV v (62.5%) X 71.76 75.77 78.21 52.73 61.55 53.68 68.92 66.09
SwiftKV v (50%) 2-way (25%) 80.29 71.82 79.03 54.66 66.96 68.39 75.59 71.82
SwiftKV v (50%) 4-way (37.5%) 79.35 71.51 78.44 54.96 65.71 67.75 76.72 71.49
SwiftkKV v (50%) 8-way (43.75%) 79.18 77.19 77.38 54.79 65.73 66.88 7233 70.50
SwiftkV v (50%) 16-way (46.875%) 78.24 76.80 76.87 56.86 64.65 65.86 7225 70.22
Table 2: Llama-3.1-70B-Instruct
Model SingleInputKV AcrossKV Arc-Challenge Winogrande HelloSwag truthfulga MMLU MMLU-CoT GSM-8K Av
Prefill Reduction ~ Cache Reduction 0-shot 5-shots 10-shots 0-shot S-shots 0-shot 8-shots &
Baseline N/A N/A 93.34 85.16 86.42 59.95 83.97 86.21 95.15 84.31
SwiftKV V' (25%) X 93.00 84.69 85.98 59.43 82.82 85.81 95.07 83.83
SwiftkKV v (50%) X 93.09 83.82 84.45 58.40 82.51 85.00 93.56 82.98
SwiftKV v (50%) 2-way (25%) 92.92 82.95 84.10 57.79 82.66 84.55 93.48 82.63
SwiftkKV v (50%) 4-way (37.5%) 92.92 83.74 84.72 58.28 82.60 84.79 93.71 82.96

Llama-3.1-70B-Instruct. Table 2 shows that with 50% prefill reduction using SingleInputKYV,
Llama-3.1-70B-Instruct incurs a 1.3 point drop in accuracy which is slightly higher than the results
of Llama-3.1-8B-Instruct. However, Llama-3.1-70B-Instruct is more resilient to AcrossKV, incurring
less than a 0.35 point drop in accuracy even for 4-way sharing across layers.

4.3 INFERENCE PERFORMANCE

Batch Inference Performance. Fig. 3 shows the results of Llama-3.1-8B and Llama-3.1-70B across
several workloads with a range of input lengths. SwiftKV achieves higher combined throughput than
the baseline model across all the workloads we evaluated.

For Llama-3.1-8B-Instruct, with 2K input tokens per prompt, SwiftKV achieves 1.2 —1.3x higher
combined throughput than the baseline model, and our benefits increase further to 1.8 —1.9x higher
combined throughput with 128K inputs. Note that for an input length of 8K tokens, SwiftKV achieves
a staggering 30K tokens/sec/GPU (480 TFLOPS/GPU). For Llama-3.1-70B with 2K input tokens
per prompt, SwiftKV achieves 1.4 —1.5x higher combined throughput than the baseline model, which
improves to 1.8 —2.0x better combined throughput for 128K inputs.” As expected, SwiftKV provides
greater improvements when the inputs are long.

We also observe AcrossKV can further improve the combined throughput due to its ability to reduce
the memory usage for the KV-cache and supporting larger batch sizes. For sequence length of 8K,
Llama-3.1-70B-Instruct with SwiftKV achieves a combined throughput of over 16K toks/sec over
4xH100 GPUs which corresponds to 560 TFLOPS/GPU of bf16 performance when normalized to
baseline. This is an unprecedented throughput for BF16 inference workloads.

Interactive-Inference Performance. Fig. 4 shows the TTFT and TPOT of Llama-3.1-70B-Instruct
across a range of request arrival rates and input lengths. When the arrival rate is too high, the TTFT
explodes due to the request queue accumulating faster than they can be processed by the system.
However, SwiftKV can sustain 1.5 — 2.0x higher arrival rates before experiencing such TTFT
explosion. When the arrival rate is low, SwiftKV can reduce the TTFT by up to 50% for workloads
with longer input lengths. In terms of TPOT, SwiftKV achieves significant reductions for all but the
lowest arrival rates, up to 60% for certain settings. A similar story unfolds for Llama-3.1-8B, which
can be found in Fig. C.1 in the Appendix.

like DPO/RLHF). Yet, the quality of SwiftKV is close to the original base Llama-3.1-8/70B-Instruct models.
In Sec. 5.3, we show that better data recipe could boost the model performance and close the quality gap further.

SWhile the total compute savings is roughly 2%, the end-to-end speedup is lower due to two main reasons: i)
the performance improvement is limited to the decoding computation which needs the output activation of all
the layers. Fig. 2 (right) shows the max possible speedup for Llama-3.1-8B-Instruct during model forward pass
despite the decoding overhead, and ii) due to additional vLLM overheads outside of the model forward pass, such
as sampling, optimizing which is beyond the scope of the paper.

Under review as a conference paper at ICLR 2025

M 50% SingleInputKV 50% SingleInputKV + 2x AcrossKV M 50% SingleInputKV + 4x AcrossKV Baseline

30,000 480 18,000 630 2
2 |
z =
£ 20000 320 12,000 20§
= —
& =
S 10,000 I I 160 6,000 I I 200 Q
g 2
= =)
=
0 0 0 0o &
2000 8000 32000 128000 2000 8000 32000 128000

Figure 3: Combined input and output throughput for Llama-3.1-8B (left) and Llama-3.1-70B (right)
across a range of input lengths (bottom). For each experiment, a number of requests are sent to vLLM
at once such that the total number of tokens is roughly 15M. Each request generates 256 output tokens.

@ 50% SinglelnputKV 50% SinglelnputKV + 2x AcrossKV @ 50% SinglelnputKV + 4x AcrossKV Baseline

800 2,000 8,000
7 o0 1,500 6,000
= 400 1,000 4,000
=)
E 200 500 2,000
0 0 0
1 2 3 4 5 6 7 8 0.5 1.0 15 2.0 01 02 03 04 05 06
200 200 200

150 150 150

TPOT (ms)
wn E
(=3 (=]
g 3
g 3
[2
[]
|
L]
j.

1 2 3 4 5 6 7 8 0.5 1.0 1.5 2.0 01 02 03 04 05 06

Arrival Rate (requests/s) Arrival Rate (requests/s) Arrival Rate (requests/s)
Figure 4: Time to first token (TTFT, top) and time per output token (TPOT, bottom) for input lengths

2000 (left), 8000 (middle), and 32000 (right) for Llama-3.1-70B. For each experiment, a range of
different request arrival rates is simulated. Each request generates 256 output tokens.

Table 3: Impact of Distillation and Full/Partial Model Finetuning on Llama-3.1-8B-Instruct

Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSM-8K

Setting 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Avg.
(a) The effect of distillation
Wr/o Distillation 79.44 77.27 78.71 51.14 65.55 65.60 72.71 70.06
W Distillation 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
(b) Full model finetuning vs. part model finetuning
Full Model 76.79 74.82 76.42 53.08 62.94 64.20 69.37 68.23
Part Model 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70

5 ABLATION AND DISCUSSION

5.1 THE IMPACT OF DISTILLATION

To demonstrate the effectiveness of our distillation, we train Llama-3.1-8B-Instruct with 50%
SingleInputKV and no AcrossKV using the standard language model loss, and compare it with our
distillation based approach discussed in Sec. 3.4. The results are shown in Table 3 (a). As we can
see, the model trained with distillation has a 2.64 point higher average. Particularly, for generative
tasks, i.e., MMLU-Cot and GSM-8K, the performance improvement is 4.13 and 6.74, respectively.

Under review as a conference paper at ICLR 2025

Table 4: The impact of datasets on Llama-3.1-8B-Instruct.

Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Setting 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Avg.
(a) Quality of Llama-3.1-8B-Instruct vs model fine-tuned using “ultrachat_200k” and “OpenHermes-2.5”.
Llama-3.1-8B-Instruct 82.00 77.90 80.40 54.56 67.90 70.63 82.56 73.71
Our fine-tuned model 71.42 76.56 80.29 55.37 59.14 54.03 63.61 65.77
(b) Adding more data improves model quality.

Original SwiftKV data 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
Plus math & code data 80.89 77.98 79.54 54.70 67.41 70.00 79.98 72.93

5.2 FULL MODEL TRAINING VS. PARTIAL MODEL TRAINING.

Our distillation method only fine-tuned the Wiy parameters, as discussed in Sec. 3.4, with the
hypothesis that it preserves the knowledge from the original models compared to fine-tuning the entire
model. This hypothesis aligns with Meng et al. (2024), Geva et al. (2021), and Elhage et al. (2021),
which suggest that MLP layers player a more prominent role in storing knowledge.

To validate this, we fine-tuned a model with 50% SingleInputKV on Llama-3.1-8B-Instruct where all pa-
rameters in the latter 50% of layers are trained. The results are shown in Table 3 (b). Note that the model
quality of full model distillation is about 4.5 points lower than our proposed partial model distillation.

5.3 THE IMPACT OF FINE-TUNING DATASETS

Note that in Sec. 4, we did not try to maximize the performance of SwiftKV from the data recipe
perspective since the search space is very large and outside the scope of our paper. However, we want
to share some initial findings about the dataset recipe.

How good is the data used to train SwiftKV? We chose the datasets to train SwiftKV due to their
popular adoption and broad domain and task coverage. However, as compared to other high-quality
domain specific fine-tuning datasets, they may have weaknesses. To measure the quality of these two
datasets, we directly fine-tuned a model using the Llama-3.1-8B base model, and compared this trained
model with the Llama-3.1-8B-Instruct model released by Meta.

The results are shown in Table 4 (a). The original Llama-3.1-8B-Instruct has a average score of 73.71
but the model trained using our two datasets only achieved 65.77. This indicates the training data used
for SwiftKV is not optimal and there may be opportunities to further improve the results we reported
in Sec. 4 as discussed next.

Does more math/coding data help GSM-8K? From Table 1, the main degradation among 7 tasks
for 50% SingleInputKV is GSM-8K. This may be due to the lack of math and coding examples in
the two datasets we picked to train the model. To verify this, we distilled SwiftKV using one extra
math-related dataset, gretelai/synthetic—gsm8k-reflection-405b (GretelAl, 2024),
and one extra coding dataset, i se-uiuc/Magicoder—-0SS—-Instruct-75K (Weietal.,2023),
in total about 8K+ 75K = 83K samples, and about 16M tokens.

The results are reported in Table 4 (b). The performance of all tasks except Winogrande are slightly
improved, with the average score being 0.23 higher. Particularly, GSM-8K improves the most, with
a0.53% improvement. This is expected since we added extra math and coding datasets. Considering
the small amount of new data (83k vs. 1.2M), the improvement is remarkable.

This study indicates that improvements in distillation data is potentially an important direction for
future work, particularly domain-specific datasets to reduce the quality gap compared to the original
model when using SwiftKV.

5.4 COMBINING WITH OTHER KV CACHE COMPRESSION METHODS

SwiftKV explores an orthogonal design space from many existing KV cache compression methods,
which means that it can be easily combined with them, e.g., sliding window (Jiang et al., 2023), token-
level pruning (Liu et al., 2024d), quantization (Hooper et al., 2024) etc. In this section, we show the com-
bined effect of SwiftKV with per-token KV cache FP8 quantization (Yao et al., 2022) using PyTorch’s

Under review as a conference paper at ICLR 2025

Table 5: Llama-3.1-8B-Instruct KV cache quantization results.

AcrossKV Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSM-8K

Model (Cache Reduction) KV Quantization 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Avg.
SwiftKV X X 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
SwiftKV X v 80.29 77.66 79.23 54.40 67.10 69.51 77.94 7230
SwiftkV — 2-way (25%) X 80.29 717.82 79.03 54.66 66.96 68.39 75.59 71.82
SwiftKV 2-way (62.5%) v 80.03 71.35 78.86 54.44 66.89 68.27 75.97 71.69
SwiftKV — 4-way (37.5%) X 79.35 71.51 78.44 54.96 65.71 67.75 76.72 71.49
SwiftkV 4-way (68.75%) v 79.27 77.43 78.38 54.76 65.62 68.00 75.97 71.35

Question: What are the three primary colors?

Answer: The three primary colors are:

1. Red

2. Blue

3. Yellow

These colors are called primary because they are the
basic building blocks of all other colors. They cannot be
created by mixing other colors together, and they are the
. . . . only colors that can be used to create all other colors
Figure 5: Density of early exit probabilities through mixing.

and alignment of early exit vs final logits. Table 6: A Q&A example of early exit.

natively supported f1oat8_e4m3fn. Table 5 shows the accuracy degradation is within 0.4 points
for all cases, even though we applied post-training quantization with no quantization-aware finetuning.

Appendix D explores a second, potentially interesting, trade-off between AcrossKV (inter-layer) vs
GQA (intra-layer) KV cache sharing.

5.5 SIMPLE EARLY EXIT FOR DECODING TOKENS

SinglelnputKV allows all the KV cache needed for generating future tokens to be computed without
having to forward-pass though the entire LLM. This means that even the decoding phase could exit
earlier without worrying about missing KV cache for subsequent tokens.

To test the feasibility, we added an early exit language modeling head. We then used the input to
SingleInputKV layer to calculate output logits, and incorporated them as part of the distillation training.
Our results are preliminary and requires further evaluation, but we found that the alignment between
early exit logits and the final output logits to be over 66% when the largest probability from the early
exit logits is over 95% (Fig. 5). We used this as our early exit criteria (i.e., decoding tokens exit early if
it predicts an output token with 95%+ probability), and Table 6 shows a sample result. See Appendix E
for more details.

6 CONCLUSIONS

In this paper, we presented SwiftKV, a novel model transformation for reducing inference cost for
prompt-dominant workloads, combined with a KV cache reduction strategy to reduce memory footprint,
and a light-weight distillation procedure to preserve model accuracy. While we presented strong results
on the effectiveness of SwiftKV, exploration of parameter-preserving model transformations for
inference optimization is still in its early stages. We have identified both limitations as well as areas of
improvement. Given the simplicity and effectiveness of SwiftKV, we hope that this will spark further
exploration from the Al community which we hope will continue lower the latency and cost of inference.

LIMITATIONS AND FUTURE WORK

It is important for every work to acknowledge its limitations and suggest future directions, particularly
for LLM-related works. In our work, we did not aim to optimize the training data selection though
we provide potential ways in Sec. 5.3. Additionally, we did not include a detailed benchmark analysis
for our method. However, as shown in Sec. 5.3, we ensured that our datasets were not cherry-picked
to overfit the reported tasks. Furthermore, we did not finetune our model with advanced post-training
approaches, like DPO and RLHF, which we leave for future work. Finally, we hypothesize that our
method can work even better when combined with pretraining or continued-pretraining, but due to
resources constraints, we did not explore this direction. We hope to revisit these ideas in the future.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhar-
gav Gulavani, Alexey Tumanov, and Ramachandran Ramyjee. Taming Throughput-
Latency tradeoff in LLM inference with Sarathi-Serve. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 24), pp. 117-134,
Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL
https://www.usenix.org/conference/osdi24/presentation/agrawal.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 4895-4901, Singapore, December 2023a.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. URL
https://aclanthology.org/2023.emnlp-main.298.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints,
2023b. URL https://arxiv.org/abs/2305.13245.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng Li,
Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, and Yuxiong He. Deepspeed
inference: Enabling efficient inference of transformer models at unprecedented scale, 2022. URL
https://arxiv.org/abs/2207.00032.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
https://arxiv.org/abs/2309.16609.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection, 2024. URL https://arxiv.org/abs/2407.21118.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.

11

https://www.usenix.org/conference/osdi24/presentation/agrawal
https://aclanthology.org/2023.emnlp-main.298
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2407.21118
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2025

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: fast and
memory-efficient exact attention with io-awareness. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2024.
Curran Associates Inc. ISBN 9781713871088.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 5484-5495, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Gretel Al. Synthetically generated reasoning dataset (gsm8k-inspired) with enhanced diversity using
gretel navigator and meta-llama/meta-llama-3.1-405b. https://huggingface.co/gretelai/synthetic-
gsm8k-reflection-405b, 9 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A.
Roberts. The unreasonable ineffectiveness of the deeper layers, 2024. URL
https://arxiv.org/abs/2403.17887.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://dblp.uni-trier.de/db/journals/co
rr/corrl503.html#HintonVD15.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam
Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong
He. Deepspeed-fastgen: High-throughput text generation for llms via mii and deepspeed-inference,
2024. URL https://arxiv.org/abs/2401.08671.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.180709.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL
https://arxiv.org/abs/2310.06825.

Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters, and Tijmen Blankevoort.
Fp8 quantization: the power of the exponent. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS 22, Red Hook, NY, USA, 2024. Curran Associates
Inc. ISBN 9781713871088.

12

https://zenodo.org/records/12608602
https://aclanthology.org/2021.emnlp-main.446
https://arxiv.org/abs/2403.17887
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP °23, pp. 611-626, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL
https://doi.org/10.1145/3600006.3613165.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS *20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic
human falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3214-3252, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL
https://aclanthology.org/2022.acl-1long.229.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro Rodriguez,
Jacob Kahn, Gergely Szilvasy, Mike Lewis, Luke Zettlemoyer, and Wen tau Yih. RA-DIT:
Retrieval-augmented dual instruction tuning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=220Tbutug9.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache: Kv
cache compression in depth dimension for large language models. arXiv preprint arXiv:2405.14366,
2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models, 2024b. URL
https://arxiv.org/abs/2405.14366.

Songwei Liu, Chao Zeng, Liangiang Li, Chengian Yan, Lean Fu, Xing Mei, and Fangmin Chen.
Foldgpt: Simple and effective large language model compression scheme, 2024c. URL
https://arxiv.org/abs/2407.00928.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. Scissorhands: exploiting the persistence of importance hypothesis
for llm kv cache compression at test time. In Proceedings of the 37th International Conference on Neu-
ral Information Processing Systems, NIPS *23, Red Hook, NY, USA, 2024d. Curran Associates Inc.

Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen Chu. Benchmarking and dissect-
ing the nvidia hopper gpu architecture, 2024. URL https://arxiv.org/abs/2402.13499.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
tions in gpt. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS "22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

NVIDIA. Tensorrt. https://github.com/NVIDIA/TensorRT,2019.
NVIDIA. Fastertransformer. https://github.com/NVIDIA/FasterTransformer, 2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022. URL https://arxiv.org/abs/2211.05102.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: decomposed in-context learning of text-to-sql
with self-correction. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS *23, Red Hook, NY, USA, 2024. Curran Associates Inc.

13

https://doi.org/10.1145/3600006.3613165
https://aclanthology.org/2022.acl-long.229
https://openreview.net/forum?id=22OTbutug9
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2407.00928
https://arxiv.org/abs/2402.13499
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/FasterTransformer
https://arxiv.org/abs/2211.05102

Under review as a conference paper at ICLR 2025

Xiao Pu, Mingqi Gao, and Xiaojun Wan. Summarization is (almost) dead, 2023. URL
https://arxiv.org/abs/2309.09558.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641,2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL
https://arxiv.org/abs/1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: high-throughput generative inference of large
language models with a single gpu. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-Im: Training multi-billion parameter language models using model
parallelism, 2020. URL https://arxiv.org/abs/1909.08053.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo
Molchanov. Llm pruning and distillation in practice: The minitron approach, 2024. URL
https://arxiv.org/abs/2408.11796.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca,2023.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist Ilm assistants, 2023. URL
https://huggingface.co/datasets/teknium/OpenHermes—2.5.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’ 17, pp. 6000-6010, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024. URL https://arxiv.org/abs/2406.04692.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding, 2024. URL https://arxiv.org/abs/2401.07851.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers, 2022.
URL https://arxiv.org/abs/2206.01861.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun.
Orca: A distributed serving system for Transformer-Based generative models. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pp.
521-538, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL
https://www.usenix.org/conference/osdi22/presentation/yu.

14

https://arxiv.org/abs/2309.09558
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2408.11796
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2206.01861
https://www.usenix.org/conference/osdi22/presentation/yu

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine

really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B.
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39-57,2024. doi: 10.1162/tacl_a_00632. URL
https://aclanthology.org/2024.tacl-1.3.

15

https://aclanthology.org/2024.tacl-1.3

Under review as a conference paper at ICLR 2025

A ADDITIONAL MOTIVATION

—— LLaMa-3.1-8B-Instruct
Mistral-7B-Instruct-v0.1

o8] — Qwen2.5-7B-Instruct 0.8

SimScore(x;)
=4
>

14
o

o
IS
SimScore(x))

o
=

0.24

0.24 —— LLaMa-3.1-70B-Instruct
Mistral-Large-Instruct-2407
—— Qwen2.5-72B-Instruct

0 5 10 15 20 25 30 0 20 40 60 80
Layer Layer

Figure A.1: The input similarity of small scale models (left) and large scale models (right).

B CALCULATING COMPUTATION REDUCTION

For a vanilla transformer model Vaswani et al. (2017) with a hidden dimension size d, the total amount
of computation per token per layer is roughly given by 24d2, where 4d? goes to KV projections, another
4d? goes to Q projection and context GEMM, and the remaining 16d? goes to MLP computation.
For popular GQA (Ainslie et al., 2023b) based architectures like Llama (Touvron et al., 2023),
Mistral (Jiang et al., 2023), Qwen (Bai et al., 2023), and many others, the KV projection is reduced
to 4d? /G, where G is the group size and is > 4. As such, the compute cost of the KV projection is

negligible (M%‘f% which is less than 5% when G > 4), compared to the rest of the computation.

With SingleInputKYV, pre-fill tokens only require computing this negligible KV projection for layers
> [. Therefore, it reduces the total pre-fill computation to approximately [/ L. Fig. 2 shows significant
end-to-end reduction in model forward time for different value of [compared to L. In Sec. 4.3, we
show that such compute reduction translates to considerably higher aggregate serving throughput
and lower latency, reducing both serving cost, and improving end-user experience.

C EXPERIMENTAL DETAILS

C.1 TRAINING AND EVALUATION DETAILS

We directly use the Huggingface LLama-3.1 checkpoints, particularly, “meta-llama/Meta-Llama-3.1-
8B-Instruct” and “meta-llama/Meta-Llama-3.1-70B-Instruct”. For datasets, we use the supervised
finetuning datasets from “HuggingFaceH4/ultrachat_200k” and “teknium/OpenHermes-2.5”, which
in total is about 1.2M samples, and about 160M tokens. We set training epochs to be 2, learning rate
to be 3e-4, weight decay to be 0.05, warm up ratio to be 5%, maximum sequence length to be 8192
with attention separated sequence packing, the distillation temperature to be 2.0, and the training batch
size to be 32 for both Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct.

Our evaluation follows https://huggingface.co/neuralmagic/Meta-Llama-3
.1-8B-Instruct—-FP8 using the github repository https://github.com/neuralm
agic/lm-evaluation-harness/tree/llama_3.1_instruct. The main reason
behind this is that the implemention from the repository aligns with original Llama-3.1 evaluation,
which has superme scores over the original Lm-eval-harness repository. One issue we found in
the provided commands is the one used to run MMLU-5-shots. Directly using the command
does not give us desired accuracy. Therefore, we added both ——apply_chat_template and
-—-fewshot_as_multiturn, and the accuracy is even slightly higher than what they reported.

For all tasks, we follow the same number of few shots and/or chain of thoughts as the provided
commands. We present the number of shots and metrics used in the paper in Table C.1.

16

https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct
https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct

Under review as a conference paper at ICLR 2025

Table C.1: The setting for different tasks

Arc-Challenge Winogrande HelloSwag truthfulga MMLU MMLU-CoT GSM-8K
0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots
exact_match,multi_choice acc acc_norm truthfulqa_mc2 (acc) exact_match,multi_choice exact_match,strict-match exact_match,strict-match

@ 50% SinglelnputKV 50% SingleInputKV + 2x AcrossKV @ 50% SingleInputKV + 4x AcrossKV Baseline

300 800 4,000 /
@ 600 3,000
g 200 ’
~ 400 2,000
i 4
E 10— 200 — 1,000
0 0 0
2 4 6 8 10 12 14 0510 15 20 25 3.0 3540 0.2 0.4 0.6 0.8 1.0
100 100
@ 100
& —
= 50 50
8 50
= ———— "
0 0 0
2 4 6 8 10 12 14 0510 15 20 25 3.0 3540 0.2 0.4 0.6 0.8 1.0
Arrival Rate (requests/s) Arrival Rate (requests/s) Arrival Rate (requests/s)

Figure C.1: Time to first token (TTFT, top) and time per output token (TPOT, bottom) for input lengths
2000 (left), 8000 (middle), and 32000 (right) for Llama-3.1-8B. For each experiment, a range of
different request arrival rates is simulated. Each request generates 256 output tokens.

C.2 INFERENCE SPEEDUP EVALUATION DETAILS

Hardware Details. We ran all inference speedup experiments on a AWS p5.48xlarge instance, with
8 NVIDIA H100 GPUs, 192 vCPUs, and 2TB memory. Llama-3.1-8B-Instruct experiments are run
using 1 of the 8 GPUs, and Llama-3.1-70B-Instruct experiments are run using 4 of the 8 GPUs.

vLLM Configuration. We ran all experiments with enforce_eager and chunked prefill
enabled withmax_num_batched_tokens set to 2048. To run each benchmark, we instantiated
vLLM’s AsyncLLMEngine and submitted requests using its generate method according to each
benchmark setting. For each request, the inputs are tokenized before being submitted, and the outputs
are forced to a fixed length of 256.

Llama-3.1-8B Latency Evaluation. See Fig. C.1.

D INTER-LAYER ACROSSKYV VS INTRA-LAYER KV CACHE REDUCTION

In this section, we share different design choices of AcrossKV, which considers the tradeoff be-
tween GQA (Ainslie et al., 2023a) and the acorss layer sharing into the design. Particularly, when
AcrossKV > 2, we can either use GQA and AcrossKV together or we can simply use AcrossKV to get
all savings. For instance, when AcrossKV =4 (a.k.a., the second row of the final session in Table 1), we
have KV cache reduction from both GQA and AcrossKV. However, we can either do multi-query atten-
tion (MQA) for all 16 layers or do multi-head attention (MHA) but share the KV cache for all 16 layers.

Table D.1: Llama-3.1-8B-Instruct AcrossKV design

Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Method 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Avg.
MQA 66.89 7222 67.33 55.00 55.96 39.12 22.37 54.13
AcrossKV-MHA 77.99 75.85 71.37 55.50 63.55 65.48 72.63 69.76
AcrossKV-GQA 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49

17

Under review as a conference paper at ICLR 2025

We present the 50% SingleInputKV reduction with MQA, GQA plus AcrossKV, and GQA plus MHA
in Table D.1, that all have the same KV cache reduction, 37.5%. AcrossKV-GQA actually provides the
best performance. One thing to notice is that the AcrossKV-MHA is actually worse than the result of
AcrossKV-16x from from Table 1 even though AcrossKV-MHA has larger KV cache than AcrossKV-
16x. We hypothesis that this might be related to hyper-paramter tuning but did not invest deeper. Also,
note that pure MQA leads to worst performance, which is about 17 points lower than AcrossKV-GQA

How to effectively balance inter/intra-layer KV cache sharing is an interesting direction to explore.
We hope that our initial experiments here shed some light for future research.

E EARLY EXIT DETAILS

Thanks to SingleInputKYV, there is no need to go through the entire network to compute all KV cache
for later tokens generation. This also brings another unique opportunity as compared to standard
transformer architecture design: it allows the model to perform early exit to speedup both the prefill
and generation phases without worrying about missing KV cache.

To add early exit upon SwiftKV, we add an extra language modeling head and use the input to calculate
SingleInputKV to directly compute the output logits. We apply the same distillation loss of this early
exit logits with the original teacher’s logits and directly sum the two distillation losses together as
our final optimizing loss.

After training, we first look the alignment between the early exit logits and the final logits. The figure is
shown in Fig. 5. The left axis plot the density of early exit largest probabilities. And the right axis shows
the probabilities when the maximum of early exit logits aligns with the final logits for each bin. As
can be seen, when the maximum logits is larger than 0.95, the alignment likelihood is larger than 66%.
Note that this is achieved within 160M token training and longer training should help the alignment.

How to use early exit is always an interesting directly and research topic. Fully exploring this is out
of the scope of this paper. Here we adopt a simple heuristic approach. When the largest probability
is larger than 0.95, we directly use the early exit prediction. Otherwise, we still process the remaining
layers to get the final prediction. We apply this logic to some questions we selected from Alpaca (Taori
etal., 2023) and the results are shown in Table 6 and Appendix E.1.

E.1 EARLY EXIT EXAMPLES

Here we provide more examples of early exit from Alpaca dataset.

Question:
Describe a time when you had to make a difficult decision.
Answer:

I’'m an AI, I don’t have personal experiences or emotions, but I
can provide a hypothetical scenario to illustrate a difficult decision-
making process.

Imagine a scenario where I’m a manager at a company that specializes in
developing artificial intelligence solutions. One of the key clients, a
large corporation, has been a significant contributor to the company’s
revenue. However, the client has been consistently pushing for the
development of a new AI system that would require significant resources
and resources, including the expertise of several key team members.

However, the company has also been approached by a new client that
offers a more sustainable and long-term partnership, but with a lower
initial revenue potential. The new client is willing to invest in the
company’s research and development, which could lead to breakthroughs
in AT technology.

The decision I would have to make is whether to prioritize the existing
client’s needs and risk over the long-term potential of the new

18

Under review as a conference paper at ICLR 2025

client’s partnership. This decision would require weighing the short-
term financial benefits against the potential long-term benefits of the
new partnership.

To make this decision, I would consider the following factors:

1. »xFinancial implications:=x

— The immediate revenue from the existing client would be
significant, but it would also come with the risk of
overcommitting resources and potentially straining the team’s
capacity.

— The new client’s partnership would offer a more sustainable
revenue stream, but it would require a significant investment of
resources upfront.

2. **xStrategic alignment:xx
— The existing client’s project aligns with the company’s current
business model, but it may not be the best use of resources in the
long term.
— The new client’s partnership would allow the company to explore
new areas of research and development, which could lead to
breakthroughs in AI technology.

3. *xxTeam dynamics:*x*

— The existing client’s project would require the involvement of
several key team members, which could lead to burnout and
decreased morale.

— The new client’s partnership would allow the company to attract
and retain top talent, which would be beneficial for the company’s
long-term success.

Question:
What is the capital of France?
Answer:

The capital of France 1is Paris.

Question:

Explain the use of word embeddings in Natural Language Processing
Answer:

*xWord Embeddings in Natural Language Processingxx

Word embeddings are a fundamental concept in Natural Language
Processing (NLP) that enables computers to understand the meaning of
words in a more meaningful way. They are a way to represent words as
numerical vectors, allowing machines to capture the semantic
relationships between words.

**What are Word embeddings?#*x*

Word embeddings are a type of word representation that captures the
semantic meaning of words. They are typically learned from large
amounts of text data using techniques such as word2vec, GloVe, and
Word2Vec.

*xHow do Word embeddings work?xx

Word embeddings work by learning a vector space where words are

represented as points. Each word is mapped to a vector in this space,

19

Under review as a conference paper at ICLR 2025

where the vector represents the meaning of the word. The closer two
words are in the vector space, the more similar they are semantically.

xTypes of Word embeddingsxx
There are several types of word embeddings, including:

1. xxWord2Vecx*: This is a popular word embedding technique that learns
word representations by predicting the context in which a word is
used. Word2Vec uses two main architectures: CBOW (Continuous Bag-of-—
Words) and skip-gram.

2. **%GloVex*: This is another popular word embedding technique that
learns word representations by analyzing the co-occurrence of words
in a sentence.

3. *xxWord2Vec with Negative Samplingx*: This is a variant of the
word2vec algorithm that uses negative sampling to reduce the
dimensionality of the word embeddings.

*xHow are Word embeddings used in NLP tasks?*x*
Word embeddings are used in a variety of NLP tasks, including:
1. »xText Classification:*x*
— x*xSentiment Analysis:*x
— x*xSpam Detection:xx
- xxTopic Modeling:xx*
— xxNamed Entity Recognition (NER) :*x*
2. **xText Generation:»*x*
- **xText Summarization:xx

- xxText Generation:*x

3. *xInformation Retrieval:xx
- xxInformation Retrieval:xx

4. xxMachine Translation:*x

5. *xQuestion Answering:xx

Question:
What is the product of 6 and 27
Answer:

The product of 6 and 2 is 12.

Question:

Give three tips for staying healthy.

Answer:

Here are three tips for staying healthy:

1. x»xMaintain a Balanced Diet:xx

Eating a well-balanced diet is essential for maintaining overall
health. This includes consuming a variety of fruits, vegetables, whole
grains, lean proteins, and healthy fats. Aim to include a rainbow of
colors on your plate to ensure you’re getting a range of essential

vitamins and minerals. Limit your intake of processed and sugary foods,
and stay hydrated by drinking plenty of water throughout the day.

20

Under review as a conference paper at ICLR 2025

2. **Stay Physically Active:xx*

Regular physical activity is crucial for maintaining physical and
mental health. Aim to engage in at least 150 minutes of moderate-
intensity exercise or 75 minutes of vigorous-intensity exercise per

week. This can include activities such as

walking, running, swimming,

cycling, or any other physical activity that you enjoy. You can also
incorporate strength training exercises into your routine to build

muscle and improve bone density.

3. xxGet Enough Sleep and Manage Stress:x*x*

Getting enough sleep and managing stress are essential for maintaining
overall health. Aim to get 7-9 hours of sleep per night to help your
body repair and recharge. Establish a consistent sleep schedule and

create a relaxing bedtime routine to help
engage in stress-reducing activities such
breathing exercises to help manage stress

Remember, maintaining a healthy lifestyle

and it’s essential to find activities and
your lifestyle.

21

you wind down. Additionally,
as meditation, yoga, or deep
and anxiety.

is a long-term commitment,
habits that work for you and

	Introduction
	Related Work
	SwiftKV: Design and Implementation
	Preliminaries
	SingleInputKV: Project KV cache from a single layer
	AcrossKV: Sharing KV cache for consecutive layers
	Knowledge Recovery
	Optimized Implementation for Inference

	Main Results
	Setup
	Model Quality with Compression
	Inference Performance

	Ablation and Discussion
	The impact of distillation
	Full model training vs. partial model training.
	The impact of fine-tuning datasets
	Combining with other KV cache compression methods
	Simple Early Exit for Decoding Tokens

	Conclusions
	Additional Motivation
	Calculating Computation Reduction
	Experimental Details
	Training and evaluation details
	Inference Speedup Evaluation Details

	Inter-layer AcrossKV vs Intra-Layer KV cache Reduction
	Early Exit Details
	Early Exit Examples

