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Abstract

Deep reinforcement learning (RL) is a powerful approach to complex decision
making. However, one issue that limits its practical application is its brittleness,
sometimes failing to train in the presence of small changes in the environment.
Motivated by the success of zero-shot transfer—where pre-trained models perform
well on related tasks—we consider the problem of selecting a good set of training
tasks to maximize generalization performance across a range of tasks. Given
the high cost of training, it is critical to select training tasks strategically, but
not well understood how to do so. We hence introduce Model-Based Transfer
Learning (MBTL), which layers on top of existing RL methods to effectively
solve contextual RL problems. MBTL models the generalization performance
in two parts: 1) the performance set point, modeled using Gaussian processes,
and 2) performance loss (generalization gap), modeled as a linear function of
contextual similarity. MBTL combines these two pieces of information within
a Bayesian optimization (BO) framework to strategically select training tasks.
We show theoretically that the method exhibits sublinear regret in the number
of training tasks and discuss conditions to further tighten regret bounds. We
experimentally validate our methods using urban traffic and standard continuous
control benchmarks. The experimental results suggest that MBTL can achieve up
to 43x improved sample efficiency compared with canonical independent training
and multi-task training. Further experiments demonstrate the efficacy of BO and
the insensitivity to the underlying RL algorithm and hyperparameters. This work
lays the foundations for investigating explicit modeling of generalization, thereby
enabling principled yet effective methods for contextual RL. Code is available at
https://github.com/jhoon-cho/MBTL/.

1 Introduction

Deep reinforcement learning (DRL) has made remarkable strides in addressing complex problems
across various domains [29, 37, 1, 4, 10, 12, 27]. Despite these successes, DRL algorithms often
exhibit brittleness when exposed to small variations like different number of lanes, weather conditions,
or flow density in traffic benchmarks [20], significantly limiting their scalability and generalizability
[19]. Such variations can be modeled using the framework of contextual Markov Decision Processes
(CMDP), where task variations can be parameterized within a context space [14, 32, 5].

There are two predominant solution modalities for CMDPs [23]: independent training and multi-task
training. Independent training constructs a separate model for each task variant (say, N ≫ 1), which
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Figure 1: Normalized performance comparison across different problem variations in Eco-Driving
benchmark. Traditional DRL approaches (e.g., Independent training or multi-task training) exhibit
greater training instability, whereas Oracle Transfer, zero-shot transfer with full information, shows
the potential for performance improvement by multi-policy training.

is compute-intensive. At the other extreme, multi-task training constructs a single “universal” policy,
and thus can be more compute-efficient, but suffers from model capacity and negative transfer issues
[22, 46, 2, 42]. There is thus a need for more reliable training methodologies for generalization across
tasks variants. In this work, we consider training an intermediate set of K models, where N > K > 1,
in an effort to balance performance and efficiency; we refer to this strategy as multi-policy training.

We build upon zero-shot transfer, a widely-used practical technique which directly applies a policy
trained in one context (source task) to another (target task) without adaptation. Figure 1 shows that
multi-policy training with zero-shot transfer has the potential to improve the performance even over
the independent training. In this article, we strategically select source tasks by explicitly modeling
the generalization performance to estimate the value of training a new source task.

A note on terminology. For brevity, we refer to task variants as tasks in the remainder of this article.
We also use the language of task and context interchangeably. We emphasize that this work focuses
on within-domain generalization (e.g., traffic signal control for intersection scenario variants) rather
than across-domain generalization (e.g., distinct traffic control tasks). Additionally, it is crucial to
differentiate between training reliability, which concerns the ability to reliably train models across
tasks, and model reliability (or robustness), which concerns the resistance of a trained model to
differences in tasks. This article is concerned with training reliability.

The main contributions of this work are:

• We introduce Model-Based Transfer Learning (MBTL), a novel framework for solving
CMDP sample efficiently (Figure 2). To the best of our knowledge, this is the first work to
explicitly model generalization performance for contextual RL (CRL). As such, our work
opens the door for further investigation into reliable model-based methodologies for CRL.

• We provide theoretical analysis for the sublinear regret of MBTL and give conditions for
achieving tighter regret bounds.

• We empirically validate our methods in urban traffic and standard continuous control
benchmarks for contextual RL, observing up to 43x improvements in sample efficiency. We
further include ablations on the components of the algorithm.

The remainder of the paper is organized as follows. After introducing notation in Section 2, we
formally define the problem in Section 3. A key contribution of our work is the introduction of a
Gaussian process model acquisition function specifically tailored to the source task selection problem,
which is detailed in Section 4. In Section 4.3, we provide a theoretical analysis of the regret bounds
of our method, followed by an empirical evaluation across diverse applications in Section 5.

2 Preliminaries and notation

Contextual MDP. A standard MDP is defined by the tuple M = (S,A, P,R, ρ) where S repre-
sents the state space, A is the action space, P denotes the transition dynamics, R is the reward
function, and ρ is the distribution over initial states [45]. A contextual MDP (CMDP), denoted
byM =(S,A, Px, Rx, ρx)x∈X , is a collection of context-MDPsMx parameterized by a context
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Figure 2: Overview illustration for Model-based Transfer Learning. (a) Gaussian process
regression is used to estimate the training performance across tasks using existing policies; (b)
marginal generalization performance (red area) is calculated using upper confidence bound of
estimated training performance, generalization gap, and generalization performance; (c) selects the
next training task that maximizes the acquisition function (marginal generalization performance); (d)
once the selected task is trained, calculate generalization performance using zero-shot transfer.

variable x within a context space X (assumed bounded). The context variable x can influence
dynamics, rewards, and initial state distributions [14, 32, 5]. We define source task performance
J(πx, x;Alg) as follows: we train a policy πx on a task with the context x ∈ X using RL algorithm
Alg (e.g., PPO, SAC) and evaluate the policy by the expected return in the same MDPMx with
context x. For brevity, we will write it as J(πx, x). We distinguish between estimated values Ĵ(x)
and observed outcomes J(πx, x), with the latter measured after training and evaluation.

Figure 3: Example generalization gap de-
picted for Cartpole CMDP. The solid lines
show the true zero-shot transfer generaliza-
tion performance across contexts. Source
tasks are indicated by dotted lines.

Generalization gap via zero-shot transfer. Con-
sider zero-shot transfer from the trained policy πx

from a source task (context-MDP) to solve another
target task (context-MDP) with the context x′ ∈ X
in the CMDP. Zero-shot transfer involves applying
a policy trained on a source taskMx to a different
target taskMx′ , with x, x′ ∈ X . This experiences
performance degradation, also called generalization
gap [17, 23]. For instance, Figure 3 depicts that the
performance degrades as the target task diverges from
the source task, corresponding to an increasing gener-
alization gap. Nonetheless, leveraging the notion that
training is expensive but zero-shot transfer is cheap,
we are interested in optimally selecting a set of source
(training) tasks, such that the generalization perfor-
mance on the target range of tasks is maximized. We
observe the generalization performance, denoted by
J(πx, x

′), by evaluating the target task x′ based on the policy trained using source task x via zero-shot
generalization. We define the generalization gap as the absolute performance difference in average
reward when transferring from source task x to target task x′:

∆J(πx, x
′)︸ ︷︷ ︸

Generalization gap

= | J(πx, x)︸ ︷︷ ︸
Source task performance

− J(πx, x
′)︸ ︷︷ ︸

Generalization performance

|. (1)

3 Problem formulation

Sequential source task selection problem. The selection of source MDPs from the CMDPs is
key to solving the overall CMDP [3]. We therefore introduce the sequential source task selection
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(SSTS) problem, which seeks to maximize the expected performance across a dynamically selected
set of tasks. This problem is cast as a sequential decision problem, in which the selection of tasks
is informed through feedback from the observed task performance of the tasks selected and trained
thus far. The notation xk indicates the selected source task at the k-th transfer step, where k ranges
from 1 to K. For brevity, we will denote πxk

as πk. We denote the sequence x1, x2, ..., xk by x1:k

and π1, π2, ..., πk by π1:k.

Definition 1 (Sequential Source Task Selection Problem). This problem seeks to optimize the expected
generalization performance across a CMDPMx′∈X by selecting a task x ∈ X at each training stage.
Specifically, at each selection step k, we wish to choose a distinct task xk such that the expected
cumulative generalization performance is maximized. This can be expressed by keeping track at each
step, which policy to use for which task, and the corresponding generalization performance. Upon
training the policy πxk

for source task xk, the cumulative generalization performance, which we
abuse notation to denote as J(π1:k, ·) = J(πxk

, ·;π1:k−1). Formally, this can be recursively defined
based on previous observations {J(π1, x), . . . , J(πk−1, x)} for all x ∈ X as follows:

J(πxk
, x′;π1:k−1) = max (J(πk, x

′), J(π1:k−1, x
′)) ∀x′ ∈ X if k > 1. (2)

And J(π1:1, x) ≡ J(π1, x). Then, the overall sequential decision problem can be written as:

max
xk

V (xk;π1:k−1) = max
xk

Ex′∼U(X) [J(πxk
, x′;π1:k−1)] s.t. xk ∈ X \ x1:k−1. (3)

The state at each step k is defined by the best generalization performance for each task, achieved by
policies trained in earlier stages, represented as J(π1:k−1, x

′) for each target task x′. The action at
each step is choosing a new task xk. In general, SSTS exhibits stochastic transitions, for example due
to randomness in RL training. For simplicity, in this work, we assume deterministic transitions; that
is, training context-MDP x will always yield the same performance J(πx, x) and generalization gap
∆J(πx, x

′),∀x′ ∈ X . The problem’s maximum horizon is defined by |X|, but can be terminated
early if conditions are met (e.g., performance level, training budget).

4 Model-Based Transfer Learning (MBTL)

In this section, we introduce an algorithm called Model-based Transfer Learning to solve the SSTS
problem. MBTL models the generalization performance in two parts: 1) the performance set
point, modeled using Gaussian processes, and 2) generalization gap, modeled as a linear function of
contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization
(BO) framework to sequentially select training tasks that maximize generalization performance.

4.1 Modeling assumptions
We consider a task set X that is continuous and the performance function J(π, x), V (x) for a policy π
to be smooth over the task space X . In practice, such as control systems, tasks often vary continuously
and smoothly rather than abruptly. For example, adjusting the angle of a robotic arm by a small
amount typically results in a small change in the system and optimal action. Inspired by the empirical
generalization gap performance as observed in Figure 3, we estimate the generalization gap with a
linear function of contextual similarity.

Assumption 1 (Linear generalization gap). A linear function is used to model the generalization gap
function, formally ∆Ĵ(πx, x

′) ≃ θ|x− x′|, where θ is the slope of the linear function and x and x′

are the context of the source task and target task, respectively.

The relaxation of this assumption can yield additional efficiency benefits but also adds modeling
complexity, and thus is an interesting direction for future work.

4.2 Bayesian optimization
Bayesian optimization (BO) is a powerful strategy for finding the global optimum of an objective
function when obtaining the function is costly, or the function itself lacks a simple analytical form
[31, 6]. BO integrates prior knowledge with observations to efficiently decide the next task to train by
using the acquisition function. MBTL is a BO method which optimizes for promising source tasks by
leveraging Assumption 1 in its acquisition function. The role of BO is to approximate V (xk;π1:k−1)
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(see Equation 3) using the data acquired thus far. The next source task xk is then selected using this
estimate.

Gaussian process (GP) regression. Within the framework of BO, we model the source training
performance Ĵ(πx,x) ∀x ∈ X \ x1:k using Gaussian process (GP) regression. Specifically, the
function Ĵ(πx,x) is assumed to follow a GP (Ĵ(πx,x) ∼ GP(E[Ĵ(πx,x)], k(x, x̃))), where k(x, x̃)

is the covariance function, representing the expected product of deviations of Ĵ(πx,x) and Ĵ(πx̃,x̃)
from their respective means. Let Dk−1 denote the data observed up to iteration k − 1, consisting of
the pairs {(xi, J(πi, xi))}i=1,...,k−1. The estimated performance Ĵk after querying k − 1 samples is
updated as more samples are obtained. The posterior prediction of Ĵk at a new point x, given the data
Dk−1 and previous inputs x1:k−1, is normally distributed as P (Ĵk | Dk−1) = N (µk(x), σ

2
k(x)).

µk(x) and σ2
k(x) are defined as µk(x) = E[Ĵ(πx,x)] + k⊤(K+ σ2I)−1y and σ2

k(x) = k(x, x)−
k⊤(K + σ2I)−1k, with k being the vector of covariances between x and each xi in the observed
data, i.e., k = [k(x, x1), . . . , k(x, xk−1)], and K is the covariance matrix for the observed inputs,
defined as K = [k(xi, xj)]1≤i,j≤k−1. This enables the GP to update its beliefs about the posterior
prediction with every new observation, progressively improving the estimation.

Acquisition function. The acquisition function plays a critical role in BO by guiding the selection
of the next source training task. At each decision step k, the task xk is chosen by maximizing the
acquisition function, as denoted by xk = argmaxx a(x;x1:k−1). One effective strategy employed in
the acquisition function is the upper confidence bound (UCB) acquisition function, which considers
the trade-off between the expected performance of a task based on the current task (exploitation) and
the measure of uncertainty associated with the task’s outcome (exploration) [41]. Especially in our
case, the acquisition function can be designed as UCB function subtracted by generalization gap and
so-far best performance. It is defined as follows:

a(x;x1:k−1) = Ex′∈X [[µk−1(x) + β
1/2
k σk−1(x)−∆Ĵ(πx, x

′)− J(π1:k−1, x
′)]+] (4)

where [·]+ represents max(·, 0) and we can use various forms of βk, which is the trade-off parameter
between exploitation and exploration.

4.3 Regret analysis

We use regret to quantify the effectiveness of our source task selection based on BO. Specifically, we
define regret at iteration k as rk = V (x∗

k;π1:k−1)− V (xk;π1:k−1), where V (x∗
k;π1:k−1) represents

the maximum generalization performance achievable across all tasks, and V̂ (xk;π1:k−1) is the
performance at the current task selection xk. Consequently, the cumulative regret after K iterations
is given by RK =

∑K
k=1 rk, summing the individual regrets over all iterations. Following the

framework presented by Srinivas et al. [41], our goal is to establish that this cumulative regret
grows sublinearly with respect to the number of iterations. Mathematically, we aim to prove that
limK→∞

RK

K = 0, indicating that, on average, the performance of our strategy approaches the
optimal performance as the number of iterations increases.

Regret of MBTL. Having established the general framework for regret analysis, we now turn our
attention to the specific regret properties of our MBTL algorithm. To analyze the regret of MBTL,
consider the scaling factor for the UCB acquisition function given by βk = 2 log(|X|π2k2/6δ) in
Equation (4). It is designed to achieve sublinear regret with high probability, aligning with the
theoretical guarantees outlined in Theorem 1 and 5 from [41].
Theorem 1 (Sublinear Regret). Given δ ∈ (0, 1), and with the scaling factor βk as defined, the
cumulative regret RK is bounded by

√
KC1βKγK with a probability of at least 1− δ. The formal

expression of this probability is Pr
[
RK ≤

√
KC1βKγK

]
≥ 1− δ, where C1 := 8

log(1+σ−2) ≥ 8σ2

and γK = O(logK) for the squared exponential kernel.

Impact of search space elimination. In this section, we demonstrate that strategic reduction of the
possible sets, guided by insights from previous task selections or source task training performance,
leads to significantly tighter regret bounds than Theorem 1. By focusing on the most promising
regions of the task space, our approach enhances learning efficiency and maximizes the policy’s
performance and applicability. Given the generalization gap observed in Figure 3, we observe that
performance loss decreases as the context similarity increases. We model the degradation from
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the source task using a linear function in Assumption 1. Training on the source task can solve a
significant portion of the remaining tasks. Our method progressively eliminates partitions of the task
space at a certain rate with each iteration. If the source task selected in the previous steps could solve
the remaining target task sufficiently, we can eliminate the search space at a desirable rate. Formally,
we can define the search space at k-th iteration as follows:

Definition 2 (Search space). We define the search space Xk at iteration k as a subset of X , with
each element x′ ∈ Xk, such that J(π1:k−1, x

′) ≤ Ĵ(πxk
, x′)−∆J(πxk

, x′).

Given the generalization gap observed in Figure 3, we model the degradation from the source task
using a linear function in Assumption 1. While the figure might not strictly appear linear, the linear
approximation simplifies analysis and is supported by empirical observations. Training on the source
task can solve a significant portion of the remaining tasks. Our method progressively eliminates
partitions of the task space at a certain rate with each iteration. If the source task selection in the
previous step sufficiently addresses the remaining target tasks, we can reduce the search space at a
desirable rate. Consequently, at each step, we effectively focus on a reduced search space.

We leverage the reduced uncertainty in well-sampled regions to tighten the regret bound while slightly
lowering the probability δ in Theorem 1. For the regret analysis, we propose the following theorem
based on the generalization of Lemma 5.2 and 5.4 in [41] to the eliminated search space.

Theorem 2. For a given δ′ ∈ (0, 1) and scaling factor βk = 2 log(|X|π2k2/6δ), the cumulative

regret RK is bounded by

√
C1βKγK

∑K
k=1

(
|Xk|
|X|

)2

with probability at least 1− δ′.

Here, |X| denotes the cardinality of the set X , the number of elements in X . Theorem 2 matches the
Theorem 1 when Xk = X for all k. This theorem implies that regret has a tighter or equivalent bound
if we can design the smaller search space instead of searching the whole space. The comprehensive
proof is provided in Appendix A.3.1.

Here are some examples of restricted search space: If we consider an example where |Xk| = 1√
k
|X|,

the regret can be bounded tighter than that of Theorem 1.

Corollary 2.1. Consider |Xk| = 1√
k
|X|. The regret bound would be RK ≤

√
C1βKγK logK with

a probability of at least 1− δ′.

Figure 4: Empirical results of the re-
striction of search space by MBTL
compared to two examples from
Corollaries 2.1 and 2.2.

In cases where the search space is defined using MBTL-
GS, the largest segment’s length would reduce geometrically,
described by |Xk| ≤ 2−⌊log2 k⌋|X|.
Corollary 2.2. The regret bound for the |Xk| ≤
2−⌊log2 k⌋|X| would be RK ≤

√
C1βKγKπ2/6 with a prob-

ability of at least 1− δ′.

Proofs for Corollaries 2.1 and 2.2 are provided in Ap-
pendix A.3.2 and A.3.3, respectively. Based on our experi-
ments presented in Section 5, the rate of elimination of the
largest segment for MBTL is shown in Figure 4.

5 Experiments and analysis

5.1 Setup

Our experiments consider CMDPs that span standard and real-world benchmarks. In particular,
we consider standard continuous control benchmarks from the CARL library [5]. In addition, we
study problems from RL for intelligent transportation systems, using [49] to model the CMDPs.
Surprisingly, despite the relatively low complexity of the CMDPs considered, standard deep RL
algorithms appear to struggle to solve the tasks.

Baselines. We consider two types of baselines when evaluating our proposed algorithm: canonical and
multi-policy. The canonical baselines are selected to validate multi-policy training; the multi-policy
training baselines are heuristic methods designed to validate the Bayesian optimization approach.
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Table 1: Comparative performance of different methods on traffic CMDPs (K = 15)
Benchmark (CMDP) Baselines Multi-policy Baselines MBTL Oracle

Domain Context Variation Independent Multi-task Random Equidistant Greedy Ours Sequential
Number of Trained Models N 1 k K k k N

Traffic Signal Road Length 0.9409 0.8242 0.9366 0.9337 0.9349 0.9364 0.9409
Traffic Signal Inflow 0.8646 0.8319 0.8699 0.8712 0.8682 0.8432 0.8768
Traffic Signal Speed Limit 0.8857 0.6083 0.8872 0.8872 0.8874 0.8867 0.8876
Eco-Driving Penetration Rate 0.526 0.1945 0.6212 0.6278 0.5992 0.6148 0.666
Eco-Driving Inflow 0.4061 0.2229 0.5077 0.5513 0.5299 0.5172 0.5528
Eco-Driving Green Phase 0.385 0.4228 0.4724 0.4697 0.4678 0.4985 0.5027

AA-Ring-Acc Hold Duration 0.8362 0.9209 0.9306 0.9225 0.9136 0.9382 0.9552
AA-Ring-Vel Hold Duration 0.9589 0.972 0.9819 0.9819 0.9819 0.9818 0.9822

AA-Ramp-Acc Hold Duration 0.4276 0.5158 0.6750 0.6821 0.6882 0.6964 0.7111
AA-Ramp-Vel Hold Duration 0.5473 0.5034 0.7170 0.7386 0.6918 0.7273 0.7686

Average 0.6778 0.6017 0.7600 0.7666 0.7563 0.7641 0.7844
†Higher the better. Bold values represent the highest value(s) within the statistically significant range for each CMDP, excluding the oracle.
Detailed results with variance for each method are provided in Appendix A.4.3.
‡AA: Advisory autonomy benchmark, Ring: Single lane ring, Ramp: Highway ramp, Acc: Acceleration guidance, Vel: Speed guidance.

The canonical baselines include: (1) Independent training, which involves independently training
separate models on each task; and (2) Multi-task RL, where a single “universal” context-conditioned
policy is trained for all tasks. The multi-policy baselines include: (3) Random selection, where each
training task is chosen uniformly at randomly; (4) Equidistant strategy, which selects training tasks
by equally subdividing the context space based on a given training budget, and then trains them in
lexicographical order; (5) Greedy strategy, which greedily selects the next source task based on
Assumption 1 and fixed training performance; and (6) Sequential Oracle transfer, which has access
to generalized performance corresponding to policies for all tasks (including those not yet selected)
and uses that information to greedily select the best source task at each step.

Proposed method. We evaluate MBTL with the scaling factor βk = 2 log(|X|π2k2/6δ).

DRL algorithms and performance measure. We utilize Deep Q-Networks (DQN) for discrete
action spaces [29] and Proximal Policy Optimization (PPO) for continuous action spaces [36]. For
statistical reliability, we run each experiment three times with different random seeds. We evaluate
our method by the average performance across all N target tasks after training up to K =15 source
tasks or the number of source tasks needed to achieve a certain level of performance. We employ
min-max normalization of the rewards for each task, and we provide comprehensive details about our
model in Appendix A.4.1.

5.2 Traffic benchmark experiments
We consider three traffic control benchmarks. First, while most traffic lights still operate on fixed
schedules, RL can be used to design adaptive (1) Traffic signal control to optimize traffic [8, 24].
However, considering that every intersection is different, challenges persist in generalizing across
intersection configurations [19]. Given the significant portion of greenhouse gas emissions in the
United States due to transportation [11], the second traffic domain is (2) Dynamic eco-driving at
signalized intersections, which concerns learning energy-efficient driving strategies in urban settings.
DRL-based eco-driving strategies have been developed [13, 47, 18] but still experience difficulties
in generalization. Our final traffic domain is (3) Advisory autonomy, in which real-time speed or
acceleration advisories guide human drivers to act as vehicle-based traffic controllers in mixed traffic
environments [40, 7, 15]. The context space X is discretized into N = {50, 50, 40} contexts for the
three domains, respectively. In Appendix A.4, we provide details about our experiments.

Results. Table 1 and Figure 5 summarize the results. Notably, the Oracle far outperforms the standard
baselines (independent and multi-task training), indicating the potential for transfer learning and
intelligent training of multiple models, respectively. MBTL rapidly approaches the Oracle within
≈ 10 transfer steps, indicating that the GP effectively models the training performance and linear
generalization gap models the generalization performance. It is important to note that multi-task
RL studies commonly consider Independent training as a strong baseline due to its avoidance of
negative transfer and other training instability issues. Indeed, independent training often (but not
always) outperforms multi-task training in our experiments. Yet, our experiments show that MBTL
outperforms both independent and multi-task baselines and matches their performance with up to
30x improved sample efficiency. Among the multi-policy baselines, MBTL often outperforms the
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Figure 5: Traffic CMDP results. Method comparison of normalized performance over N tasks.
MBTL efficiently selects source training tasks. The black dotted line indicates the first training step
within MBTL that exceeds both independent and multi-task baselines, with up to 30x fewer samples.

Table 2: Comparative performance of different methods on standard control CMDPs (K = 15)
Benchmark (CMDP) Baselines Multi-policy Baselines MBTL Oracle

Domain Context Variation Independent Multi-task Random Equidistant Greedy Ours Sequential
Number of Trained Models N 1 k K k k N

Pendulum Length 0.7383 0.6830 0.7607 0.7601 0.7774 0.7755 0.7969
Pendulum Mass 0.6237 0.5793 0.6647 0.6794 0.6887 0.6667 0.7132
Pendulum Timestep 0.8135 0.7247 0.8331 0.8292 0.8497 0.8333 0.8801
Cartpole Mass of Cart 0.9466 0.7153 0.8961 0.9044 0.8299 0.9356 0.9838
Cartpole Length of Pole 0.9110 0.5441 0.9497 0.9484 0.9424 0.9488 0.9875
Cartpole Mass of Pole 0.9560 0.6073 0.9870 0.9927 0.9916 0.9813 1.0000

BipedalWalker Gravity 0.9281 0.7898 0.9654 0.9666 0.9656 0.9655 0.9674
BipedalWalker Friction 0.9317 0.9051 0.9739 0.9738 0.9738 0.9725 0.9778
BipedalWalker Scale 0.8694 0.7452 0.8910 0.8975 0.8990 0.8962 0.9107
HalfCheetah Gravity 0.6679 0.6292 0.9086 0.9000 0.9089 0.9214 0.9544
HalfCheetah Friction 0.6693 0.7242 0.9314 0.9457 0.9184 0.9225 0.9663
HalfCheetah Stiffness 0.6561 0.7007 0.9191 0.9097 0.9295 0.9205 0.9674

Average 0.8093 0.6957 0.8901 0.8923 0.8896 0.8950 0.9255
†Higher the better. Bold values represent the highest value(s) within the statistically significant range for each CMDP, excluding the oracle.
Detailed results with variance for each method are provided in Appendix A.4.3.

heuristic multi-policy baselines, indicating the value of adaptively selecting source tasks based on
feedback. The multi-policy baselines, such as random, equidistant, and greedy strategy, also generally
outperform Independent and Multi-task, indicating the general value of multi-policy training for
solving CMDPs. More results are provided in Appendix A.4.

5.3 Continuous control benchmark experiments

Figure 6: Continuous control CMDP results. Method comparison of normalized performance
over N tasks. The black dotted line indicates the first training step within MBTL that exceeds both
independent and multi-task baselines, with up to 43x improved sample efficiency.
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Figure 7: The GP sequentially updates estimates of the performance function (blue) based on
previously trained models. Then, MBTL selects the next source task that maximizes the acquisition
function (red). (CMDP: Pendulum (Time step)).

Figure 8: Sensitivity analysis on the DRL algorithm underlying MBTL (DQN, PPO, and A2C), tested
on Cartpole with varying length of pole. MBTL remains effective.

To probe the generality of MBTL, we utilize context-extended versions of standard RL environments
from CARL benchmark library [5] to evaluate our methods under varied contexts. For the Cartpole
domain, we considered CMDPs with varying cart mass, pole length, and pole mass. In Pendulum,
we vary the timestep duration, pendulum length, and pendulum mass. The BipedalWalker was
tested under varying friction, gravity, and scale. In HalfCheetah domain, we manipulated friction,
gravity, and stiffness parameters. These variations critically influence the dynamics and physics of
the environments. The range of context variations was selected by scaling the default values specified
in CARL from 0.1 to 10 times (N = 100), enabling a comprehensive analysis of transfer learning
under drastically different conditions. We provide more experimental details in Appendix A.4.

Results. The results summarized in Table 2 demonstrate sample efficiency and competitive perfor-
mance of multi-policy training including MBTL across diverse control domains, often closely trailing
the Oracle only with a small number of trained policies. Figure 6 shows that with the exception
of a few context variations, MBTL generally shows superior performance. Specifically, Figure 7
illustrates the detailed process of how MBTL utilizes GP for performance estimation and chooses the
next source task that maximizes the acquisition function that evaluates the expected improvement
of generalized performance. MBTL achieves comparable performance to multi-task or independent
baselines with 5-43x fewer samples, highlighting its effectiveness in reducing training requirements.

5.3.1 Sensitivity analysis

Figure 9: Sensitivity analysis on acquisition functions.

DRL algorithms. Figure 8 shows that
MBTL remains effective with different un-
derlying DRL algorithms—DQN, PPO, and
Advantage Actor-Critic (A2C) [30]—used
for single-task training.

Acquisition functions. Figure 9 assesses the
role of acquisition functions in Bayesian opti-
mization. While expected improvement (EI)
focuses on promising marginal gains beyond
the current best, UCB utilizes both mean and
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variance for balancing exploration and exploitation. Overall, we find that MBTL is not particularly
sensitive to the choice of optimism representation in the acquisition function, which indicates that
MBTL has a weak dependence on hyperparameters.

6 Related work

Contextual Reinforcement Learning. Robustness and generalization challenges in DRL are gen-
erally addressed by a few common techniques in the literature. The broader umbrella of such
methods falls under CRL, which utilizes side information about the problem variations to improve the
generalization and robustness. In particular, CRL formalizes generalization in DRL using CMDPs
[14, 32, 5], which incorporate context-dependent dynamics, rewards, and initial state distributions
into the formalism of MDPs. The contexts of CMDPs are not always visible during training [23].
When they are visible, they can be directly used as side information by conditioning the policy on
them [39]. In this paper, we focus on a scenario where the learner can choose which context-MDP
to train on. This contrasts with other CRL works that assume context-MDPs arrive from a fixed
distribution.

Multi-task training. Multi-task methods can help address CRL by exploiting shared structure across
tasks. Prior work has leveraged techniques such as policy sketches for task decomposition [2] and
distilled policies that capture common behaviors [46]. However, a key limitation arises when the
context is unobserved, effectively transforming the CMDP into a partially observable setting [23, 9],
which complicates multi-task training. Another challenge is negative transfer, wherein training on
tasks that are too dissimilar leads to instability or outright failure [22, 42, 44]. Although more recent
multi-task approaches such as MOORE [16] and PaCo [43] have shown promise, they often focus on
discrete task sets and are thus less suited to CRL, where tasks span a broad continuum of contexts. In
this work, we include multi-task learning as a baseline to benchmark our methods.

Zero-shot transfer and policy reuse. Zero-shot transfer—where models trained for one environment
directly perform in new, unseen settings without additional training [23]—is an important strategy
in CRL settings. For solving CMDP problems, prior works attempted to utilize zero-shot transfer
to solve CMDP problems by approximation on RL algorithm and hypernetworks that maps from
parameterized CMDP to a family of near-optimal solutions [35]. Sinapov et al. [38] use meta-data to
learn inter-task transferability to learn the expected benefit of transfer given a source-target task pair.
Bao et al. [3] propose a metric for evaluating transferability based on information-theoretic feature
representations across tasks. Taken together, these approaches highlight the importance of policy
reuse, where efficiently selecting or adjusting a pre-trained policy accelerates learning and improves
robustness in new contexts.

Source task selection. In the context of transfer learning, selecting appropriate source tasks is crucial.
Li and Zhang [25] proposes an optimal online method for dynamically selecting the most relevant
single source policy in reinforcement learning. Beyond RL, Meiseles and Rokach [28] emphasizes
structural alignment in time-series source models to prevent performance degradation, while Poth
et al. [33] finds that selecting aligned intermediate tasks in natural language processing boosts transfer
effectiveness. Building upon these insights, we formulate the source task selection problem for
CRL, enabling zero-shot transfer by estimating training performance online and leveraging structural
generalization across context variations.

7 Conclusion

This study introduces a method called Model-based Transfer Learning (MBTL), which layers on top
of existing RL methods to effectively solve CMDPs. Rather than independent or multi-task training,
which trains N or 1 models, respectively, MBTL intelligently selects an intermediate number of
models to train. MBTL has two key components: an explicit model of the generalization gap and a
Gaussian process component to estimate training performance. MBTL achieves up to 43x improved
sample efficiency on standard and real-world benchmarks. Furthermore, MBTL achieves sublinear
regret in the number of training tasks. A limitation is that MBTL is designed for a single-dimensional
context variation with a reliance on the explicit similarity of context variables. Promising directions
of future work include studying high-dimensional context spaces and formalizing task similarity, as
well as the development of new real-world CMDP benchmarks.
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A.1 Notation

Table 3 describes the notation used in this paper.

Table 3: Notation used in the problem formulation
Symbol Description

x Source task (x ∈ X)
x′ Target task (x′ ∈ X)
πx Trained policy from source task (x ∈ X)
xk Selected source task at transfer step k (k = 1, ...,K)
Mx Contextual MDP parameterized by x

J(πx,x) Performance of taskMx

J(πx, x
′) Generalization performance (source: x (or x), target: x′)

∆J(πx,x
′) Generalization gap (source: x, target: x′)

V (x′;πx) Expected generalization performance of source model x evaluated on all x′ ∈ X

Figure 10 helps understand the discrepancy between the observed generalized performance and
the predicted one. Figure 11 illustrates how to calculate the marginal improvement of expected
generalized performance (V̂ (x;π1:k−1)− V (x1:k−1)).

Target task x′

U

J(πx1
,x1)

x1

J(πx1
, x′)

Ĵ(πx1
, x′)

Figure 10: Illustration of the discrepancy between observed (J) and predicted (Ĵ) generalized
performance after training on source task x1 and attempting zero-shot transfer to x′.
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Target task x′

U

J(π1,x1)

x1

Ĵ(πx,x)

x

J(π1, x
′)

Ĵ(πx, x
′)

max
(
Ĵ(πx, x

′), J(π1, x
′)
)

V̂ (x;π1)− V (x1)

Figure 11: Step for choosing x2 that maximizes the estimated marginal improvement (V̂ (x;π1)−
V (x1)). V̂ (x;π1) corresponds to the red area under the red line and V (x1) as the area under
J(π1, x

′).

A.2 Model-Based Transfer Learning (MBTL) Algorithm

Model-based Transfer Learning (MBTL)

1: Input: CMDPsMx, Task (context) set X , Training budget K
2: Initialize : J, V = 0 ∀x ∈ X , π = {}, k = 1
3: while k ≤ K do
4: % Estimate training performance
5: µ, σ ← GP(E[J(πx,x)], k(x, x̃)))
6: % Calculate marginal generalized performance and acquisition function
7: Calculate a(x;x1:k−1) with Eq. 4
8: % Select the next training task
9: xk = argmaxx a(x;x1:k−1)

10: πk ← Train(Mxk
)

11: π ← π ∪ {πk}
12: k ← k + 1
13: end while
14: Zero-shot transfer and calculate generalization performance V (x1, ..., xk)
15: Output: Set of policies π and generalization performance V

A.3 Theoretical analysis

A.3.1 Proof of Theorem 2

Theorem 2. For a given δ′ ∈ (0, 1) and scaling factor βk = 2 log(|X|π2k2/6δ), the cumulative

regret RK is bounded by

√
C1βKγK

∑K
k=1

(
|Xk|
|X|

)2

with probability at least 1− δ′.

Proof. The following Lemma 3 and 4 is basically considering the cardinality of restricted search
space of Xk instead of X upon the lemmas in literature [41].

Lemma 3. For t ≥ 1, if |f(x)−µk−1(x)| ≤ β
1/2
k σk−1(x) ∀x ∈ Xk, then the regret rt is bounded

by 2|Xk|β1/2
k σk−1(x)/|X|.
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Lemma 4. Setting δ ∈ (0, 1), βk = 2 log(|X|π2k2/6δ), and C1 := 8
log(1+σ−2) ≥ 8σ2, we have

Pr

[∑K
k=1 rk

(
|X|
|Xk|

)2

≤ C1βKγK ∀K ≥ 1

]
≥ 1− δ.

Using Lemma 3, Lemma 5.3 in [41], Lemma 4, and Cauchy–Schwarz inequality, we can bound the
cumulative regret as:

RK =

K∑
k=1

rk ≤

√√√√ K∑
k=1

rk

(
|X|
|Xk|

)2 K∑
k=1

(
|Xk|
|X|

)2

≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

. (5)

A.3.2 Proof of Corollary 2.1

Corollary 2.1. Consider |Xk| = 1√
k
|X|. The regret bound would be RK ≤

√
C1βKγK logK with

a probability of at least 1− δ′.

Proof. Recall that
∑K

k=1
1
k ≤ logK.

Calculating the sum of squares for the reduced segments, we have:

K∑
k=1

|Xk|2 =

K∑
k=1

1

k
|X|2 ≤ |X|2 logK (6)

The cumulative regret can be bounded as below:

RK =

K∑
k=1

rk ≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

≤
√
C1βKγK logK. (7)

A.3.3 Proof of Corollary 2.2

Corollary 2.2. The regret bound for the |Xk| ≤ 2−⌊log2 k⌋|X| would be RK ≤
√
C1βKγKπ2/6

with a probability of at least 1− δ′.

Proof. Calculating the sum of squares for the reduced segments, we have:

K∑
k=1

|Xk|2 =

K∑
k=1

2−2⌊log2 k⌋|X|2 ≤ 1

k2
|X|2 ≤ π2

6
|X|2 (8)

The cumulative regret can be bounded as below:

RK =

K∑
k=1

rk ≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

≤
√

C1βKγKπ2

6
. (9)
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A.4 Experiment details

A.4.1 Details about Gaussian process (GP) Regresstion

We use the GaussianProcessRegressor implementation from scikit-learn, which follows
Algorithm 2.1 of [48]. Specifically, we construct a kernel by multiplying a constant kernel

C(θ) = 1.0, θ ∈ (10−3, 103),

by a radial basis function (RBF) kernel

kRBF(x,x
′; ℓ) = exp

(
−∥x− x′∥2

2ℓ2

)
with an initial length scale ℓ = 1.0 (constrained to lie in the range [10−2, 102]). To determine the
hyperparameters, we begin by generating synthetic data that aligns with our modeling assumptions,
including constant training performance and a linear generalization gap, while introducing noise to
degrade generalization performance by up to 10%, sampled from a uniform distribution. We vary
the GP hyperparameters, including noise standard deviation over the set {0.001, 0.01, 0.1, 1}, the
number of restarts for the optimizer over {5, 6, . . . , 15}, and explore several kernel configurations
on the synthetic data. We then select the hyperparameter configuration that maximizes the average
predictive performance. Specifically, we choose a noise standard deviation of σ = 0.001 and perform
15 random restarts of the hyperparameter optimizer to reduce the risk of convergence to poor local
minima. We use the same GP hyperparameter configuration across all experiments and benchmarks.

A.4.2 Accuracy of generalization gap assumption

In Figure 12, we report the Pearson correlation between the observed generalization gap and the
estimated gap under our linear assumption (Assumption 1). Each histogram shows how strongly the
two measures align across various tasks in standard control (blue) and traffic (red) benchmarks. Many
tasks cluster around moderate positive correlations (0.3–0.5), suggesting that a linear function of
context similarity can reasonably capture the gap in most scenarios. However, certain tasks—such as
Eco-driving—exhibit higher correlations (above 0.6), whereas others—such as HalfCheetah—are
closer to 0, indicating that the assumption holds more effectively in some domains than in others.

Figure 12: Accuracy of linear generalization gap assumption. Pearson correlation analysis on the
observed generalization gap and the estimated gap under our linear assumption.
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A.4.3 Results of table with standard deviation

Table 4: Comparative performance of different methods on context-variant traffic and benchmark
CMDPs (K = 15)

Benchmark (CMDP) Baselines Multi-policy Baselines MBTL Oracle

Domain Context Variation Independent Multi-task Random Equidistant Greedy Ours Sequential
Number of Trained Models N 1 k K k k N

Traffic Signal Road Length 0.9409
(0.0002)

0.8242
(0.0538)

0.9366
(0.0009)

0.9337
(0.0044)

0.9349
(0.0021)

0.9364
(0.0059)

0.9409
(0.0006)

Traffic Signal Inflow 0.8646
(0.0009)

0.8319
(0.0040)

0.8699
(0.0011)

0.8712
(0.0044)

0.8682
(0.0008)

0.8432
(0.0372)

0.8768
(0.0012)

Traffic Signal Speed Limit 0.8857
(0.0005)

0.6083
(0.0403)

0.8872
(0.0002)

0.8872
(0.0004)

0.8874
(0.0004)

0.8867
(0.0002)

0.8876
(0.0002)

Eco-Driving Penetration Rate 0.5260
(0.0087)

0.1945
(0.0057)

0.6212
(0.0041)

0.6278
(0.0332)

0.5992
(0.0007)

0.6148
(0.0145)

0.6660
(0.0049)

Eco-Driving Inflow 0.4061
(0.0094)

0.2229
(0.0010)

0.5077
(0.0114)

0.5513
(0.0113)

0.5299
(0.0456)

0.5172
(0.0415)

0.5528
(0.0096)

Eco-Driving Green Phase 0.3850
(0.0063)

0.4228
(0.0184)

0.4724
(0.0069)

0.4697
(0.0318)

0.4678
(0.0147)

0.4985
(0.0096)

0.5027
(0.0058)

AA-Ring-Acc Hold Duration 0.8362
(0.0048)

0.9209
(0.0235)

0.9306
(0.0087)

0.9225
(0.0252)

0.9136
(0.0193)

0.9382
(0.0216)

0.9552
(0.0132)

AA-Ring-Vel Hold Duration 0.9589
(0.0096)

0.9720
(0.0035)

0.9819
(0.0001)

0.9819
(0.0003)

0.9819
(0.0001)

0.9818
(0.0002)

0.9822
(0.0000)

AA-Ramp-Acc Hold Duration 0.4276
(0.0066)

0.5158
(0.045)

0.6750
(0.0275)

0.6821
(0.0809)

0.6882
(0.0715)

0.6964
(0.0522)

0.7111
(0.0479)

AA-Ramp-Vel Hold Duration 0.5473
(0.0222)

0.5034
(0.014)

0.7170
(0.0384)

0.7386
(0.0410)

0.6918
(0.084)

0.7273
(0.0636)

0.7686
(0.0581)

Pendulum Length 0.7383
(0.0034)

0.6830
(0.0008)

0.7607
(0.0072)

0.7601
(0.0074)

0.7774
(0.0041)

0.7755
(0.0215)

0.7969
(0.0123)

Pendulum Mass 0.6237
(0.0023)

0.5793
(0.0041)

0.6647
(0.0065)

0.6794
(0.0376)

0.6887
(0.0116)

0.6667
(0.013)

0.7132
(0.0129)

Pendulum Timestep 0.8135
(0.0103)

0.7247
(0.0488)

0.8331
(0.0084)

0.8292
(0.0189)

0.8497
(0.0322)

0.8333
(0.0130)

0.8801
(0.0198)

Cartpole Mass of Cart 0.9466
(0.0065)

0.7153
(0.2195)

0.8961
(0.0214)

0.9044
(0.055)

0.8299
(0.0392)

0.9356
(0.0239)

0.9838
(0.0131)

Cartpole Length of Pole 0.9110
(0.0065)

0.5441
(0.1614)

0.9497
(0.0044)

0.9484
(0.042)

0.9424
(0.031)

0.9488
(0.0145)

0.9875
(0.0047)

Cartpole Mass of Pole 0.9560
(0.0128)

0.6073
(0.0948)

0.9870
(0.0050)

0.9927
(0.0014)

0.9916
(0.0030)

0.9813
(0.0103)

1.0000
(0.0000)

BipedalWalker Gravity 0.9281
(0.0034)

0.7898
(0.0928)

0.9654
(0.0004)

0.9666
(0.0022)

0.9656
(0.0021)

0.9655
(0.001)

0.9674
(0.0014)

BipedalWalker Friction 0.9317
(0.0074)

0.9051
(0.0734)

0.9739
(0.0003)

0.9738
(0.0022)

0.9738
(0.0013)

0.9725
(0.0038)

0.9778
(0.0013)

BipedalWalker Scale 0.8694
(0.0087)

0.7452
(0.0938)

0.8910
(0.0079)

0.8975
(0.0118)

0.8990
(0.0135)

0.8962
(0.0123)

0.9107
(0.004)

HalfCheetah Gravity 0.6679
(0.0162)

0.6292
(0.0258)

0.9086
(0.0078)

0.9000
(0.0600)

0.9089
(0.0235)

0.9214
(0.0232)

0.9544
(0.0221)

HalfCheetah Friction 0.6693
(0.0203)

0.7242
(0.1056)

0.9314
(0.0175)

0.9457
(0.0295)

0.9184
(0.0184)

0.9225
(0.0392)

0.9663
(0.0276)

HalfCheetah Stiffness 0.6561
(0.0101)

0.7007
(0.1126)

0.9191
(0.01)

0.9097
(0.027)

0.9295
(0.0169)

0.9205
(0.0161)

0.9674
(0.0286)

Average 0.7775
(0.197)

0.6337
(0.2395)

0.8309
(0.0089)

0.8352
(0.024)

0.829
(0.0198)

0.8355
(0.0199)

0.8833
(0.1467)

* Note: Bold values represent the highest value(s) within the statistically significant range for each task, excluding the oracle. Standard deviation
across multiple runs in the parenthesis.
‡AA: Advisory autonomy tasks, Ring: Single lane ring, Ramp: Highway ramp, Acc: Acceleration guidance, Vel: Speed guidance.
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A.4.4 Detailed sample complexity comparison results

Table 5 presents a comparison of sample complexity required for MBTL to perform as good as the
best generalization performance of baselines (independent training and multi-task training) across
various tasks in the CMDP. Each row lists a different domain, the specific context variation applied
(e.g., changes in physical properties or environmental parameters), and two key values: k∗ and
N , where k∗ represents the number of models required by MBTL to reach a performance level
comparable to the baseline. This value is shown as a range (e.g., [3, 5, 3]), indicating results from
three random seeds. N represents the total number of contexts. The value N

k∗ helps represent the
sample efficiency of MBTL.

Table 5: Sample complexity comparison to baseline performance on CMDP tasks
Task Context Variation k∗ N

Pendulum Length [4, 5, 5] 100
Pendulum Mass [3, 3, 3] 100
Pendulum Timestep [8, 5, 14] 100

Cartpole Mass of Cart [15, 25, 18] 100
Cartpole Length of Pole [10, 6, 14] 100
Cartpole Mass of Pole [9, 9, 12] 100

BipedalWalker Gravity [2, 3, 4] 100
BipedalWalker Friction [3, 2, 2] 100
BipedalWalker Scale [7, 6, 1] 100

HalfCheetah Gravity [10, 2, 5] 100
HalfCheetah Friction [1, 2, 13] 100
HalfCheetah Stiffness [1, 2, 5] 100

AA-Ring-Acc Hold Duration [5, 7, 30] 40
AA-Ring-Vel Hold Duration [2, 1, 1] 40

AA-Ramp-Acc Hold Duration [1, 2, 2] 40
AA-Ramp-Vel Hold Duration [6, 4, 4] 40

Traffic Signal Road Length [50, 50, 11] 50
Traffic Signal Inflow [2, 44, 41] 50
Traffic Signal Speed Limit [10, 4, 8] 50

Eco-Driving Penetration Rate [3, 5, 1] 50
Eco-Driving Inflow [2, 1, 1] 50
Eco-Driving Green Phase [3, 3, 5] 50

A.4.5 Details about traffic signal control benchmark

Most traffic lights operate on fixed schedules, but adaptive traffic signal control using DRL can
optimize the traffic flow using real-time information on the traffic [8, 24], though challenges persist
in generalizing across various intersection configurations [19].

Figure 13 showcases the layout of traffic networks used in a traffic signal control task with several
lanes and a signalized intersection in the middle. The state space represents the presence of vehicles
in discretized lane cells along the incoming roads. Actions determine which lane gets the green
phase of the traffic signal, and rewards are based on changes in cumulative stopped time, the period
when speed is zero. The global objective is to minimize the average waiting times at the intersection.
Different configurations of intersections (e.g., road length, inflow, speed limits) are modeled to
represent varying real-world conditions. To represent various real-world conditions, we vary factors
such as road length, inflow rate, and speed limits from 0.1 to 5 times; by default, the road length is
750 meters, the flow rate is 1000 vehicles per hour, and the speed limit is 13.89 m/s.
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Figure 13: Illustration of the traffic networks in traffic signal control task.

Training configuration We used the microscopic traffic simulation called Simulation of Urban
MObility (SUMO) [26] v.1.16.0 and PPO for RL algorithm [36]. We utilized the default implementa-
tion of the PPO algorithm with default hyperparameters provided by the Stable-Baselines3 library
[34]. All experiments are done on a distributed computing cluster equipped with 48 Intel Xeon
Platinum 8260 CPUs.

License Traffic signal control benchmark falls under MIT License.

Figure 14: Normalized performance of three DRL-based methods—Oracle Transfer (gray), indepen-
dent training (orange), and multi-task training (green)—under different traffic-signal benchmarks:
flow rate (left), speed limit (middle), and lane length (right). While independent and multi-task
training approaches exhibit higher variance and reduced asymptotic performance, Oracle Transfer
benefits from zero-shot transfer with full information, demonstrating more stable and generally higher
performance.

Potential of multi-policy training and zero-shot transfer Figure 14 shows how each approach
adapts to variations in flow rate, speed limit, and lane length for a traffic signal control benchmark.
The y-axis shows normalized performance, with higher values indicating better control policies.
Oracle Transfer consistently achieves superior performance across these different settings, owing to
its ability to leverage full task information in a zero-shot transfer manner. By contrast, independent
and multi-task training exhibit more pronounced performance drops and greater instability when
faced with shifts in problem parameters, underscoring the challenges of generalizing policies in
traditional DRL approaches.
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Transferability heatmap Figure 15 presents heatmaps of transferability for different traffic signal
control tasks, each varying a specific aspect: inflow, speed limit, and road length. The heatmaps
display the effectiveness of strategy transfer from each source task (vertical axis) to each target task
(horizontal axis). In terms of inflow variation, transferability drops when transferring from tasks with
lower vehicle inflow to those with higher inflow. In speed limit variation, the transferability shows
uniform effectiveness, suggesting less sensitivity to these changes. In road length variation, distinct
blocks of high transferability indicate that different road lengths may require significantly tailored
strategies.

(a) Inflow variation (b) Speed limit variation (c) Road length variation

Figure 15: Examples of transferability heatmap for traffic signal control.

Results Figure 16 illustrates the normalized generalized performance across various traffic control
tasks: inflow, speed limit, and road length. The plots display how different strategies adapt with
increasing transfer steps:

• Inflow: Performance improves as the number of transfer steps increases, with MBTL
strategy consistently achieving the highest scores, demonstrating their effectiveness in
adapting to changes in inflow conditions.

• Speed Limit: Here, performance levels are relatively stable across all strategies except for
the multi-task training.

• Road Length: There is a general upward trend in performance for all strategies, particularly
for MBTL, indicating robustness in adapting to different road lengths.

This data suggests that MBTL and Oracle are particularly effective across varying conditions,
maintaining higher levels of performance adaptability.

Figure 16: Comparison of normalized generalized performance of all target tasks: Traffic signal
control.
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A.4.6 Details about eco-driving control benchmark

Given the significant portion of greenhouse gas emissions in the United States coming from the
transportation sector [11], eco-driving behaviors are critical for climate change mitigation. Deep
reinforcement learning-based eco-driving strategies have been developed [13, 47, 18, 20] but still have
some issues of difficulties in generalization. We also extend to various intersection configurations
with different traffic inflow rates, penetration rates of eco-driving systems, and durations of green
phases at static traffic signals to optimize vehicle behaviors for reduced emissions.

Figure 17 illustrates the traffic road network used in the eco-driving control task. The road network is
depicted as traffic flowing vertically and horizontally, crossing the static phase traffic signal. There
are both guided and default vehicles in the system. The state space includes the speed and position of
the ego vehicle, the leading vehicle, and the following vehicles, supplemented by the current traffic
signal phase and relevant context features, including lane length and green phase durations. The
action space specifically focuses on the ego vehicle’s acceleration control. The reward mechanism
is designed to optimize the driving strategy by balancing the average speed of the vehicles against
penalties for emissions, thereby promoting eco-friendly driving behaviors within the traffic system.

Figure 17: Illustration of the traffic networks in eco-driving control task.

Training configuration We also used the microscopic traffic simulation called Simulation of Urban
MObility (SUMO) [26] v.1.16.0 and PPO for RL algorithm [36]. For detailed experimental details
and RL hyperparameter configurations, please refer to [20, 21].

License Eco-driving benchmark falls under MIT License [21].

Potential of multi-policy training and zero-shot transfer Figure 1 shows how each RL training
paradigm adapts to variations in green phase time, penetration rate, and inflow rate in the eco-
driving control benchmark. Oracle Transfer remains the strongest method across all configurations,
benefiting from zero-shot transfer. independent training shows unstable performance across different
task variations, performance, while multi-task training lags behind. Overall, the trends highlight the
advantage of leveraging zero-shot transfer in traffic CMDPs.

Transferability heatmap Figure 18 displays heatmaps for the eco-driving control task, with each
heatmap varying an aspect such as green phase, inflow, and penetration rate. These visuals illustrate
the transferability of strategies from source tasks (vertical axis) to target tasks (horizontal axis),
highlighting the impact of traffic light phases, vehicle inflow, and the proportion of guided vehicles
on strategy effectiveness. Notably, longer green phases correlate with improved performance and
transferability. For inflow variations, reduced inflow typically yields better outcomes. However,
variations in the penetration rate of guided vehicles show minimal impact on performance differences.
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(a) Green phase variation (b) Inflow variation (c) Penetration rate variation

Figure 18: Examples of transferability heatmap for eco-driving control.

Results Figure 19 illustrates the normalized generalized performance across variants of eco-driving
control tasks, specifically looking at variations in green phase time, inflow, and penetration rate. The
graphs depict performance enhancement over transfer steps for different strategies. Notably, MBTL
consistently demonstrates superior performance across all variations, indicating robust adaptability to
changing task parameters.

Figure 19: Comparison of normalized generalized performance of all target tasks: Eco-driving
control.

A.4.7 Details about advisory autonomy benchmark

Advisory autonomy involves a real-time speed advisory system that enables human drivers to emulate
the system-level performance of autonomous vehicles in mixed autonomy systems [40, 7, 15]. Instead
of direct and instantaneous control, human drivers receive periodic guidance, which varies based on
road type and guidance strategy. Here, we consider the different frequencies of this periodic guidance
as contextual MDPs since the zero-order hold action affects the transition function.

Figure 20 illustrates two distinct traffic network configurations used in the advisory autonomy task: a
single-lane ring and a highway ramp. The single-lane ring features 22 vehicles circulating the ring,
with only one being actively controlled, presenting a relatively controlled environment for testing
vehicle guidance systems. The highway ramp scenario introduces a more complex dynamic, where
vehicles not only travel along the highway but also merge from ramps, creating potential stop-and-go
traffic patterns that challenge the adaptability of autonomous guidance systems.

Problem Definition In a single-lane scenario, the state space includes the speeds of the ego and
leading vehicles, along with the headway. For highway ramp scenarios, additional states cover the
relative positions and speeds of adjacent vehicles. Actions vary by guidance type: for acceleration
guidance, the action space is continuous, ranging from −1 to 1; for speed guidance, it has ten discrete
actions compared to the speed limit. Rewards are based on system throughput or average speed of all
vehicles in the system.
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Context Variations We explore different durations of coarse-grained guidance holds to test various
levels of human compatibility, adjusting the model based on observed driver behaviors and system
performance.

License Advisory autonomy benchmark falls under MIT License [40].

Figure 20: Illustration of the traffic networks in advisory autonomy task.

Figure 21: Normalized performance of Oracle Transfer, independent training, and multi-task training
under Advisory Autonomy benchmark with human compatibility task variations.

Potential of multi-policy training and zero-shot transfer Figure 21 shows that ring-road networks
tend to yield higher performance and smaller gaps compared to highway ramp scenarios. In addition,
independent training exhibits greater performance drop and variability due to training instability.
Oracle Transfer retains clear potential improvements over other baselines.

Transferability heatmap Figure 22 showcases heatmaps of transferability for advisory autonomy
tasks, each varying in specific aspects: acceleration guidance and speed guidance across a single
lane ring and a highway ramp. These heatmaps demonstrate the effectiveness of strategy transfer
from each source task (vertical axis) to each target task (horizontal axis), capturing how variations in
task conditions influence adaptability. For acceleration guidance in a ring setup (a), transferability
is generally higher among tasks with similar acceleration demands. In contrast, speed guidance
on a ramp (d) reveals more variability in transferability, potentially due to the complexity of speed
adjustments in ramp scenarios.

Results Figure 23 illustrates the comparison of normalized generalized performance for advisory
autonomy tasks, specifically acceleration and speed guidance in a ring and acceleration guidance on a
ramp. The graphs demonstrate that MBTL consistently exhibits higher performance across all tasks.
Particularly, acceleration guidance in both ring and ramp scenarios shows significant performance
improvements over transfer steps, with MBTL closely matching in some instances.

A.4.8 Details of control benchmarks

For this experimental phase, we selected context-extended versions of standard RL environments
from the CARL benchmark library, including Cartpole, Pendulum, BipedalWalker, and Halfcheetah.
These environments were chosen to rigorously test the robustness and adaptability of our MBTL
algorithm under varied conditions that mirror the complexity encountered in real-world scenarios.
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(a) Ring with acceleration
guide

(b) Ring with speed guide (c) Ramp with acceleration
guide

(d) Ramp with speed guide

Figure 22: Examples of transferability heatmap for advisory autonomy.

Figure 23: Comparison of normalized generalized performance of all target tasks: Advisory autonomy.

Context Variations: In the Cartpole tasks, we explored CMDPs with varying cart masses, pole
lengths, and pole masses. For the Pendulum, the experiments involved adjusting the timestep duration,
pendulum length, and pendulum mass. The BipedalWalker was tested under different settings of
friction, gravity, and scale. Similarly, in the Halfcheetah tasks, we manipulated parameters such as
friction, gravity, and stiffness to simulate different physical conditions. These variations critically
influence the dynamics and physics of the environments, thereby presenting unique challenges that
test the algorithm’s capacity to generalize from previous learning experiences without the need for
extensive retraining. The range of context variations was established by scaling the default values
specified in the CARL framework from 0.1 to 10 times, enabling a comprehensive examination of
each model’s performance under drastically different conditions.

We utilized the default implementation of the DQN, A2C, and PPO algorithm with default hyperpa-
rameters provided by the Stable-Baselines3 library [34].

License: CARL falls under the Apache License 2.0 as is permitted by all work that we use [5].

A.4.9 Details about Cartpole benchmark

Potential of multi-policy training and zero-shot transfer Cartpole may be considered a simpler
benchmark than traffic benchmarks, yet independent and multi-task training methods still face notable
difficulty when faced with context variations. Figure 24 shows that Oracle Transfer performs at the
highest performance across problem variations, while independent training or multi-task training
shows a larger variance in performance.
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Figure 24: Normalized performance of Oracle Transfer, independent training, and multi-task training
in Cartpole benchmarks.

Transferability heatmap Figure 25 presents transferability heatmaps for the Cartpole task with
variations in three physical properties: mass of the cart, length of the pole, and mass of the pole.
Each heatmap illustrates how well strategies transfer from source tasks (vertical axis) to target tasks
(horizontal axis), depicting the influence of each parameter on control strategy effectiveness. For the
mass of the cart variation (a), transferability decreases as the mass difference increases. In the length
of the pole variation (b), strategies are less transferable between significantly different pole lengths.
Similarly, for the mass of the pole variation (c), variations show divergent transferability depending
on the extent of mass change.

(a) Mass of cart variation (b) Length of the pole variation (c) Mass of pole variation

Figure 25: Examples of transferability heatmap for Cartpole.

Results Figure 26 presents a comparison of normalized generalized performance for the Cartpole
task across different strategies when varying the mass of the cart, length of the pole, and mass of the
pole. In the mass of cart variation, performance generally increases with transfer steps, with MBTL
strategies achieving the highest scores. This indicates robust adaptability to changes in cart mass.
Similar trends are observed with length variation and mass of pole variation. MBTL shows close to
Oracle performance.

A.4.10 Details about Pendulum benchmark

Potential of multi-policy training and zero-shot transfer Pendulum is also one of the simplest
benchmarks in classic control. In the Pendulum benchmark, we vary three key parameters: time step
(left), pole length (middle), and ball mass (right). As shown in Figure 27, a few well-trained policies
in specific contexts transfer effectively to new tasks, particularly under Oracle Transfer. For certain
configurations (e.g., shorter poles, lighter balls), Independent and Oracle Transfer both excel, while
multi-task struggles. These results suggest a remaining performance gap that multi-policy training
and zero-shot transfer could help bridge.
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Figure 26: Comparison of normalized generalized performance of all target tasks: Cartpole.

Figure 27: Normalized performance of Oracle Transfer, independent training, and multi-task training
in Pendulum benchmarks.

Figure 28 provides a visual mapping of which trained policy is being applied for each specific context
in the Pendulum benchmark. CMDP with time step variation demonstrates that the tasks are covered
by a few “good" policies nearby. In addition, contexts with shorter poles and lighter balls often
gravitate toward a single high-performing policy, whereas more challenging configurations may
require a specialized or distinct policy. This illustrates how Oracle Transfer can seamlessly select
from a suite of learned policies, demonstrating robust zero-shot transfer and stronger adaptability.

Figure 28: Visulazation on which policy is used to solve specific context-MDP in Pendulum CMDP.

Transferability heatmap Figure 29 presents transferability heatmaps for the Pendulum task with
variations in three physical properties: timestep, length of the pendulum, and mass of the pendulum.
Each heatmap illustrates how effectively strategies transfer from source tasks (vertical axis) to target
tasks (horizontal axis), highlighting the impact of each parameter on control strategy effectiveness.
For the timestep variation (a), there appears to be high consistency in transferability across different
timesteps, especially around the diagonal axis. In the length of the pendulum variation (b), transfer-
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ability decreases with greater length differences. Similarly, for the mass of the pendulum variation
(c), transferability shows variability dependent on the extent of mass changes.

(a) Timestep variation (b) Length of the pendulum varia-
tion

(c) Mass of pendulum variation

Figure 29: Examples of transferability heatmap for Pendulum.

Results Figure 30 shows a comparison of normalized generalized performance for the Pendulum
task across different strategies when varying the timestep, length of the pendulum, and mass of the
pendulum. For the length of the pendulum variation and mass of the pendulum one, MBTL strategies
demonstrate the highest scores, suggesting robust adaptability to changes in pendulum dynamics.
MBTL shows performance close to that of the Oracle across all variations, indicating its effectiveness
in handling dynamic changes in system parameters.

Figure 30: Comparison of normalized generalized performance of all target tasks: Pendulum.

A.4.11 Details about BipedalWalker benchmark

Potential of multi-policy training and zero-shot transfer Figure 31 compares the performance
of different RL training methods in the BipedalWalker benchmark. independent training typically
performs nearly as well but suffers intermittent dips. Similarly, multi-task training experiences larger
swings, occasionally collapsing to low performance in certain parameter regions. However, Oracle
Transfer remains near-perfect across every setting. These patterns highlight how multi-policy training
with zero-shot transfer and per-task training generally fare better than a single universal model when
faced with diverse environment dynamics.
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Figure 31: Normalized performance of Oracle Transfer, independent training, and multi-task training
in BipedalWalker benchmarks.

Transferability heatmap Figure 32 presents transferability heatmaps for the BipedalWalker task,
focusing on three variations: friction, gravity, and scale. Each heatmap illustrates the effectiveness
of strategy transfer from source tasks (vertical axis) to target tasks (horizontal axis), highlighting
how each parameter influences control strategy adaptability. For friction variation (a), strategies
show uniform transferability across different friction levels. In gravity variation (b), transferability
is highly variable, suggesting that strategies need specific tuning for different gravity levels. For
scale variation (c), the heatmap indicates variable transferability, reflecting the challenges of scaling
control strategies.

(a) Friction variation (b) Gravity variation (c) Scale variation

Figure 32: Examples of transferability heatmap for BipedalWalker.

Results Figure 33 shows the comparison of normalized generalized performance for all variations
within the BipedalWalker task. There is no huge difference in performance for all three cases, but
if we look into the tabualr results in Table 2, MBTL shows the highest performance across varying
conditions, indicating their robustness in adapting to changes in physical parameters of the model.
This suggests that these strategies are more effective in handling the complexities introduced by
different frictions, gravities, and scales compared to other baselines.

A.4.12 Details about HalfCheetah benchmark

Potential of multi-policy training and zero-shot transfer In this HalfCheetah benchmark, each
subplot examines how policies adapt to changing friction, gravity, and stiffness (Figure 34). Oracle
Transfer maintains nearly perfect scores for all parameter ranges, indicating robust zero-shot adapt-
ability. In contrast, independent training experiences larger fluctuations, while multi-task training
remains consistent yet at a lower performance plateau. The clear gap between Oracle Transfer and
the other methods highlights the advantage of leveraging specialized multi-policy training solutions
that effectively transfer across diverse dynamics.
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Figure 33: Comparison of normalized generalized performance of all target tasks: BipedalWalker.

Figure 34: Normalized performance of Oracle Transfer, independent training, and multi-task training
in HalfCheetah benchmarks.

Transferability heatmap Figure 35 displays transferability heatmaps for the HalfCheetah task,
focusing on three physical properties: friction, gravity, and stiffness. Each heatmap demonstrates
the transferability of strategies from source tasks (vertical axis) to target tasks (horizontal axis). For
friction variation (a), there is uniform high transferability across different friction levels, indicating that
strategies are robust to changes in friction. Gravity variation (b) shows less consistent transferability,
suggesting a sensitivity to gravity changes that might require adaptation of strategies. Stiffness
variation (c) similarly demonstrates variable transferability, highlighting the challenges of adapting to
different stiffness levels in control strategies.

(a) Friction variation (b) Gravity variation (c) Stiffness variation

Figure 35: Examples of transferability heatmap for HalfCheetah.

Results Figure 36 presents a comparison of normalized generalized performance across various
strategies for the HalfCheetah task with respect to the varied physical properties. The results
indicate that the MBTL generally outperforms others, particularly in managing variations in gravity
and stiffness, suggesting the superior adaptability of these models to physical changes in the task
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environment. The trends across different parameters confirm the critical impact of task-specific
dynamics on the effectiveness of the tested strategies.

Figure 36: Comparison of normalized generalized performance of all target tasks: HalfCheetah.

A.4.13 Implementation of the recent multi-task baselines

In Figure 37, we compare two recent multi-task algorithms—PaCo [43] and MOORE [16]—with sev-
eral our baselines tested on Cartpole CMDP benchmark. Although MOORE underperforms relative
to our baseline multitask implementation, PaCo achieves competitive or even higher performance at
certain points, demonstrating its potential to generalize across multiple tasks. Also, it is important
to note that those algorithms are naively implemented without thorough investigation. These trends
show that enhanced multi-task strategies can be beneficial in some CMDP settings, whereas not all
multi-task methods readily adapt to broader parameter variations.

Figure 37: Normalized performance comparison of PaCo [43] and MOORE [16] on Cartpole
benchmark.
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A.5 Potential impacts

Our work has the potential to reduce the computational effort needed to solve complex real-world
problems, offering scalable solutions for implementing deep reinforcement learning in dynamic
environments. While there are no immediate negative societal impacts identified, ongoing research
will continue to assess the broader implications of deploying these technologies in urban settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions and scope, match-
ing the theoretical and experimental results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Conclusion (Section 7).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper includes all necessary assumptions and provides complete proofs in
the Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed experimental settings, including models and hyperparameters, are
provided to ensure reproducibility. Also, the code is submitted by the authors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code are submitted by the authors with zip files, with detailed instructions
for reproducing the results included in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details about the experiments, including
data generation, hyperparameters, and optimizer types, to ease understanding of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and confidence intervals are reported for all significant experiments,
with methods and assumptions clearly stated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of compute resources, memory, and execution time for each experi-
ment are specified to ensure reproducibility in Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no deviations from
the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a section discussing both the potential positive and negative
societal impacts of the research.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve data or models with high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses the CARL framework under the Apache License 2.0, with
proper credit given and license terms mentioned in the Appendix A.4.8.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets, including code for the MBTL algorithm and experiments, are
well-documented and submitted with an anonymized zip file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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