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ABSTRACT

Video scene graph generation (VidSGG) aims to generate a sequence of graph-
structure representations for the given video. However, all existing VidSGG meth-
ods are fully-supervised, i.e., they need dense and costly manual annotations. In
this paper, we propose the first weakly-supervised VidSGG task with only single-
frame weak supervision: SF-VidSGG. By “weakly-supervised”, we mean that
SF-VidSGG relaxes the training supervision from two different levels: 1) It only
provides single-frame annotations instead of all-frame annotations. 2) The single-
frame ground-truth annotation is still a weak image SGG annotation, i.e., an un-
localized scene graph. To solve this new task, we also propose a novel Pseudo
Label Assignment based method, dubbed as PLA. PLA is a two-stage method,
which generates pseudo visual relation annotations for the given video at the first
stage, and then trains a fully-supervised VidSGG model with these pseudo labels.
Specifically, PLA consists of three modules: an object PLA module, a predicate
PLA module, and a future predicate prediction (FPP) module. Firstly, in the ob-
ject PLA, we localize all objects for every frame. Then, in the predicate PLA,
we design two different teachers to assign pseudo predicate labels. Lastly, in the
FPP module, we fusion these two predicate pseudo labels by the regularity of rela-
tion transition in videos. Extensive ablations and results on the benchmark Action
Genome have demonstrated the effectiveness of our PLA1.

1 INTRODUCTION

Scene graph (Johnson et al., 2015) is a type of visually-aligned graph-structured representation that
summarizes all the object instances (e.g., “person”, “chair”) as nodes and their pairwise visual
relations (or predicates, e.g., “sitting on”) as directed edges. As a bridge to connect the vision
and language modalities, scene graphs have been widely used in many different downstream visual-
language tasks, such as visual captioning (Yang et al., 2019; 2020), grounding (Jing et al., 2020),
question answering (Hudson & Manning, 2019), and retrieval (Johnson et al., 2015).

Early Scene Graph Generation (SGG) work mainly focuses on generating scene graphs for the given
image, dubbed as ImgSGG (Xu et al., 2017; Zellers et al., 2018; Chen et al., 2019). However,
due to its static nature, ImgSGG fails to represent numerous dynamic visual relations that take
place over a period of time, such as “walking with” and “running away” (vs. static relation
“standing”). Meanwhile, it is hard or impossible to identify these dynamic visual relations with
only a single frame, because these visual relations can only be well classified by considering the
temporal context. Therefore, another more meaningful but challenging video-based SGG task was
proposed: VidSGG (Shang et al., 2017; 2019).

Since the complex and dense annotations of a scene graph (cf., Figure 1(a)), fully-supervised SGG
methods always require lots of manual annotations, and the case is even worse for video data. Mean-
while, several prior SGG works (Li et al., 2022a) have found that even carefully manually-annotated
labels are still quite noisy, i.e., the annotated positive labels may not be the best matched, and nu-
merous negative labels are just missing annotated. Thus, a surge of recent ImgSGG work (Zareian

∗Long Chen is the corresponding author.
1Codes are available at: https://github.com/zjucsq/PLA.
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et al., 2020; Zhong et al., 2021; Shi et al., 2021; Li et al., 2022c) start to generate scene graphs for
images with only weak supervision. By “weak supervision”, we mean that the annotations for model
training are not complete localized scene graphs. For example, a typical type of weak supervision
is unlocalized scene graphs. As illustrated in Figure 1(b), an unlocalized scene graph only contains
image-level object and relation categories without corresponding object bounding boxes (bboxes).
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Figure 1: (a) Localized scene graph: It consists of all
object bboxes, object categories, and predicate cate-
gories. (b): Unlocalized scene graph: It consists of ob-
ject and predicate categories without object bboxes. (c)
The supervision for SF-VidSGG, which only provides
an unlocalized scene graph for the middle frame.

Although recent weakly-supervised ImgSGG
has achieved good performance and received
unprecedented attention, to the best our knowl-
edge, there is no existing work about gener-
ating video scene graphs from weak supervi-
sion. To put forward the research on this critical
topic, we propose the first weakly-supervised
VidSGG task with single-frame weak supervi-
sion, called SF-VidSGG. Specifically, given an
input video, SF-VidSGG aims to generate a lo-
calized scene graph for each frame in the video,
but the only supervision for training is an un-
localized scene graph for the middle frame of
each training video. As the example shown in
Figure 1(c), the supervision is an unlocalized
scene graph for the third frame. Obviously, SF-
VidSGG task tries to relieve the intensive an-
notation issues from two levels: 1) Video-level:
For each video, we only need single-frame annotations instead of all-frame annotations as the fully-
supervised setting (i.e., reduce the number of annotated frames). 2) Frame-level: The single-frame
annotation is an unlocalized scene graph (i.e., avoid annotating object locations).

A straightforward solution for SF-VidSGG is: Using all the weakly annotated frames to train a
weakly-supervised ImgSGG model first, and then detecting scene graphs on each frame with the
ImgSGG model. Apparently, this naive ImgSGG-based method has overlooked the temporal con-
text in the video data. To this end, we propose a novel Pseudo Label Assignment strategy PLA,
which can serve as the first baseline for SF-VidSGG. Since PLA is agnostic to different VidSGG
architectures, it can be easily incorporated into any advanced VidSGG model. Specifically, PLA
decouples the problem into two steps: The first step is to assign a pseudo localized scene graph
for every frame in the video, and the second step is to train a fully-supervised VidSGG model by
the pseudo localized scene graphs. PLA consists of three modules: object pseudo label assignment
module (Obj-PLA), relation pseudo label assignment module (Rel-PLA), and future predicate pre-
diction module (FPP). In the Obj-PLA module, we detect object region proposals for all the frames.
In the Rel-PLA module, we propose two relation pseudo label assignment teachers and they gener-
ate two different pseudo labels for each frame. In the FPP module, we determine adapted weights
to fuse these labels from two different teachers. To effectively obtain optimal adapted weights for
fusing different teacher knowledge, the FPP module exploits the temporal context based on the rela-
tion transition in videos. The relation transition means how the predicates change between the same
subject-object pairs in different frames.

In summary, we make three main technique contributions in this paper:

1. We propose the first weakly-supervised VidSGG task. Compared to its fully-supervised coun-
terpart, we try to mitigate the intensive annotations from both video-level and frame-level.

2. We propose a novel method PLA for SF-VidSGG. It utilizes two teachers to assign pseudo label
for unlabeled data and refines the pseudo labels from both teachers by knowledge distillation.

3. We propose a future predicate prediction module that leverages temporal dependencies in video.

2 RELATED WORK

Image Scene Graph Generation (ImgSGG). ImgSGG aims to generate semantic graph structures
— scene graphs — as the representation of images. In each scene graph, every node represents an
object instance and every edge represents a visual relation between two objects. Early ImgSGG
methods always directly predict all pairwise visual relations (Lu et al., 2016; Zhang et al., 2017).
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Later, ImgSGG methods mainly focus on designing different context encoding architectures, such
as message passing (Xu et al., 2017; Li et al., 2017), recurrent network (Zellers et al., 2018), tree-
structure model (Tang et al., 2019), agent communication (Chen et al., 2019), and Transformer-based
models (Lu et al., 2021). Recently, a surge of ImgSGG work starts to explore the long-tailed issue in
predicate or triplet classification. Existing methods for debiased SGG can be roughly devided to four
types: class-aware re-sampling (Li et al., 2021; 2022d; Desai et al., 2021), loss re-weighting (Lin
et al., 2017; Yan et al., 2020; Knyazev et al., 2020), biased-model-based (Tang et al., 2020; Chiou
et al., 2021; Yu et al., 2021) and noisy label correction (Li et al., 2022a;b).

Video Scene Graph Generation (VidSGG). Beyond static images, VidSGG aims to detect dy-
namic visual relations in the videos. Compared to ImgSGG, VidSGG is more challenging because
they need to consider the spatio-temporal context in adjacent frames. Based on the formats of
relation triplet annotations, existing VidSGG work can be categorized into two groups: 1) Tracklet-
based: Each graph node is an object tracklet in a video clip (Shang et al., 2017; 2019) or the whole
video (Liu et al., 2020; Gao et al., 2021; 2022; 2023). 2) Frame-based: Each graph node is an object
bbox as in ImgSGG, but these visual relation triplets are dynamic in the whole video sequence (Ji
et al., 2020; Feng et al., 2021; Cong et al., 2021; Li et al., 2022e). In this paper, we follow the
frame-based VidSGG setting, and propose the first weakly-supervised VidSGG setting and model.

Weakly-Supervised ImgSGG. A ground-truth visual relation triplet annotation consists of two ob-
ject locations, their object categories, and pairwise visual relations. Thus, it is extremely labor-
intensive to obtain large-scale fully-annotated scene graph benchmarks (Zhang et al., 2020; Liu
et al., 2022; Song et al., 2023; Liu et al., 2016). To reduce the labeling costs, several ImgSGG work
proposed to generate scene graphs under weak supervision. Currently, there are two main types of
weak supervision for ImgSGG: 1) Unlocalized Scene Graphs (Zareian et al., 2020; Shi et al., 2021;
Li et al., 2022c): It only consists of image-level labels that describe the object and visual relation
categories without object locations. 2) Aligned Captions (Shi et al., 2021; Ye & Kovashka, 2021):
It provides an entailment caption for the given image. In this paper, we only utilize an unlocalized
scene graph of a middle frame as the supervision for VidSGG.

Knowledge Distillation (KD). KD is first used for model compression (Hinton et al., 2015). Then,
KD becomes a prevalent method to transfer knowledge from a (larger) teacher model to a (smaller)
student model. Benefiting from the soft targets generated by teacher models, the student model can
even outperform their teachers through appropriate training strategies (Zhang et al., 2018; Furlanello
et al., 2018). However, these traditional KD methods are single-teacher. To reduce the limitation
of data diversity and single-teacher knowledge, recent work tries to distill knowledge from multiple
teachers. The idea of multi-teacher KD has been widely applied to numerous vision tasks, i.e., object
detection (Chen et al., 2017; Wang et al., 2019), visual question answering (Niu & Zhang, 2021;
Chen et al., 2022) and ImgSGG (Li et al., 2022c). In this paper, we propose two relation pseudo
label assignment teachers and use multi-teacher KD to fuse the knowledge of multi-teachers.

3 PROPOSED APPROACH

Task Definition. In this paper, we propose a new VidSGG task: weakly-supervised VidSGG with
single-frame weak supervision (SF-VidSGG). Specifically, given an input video V = {I1, ..., IT }
with T frames, SF-VidSGG aims to generate a scene graph Gt for each frame It, and then stack them
along the time axis to obtain the final video scene graph G = {G1, ..., GT }, where Gt = (N t, Et),
N t and Et denote the set of graph nodes and edges in Gt, respectively. In the training stage, we only
use the weakly-supervision as mentioned in Sec. 1, i.e., the only supervision for SF-VidSGG is an
unlocalized scene graph for a middle frame of the video V , denoted as G̃m = (Ñm, Ẽm), and Im

is the only frame in the video with annotation.

3.1 MODEL OVERVIEW

To tackle the SF-VidSGG task, we propose a novel framework: Pseudo Label Assignment (PLA).
The whole pipeline of PLA is illustrated in Figure 2. Specifically, it consists of three components:
object pseudo label assignment (Obj-PLA) module, relation pseudo label assignment (Rel-PLA)
module, and future predicate prediction (FPP) module. In the Obj-PLA, we detect object region
proposals for all the frames. For the frame with weak annotation, we further complete its unlocal-
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Figure 2: A overview of PLA. Here we show how to assign pseudo label for one unannotated frame It as
an example. PLA consists of three module: (a) Obj-PLA detects pseudo object bounding boxes and assigns
pseudo category labels to them. (b) Rel-PLA proposes two teachers to assign pseudo relation annotations (Gt

soft
and Gt

hard). (c) FPP first calculates a adapted weight by Gt
soft of all frames in the video, then calculates the final

pseudo relation annotations (Gt
final) by the weighted sum. Finally, we train a fully supervised VidSGG model.

ized scene graph G̃ to obtain a pseudo localized scene graph Gpseudo. In the Rel-PLA, we propose
two relation pseudo label assignment teachers: model-based and model-free. The model-based
teacher assigns “soft” predicate pseudo labels Psoft by an ImgSGG model, while the model-free
teacher assigns “hard” predicate pseudo labels Phard by some heuristic rules. After Psoft and Phard
are assigned, the FPP module determines adapted weights to fuse Psoft and Phard to obtain the final
pseudo label Pfinal. Finally, we train a fully-supervised VidSGG model by Pfinal.

3.2 OBJECT PESUDO LABEL ASSIGNMENT (OBJ-PLA)

In this module, we aim to generate pseudo object category annotations for all frames. For each
frame It in input video, we first use an off-the-shelf detector to generate a set of proposal Ot. Each
proposal oti ∈ Ot has a corresponding bounding box position bti and an initial object category ĉti,
i.e., oti = (bti, ĉ

t
i). Since the differences in object category ontology between the pretrained detector

and VidSGG benchmarks, we then map the detected object categories to the object categories in the
VidSGG dataset if there is overlapping between their synonyms in WordNet (Miller, 1995), e.g.,
“woman” is mapped to “person”, “pizza box” is mapped to “box”.
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Figure 3: Illustration of model-free teacher.

For the annotated frame Im, Obj-PLA has an additional
step: matching these detected bounding boxes with en-
tities in the unlocalized scene graph to obtain a pseudo
localized scene graph. Here we use a category-based
strategy: a bounding box and a entity will be matched
if they have the same category. This strategy has a weak-
ness that it cannot distinguish bounding boxes with the
same object category. When the detector finds multiple
bounding boxes with the same object category, we just
randomly choose one of them to match. To solve this
problem, Li et al. (2022c) utilizes pretrained VL models
to calculate relevant scores between entities with bound-
ing boxes. The final matches are decided by the object
category labels and the relevant scores. We leave these
advanced methods for the future work.

3.3 RELATION PESUDO LABEL ASSIGNMENT (REL-PLA)

After Obj-PLA, we obtain a pseudo localize scene graph for the annotated Frame and object bboxes
for all other unannotated frames. In Rel-PLA, we design two strategies (teachers) to generate pseudo
predicate labels for the unannotated frames.
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Model-based Teacher. Model-based Teacher assigns “soft” predicate pseudo labels by an ImgSGG
model. It first obtains pseudo localized scene graphs Gpseudo from the annotated frame set by Obj-
PLA, then train a ImgSGG model by these scene graphs. After training, each un-annotated frame
It is fed to the network to obtain Gt

soft = Mimg(I
t), the scene graph for It. Here we represent

the predicate in Gt
soft by the category distribution of predicate, besides one-hot labels. Inspired by

knowledge distillation, we believe that the soft pseudo label can preserve more information than the
hard pseudo label (Hinton et al., 2015).

Model-free Teacher. Model-free teacher assigns “hard” pseudo prediacte labels by some heuristic
rules. The first step is object sequence matching. We adopt the object category and the IoU to
match the objects detected in the different frames. Two object oti and ot+1

j in adjacent frames can be
matched if they have same object categories and IoU(bti, b

t+1
j ) > η, where η is the IoU matching

threshold to filter objects. We frame-by-framely match objects from the middle frame to both ends.
As shown in Figure 3, “book” and “towel” in Im+2 are not matched with any object in Im+1

because there is no object detected in Im+1 with category “book” and IoU of bounding boxes with
category “towel” in Im+1 and Im+2 is lower than η. The second step is relation propagation. We
simply propagate the predicate of a subject-object pair in the annotated frame to the same subject-
object pair in the un-annotated frames.

3.4 FUTURE PREDICATE PREDICTION (FPP) MODULE

Multi-Teacher Fusion Strategy. After obtaining Psoft and Phard by two teachers, the simplest fusing
strategy is treating each teacher equally and averaging the two pseudo labels. However, this strategy
overlooks the noise in the model-based teacher. The model-based teacher sometimes assign wrong
pseudo labels due to the incorrect predictions in model Mimg. On the other hand, pseudo labels
assigned by the model-free teacher can be seen as the default predictions because these labels have
already appeared in the video. To some extent, the model-free teacher can be seen as a complement
when the model-based teacher assign a wrong pseudo label. Therefore, a better strategy is assigning
adaptive weights for Psoft and Phard and then calculating the final pseudo labels by the weighted sum:

Pi
final = wi

soft ∗ Pi
soft + wi

hard ∗ Pi
hard, (1)

where wi
soft and wi

hard denotes the weights of the soft and hard predicate labels for video i, respec-
tively. In the FPP module, we calculate wi

soft and wi
hard by regularity of relation transition.

Relation Transition. Relation transition means how the predicates change between the same
subject-object pairs in different frames. Mi et al. (2021) has proved that relation transition has
the temporal tendency, which means we can infer their relation in the next frame according to
their relation in the current frame for the same subject-object pair. As the example shown in
Figure 4, we can find two main conclusions: 1) Relation transitions have some regular patterns,
e.g., for subject-object pair “people-chair”, relation “leaning on” is mainly transferred to
“sitting on”, but hardly transferred to “lying on” and “standing on”. 2) Relation tran-
sitions with different subject-object pairs have different regular patterns, e.g., the statistical distribu-
tions for “people-chair” and “people-food” are different. Therefore, we can evaluate the
quality of predicate pseudo labels by regularity of relation transition in video. Specifically, irregu-
lar relation transitions (e.g., “leaning on” → “lying on” for “people-chair”) are of low
quality, then we assign low weights to them.

Proposed FPP. As shown in Figure 5, We take two steps to calculate weights wsoft and whard. 1)
Predicate prediction: For each predicate pt in It assigned by the model-based teacher, we predict
p̂t+1 as the predicate that pt will transition to in It+1. For each p̂t+1, we find its corresponding
predicate pt+1 in It+1 that actually assigned by the model-based teacher. 2) Adapted weight as-
signment: We first calculate KL-divergence between p̂t+1 and pt+1 as the inconsistency score.
Then, we assign low weights to pseudo labels with high inconsistency scores and high weights to
pseudo labels with low inconsistency scores. In the following, we detailed introduce these two steps.

Predicate Prediction. To predict the future predicates, we construct a relation transition matrix
T ∈ RNo∗Nr∗Nr , where No, Nr are the number of objects and relations in the dataset, respectively.
The relation transition matrix indicates the statistical distribution of relation transition in the VidSGG
dataset. Given a predicate pt in frame It with object category co, we predict p̂t+1 as:

p̂t+1 = pt × T [id(co)], (2)
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a) People-Chair b) People-Food

Figure 4: Statistical distributions of relation
transition in AG. Each row represents the
distribution of relations in the next frame for
the relation in the left.
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Figure 5: Illustration of the FPP module, which consists of
two parts: a) predicate prediction, b) adapted weight assign-
ment.

where id(co) is the id of co in the vocabulary Cg
o . Then, for each p̂t+1, we try to find its correspond-

ing predicate pt+1 in It+1 that actually assigned by the model-based teacher. Sometimes pt+1 is not
existed because the detector can not detect the subject-object pair of p̂t+1 in frame It+1. To handle
this problem, we adopt the object category and the IoU to filter predicates without correspond-
ing subject-object pair in the next frame, as we did in object sequence matching of the model-free
teacher. The set of p̂t+1 and pt+1 after filtering in the whole video are denoted as P̂filter and Pfilter,
respectively.

Adapted Weight Assignment. We first calculate the inconsistency score by KL-divergence as below:

Sincon = KL(P̂filter||Pfilter). (3)

Then, we calculate the inconsistency score for Psoft, denoted as Ssoft
incon. A high inconsistency score

indicates that these predicate pseudo labels do not satisfy the regularity of relation transition, so we
should assign low weights to them. To the end, we define the function as:

wsoft = 2− 2 ∗ Sigmoid(Ssoft
incon), whard = 1− wsoft. (4)

3.5 TRAINING OBJECTIVES

FPP module. We assume that the relation transition matrix T in FPP module indicates the statistical
distribution of relation transition in the VidSGG dataset. However, in the SF-VidSGG task, we can
not count the distribution of relation transition directly because we only have single-frame weak
supervision for each video. An alternative approach is generating pseudo labels by the model-based
teacher and then learning the distribution of these pseudo labels. To accomplish this, we formulate
the loss function as below to train the FPP module:

LFPP = KL(P̂ soft
filter||P soft

filter), (5)

Student Model. We adopt the KL-divergence loss for training like most knowledge distillation
methods, which can be formulated as follows:

LKD = KL(Ppred||Pfinal), (6)

where Ppred denotes the output of the student model, and Pfinal denotes the predicate pseudo labels.

Finally, the total training loss of PLA is:

L = LKD + LFPP. (7)

4 EXPERIMENTS

Due to the limited space, the details about experimental settings (including the evaluation dataset
and metrics) and implementation details are left in the appendix.

4.1 ABLATION STUDIES

In this section, we validated the effectiveness of our PLA by answering the following questions:
Q1: How does each component in PLA contribute to the performance on the SF-VidSGG task? Q2:

6



Published as a conference paper at ICLR 2023

Table 1: Performance (%) on dataset Action Genome of models with different components of PLA. Model A is
the baseline, B only uses model-based teacher, C only uses model-free teacher, D uses both teachers and treats
them equally, E uses both teachers and set adapted weights by FPP module.

Task # Model Components With Constraint No Constraint

Obj-PLA Model-based Model-free FPP R@10 R@20 R@50 R@10 R@20 R@50

SGDet

A STTran† ! % % % 14.32 20.42 25.43 14.78 21.72 30.87
B STTran ! ! % % 14.99 21.11 26.12 15.46 22.56 31.75
C STTran ! % ! % 14.69 20.71 25.70 15.09 22.04 31.26
D STTran ! ! ! % 15.11 21.16 26.03 15.57 22.56 31.60
E STTran ! ! ! ! 15.39 21.44 26.24 15.83 22.83 31.74

SGCls

A STTran† ! % % % 35.19 35.80 35.80 44.25 51.76 55.80
B STTran ! ! % % 36.58 37.19 37.20 45.54 52.52 56.46
C STTran ! % ! % 35.70 36.32 36.32 45.44 52.82 56.07
D STTran ! ! ! % 36.48 37.06 37.06 44.52 52.52 56.17
E STTran ! ! ! ! 36.81 37.46 37.46 46.00 53.01 56.42

PredCls

A STTran† ! % % % 59.58 61.13 61.13 74.86 89.91 98.26
B STTran ! ! % % 61.23 62.79 62.79 76.08 89.91 97.92
C STTran ! % ! % 61.26 62.93 62.93 77.09 91.99 99.00
D STTran ! ! ! % 61.19 62.69 62.70 76.51 90.82 98.46
E STTran ! ! ! ! 61.64 63.25 63.25 77.20 91.53 98.61

Table 2: Comparison (%) with other state-of-the-art fully-supervised approach.

Supervision Model PLA With Constraint No Constraint

R@10 R@20 R@50 R@10 R@20 R@50

Weak STTran Cong et al. (2021) ! 15.4 21.4 26.2 15.8 22.8 31.7
DSG-DETR Feng et al. (2021) ! 15.5 21.3 25.9 15.9 22.7 31.9

Full
STTran Cong et al. (2021) % 25.2 34.1 37.0 24.6 36.2 48.8

APT Li et al. (2022e) % 26.3 36.1 38.3 25.7 37.9 50.1
DSG-DETR Feng et al. (2021) % 30.3 34.8 36.1 32.1 40.9 48.3

How far are the gaps between PLA and fully-supervised VidSGG approaches? Q3: Can a stronger
student model help to improve the performance of PLA? Q4: What is the upper-bound under our
pseudo label assignment training paradigm? Q5: What is the influence of different annotation frame
choosing strategies?

4.1.1 EFFECTIVENESS OF EACH COMPONENT (Q1)

Settings. To analyze the importance of each component in PLA, we implemented the straightfor-
ward model mentioned in Sec. 1 as the baseline model. It first obtained pseudo localized scene
graphs Gpseudo from the annotated frame set by Obj-PLA, then trained a STTran† model by these
scene graphs. The gray lines in Table 1 show the results of the baseline model (model A). We also
trained the models with different components of PLA, which is shown in Table 1.

Effectiveness of Rel-PLA. Compared to the baseline model A, models with model-based teacher or
model-free teacher (model B and model C) has a significant improvement. The experimental results
demonstrate that by utilizing the unannotated frames in the video, model B and model C are able
to outperform the baseline model A across almost all the metrics, only except for no constrained
PredCls-R@50 of model B. Particularly, model B and model C have outperformed the baseline by
5.24% (15.07 v.s.14.32) and 2.58% (14.69 v.s.14.32) relatively in terms of R@10 with constraint
criteria for SGDet, respectively. This is owing to that the two teachers have the ability to assign
high-quality pseudo labels to the unannotated frames.

Effectiveness of FPP. As shown in Table 1, model D and model E are all use both teachers, but
model E uses the FPP module to set adapted weights. We can observe that model E outperforms
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model D across all the metrics. Especially, model E has achieved about 2% relative improvement
over model D on R@10 metric under the no constraint criteria for SGDet. The improvement proves
that FFP has the ability to assign more accurate pseudo labels than the simple fixed weight strategy.

Table 3: Performance (%) for SGDet on AG of base-
line (with obj-PLA), GTRel, and PLA.

Method With Constraint No Constraint

R@10 R@20 R@50 R@10 R@20 R@50

Baseline 14.32 20.42 25.43 14.78 21.72 30.87
PLA 15.39 21.44 26.24 15.83 22.83 31.74

GTRel 16.10 22.38 27.33 16.73 24.02 33.40

Table 4: Ablation studies (%) on different annotation
frame-choosing strategies.

Strategy With Constraint No Constraint

R@10 R@20 R@50 R@10 R@20 R@50

First 14.38 20.45 25.60 14.85 21.73 30.68
Last 14.25 20.46 25.66 14.67 21.67 30.72

Random 14.91 20.87 25.82 15.48 22.40 31.59
Middle 15.39 21.44 26.24 15.83 22.83 31.74

4.1.2 GAP BETWEEN PLA AND FULLY SUPERVISED APPROACHS (Q2)

Settings. We compared our PLA with three state-of-the-art fully-supervised VidSGG methods:
STTran (Cong et al., 2021), APT (Li et al., 2022e), and DSG-DETR (Feng et al., 2021).

Results. As shown in Table 2, we can observe that there is still a gap between the performance
of PLA and other fully-supervised approaches (e.g., 15.4 v.s.25.2 for STTran in terms of R@10
with constraint criteria for SGDet). However, considering that the annotation cost of our method
is extremely lower (<5%) than that of full supervision. we think it is still a good start for weakly
supervised frame-level VidSGG. We leave the task to reduce the gap as the future work.

4.1.3 EFFECTS OF DIFFERENT STUDENT MODELS (Q3)

Settings. We used DSG-DETR as the student model of PLA. Since PLA is agnostic to the specific
VidSGG architecture, it can be easily incorporated into any advanced VidSGG models. We used
the same teachers as for STTran to generate pseudo labels for DSG-DETR, then trained a fully-
supervised VidSGG model by these pseudo labels.

Results. As shown in Table 2, PLA with DSG-DETR also achieves similar performance with
STTran across all the metrics. These results show that PLA is a general framework and can eas-
ily extend to advanced fully supervised VidSGG methods.

4.1.4 BEST CASE: GROUND-TRUTH UNLOCALIZED SCENE GRAPHS (Q4)

Settings. Like most existing SGG methods, PLA has two main steps: the first step is to detect objects
in each frame, and the second step is to predict relations between these objects. The performance
of PLA is mainly affected by the first step due to the poor performance of the off-shelf detector
in Action Genome. Under this object detection strategy, the upper-bound performance is not high.
We can train an upper-bound model as follows: first detect objects by Obj-PLA, then assign ground
truth relation labels between them, finally use these labels to train the student model. We named this
upper-bound model as GTRel.

Results. As shown in Table 3, we observe that GTRel significantly improves the performance
over the baseline. Specifically, GTRel has outperformed the baseline by 13.19% (16.73 v.s.14.72)
relatively in terms of R@10 no constraint criteria for SGDet. We also demonstrate that PLA has
ability to reduce the gap between the baseline model and GTRel. For example, GTRel improves
by 12.43% (16.10 v.s.14.32) relatively over baseline in terms of R@10 with constraint criteria for
SGDet, but only improves by 4.61% (16.10 v.s.15.39) relatively over PLA on same metric. These
results show that PLA is able to reduce about half performance gap between the baseline model
and the upper-bound model GTRel for the SF-VidSGG task. Besides, the method to detect objects
under unlocalized scene graph setting is not our main contribution. As a general framework, if better
methods to detect objects are proposed, PLA can easily extend to them.

4.1.5 EFFECTS OF DIFFERENT ANNOTATION FRAME-CHOOSING STRATEGIES. (Q5)

Settings. We compared four simple annotation frame choosing strategies. Specifically, “First”,
“Last”, and “Middle” means annotating the “first”, “last”, and “middle” frame with an unlocalized
scene graph in each video, respectively. And “Random” means choosing one frame randomly.
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Figure 6: Visualization results of pseudo labels assigned by: (a) ground-truth, (b) model-based teacher, (c)
model-free teacher, (d) both teachers with fixed weights, (e) both teachers with adapted weights. (a) and (b) are
hard labels (each node indicates a single relation), while (c) - (e) are soft labels (each node indicates a relation
distribution). The green relations mean correct predictions, the yellow relations are wrong predictions that do
not exist in the ground-truth.
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(a) people-bed (b) people-floor
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Figure 7: Qualitative results for the statistical distributions of relation transition. In each subfigure, the left is
the ground-truth result and the right is result of PLA.

Results. As shown in Table 4, We can observe that model trained by the middle annotation frame has
the best performance, eg., in terms of R@10 with constraint criteria for SGDet, strategy “Middle”
outperforms “First”, “Last”, and “Random” by 1.01, 1.14, and 0.48, respectively. It also proves that
the middle frame usually contains more information.

4.2 QUALITATIVE RESULTS

Pseudo Label Visualization. Figure 6 shows a qualitative comparison of the pseudo labels gener-
ated by different variants of PLA. Results indicates that the adapted weights given by FPP module
can generate more accurate pseudo labels than fixed weights. Specifically, relation in Tm+1 (“not
contacting”) is different from that in Tm (“touching” and “sitting on”), so the model-
free teacher give totally wrong relations (“touching” and “sitting on”) and the model-based
teacher predict an almost accurate relation (98% confidence for “not contacting”). Com-
pared to fixed weight strategy, the FPP module gives more weight to the model-based teacher (79%
v.s.49% confidence for “not contacting”) and generates more accurate pseudo labels.

Relation Transition Distribution Visualization. Figure 7 demonstrates the statistical distributions
of relation transition counted by ground truth and learned by PLA. From Figure 7, we can observe
that PLA can learn a distribution similar to the ground truth.

5 CONCLUSIONS

In this paper, we presented the first weakly-supervised VidSGG task with only single-frame weak su-
pervision: SF-VidSGG. Unlike VidSGG, SF-VidSGG only require a weak annotaion without bound-
ing box for one frame in each video. To the end, we proposed a novel and efficient method named
PLA for SF-VidSGG, which based on pseudo label assignment for the video. We validated the ef-
fectiveness of each component of PLA through extensive experiments. In future work, we would
like to explore weaker supervision in VidSGG or more accurate pseudo label assignment.
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A APPENDIX

This Appendix has the following contents:

• The details about the valuation dataset are given in Sec. A.1

• The evaluation metrics are given in Sec. A.2.

• The implementation details are given in Sec. A.3.

• The detailed hyperparameter setting are given in Sec. A.4.

• Ablation studies on imperfect object detector in Sec. A.5.

• Ablation studies on the different proportions of the weakly supervised labels in Sec. A.6.

• More qualitative results are in Sec. A.7.

A.1 DATASET

We evaluated our method PLA on the challenging VidSGG benchmark: Action Genome (AG) (Ji
et al., 2020). AG is a prevalent VidSGG dataset providing human-object relationships with frame-
level annotations. Specifically, AG consists of 9,201 videos, which annotated for 234,253 frames by
476,299 bounding boxes of 36 object categories and 1,715,568 instances of 25 relation categories.
All relation categories in AG are split into three types: 3 attention relations, 6 spatial relations and
16 contact relations. Each subject-object pair has one attention relation but may has multiple spatial
or contact relations. In our SF-VidSGG setting, we used the official splits as fully-supervised work,
i.e., 7,464 videos for training, 1,737 videos for testing. For each video in the training set, we only
used the unlocalized scene graph of the middle frame as supervision.

A.2 EVALUATION METRICS

Following the fully-supervised setting, we evaluated PLA on three different settings: 1) Scene Graph
Detection (SGDet): Given a video, the model needs to detect the objects and predict predicate
categories of object pairs for all frame. In SGDet, an object is considered to be successfully detected
if the IoU between the predicted bbox and its ground-truth bbox is larger than 0.5. 2) Scene Graph
Classification (SGCls): Given a video and object bboxes, the model needs to predict object and
predicate categories for all frames. 3) Predicate Classification (PredCls): Given a video, object
bboxes and object labels, the model needs to predict predicate categories for all frames. Since the
ground-truth bboxes are not provided in SF-VidSGG, we only trained models under SGDet settings,
then evaluated them under these three settings. We used Recall@K (R@K, K = [10,20,50]) as our
evaluation metric, which measures the ratio of the ground-truth relation triplets among the top-K
predicted relation triplets. Furthermore, we adopt two typical strategies to generate dynamic scene
graphs: 1) With Constraint: It only allows each subject-object pair to have at most one predicate.
2) No Constraint: It allows each subject-object pair to have multiple predicates.
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A.3 IMPLEMENTATION DETAILS

In the Obj-PLA module, we used the pretrained VinVL (Li et al., 2020; Zhang et al., 2021) with
backbone ResNeXt-152 C4 as the off-the-shelf detector. Specifically, it is pre-trained on multiple
detection benchmarks, including COCO (Lin et al., 2014), OpenImages (Kuznetsova et al., 2020),
Objects365 (Shao et al., 2019), and Visual Genome (Krishna et al., 2017). This detector is capable
of detecting 1,594 general object categories. We kept objects which confidence is higher than 0.2
and extracted the 2048-D region features from the detector. In the Rel-PLA module, we modified
STTran (Cong et al., 2021) to an ImgSGG model that process one frame at a time, denoted as
STTran†. We used STTran† as the teacher model to assign pseudo soft labels in Rel-PLA. For the
model-free teacher, we set the IOU matching threshold η = 0.5. In FPP module, we set the initial
learning rate 1e−3. We used STTran as the student model, and followed the same training settings
(e.g., learning rate and batch size) of the original paper.

A.4 HYPERPARAMETER SETTINGS

We analyzed the influence of the hyperparameter η, which denote the IoU matching threshold in
Rel-PLA. We set different η for the model only uses model-free teacher (model C). All results are in
Table 5. Particularly, when the threshold η is set to 0, we match the objects in different frames only
by the object category without the IoU of the bounding boxes in adjacent frames.

Table 5: Different size of the weakly supervised labels.

η
With Constraint No Constraint

R@10 R@20 R@50 R@10 R@20 R@50

0.0 13.58 19.52 24.62 14.02 20.95 30.49
0.2 14.64 20.54 25.33 15.11 22.03 31.11
0.5 14.69 20.71 25.70 15.09 22.04 31.26

Results. As shown in Table 5, we can observe that the model with η = 0 has a weak performance
due to more wrong objects matching without IoU information. And the model with η = 0.5 slightly
outperforms the model with η = 0.2. Therefore, we set η = 0.5 for all experiments.

Table 6: Ablation studies on imperfect object detec-
tor.

Dropped With Constraint No Constraint

Bboxes R@10 R@20 R@50 R@10 R@20 R@50

0% 15.39 21.44 26.24 15.83 22.83 31.74
10% 14.16 19.86 23.60 14.66 21.12 29.48
20% 13.18 17.85 20.99 13.66 19.46 27.26
40% 11.48 14.86 16.53 12.01 22.14 24.72
80% 4.84 5.29 5.32 5.62 7.15 8.48

Table 7: Ablation studies on different proportion of the
weakly supervised labels.

Proportion With Constraint No Constraint

R@10 R@20 R@50 R@10 R@20 R@50

1 frame 15.39 21.44 26.24 15.83 22.83 31.74
10% 15.10 21.17 25.96 15.55 22.56 31.88
20% 16.00 21.91 26.61 16.56 23.55 32.89
40% 16.23 22.50 27.37 16.83 24.07 33.30
80% 16.26 22.57 27.68 16.89 24.18 33.26

A.5 EFFECTS OF IMPERFECT OBJECT DETECTORS

Settings. To simulate an imperfect object detector, we randomly dropped a certain proportion of
bounding boxes given by the object detector. Without loss of generality, we set five dropped propor-
tion as 0%, 10%, 20%, 40% and 80%.

Results. As shown in Table 6, we can observe that the bigger dropped proportion, the worse the
performance of PLA, eg. the setting with 0% dropped proportion outperforms settings with 10%,
20%, 40% and 80% dropped proportion by 1.23, 2.21, 3.91 and 10.55, respectively. When dropping
10%, 20% and 40% bboxes, the performance has not decreased much, but the performance decreased
significantly if dropping 80% bboxes. Results show that PLA is affected by the preformance of the
object detector, but it is the weakness for all two-stage (first detect objects, then predict relations
between them) SGG method.
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A.6 EFFECTS OF THE SIZE OF WEAKLY SUPERVISED LABELS

Settings. Although PLA is designed for single-frame weak supervision, it can be easily extended
to multi-frame weak supervision. For the model-based teacher, we just train the model with more
frames. For the model-free teacher, we take each annotated frame as a starting point to propagate
relations. Without loss of generality, we set four annotated proportion as 10%, 20%, 40% and 80%.
We annotated frame evenly in temporal axis, for example, if a 20-frame video with 20% annotated
proportion, we will annotate its 1st, 7th, 14th and 20th frame.

Results. As shown in 7, we can observe that the more annotated frames, the better the performance
of PLA, e.g., model with 80% annotation frames outperforms models with 10%, 20% and 40%
annotation frames 1.16, 0.26 and 0.03. It proves that PLA can easily adapt to multi-frame weak
supervision setting.

A.7 MORE QUALITATIVE RESULTS ON ACTION GENOME DATASET

More qualitative results of PLA on Action Genome are shown in Figure 8. From Figure 8, we can
observe that PLA has the ability to detect dynamic relations, e.g., in the third video, the relation
between person and table from “not contacting” to “touching”.
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Figure 8: More qualitative results on Action Genome dataset.
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