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Abstract

Quantifying differences between probability distributions is fundamental to statis-
tics and machine learning, primarily for comparing statistical uncertainty. In
contrast, epistemic uncertainty—due to incomplete knowledge—requires richer
representations than those offered by classical probability. Imprecise probability
(IP) theory offers such models, capturing ambiguity and partial belief. This has
driven growing interest in imprecise probabilistic machine learning (IPML), where
inference and decision-making rely on broader uncertainty models—highlighting
the need for metrics beyond classical probability. This work introduces the Inte-
gral Imprecise Probability Metric (IIPM) framework, a Choquet integral-based
generalisation of classical Integral Probability Metrics (IPMs) to the setting of
capacities—a broad class of IP models encompassing many existing ones, including
lower probabilities, probability intervals, belief functions, and more. Theoretically,
we establish conditions under which IIPM serves as a valid metric and metrises a
form of weak convergence of capacities. Practically, IIPM not only enables com-
parison across different IP models but also supports the quantification of epistemic
uncertainty (EU) within a single IP model. In particular, by comparing an IP model
with its conjugate, [IPM gives rise to a new class of EU measures—Maximum
Mean Imprecisions (MMIs)—which satisfy key axiomatic properties proposed
in the uncertainty quantification literature. We validate MMI through selective
classification experiments, demonstrating strong empirical performance against
established EU measures, and outperforming them when classical methods struggle
to scale to a large number of classes. Our work advances both theory and practice
in IPML, offering a principled framework for comparing and quantifying epistemic
uncertainty under imprecision.

1 Introduction

Inductive reasoning underpins artificial intelligence, sciences, and human judgment by enabling
generalisation from observed evidence to unobserved phenomena. This requires navigating effectively
the boundary between certain and uncertain information. Measure-theoretic probability theory,
formalised by Kolmogorov [1], provides the mathematical foundation widely adopted to represent
and manage such uncertainties. In machine learning (ML), its use is pervasive—f{rom modelling
data-generating processes to guiding predictions and decision-making. Probability theory primarily
addresses uncertainties described as ‘risk’, ‘first-order uncertainty’, ‘statistical uncertainty’, or ‘known
unknowns’ [2], commonly referred to as aleatoric uncertainty in ML [3, 4].

A growing focus in ML concerns another form of uncertainty arising from ignorance or lack of
knowledge—termed ‘Knightian uncertainty’ [5], ‘second-order uncertainty’, or ‘unknown unknowns’,
commonly known as epistemic uncertainty (EU). While probability theory adequately models
aleatoric uncertainty, scholars [6—8] argue that classical precise probability, relying on a single
probability measure, falls short in representing EU. It struggles to formally model missing, uncertain,
or qualitative data [9, Section 1.3] and fails to distinguish between indifference (equal belief) and
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genuine ignorance (absence of knowledge) [8, Section 1.1.4]; see also Hajek’s [10] discussion on
Laplace’s and Bertrand’s paradox [11]. At a more fundamental level, when probability is used
to encode subjective belief or confidence, the additivity axiom of Kolmogorov implies that high
uncertainty (low confidence) about an event necessarily entails high certainty (high confidence)
about its complement. Yet under limited information, this may not hold—we might reasonably
remain ambiguous about both. These limitations contribute to practical issues in ML, including
overconfidence [12], poor generalisation [13, 14], and inadequate handling of partial ignorance [15].
See Manchingal and Cuzzolin [16] for a recent discussion on the need to equip machine learning
systems with epistemic uncertainty awareness.

Uncertainty-centric ML paradigms have emerged to address the limitations of classical approaches
by explicitly modelling EU. Examples include Bayesian ML [17] and evidential learning [18]
—each grounded in distinct philosophies with respective strengths and limitations. A growing al-
ternative, known as Imprecise Probabilistic Machine Learning (IPML), focuses on inference and
decision-making using generalisations of classical probability, commonly known as imprecise proba-
bilities (IPs) [8, 19, 20]. Examples of IP models include interval probabilities [6], random sets [21],
fuzzy measures [22], belief functions [23], higher-order probabilities [24, 25], possibility theory [26],
credal sets [27, 28], and lower/upper probabilities [8, 29]. Many of these fall under the broader
class of non-additive set functions called Choquet capacities [30]; see Definition 2 and Figure 2
in Appendix A for their generality. IPML provides principled tools to handle imprecision arising
from model misspecification and data uncertainty, with growing applications in classification [31—
33], hypothesis testing [34, 35], scoring rules [36, 37], conformal prediction [38, 39], computer
vision [40, 41], probabilistic programming [42], explainability [43—46], neural networks [31, 47, 48],
learning theory [49], causal inference [50, 51], active and continual learning [52, 53], fixed point
theory [54], and many more.

Motivated by these advances, this work contributes to the core development of IPML by introducing
a first-of-its-kind family of statistical distances for imprecise probabilities, termed Integral Imprecise
Probability Metric (IIPM). IIPMs strictly generalise the classical Integral Probability Metric (IPM)
framework [55] by leveraging Choquet integration [30] to compare capacities, thereby recovering
IPMs as a special case. With appropriate choices of function classes, IIPMs extend well-known
metrics—such as the Dudley metric and total variation distance—to the setting of IPs. Theoretically,
we establish conditions under which IIPMs serve as valid metrics and metrise the weak convergence
of capacities. As an illustration, we show how IIPMs recover key theoretical results in a recent
optimal transport under e-contamination [56] problem. Beyond these theoretical contributions, [IPMs
naturally induce a new class of EU measures by quantifying the discrepancy between a capacity
and its conjugate (see Section 2.1). This yields the Maximum Mean Imprecision (MMI), a family of
epistemic uncertainty quantification (UQ) measures that satisfy several foundational axioms from
the literature, along with an efficiently computable upper bound. We empirically validate MMI and
its linear-time upper bound in selective classification tasks [57], demonstrating strong empirical
performance and improved scalability over existing epistemic UQ measures—particularly in settings
with a large number of classes, where conventional methods often fail.

The paper is structured as follows. Section 2 reviews IPMs and IP, followed by IIPM and MMI in
Section 3 and 4, respectively. Section 5 discusses related work, Section 6 presents empirical results,
and Section 7 concludes with discussion. All proofs and derivations can be found in Appendix B.

2 Background

Notations. Let (X', Xy ) be our measurable space, where X is a non-empty set and ¥ » a o-algebra.
We denote C(X') as the space of continuous bounded real-valued measurable functions on X'. We
denote V(X) the space of capacities v on (X, ¥x) (see Definition 2), while P(X'), P(X) represent
the spaces of lower and upper probability measures P, P on (X, ¥ y) (see Definition 3) respectively,
and P(X) the space of probability measures P on (X, X y).

Integral Probability Metric. Quantifying the difference between two probability measures P, () €
P(X) is a ubiquitous task in statistics and machine learning. Popular classes of divergence include
the ¢-divergence [58, 59], Bregman divergence [60, 61], and a-divergence [62]. Another widely used
family of divergence measures, central to our paper, is the Integral Probability Metric (IPM) [55, 63],
also known as probability metrics with a (-structure [64]. Given a set of continuous bounded



real-valued measurable functions F C Cy(X), and probability measures P, Q) € P(X), the IPM
associated to F is defined as

(P, Q) = sup { | [ ap - [ raq .

feF

where [ fdP is the Lebesgue integral of f with respect to P. With suitable choices of F, we recover
popular probability distances, including the Dudley metric [65], Kantorovich metric and Wasserstein
distance [66], total variation distance and Kolmogorov distance [1], and kernel distance commonly
known as maximum mean discrepency (MMD) [67]. IPMs have also found numerous theoretical
applications—appearing in proofs of central limit theorems [68], empirical process theory [69], and
the metrisation of weak topology on P(X) [70, Chapter 11]—as well as practical applications in
hypothesis testing [71] and generative model training [72].

2.1 Beyond Precise Probability and Expectations: Capacities and Choquet Integration

While powerful, the IPM framework is limited to probability measures. We extend it to capacities—a
broad class encompassing many IP models. This section introduces key concepts: probabilities,
capacities, lower probabilities, and Choquet integration.

Probabilities. We include here the formal definition of probability measure for completeness,

Definition 1 (Kolmogorov [1]). A probability measure P € P(X) on a measurable space (X,Xx)
is a set function P : ¥ x — [0, 1] such that (i) P(A) > 0 forany A € Ly (ii) P(X) = 1, and (iii)
for any sequence of disjoint sets {A; }i>1 with each A; € Xx, P(Ui>14;) = > ;51 P(4)).

We adopt countable additivity for generality, though some scholars prefer finite additivity. Kol-
mogorov’s probability theory elegantly applies measure theory to the measurable space (X, Xy ),
where the additive measure P assigns credence (degrees of belief) to events in X y.

Capacities. Nonetheless, various scholars have argued that the additivity axiom is too restrictive
when dealing with uncertainty involving partial ignorance and ambiguity [73]. This leads to an
interest in studying more general non-additive measures, starting with capacities:

Definition 2 (Choquet [30]). A capacity v € V(X) on a measurable space (X,Xx) is a set
functionv : Xy — [0, 1] such that (i) v(0) = 0,v(X) = 1, (ii) for any A, B € ¥ » with A C B,
v(A) < v(B), and (iii) v is continuous from above and below.

The last condition can be omitted when working with finite spaces X [74, Section 6.8]. Furthermore,
we say a capacity is convex, or 2-monotonic, if for any A, B € Xy, v(AUB) + v(AN B) >
v(A) 4+ v(B). Probability measures P are always capacities (and 2-monotonic), but not vice versa.
2-monotonicity equips capacities with more structure to make them computationally easier to work
with (see e.g. Lemma 5), while still including as particular cases many of the IP models, such as
e-contamination models [75], belief functions [76], and probability intervals [6].

Lower Probabilities. Given capacity v, we define its conjugate v* : ¥y — [0,1], as v*(A4) =
1 —v(A°), for all A € X y. The conjugate capacity serves as a dual representation of the original
capacity, meaning one fully determines the other. We clarify its significance and interpretation after
introducing lower probability, which lies between capacities and probability measures in generality.

Definition 3. [Cerreia-Vioglio et al. 77, Section 2.1.viii] A set function P : X — [0, 1] is a lower
probability if there exists a compact set C C P(X) of probability measures such that P(A) =
minpec P(A) forall A € Sx.

The compact set C of measures is called the credal set and the compactness here has to be understood
in the weak* topology [77, P.2 Remark 1]. Lower probabilities are always capacities but not vice
versa [77, Section 2.1]. The conjugate of a lower probability P is the upper probability P, defined
by P(A) =1 — P(A°) = maxpec P(A) for A € Xy. In IPML, lower probabilities are typically
constructed from a set of probabilistic predictors, e.g., C = {p;(Y | X = )}, [78-80, 48], or via
basic probability assignments [81], as in Dempster—Shafer theory [76], or by constructing predictive
intervals [82, 83].



Lower and upper probabilities offer two complementary ways of expressing credence in an event’s
truthfulness. Specifically, the lower probability P(A) reflects the minimal credence assigned directly
to event A, while the upper probability P(A) captures the maximal credence, computed as one minus
the lower probability of the complement, i.e., 1 — P(A¢). These represent, respectively, pessimistic
and optimistic assessments of A‘s objective likelihood. For a subjectivist interpretation of lower and
upper probabilities grounded in de Finetti’s framework of probability as coherent betting rates, see
Walley [8, Section 2.3.5]. In classical probability, these bounds coincide, since P(A) = 1 — P(A®)
for any event A € X ». In other words, P is self-conjugate.

Choquet Integration. Another concept central to our contribution is the use of Choquet integrals to
measure the discrepancies between capacities, akin to how Lebesgue integrals play a key role for [IPM.
Choquet integration [30] generalises Lebesgue integration for probability measures to capacities:

Definition 4 (Choquet Integral). Given a capacity v € V(X) and a real-valued function f on X, the
Choquet integral of f with respect to v is

o= [Tost 2 na- [Tos 2 na M

provided the difference on the right-hand side is well defined, where f+ := max(0, f), f~ =
—min(0, f), and {f >t} :={zx € X : f(x) > t}.

When both terms on the right-hand side of Equation (1) are finite, then we say f is Choquet integrable
with respect to v. When v is a probability measure, the Choquet integral becomes the standard
Lebesgue integral. If f is bounded, then by Troffaes and De Cooman [19, Proposition C.3.ii], f is
Choquet integrable with respect to v and the integral can be written as,

/fduf+/ffV({f2t}) i,

where f := inf,cx f(2) and f := sup,c» f(z). The Choquet integral provides a generalised notion
of “expectation” that accommodates non-additive uncertainty assignments, as commonly encountered
in frameworks such as imprecise probabilities, belief functions, and fuzzy measures. For example,
the Choquet integral of a lower probability provides a lower bound to the worst-case expectation
across the entire credal set, as demonstrated in the following Lemma.

Lemma 5. For lower probability P associated to credal set C, we have § fdP < infpecc [ fdP for
any f € Cy(X). When P is 2-monotonic, the inequality becomes an equality.

3 The Integral Imprecise Probability Metric (IIPM) framework

The motivation of IPM follows from a classical result [70, Lemma 9.3.2], stating that two probability
measures are equal if and only if their Lebesgue integrals agree for all f € C},(X'). Before introducing
IIPM, we examine whether an analogous result holds for capacities and Choquet integrals. We follow
the conditions in Dudley [70, Lemma 9.3.2] and examine metric spaces (X', d) for some metric d.

Theorem 6. Let (X, d) be a metric space. For any capacities v, ji € V(X), we have § fdv = § fdu
Sorall f € Cp(X), ifand only if v = p.

Narukawa [84, Proposition 7] presents a similar result but for bounded non-negative continuous
functions under stricter conditions on the capacities (regularity) and different conditions on X’ (locally
compact Hausdorff). While Theorem 6 characterises equality of capacities via Choquet integrals,
the full class C(X) is often too rich for practical use. Following the spirit of IPMs, we define the
Integral Imprecise Probability Metric with respect to a function class F C Cy,(X) as follows.

Definition 7 (Integral Imprecise Probability Metric (IIPM)). For function class F C Cy(X) and
capacities v, i € V(X), the integral imprecise probability metric associated with F between v, i is

IIPM £ (v, jt) := sup {‘/fdy— ffdu }

fer
As we are working with bounded real-valued functions, the Choquet integrals are well-defined.




Corollary 8. Forany P,Q € P(X) and F C Cy(X), IIPM£(P, Q) = IPM#(P, Q).

This illustrates that [IPM generalises IPM, but not vice versa, since Lebesgue integrals are defined
for probability measures, not capacities. We verify IIPM # serves as a pseudometric on V(X').

Proposition 9. For any F C Cy(X), IIPM£ is a pseudometric on V(X); it is non-negative,
symmetric, and satisfies the triangle inequality.

When F is rich enough for IIPM £ to be point-separating—for instance, when F = Cj (X' )—then
ITPM £ defines a proper metric on F(X). More desirably, albeit stronger, is for convergence in
ITPM £ to imply and necessitate convergence in another established sense, i.e., IPMz(u, v) — 0
should ideally entail that v “truly” converges to u, where “truly” refers to convergence under some
other notion of interest independent to the choice of IIPM . If this implication holds, then ITPM r is
said to metrise that notion of convergence on V(X). Studying the metrisation properties of divergences
is important for analysing the reliability of inference procedures that depend on them [85]. In our
case, we follow Feng and Nguyen [86] and consider the Choquet weak convergence of capacities:
a sequence v, € V(X) is said to converge to v in this sense if § fdv, — § fdv forall f € Cy(X).
This leads to the following natural question: What conditions on F are sufficient for IIPM r to
metrise Choquet weak convergence on V(X')? Our initial analysis gives the following answer:

Theorem 10. Let F C Cy(X) be dense in Cy(X) with respect to the || - || norm. Then, IIPM
metrises the Choquet weak convergence of V(X).

To build intuition for Theorem 10, recall from Theorem 6 that C,(X) is point-separating on V(X). If
F is dense in C(X') under the || - || oo norm, then this allows us to “import” the separating ability of
Cy(X) to F. Our analysis follows from Gretton et al. [71, Theorem 18] for IPMs. However, more
general conditions on F (and X') for metrising weak convergence in P(X’) have been studied—see,
e.g., Sriperumbudur et al. [87], Sriperumbudur [88]. Extending such analysis to the case of capacities
and understanding the precise conditions under which F and X ensure metrisation of Choquet weak
convergence on V(X)) is definitely an interesting direction for future work.

3.1 Example use cases of the IIPM framework

While general, capacities are often too complex for practical use without additional structure. We
therefore focus on lower probabilities (cf. Definition 3) for the remainder of the paper. Nonetheless,
our framework also applies to other IP models—such as probability intervals, belief functions, and
possibility measures—all of which are structured subclasses of capacities. We show how the IIPM
framework gives rise to new divergences and can be used to prove existing results in IPML differently.

The Lower Dudley Metric. We start with a lower probability version of the Dudley metric.
Definition 11 (Lower Dudley Metric). For a metric space (X,d), let Fq :={f € Cp(X) : ||f |5 <
1}, where the Lipschitz norm || f||gr := || flloo + || fllz and || f]|z := sup{lf@—FfWl/d(z,y) : x #
y € X}, we define IIPM £, as the Lower Dudley metric.

Proposition 12. The Lower Dudley metric metrises Choquet weak convergence on P(X).

This result immediately follows from Theorem 10, and showcases that the lower Dudley metric can
be applied in settings where analysing weak convergence of conservative uncertainty assessment is
essential, e.g., in robust statistics and safety-critical applications.

Lower Total Variation. We can define the lower total variation distance as follows,

Definition 13 (Lower Total Variation Distances). Let P, Q € P(X') be two lower probabilities on
(X,Xx)and Fry = {14 : A € Xy}, thenwe define IPMx,., (P, Q) = sup ¢y, |[P(A)—Q(A)
as the Lower Total Variation Distances (LTV) between P, Q.

This equality follows from Troffaes and De Cooman [19, Proposition C.5(ii)]. In fact, the LTV
distance was also considered in Levin and Peres [89, Proposition 4.2] but was not derived from any
integral-based metric framework. It is also important to highlight that many results that hold for IPMs
do not carry over to I[IPMs due to the loss of additivity. Specifically, while expectations under IPMs
are linear, expectations under [IPMs—typically modelled using the Choquet integral—are generally
non-linear and, at best, super or sublinear [90]. The following is one such example:



Remark 14. Let X be finite. For any P,Q € P(X), we have IPM ..., (P, Q) = sup scx.,, |P(A) —
QA = 1> cx (P{x}) — Q({x})). In contrast, in the imprecise case, there exists P, Q € P(X)

such that IPM 7, (P, Q) := sup sex, [P(A) = Q(A)| # 3 Xpex (P({z}) — Q{z})).

In subsequent applications of IIPM to epistemic UQ, we adopt the LTV distance for its simplicity.

Lower Kantorovich problem with e-contamination sets. To illustrate the theoretical utility of
IIPM, we consider the well-known e-contamination model from robust statistics [75]. We show
how IIPM rederives a key result from Caprio [56, Theorem 11], namely that the solution to the
restricted lower probability Kantorovich problem (RLPK) [56, Definition 10] coincides with the
classical Kantorovich problem under e-contamination. For completeness, a detailed treatment of the
RLPK problem is provided in Appendix D.1. Recall the e-contamination set P, p of a probability
measure P € P(X) is given by,

P.p:={PecP(X):IRc P(X)st P(A) = (1 —€)P(A) + eR(A),YA € Xx}, (2

with € € [0, 1] the contamination rate of the model. The lower probability corresponding to P, p is
derived in Walley [8, Section 2.9.2].

Lemma 15. Let P, p be an e-contaminated model defined in Equation (2). Then, the associated
lower probability P_ is given by

(1—€)P(A) forall A€ Sx\{X}

P (A)= _inf P(A)= {1’ for A—x

PePe . p

Now we can recover the results from Caprio [56] using the [IPM framework.

Theorem 16. Let Fy := {f € Cp(X) : ||f|lL < 1} where || f]|L := sup, ,ex{|/ @)= FWl/c(y)},
and c the transportation cost in a restricted lower probability Kantorovich (RLPK) problem [56,
Definition 10]. Let P, Q_be lower probabilities of the e-contaminated models Pe p and Pe q.
Then, IIPM z,, (P, Q) coincides with the objective of the RLPK problem, and thus coincides with the
classical Kantorovich’s optimal transport problem involving P and Q.

We include this result to illustrate the utility and flexibility of the [IPM framework for theoretical anal-
ysis. We also highlight that, in general, a version of the Kantorovich-Rubinstein duality theorem for
RLPK does not (yet) exist, therefore, we cannot simply associate IIPM £, as the lower Wasserstein-1
distance. In Appendix D.2, we continue our analysis on e-contamination models with ITPMs, but
using kernels, following the derivation of kernel distances in Gretton et al. [71]. Specifically, we
consider Fy, := {f € Hy : || fll3, < 1}, where k is a kernel and H, the corresponding reproducing
kernel Hilbert space (RKHS). Non-parametric estimator of [IPM £, (P, Q 5) (different contamination
level is allowed) is also derived. We defer this result due to space constraints.

4 Measuring epistemic uncertainty with IIPM: Maximum Mean Imprecision

Beyond its appeal for theoretical analyses, the IIPM framework can find practical application in
epistemic UQ for ML. By quantifying the gap between capacities and their conjugates, [IPM captures
the divergence between optimistic and pessimistic assessments—giving rise to a new class of EU
measures, which we call Maximum Mean Imprecision (MMI). As in Section 3, we illustrate MMI
using lower probabilities, though the framework remains broadly applicable to other IP models.

Definition 17 (Maximum Mean Imprecision). Let F C Cy(X). The Maximum Mean Imprecision
with respect to F is the function MMIx : P(X) — R defined as,

MMI£(P) := IIPM (P, P) = sup {/fdP/fdP}.

fer

Note that we have omitted the absolute value sign between the Choquet integrals. This is intentional:
since the upper probability P setwise-dominates the lower probability P, the difference is always non-
negative, rendering the absolute value sign unnecessary. To explain MMI’s underlying mechanism,
we present an alternative formulation of MMI £.



Proposition 18. The definition of MMI is equivalent to

f
MMIx(P) = sup /f 1- (B({f <th) +P({f> t}))dt 3)

feF

First, notice that for any ¢ € [f, f], {f < t} U{f > t} = X. Equation (3) shows that MMI»
quantifies EU as the largest possible accumulation of disagreement between 1 = P(X’) and the sum
of the lower probabilities assigned to the complementary events { f < ¢} and {f > ¢} under P as we
“slide” the threshold . As an illustrative example, we now demonstrate how to quantify the EU for

the e-contamination model, previously introduced in Section 3.

Proposition 19 (MMI on e-contamination set.). Let P_ be the lower probability associated with Pe_p
and F C Cy(X). Then MMIx(P,) = € (sup ;e 7 sup,, ,cx |f(x) — f(y)|). For the LTV distance
with Fry = {14 : A € Sx}, we have MMI g, (P,) = sup g¢5,, {Pe(4) — P (A)} =«

This aligns with the intuition that contaminating a probability assessment by ¢ amount should
proportionally increase the EU by e. The “unit” of this uncertainty is determined by the variability of
the chosen function class. For TV distance, the unit is precisely 1. This result is useful later when we
derive an upper bound for the MMI £, of any lower probability in Proposition 21.

Desirable axiomatic properties for epistemic UQ measure. While MMI x appears to be an
intuitive measure of uncertainty, it is important to examine whether it satisfies key axiomatic properties
proposed in the literature on credal UQ [91], where the EU modelled using IPs is measured. This is
especially relevant given the abundance of UQ measures [4, 92, 93], many of which lack rigorous
axiomatic support. The axioms we present below were originally formulated for credal sets and are
adapted here for lower probabilities, as both representations mostly convey interchangeable semantics.
In particular, Abellan and Klir [94], Jirousek and Shenoy [95], Hiillermeier et al. [96], and Sale et al.
[97] propose that a valid credal uncertainty measure U : P(X) — R should satisfy:

Al Non-negativity and boundedness: (a) U(P) > 0, for all P € P(X); (b) there exists u € R
such that U(P) < u, forall P € P(X).

A2 Continuity: U is a continuous functional.
A3 Monotonicity: for P, Q € P(X),if P(A) < Q(A) forall A € X, then U(P) > U(Q).
A4 Probability consistency: for all P € P(X) we have U(P) = 0.

A5 Sub-additivity: Let (X, X, ) and (X3, X x,) be measurable spaces and such that X = X x A».
Let P,(-) = P(-, X2) and P,(-) := P(X},-) be the corresponding marginal lower probabilities
on X; and X, respectively. Then, we have U(P) < U(P,) + U(P,).

A6 Additivity: Following from A5, if P; and P; are independent, then U(P) = U(P,) 4+ U(Py).

Note Axiom A6 assumes a notion of independence for IPs, for which multiple, non-equivalent
definitions exist; see Couso et al. [98], Cozman [99] for a review. Axioms Al and A2 set out the
basic requirements for U to be “sensible”. Axiom A3 states that if a representation P is uniformly
more conservative than ()—assigning lower values to all events—then P should be deemed more
epistemically uncertain. Axiom A4 ensures that precise probabilities correspond to zero EU. Some
work [100] instead prefers the measure to reflect pure aleatoric uncertainty when EU is absent. Axiom
AS captures the intuition that joint reasoning reduces uncertainty, as dependencies between events
provide additional structure. Axiom A6 complements this by stating that, when no such dependencies
are present, joint or separate consideration should not affect the uncertainty measure. A5 and A6 are
less relevant when quantifying predictive uncertainty in classification or real-valued regression tasks,
since the output spaces are generally not product spaces.

At this point, one may naturally ask whether MMI r satisfies these axioms—or under what conditions
on F this can be ensured. Particular care is required for Axioms AS and A6, which involve reasoning
over product spaces. To meaningfully evaluate these axioms, we must clarify the function classes
defined over the marginal domains &)} and X,. Suppose X = X} x A, as specified in axiom
AS. Let F/; C Cb(Xl), Fy C Cb(XQ), and Fip = {f € Cb(X) S.t. f(l‘h .7}2) = fl(fl) +
fa(x2), for some f1 € Fq, fo € Fa}.



Theorem 20. For any F C Cy(X), MMI £ satisfies axioms AI-A4. If P is 2-monotonic and
with F = JFi2 defined above, then MMl x , satisfies axioms AI-AS5. For A5, the subadditivity
becomes MMI r,, < MMIz, + MMlIlg,. If the notion of independence in A6 is taken to be strong
independence in the sense of Cozman [99], A6 also holds, and MM r,, = MMIz, + MMIg,.

Theorem 20 establishes MMIx as a principled measure of EU for lower probabilities. Ax-
ioms A1-A4 hold for any function class F C Cy(X), while A5 and A6 require additional 2-
monotonicity—satisfied, for instance, by belief functions and suitably chosen product function spaces
in multivariate settings. Examples of credal EU measures that satisfy some of the axioms include:
the difference between maximal and minimal entropy within a credal set [100], which fails A3; the
generalised Hartley (GH) measure [94], which satisfies all 6 axioms; and the volume of the credal set,
which fails A6. Nonetheless, Sale et al. [97] demonstrated that credal set volume fails to be a good EU
measure in /-class classification problems when K > 2 due to the lack of robustness in computation
as the dimension K increases. We, therefore, exclude it from our experimental comparisons. We also
note that, when |X'| = 2 as in binary classification, MMIx,.,, corresponds to the credal epistemic

measure, P({z}) — P({x}) for x € X, considered in Hiillermeier et al. [101].

A linear-time upper bound. Computing MMI %, (P) = sup 4c v+{P(A) — P(A)} in K-class
classification is computationally expensive, as it requires evaluation over 2 subsets—akin to
computing the generalised Hartley measure. To address this bottleneck, Proposition 21 introduces
a practical linear-time upper bound. The key idea is to approximate any P with the closest and
uniformly more conservative e contamination model P, i.e. P . (A) < P(A) for all events A,
ensuring no additional certainty is introduced for this approximation. Leveraging Axiom A3 in
Theorem 20 and Proposition 19, we derive a computationally efficient upper bound for MMI£,.,, (P),
relaxing computation to O(K).

Proposition 21. Let X be finite. For any P € P(X), MMIz,., (P) <1—3% ., P({x}).

5 Related work

Distances and Divergences for IPs. Several metrics and divergences have been proposed for
credal sets [102—106], and were recently categorised by Chau et al. [34] into inclusion, equality, and
intersection measures. Given its connection with lower probabilities, our IIPM belongs to the equality
class. For fuzzy sets and fuzzy measures, see Couso et al. [107], Montes et al. [108]. Specifically for
lower probabilities, Hable [109] studied minimum distance estimation between a precise parametric
model and a lower probability model, using a special case of IIPM r with bounded continuous
functions over a discretised domain—though without theoretical analysis. In the context of belief
functions, divergences such as those in [110-112] operate on the mobius transform of belief functions,
while the Minkowski measure [113] compares belief functions via summation of all assessments.
More recently, Xiao et al. [114] introduced a generalised f-divergence for belief functions. Closest
in spirit to our work is Catalano and Lavenant [115], who proposed an integral-based metric for
higher-order probabilities.

Uncertainty Quantification for IPs. To quantify epistemic—and occasionally
aleatoric—uncertainty in credal-set-based models, several measures have been proposed, in-
cluding maximal entropy [116], entropy difference [96], the generalised Hartley measure [94],
and credal set volume [117]. In hierarchical or second-order models such as Bayesian and
evidential frameworks, entropy-based measures—including entropy, conditional entropy, and mutual
information—have been widely used to capture total, epistemic, and aleatoric uncertainty [118, 92];
see Wimmer et al. [119], Smith et al. [120] for critiques. Alternatively, Sale et al. [121, 122] advocate
variance and probability distances as general-purpose EU measures for second-order models. A
recent review is provided by Hoarau et al. [123].

Overall, to our knowledge, our work is the first to introduce a Choquet-integral-based metric frame-
work for comparing capacities—a foundational class for many uncertainty models—marking a novel
use of integral-based distances for quantifying credal uncertainty.
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Figure 1: Accuracy-Rejection (AR) curves on four classification tasks. The area under the curve
(AUC) is reported for numerical comparison. We consistently outperform entropy difference
(E-Diff) and match the performance of Generalised Hartley (GH). On large-scale problems, our
efficient upper bound (MMI-Lin) remains tractable and continues to outperform E-Diff.

6 Empirical validation of MMI with selective prediction experiments

This section demonstrates the practicality of the proposed MMI measure. Additional ablation stud-
ies and detailed experiment descriptions are provided in Appendix C. The code to reproduce our
experiments is here [124]. We evaluate MMI by its ability to capture informative EU in K-class
classification. As ground-truth uncertainty is unavailable, the informativeness of epistemic UQ is typi-
cally assessed by its utility in improving prediction or decision-making [125, 126]. Following Shaker
and Hiillermeier [80], Hiillermeier et al. [96] while extending their binary classification experiments
to the multiclass case, we evaluate our performance by plotting the accuracy-rejection (AR) curves
in selective classification problems. An AR curve plots accuracy against rejection rate: a model
that abstains on p% of inputs and predicts on the most certain (1 — p)% should show increasing
accuracy with p. An informative EU measure yields a monotonic AR curve, approaching the top-left
corner—analogous to ROC curves in standard classification.

Setup. As we are working with discrete label spaces, we consider Fry as our function class for
MML. Its linear-time upper bound is denoted as MMI-Lin. We compare them against two popular
epistemic UQ measures: the entropy difference (E-Diff) [100] and the generalised Hartley measure
(GH) [127]. To construct the credal set and corresponding lower probabilities, we utilise m = 10
probabilistic predictors trained with different hyperparameter configurations—random forests for
tabular data and neural networks for image data—and make predictions using the centroid of the
credal set, equivalent to averaging over all predictors. Specifically, for an instance x and predictors

{P;(Y | X =) 71, the lower probability is constructed as P(A) = minje(1,... m) Pi(Y € A|
X = z) for every possible subset of classes, and predictions are made using -1 Z;nzl Pi(Y | X =2).
While more advanced aggregation methods exist [14, 48], our aim is to assess UQ measures, not
optimise prediction. The lower probability here encodes the EU information we wish to recover
using MMI.The lower probability captures the epistemic uncertainty that MMI seeks to quantify. We
evaluate on two UCI datasets [128, 129] and CIFAR-10/100 [130]. We perform train-test splits on
the datasets and produce AR curves on the latter. All experiments are repeated 10 times, and the
mean and standard deviation of the accuracies are plotted. The full experimental set-up is discussed

in Appendix C.

Results. Figure 1 presents AR curves for our classification problems with 7, 10, and 100 classes. The
plots share the same message: MMI and MMI-Lin consistently outperform E-Diff and perform almost
identical to GH, which is often considered the most informative measure for epistemic UQ [123]. This
equivalence in performance may be because both measures satisfy all 6 desirable axioms for epistemic
UQ measures. Notably, Hoarau et al. [123] showed that GH and the credal epistemic measure (i.e., MMI
when K = 2) exhibit perfect correlation, suggesting they encode identical information. Our results
extend this insight, indicating that this equivalence may hold for arbitrary K. For large K, where
exact computation of MMI and GH becomes intractable (O(2%)), the upper bound MMI-Lin remains
efficient (O(K)) and continues to outperform E-Diff, offering a practical and reliable alternative to
GH. These results clearly demonstrate that our proposed IIPM framework and its application as an
epistemic UQ measure are not only theoretically justified, but also practical.



7 Discussion, limitations, and future directions

We introduced Integral Imprecise Probability Metrics (IIPMs) as a generalisation of classical Integral
Probability Metrics (IPMs) to the setting of imprecise probabilities. This framework enables the
comparison of IP models through Choquet integration. We provided initial theoretical analyses and
illustrated their practicality through epistemic UQ. Notably, the framework gives rise to a new class of
epistemic UQ measures—termed Maximum Mean Imprecisions—which outperforms several popular
alternatives in empirical evaluations on selective classification problems.

While this work opens new avenues for IPML research, a key limitation is the lack of a sampling-
based estimation method for IIPMs, unlike in classical IPMs. This arises from the absence of a
canonical sampling procedure for imprecise models, which capture subjective beliefs rather than
event frequencies. Nonetheless, advancing this direction could, for example, enable the integration of
EU into generative models based on IPMs [131, 72]. On the theoretical side, it would be valuable to
connect and extend other divergence classes, such as f-divergences and Bregman divergences, to the
context of capacities and more general IPs. Another open question is whether weaker conditions on
the function class F or space X’ can ensure that [IIPM r metrises capacities. From a computational
perspective, developing efficient nonparametric estimation methods for [IPMs is a key priority. A fur-
ther application-oriented direction is to quantify credal epistemic uncertainty in regression problems
using the IIPM framework, particularly in light of recent proposals for uncertainty quantification
axioms in regression [132].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 3 introduces the IIPM framework and how it can be used for analyses,
Section 4 introduces MMI and how it can be used for epistemic uncertainty quantification
and Section 6 presents experments validating our claims on MMI.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section 3 we discussed one limitation of IIPM, which is that, because
capacities are more general than probability measures, meaning it is less structured, many
“nice” properties in expectation, e.g. linearity, does not directly carry over to expectation
with imprecise probability. In Section 7 we also listed out another limitation, which is the
lack of sampling mechanism for imprecise probabilities, leading to the lack of sample-based
estimation for IIPM compared to standard IPM.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: Yes

Justification: We try to define everything we can and also provide the full set of assumptions
in the main text. We also provide proof sketches and strategies in the main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide code to reproduce our experiments. In the appendix, we also
provide a more detailed experimental set-up for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: Yes
Justification: A link to the codebase to reproduce our experiments are given.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: Yes
Justification: The full details are provided with the code, with explanations in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We repeated our experiments ten times and produces error bars for our results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We included this information in the appendix where we discussed the detailed
experimental setup.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the instructions and cited the appropriate reference when using
the datasets. We do not have to experiment on human subjects. Annoynamous code base is
also provided.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of core Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use standard datasets in the ML literature so it doesn’t seem applicable
here.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide references to all datasets we have used.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involde any crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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| lower/upper probabilities |

|
| 2-monotone capacities |
|

probability intervals | | random sets/belief function

| comonotonic clouds |

| probabilities |

Figure 2: A skeleton demonstrating the connection between various uncertainty calculi. “A — B”
means A generalises B, meaning that B is a specific instance of A. The figure is adopted from
Destercke et al. [133] and Hiillermeier and Waegeman [4]. Most of these frameworks generalise
classical probability theory. In the main text, we have discussed capacities, lower and upper
probabilities, and standard probabilities in detail, with a brief mention of 2-monotone capacities.
Additional discussion of credal sets and belief functions is provided in Appendix A. We do not
elaborate on the methods shown in grey; for those, we refer readers to existing surveys and review
articles.

A Some more introduction to Imprecise Probabilistic Machine Learning
(IPML)

In the main text, we demonstrate the theoretical appeal and practical utility of IIPM primarily through
capacities and lower probabilities. While these models are already quite general, we complement this
focus by discussing two other mainstream approaches in IPML—credal sets and belief functions—that,
although mathematically related, are conceptually motivated in distinct ways. As illustrated in the
hierarchy in Figure 2, these models are closely connected to the core ideas of the paper and further
support the relevance and broad applicability of the proposed IIPM and MMI framework.

A.1 What is Imprecise Probabilistic Machine Learning actually doing?

At its core, probabilistic machine learning seeks to construct mathematical models that, through
data-driven learning procedures, capture underlying physical or real-world phenomena. For instance,
in generative modelling, the objective is to learn the marginal probability distribution that governs the
data-generating process. In predictive tasks, instead, the goal is to estimate the conditional distribution
of a target variable Y given an input x—or its expectation in the case of regression. We often refer to
these kinds of natural variation and randomness as aleatoric uncertainty.

Imprecise probabilistic machine learning (IPML) extends this foundation by moving beyond the
exclusive use of precise probability models. While classical probability excels at modelling aleatoric
uncertainty, IPML incorporates imprecise probability models to account not only for inherent ran-
domness but also for epistemic uncertainty—allowing ambiguity, partial knowledge, and doubt to
be explicitly represented within the model. For readers interested in deeper treatments on IP, we
recommend Cuzzolin [9] for a comprehensive introduction, Hiillermeier and Waegeman [4, Appendix
Al, for a concise overview, and Caprio et al. [47, Appendix A], for a discussion on why we should
care about imprecision.

In the following, we provide an overview of two other mainstream modelling approaches in IPML:
credal set and belief function approaches. We outline the motivations behind these methods and
provide some examples of how they are integrated into ML to improve uncertainty quantification and
predictive performance.
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A.2 Credal sets and their use in IPML

Credal sets sit at the top of the hierarchy shown in Figure 2, making them one of the most general
constructs in imprecise probability. Many other models can be seen as special cases of credal sets
endowed with additional structure. Consequently, there are numerous ways to construct a credal set,
depending on the modelling assumptions and information available.

Credal sets are generally understood as some convex set of probability measures C C P(X’). Convex-
ity can be justified in different ways. In Quasi-Bayesian decision theory [134], it can be shown that
rationality axioms proposed for partial binary preference naturally leads to a convex set of probability
measures, akin to how Savage [135] showed rational binary preference leads to the existence of
a unique single probability distribution (paired along with an utility function). Alternatively, in
formal epistemology, Williamson [136] put forward the notion of Chance Calibration, which is also
closely related to Lewis [7]’s Principal Principle, which puts into the words of a statistician means,
when, according to the current observations, the actual distribution of interest encoding physical
phenomena lies within some set { Py, ..., P, } of distributions, but the modeller is indifferent as to
which distribution, then rationally, the modeller’s belief, also represented as a distribution, should lie
within ConvexHull({P;, ..., Py, }). This means any distribution in the convex hull is considered a
rational belief, thus, the set itself captures the set of rational beliefs, encompassing our imprecision.

In IPML, credal sets are often used to represent either

1. Dataset/Distribution-level uncertainty, or

2. Predictive uncertainty.

Case 1. In the first case, examples include distributionally robust optimisation[137], where a learning
algorithm is optimised against the worst-case empirical risk over a credal set—a set of distributions
within an e-distance from the observed empirical distribution. In the out-of-domain generalisation
literature, given observations from multiple source distributions Py, . .., [P,,, it is commonly assumed
that the test-time distribution lies within their convex hull [138, 139], which effectively forms a credal
set. Singh et al. [14] made this connection explicit and proposed an algorithm that allows the test-time
ambiguity to be resolved without additional training. Caprio et al. [49] developed a learning-theoretic
framework for supervised learning under credal sets, while Chau et al. [15] introduced a hypothesis
testing procedure for statistically comparing credal sets.

Case 2. In the second case, credal sets are used to model epistemic uncertainty in prediction. In
credal Bayesian deep learning (CBDL) [47], finitely generated credal sets over priors and likelihoods
are combined, by considering all combinatorial applications of Bayes’ rule, to yield a posterior
credal set. Wang et al. [83] introduced credal-set interval neural networks, which predict credal sets
from probability intervals derived from deterministic interval neural network outputs. Similarly, for
classification tasks, Wang et al. [140] proposed defining a predictive credal set as the collection of
probability vectors within the simplex that satisfy lower and upper bounds on class probabilities,
derived from a set of probabilistic predictors.

A.3 Belief function/random set and their use in IPML

Moving down the hierarchy—and skipping lower probabilities and 2-monotone capacities, which are
already discussed in the main paper—we briefly describe the roles of random set theory and belief
functions.

We focus on finite instance spaces X, where random set theory and belief functions coincide. Our
exposition follows the terminology of Shafer’s seminal work on The Theory of Evidence [23] and
the overview in Cuzzolin [141, Chapter 2.2]. The core philosophy behind belief function theory
is its emphasis on representing degrees of support—capturing epistemic uncertainty—rather than
specifying how these values are generated, which relates more to aleatoric uncertainty. Perhaps more
importantly are the tools developed to combine multiple evidence in a coherent manner.

So, how are belief functions defined? We first introduce a fundamental concept, called basic
probability assignments. Let X be finite.
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Definition 22. A basic probability assignment over X is a set function m : 2% — [0, 1] such that

m(@®) =0, > m(4) =1

ACx

The subsets that have non-zero mass are known as the focal elements within 2. Basic probability
assignment happens in practice when, e.g., sensors have limited precision and can only give results of
the type “A or B” [142].

Given a mass function m, which intuitively represents the degree of belief that the true outcome lies
exactly within the subset A € 2%, m(A) quantifies the support assigned to the set A and no more
specific subset. From here, we can derive the belief function.

Definition 23. The belief function associated with a basic probability assignment m : 2% — [0,1] is
the set function Bel : 2% — [0, 1] defined as,

Bel(4) = Y m(B).

BCA

Its conjugate, known as the plausibility function P1, measures the amount of evidence not against an
event A by measuring the following,

PI(A) = 1 — Bel(A°).

The theory of evidence is rich and conceptually deep, and a full treatment lies beyond the scope
of this appendix. However, the context provided should suffice to understand a recent integration
of belief functions into machine learning. Specifically, Manchingal et al. [143] introduced a new
class of neural networks, called Random-Set Neural Networks (RS-NNs), for K -class classification.
Instead of producing a probability vector with K outputs—as in standard classifiers—RS-NNs are
designed to output a basic probability assignment over the K classes, requiring 2% output nodes to
represent belief mass on all subsets of classes. Since this is computationally infeasible for large K, a
preprocessing step is introduced to select a subset of focal elements, including the original singleton
classes and additional relevant subsets. Given the resulting mass function, belief and plausibility
functions can then be derived for prediction and uncertainty quantification. This principle is further
extended to convolutional neural networks in Manchingal et al. [81]. As perhaps the first of its kind,
this random set-based learning paradigm has also been recently adapted to large language models in
Mubashar et al. [144], offering an explicit mechanism for modelling epistemic uncertainty in LLMs.

B Proofs and derivations
This section presents the proofs and derivation in the main text.

B.1 Proof of Lemma 5

Lemma 5. For lower probability P associated to credal set C, we have § fdP < infpec [ fdP for
any f € Cy(X). When P is 2-monotonic, the inequality becomes an equality.

Proof. Let P be the lower probability associated to the credal set C. For f € Cj,(X'), we can write
the Choquet integral as,

f JaP=f+ /f " Pt = e

f+/ff inf P({f > t})dt

PeC

7
< f+ inf /f P({f > t})dt

pPecC

= }}éfc / fdP.

For 2-monotone P, the results follow from Delbaen [145, Lemma 2]. O
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B.2 Proof of Theorem 6

Theorem 6. Let (X, d) be a metric space. For any capacities v, jp € V(X), we have § fdv = § fdu
forall f € Cyo(X), if and only if v = p

Proof. (=) Let U be any open set in X’ and F' the complement. Consider the distance d(z, F') =
mingep d(x,y). Forn = 1,2,..., let f,(x) = min(1,nd(z, F')). Then, sup,cg|fn — f| = 0,
where f = 1y is the indicating function. Now, as Choquet integration is continuous with respect to
the topology of uniform convergence [19, Proposition C.5(ix)], we have

lim fndv = ][1Ud1/ = /1Ud,u.

n—oo

This implies v(U) = u(U). Now, since (X, d) is a metric space, for any A € X, we can find an
increasing sequence of open subsets A; C As, ... such that A,, T A. Since v, p are continuous from
below, we have lim,,_, o, v(A4,,) = v(A), but since for any open set v(A,,) = u(A,), we conclude
v(A) = u(A), thus v = p.

(<= )Ifv = p, thenitis trivial to see § fdv = § fu forany f € C(S). O
B.3 Proof of Corollary 8
Corollary 8. Forany P,Q € P(X) and F C Cp(X), IIPM£(P,Q) = IPM£(P, Q).

Proof. Forany P, € P(X) and F C Cy(X), we have

IIPM£(P, Q) —ﬁgg{‘jffdp j/fdQ‘}

= {| [ sap— [ 1ac}

=IPMx(P,Q),
since the Choquet integral for additive probability is the Lebesgue integral. O
B.4 Proof of Proposition 9

Proposition 9. For any F C Cy(X), IIPM£ is a pseudometric on V(X); it is non-negative,
symmetric, and satisfies the triangle inequality.

Proof. To prove it is a pseudometric, we need non-negativity, symmetry, and to show triangle
inequality.

* Non-negative: It is obvious that IIPM (14, v2) > 0 for any pair of vy, 15 € V(X)
e Symmetric: Symmetry is also apparent.

* Triangle inequality: Pick vy, 5, 3 from V(X), then

ITPM £ (v1, v3) = sup /fdl/l /fdwz

fer

:?1612 ffdl/l —)[fdug,-l—/fdug—)[fdug
< ]scleqf) /fdyl —/fdug —|—sup ’/fdyg—/fdllg

= IIPl\/I]:(l/l7 1/3) + IIPMf(I/3, 1/2).

This concludes the proof. We note that in some literature, pseudometric also requires IIPM = (v, v) =
0, and this also trivially holds in our case. O
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B.5 Proof of Theorem 10

Theorem 10. Ler F C Cy(X) be dense in Cy(X) with respect to the || - || norm. Then, IIPM
metrises the Choquet weak convergence of V(X).

Proof. To show that IIPM x metrises the Choquet weak convergence of V(X'), we need to show for
Un,v € V(X), whenever ITPM £ (v,,, v) — 0 then v, converges to v in the Choquet weak sense.

Now pick f € Cp(X), since by assumption F is dense in Cy,(X), there exists g € F satisfying
|lf — gl < €. By assumption, IIPM#(v,,,v) — 0 means |§ gdv,, — § gdv| — 0 since g € F.

Thus, we have the bound
‘ffdun—j[fdu §’j[fdun—/gdun —l—‘/gdyn—/gdu —l—‘/gdy—/fdy
< 2e¢

forall f € Cy(X) and € > 0, which implies v,, converges to v in the Choquet weak sense.

Proving the other direction is a direct application of the result from Theorem 6 since 7 C Cy(X). O

B.6 Proof of Proposition 12

Proposition 12. The Lower Dudley metric metrises Choquet weak convergence on P(X).

Proof. The core idea is to show that 7 is dense in C,(X’) and then to apply Theorem 10.

To show denseness, pick any f € Cy,(X), consider the sequence
fo(x) = inf {f(y) +nd(z, y)}.
yeX

Pick a > 0 such that |f(x)| < aforall x € X, thus |f(x) — f(v)] < |f(z)] + |f(y)| < « for any
x,y € X. It’s clear that —a < f,, < f is bounded and n—Lipschitz continuous. Now we prove
fn — f uniformly. Fix € > 0, there is ¢ > 0 such that d(z,y) < ¢ implies | f(x) — f(y)| < € since
f is continuous. Then for all z € X, we have

0< f(x) = falz) = fz) — yigg{f(y) +nd(z,y)}
= Slelg{f(w) = f(y) —nd(z,y)}

= sup {f(@) = fy) — nd(z,y)}.
YyEX d(z,y)<22/n
If o is such that 2% < §, then

f(@) = fule) <suple —nd(z,y) |y € X s.td(z,y) <2/n} <e

which follows that || f — f,,|| < €, meaning Fy is dense in C},(X) in the uniform norm. O

B.7 Proof of Remark 14

Remark 14. Let X be finite. For any P,Q € P(X), we have IPMr,.,, (P, Q) = sup s¢x, |P(A) —
QA =13 cx (P{x}) — Q({x})). In contrast, in the imprecise case, there exists P, Q € P(X)

such that IPM ., (P, Q) := supsex,, [P(A) = Q(A)| # 3 X, (P({z}) — Q{z})).

Proof. We provide an example based on Montes et al. [146, Example 4] for completeness. Consider
X = {1, x2, 3} and lower probabilities P, P, given by

| 0 {x} {xo) (w3} {xi, 20} {mi,23) (w2230 X
P, 10 0 0 0 1/ 1/ 1/ 1
Py | 0 0 0 0 1/3 1/3 1/3 1

Then, we know di = supycy |[Pi(A) — Py(A)| = 16, whereas do = > |Pi({}) —
P,5({z})| = 0, therefore dy # do. O
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B.8 Proof of Lemma 15

Lemma 15. Let P, p be an e-contaminated model defined in Equation (2). Then, the associated
lower probability P_ is given by

(1—€)P(A) forall A e Lx\{X}

P.(A)= _inf P(A)= {17 forA— X

PeP. p

Proof. This lemma is proved in Walley [8, Section 2.9.2]. O

B.9 Proof of Theorem 16

Theorem 16. Let Fy = {f € Cp(X) : |||l < 1} where ||f]|L = sup, ,ex{|/®)—FW)l/c(@y)},
and c the transportation cost in a restricted lower probability Kantorovich (RLPK) problem [56,
Definition 10]. Let P,, Q be lower probabilities of the e-contaminated models P p and P q.

Then, IIPM £, (P, Q) coincides with the objective of the RLPK problem, and thus coincides with the
classical Kantorovich’s optimal transport problem involving P and Q).

Proof. Our goal is to show that TPM z,, (P., Qe) coincides with the objective of the restricted lower
probability Kantorovich problem. Note that we have,

MPM, (P,, Q) = sup ‘ frae.-{ fdQ‘

feFw

— sup / P.({f > 1) - Q.({f > t})]at
feFw |Jf
f
@ gup / P.({f > ) - Q.({f > th]dt
feFw |/ f
f
- / (- OP{f > 1)) — (1— QS > t})dt
feFw |Jf

P 1—eisup ‘/fdP /fdQ’

FeEFw

(:) (1 76) lIlf )/C(x,y)ﬁ(dI,dy)

el (P,Q

where I'( P, Q) is the set of joint probability with marginals being P and (). We replaced the inequality
with strict inequality in O as in Troffaes and De Cooman [19, Proposition C.3.ii]. In & we used the
fact that Choquet integration returns the standard Lebesgue integral when the capacity is a probability
measure, and in & we used Kantorovich-Rubinstein theorem [147, Lecture 3], which established the
duality between the Kantorovich problem and an IPM formulation using function class Fy. This
recovered the result from Caprio [56] through the use of our [IPM framework. [

B.10 Proof of Proposition 18

Proposition 18. The definition of MMI is equivalent to

f
MMIA(E) = sy [T (P <)+ PUS 2 6 @

fer
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Proof. To show the result, it follows from the definition that

MMI (P —;gg{/fdP /fdP}

— sup / PS> 1)) - P({f > t}))dt
f

ferJy

7
— Sup/ [1—(P{f <th)+P{f>t}))dt
f

ferJy

which completes the proof. O

B.11 Proof of Proposition 19

Proposition 19 (MMI on e-contamination set.). Let P_ be the lower probability associated with Pe_p
and F C Cyp(X). Then MMIx(P,) = € (supfef- sup, yex |f(2) — f()]). For the LTV distance

with Fpy := {14 : A€ Sx}, we have MMI ., (P,) = supsex, {Pe(4) — P (A)} =«

Proof. First, it can be shown readily the upper probability model for an € contamination set:

(A —e)P(A)+€e forAe Xx\0
(A)_{O forA:@X '

ol

Next, we have

MMIz(P,) = ?Eg{/fdP /fdP}

~ sup / [P({f > t}) - P({f > t})]dt
fer s

f
— sup / e+ (1= OP{f > 1)) — (1 — ) P({f > t})] dt
ferJy

f
= sup/ edt
ferly

—e(sup[f—f]) :e<sup sup |f(w)—f(y)|>,
ferx fEF zyeX

which shows the result. For Fry, it is straightforward to see that the maximum value the terms in the
bracket of the last equation can attain is 1. Therefore,

MMI]’-TV (Ee) =€
This completes the proof. O

B.12 Proof for Theorem 20

To prove our uncertainty measure satisfies the axioms, we need the following useful lemma.
Lemma 24 (Marginalisation preserves 2-monotonicty.). If P is a 2-monotone capacity defined on
the joint measurable space (X x Y, Xx x Xy), and let P{(-) = P(-,)) be the marginal capacity
on (X,Xx) and P,(-) = P(X,-) be the marginal capacity on (Y, Ey) then P, and P, are also
2-monotone. Marginalisation also preserves 2-alternating.

Proof. Recall the definition of 2-monotonicty, for any A, B € ¥y x Xy, we have
P(AUB)+ P(ANB) > P(A) + P(B).
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Now pick Ay, B; € X x, then consider,

P,(A1UBy) + P(A1NBy)

P((AUB) xY)+P((A1NBy) x))
P (A1 xY)U(B1 xY))+P((A1 xY) N (B1 xY))
P(Ay xY)+P (B x))

1(Ar) + Py (By).

Y

This shows that 2-monotonicity holds for P; and by symmetry, it also holds for P,. Therefore,
marginalisation preserves 2-monotonicity. The steps to show marginalisation preserves 2-alternating
are analogous. O

Theorem 20. For any F C Cy(X), MMIx satisfies axioms A1-A4. If P is 2-monotonic and
with F = Fio defined above, then MM r,, satisfies axioms AI-AS. For A5, the subadditivity
becomes MMl r,, < MMIz, +MMlIg,. If the notion of independence in A6 is taken to be strong
independence in the sense of Cozman [99], A6 also holds, and MMI r,, = MMIr, +MMIg,.

Proof. Axiom Al. Starting from Axiom A1 that MMI r is non-negative and bounded. First, recall
that lower probabilities are super-additive, meaning, for A, B € ¥y with AN B = (, we have

P(AUB) > P(4) + P(B).
Now let A = {f >t} and B = {f < ¢}, then we have

1> P({f =t}) + P{f <t}).

This means the integrand in Equation (3) is always non-negative, thus, MMI r is always non-negative.
To show boundedness, notice that,

f
sup / 11— (P({f > 1)) + P({f < £}))
f

fer

| MMILz(P)| =

fer

f
< sup/ 1dt
ferJf

=sup sup |f(z)— f(y)|

feFxyeXx

< 2 sup sup | ().
feFzex

f
< sup /f 11— (P({f > 1)) + P({f < t}))] dt

As f € Cy(X), by definition, it is a bounded function, thus sup s¢ » sup,¢ v | f()] is bounded.

Axiom A2. For continuity, our goal is to show that given a sequence of lower probabilities P,
converges to P in the Choquet weak convergence sense, then MMIz(P,) — MMIz(P). Pick
€ > 0, we know there exists n. € N such that for all n > n.,

VfdPn—][fdP’<e

forall f € Cp(X). An immediate result that follows from Troffaes and De Cooman [19, Proposition
C.5.1v] for upper probabilities is,

VfdPn—)[fdP‘ _ ‘/—fdPn—/—fdP‘ <
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since — f € Cp(X). Now with this n, we know
IMMI#(£,,) — MMI#(P)|

= |sup{ fdﬁn—/fdﬂn}— sup{ 9dﬁ—)[gd2}

feF geF

= |sup{ fdﬁn—/fdﬁ+/fdﬁ—/fd£+/fd£—/fd£n}—sup{ gdﬁ—fgdﬂ}

feFr geEF

IA

sup{ { fdP, - / AP} + supt P, - / fdP} + sup{ { gdP - / gdP} — sup{ § gdP — / gdP)

feF geF geEF

;gg{/fdPn —][fdﬁl +J§1€1£’T{|)[fdpn —/de\} < 2e.

Thus, we have proven continuity of MMI £.

IN

Axiom A3. To prove monotonicity, notice if P is setwise dominated by @, then we have for any ¢
and any f € F,

PAf=th) +P{f <t}) <QUf =t} + QS <1})
= 1-(B{f zth +P{f <t})) =2 1= (QUS = t}) + QU < 1})).

Since the integrand of one integral is always at least as large as the other one, by Troffaes and
De Cooman [19, Proposition C.5.vi], we have
F F
=Bz w s <z 1o @S 2 )+ QU < e
— MMIz(P) > MMIx(Q).

Axiom A4. Showing probability consistency is almost trivial as any P € P(X) is self-conjugate,
therefore MMIz(P) = 0.

Axiom AS. Recall F75 is defined as

Fro:={f € Co(X) | f(x1,22) = fi(x1) + fao(w2) for some f1 € Cy(X1), fo € Cy(A2)}
also that for axiom A5 we are working with 2-monotonic lower probabilities P, meaning for any
event A, B € Xy,

P(AUB) + P(AN B) = P(A) + P(B). )

Now with Troffaes and De Cooman [19, Proposition C.7] we know that for 2-monotone capacities,
the Choquet integral is super-additive, meaning, for f € Fio

/fd£:/(f1+f2)d£2 j[fldﬂ-l-)[fgdﬂz][fldﬂl-i-/fngQ.

Notice the last equality holds because P({f1 > t}) = P({{zx1 € X | fi(z1) >t} x Xa}) =
Pi({z1 € X1 | fi(x1) > t}). Similarly, we can show that for upper probabilities of 2-monotone
lower probabilities, they are 2-alternating, meaning that

f 1P = f(5i+ p)aP < { P+ { fodP = § 1dPy - { il

Now, combine the two results, we have,
MMl (P)

- sup {f jap— f yar}
< s {{ P f o (f piess f par.) )
< sup { f 74P~ fgaps )+ swp { f 502~ { o
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Axiom A6. Now when P, and P, are strongly independent, then the credal set associated to P,
denote as C, is related to the credal set associated to P, and P,, denote as C; and Ca, as follows:

Ci:={PeP(X)|P=P P, forsome P, € Cy, P, € Ca}.

To show that the uncertainty is additive when strong independence holds, we use the following
representation of the Choquet integral for 2-monotone lower probabilities,

o= [

and similarly for 2-alternating upper probabilities, we have

§ 5P = | gar

Now we can show the result, starting with

MM, (P)

- s {f saP— f ae}

@ s o [0+ fap— gt [+ a0

f1e€F1,f2€F2 L PeC

B .

D { sup { [ harc+ | dePQ} ~ i { [ faai- [ deQQ}}
f1€F1,foeF2 \P1€C1,P2€Cy Q1€C1,Q2€C2

= sup {sup /fldPl—i— sup /dePQ— inf /fldQl— inf /fngg}
f1EF1,fa€F2 L P1ECy P>eCso Q1€Cy Q2€Co

c _ _

(:) sup {ffldpl + ffzdpg — ffld&— fod&}
f1€F1,f2€F2

= sup {/fldPl—/fldPl}—F sup {/dePg—/dePz}
fieF fo€F2

= MMI]:1 (Bl) + MMI.Fz (BZ) :

In step (A), we used the fact that the Choquet integral of 2-monotone capacities is the lower envelope
of the set of expectations with respect to the credal set [145, Lemma 2]. In Step (B), we used the
fact that due to strong independence, every element in P € C can be written as a product of some
P, € C; and P, € Cy and the fact that Lebesgue integration is linear, and j fi(z1)P(dzy,dxs) =
J fi(z1)Pi(dzq). Finally, in step (C), we used Lemma 24, which stated that marginals of a 2-

monotone capacity remain 2-monotone, therefore, we can write inf p, c¢, f f1d Py back as a Choquet
integral. O

B.13 Proof of Proposition 21

Finally, to prove the result for the upper bound, we first recall an intermediate result from Montes
et al. [146, Proposition 8], which provides a construction for the best pessimistic e-contamination
set approximation to any lower probability P € P(X’). Understanding this proposition requires
clarifying the concept of dominance and outer approximation.

Definition 25 (Outer approximation). Let X’ be finite and Q, P € P(X') two lower probabilities. We
say Q is an outer approximation of P if for every event A € 2%, Q(A) < P(A).

The direction of the inequality might be confusing at first, but by realising Q(A4) < P(A) for every
event A € 2%, it means the core of Q, i.e.

M(Q) ={Q e P(X): Q(A) > Q(4) VA e2¥},
is at least as large as the core of P,i.e. M(P) C M(Q).
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Definition 26 (Undominated outer approximation in C,(X)). Let P € P(X) be a lower probability.
Let C,.(X) C P(X) be a subspace of which the outer approximation Q) resides. We say @ is an

undominated outer approximation of P in C,(X) if there exists no other lower probabilities Q’ in

Ci(X) such that M(P) C M(Q") € M(Q).

Now we have all the language to understand the result from Montes et al. [146]. Let C(X)) denote
the space of all e-contamination models defined on X'.

Proposition 27. Let P € P(X) be a lower probability. Define ¢ € (0, 1) and the probability Py by:

P({z})
e=1-— P{z}), P{x\) = ——-"7
x;{f({ ) o({z}) S P(a)

Denote by P, the e-contaminated model constructed following Lemma 15. Then, P_ is the unique
undominated outer approximation of P in C.(X).

, foreveryx € X.

With this result, we can now derive the upper bound for MMI£,.,, (P).
Proposition 21. Let X be finite. For any P € P(X), MMIz,., (P) <1—3% ., P({x}).

Proof. We know for any P, P_ constructed as in Proposition 27, is the unique undominated outer
approximation of P € C.(X’). Since it is an outer approximation, meaning that P_(A) < P(A) for
all events A € 2%, therefore by the monotonicity axiom (Axiom 3) in theorem 20, we know for any
F C Cp(X), we have

MMIx(P) < MMIx(P,).
Now choose F = Fry as in Definition 13, then along with Proposition 19, we have

MMI]-'TV (E) < MMI]:TV (Ee)

=1-Y " P({x}).

zeX

This concludes the derivation. O

C Further experimental details

C.1 Ablation study: Correlation with Generalised Hartley and Entropy Difference.

In the main text, we observed that the performance of MMLI, its linear-time upper bound MMI-Lin,
and the generalised Hartley measure are nearly equivalent in the context of selective classification.
This raises the question: are they numerically equivalent? That is, is generalised Hartley and MMI
using the total variation function space, i.e. lower TV, providing the same value? While staring at
the equations tells us they are not equivalent, our ablation study suggests that even though they are
highly correlated, they are not the same.

To investigate that, we use the UCI wine dataset [148], perform one round of train-test split, train 10
random forests models as described in the main text to construct the lower probabilities, and then
compute the epistemic uncertainty measurements for the test data. After that, we plot all possible
pairwise comparison plots between the methods, i.e. MMI, MMI-Lin, Generalised Hartley, and
Entropy difference. We see that MMI and GH are highly correlated but not exactly perfectly correlated.
The upper bound is also highly correlated, suggesting empirically (along with experiments in the
main text), that this approximation is quite tight. Also, we see that MMI and entropy differences do
not correlate that well, which explains the difference in downstream performance in the experiments.

C.2 Overview of Generalised Hartley measures and Entropy Differences

We refer the reader to the recent survey by Hoarau et al. [123] on this topic. We hereby provide
background on the two methods we compared against in the main text.
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Ablation Study of credal QU methods on Wine dataset with 10 models

MMI(LTV) vs Entropy Difference (Corr 0.53) MMI(LTV) vs Generalised Hartley (Corr 0.98) MMI vs MMI-Lin (Corr 0.97)
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Figure 3: Comparing the UQ measurements on the withheld test set of the UCI wine dataset [148].
We see that MMI and GH are highly correlated, but not exactly perfectly correlated. The upper
bound is also highly correlated, suggesting empirically (along with experiments in the main text),
that this approximation is quite tight. Finally, we see that MMI and entropy differences do not
correlate that well.

Generalised Hartley Measure. Generalised Hartley measure, as the name suggests, is a generali-
sation of the classical Hartley measure, which is defined as follows:

Definition 28 (Hartley Measure). Let X be finite. A Hartley measure Uy is a function 27 + R such
that U (A) = log, |A| for A € 2%,

The Hartley measure can thus be understood as a measure of uncertainty over sets, which can also
be viewed as a function on natural numbers. While the expression is simple, Rényi showed that the
Hartley measure is the only function mapping natural numbers to the reals that satisfies:

1. Ug(mn) =Ug(m)+Ug(n) (additivity)

2. Ug(m) > Ug(m+1) (monotonicity)

3. Uyg(2) =1 (normalisation)
These are natural conditions for measuring the amount of uncertainty, or equivalently, information,

within a set. The generalised Hartley measure extends this idea of measuring uncertainty in sets in
the following way,

Definition 29 (Generalised Hartley [94]). Let X be finite. Given a lower probability P € P(X), the
generalised Hartley U i maps P to R as follows:

Ucr(P) =) mp(A)logy(|4]),

ACx

where the mass function mp : 2% — [0, 1] is the Mobius inverse of P, defined as,

mp(A) = 37 (-1 p(B).

BCA

It is well known that the Mobius inverse is an equivalent representation of a lower probability, in the
sense that, once the mass function is known, we can recover P by computing,



Entropy Differences. To measure aleatoric uncertainty for a given distribution P, the Shannon
entropy is an intuitive solution. The Shannon entropy, or simply entropy, measures the amount of
information contained or provided by a source of information.

Definition 30 (Shannon Entropy). Let X be finite. The Shannon entropy of a distribution P is
measured by

Usn(P) = = Y P({})logy(P({z}).

zeX

Now, when given a set of probabilities, i.e. a credal set, to measure the amount of epistemic uncertainty,
or in some literature, they call this non-specificity, one natural approach would be to measure the
largest difference between the entropies of any two distributions within the set. Formalised below,

Definition 31 (Entropy Difference). Let X be finite and C a credal set. The entropy difference is
measured by,

max Usy(P) — min Ush(Q).

This measure seems intuitive, but violates the monotonicity axioms that a sensible credal UQ measure
should satisfy. Consider a credal set C and Py, P; the distributions that attained the maximum and
minimum of the entropies of the distributions in C. Now, enlarge C to C’ by adding distributions that
have strictly less entropy than P; but more entropy than P,, then we have C C C’, but the entropy
differences will stay the same. This violates the monotonicity axioms that say, when a credal set is
strictly larger than the other, then the former should be deemed more epistemically uncertain than the
latter.

Nonetheless, the entropy difference is still often used in practice as it is simple to compute, and it
can be used to decompose ’total uncertainty’ into ’aleatoric’ and ’epistemic’ components. See for
example in Abelldn et al. [100], the author defined,

P)= mi P) — mi ]
I};ggUSh( ) glelrclUSh(Q) +r})12é<USh( ) IQneuclUSh(Q)

Total Uncertainty Aleatoric Uncertainty Epistemic Uncertainty

C.3 Implementation details

We provide full experimental details here, which were abbreviated in Section 6 due to space constraints.
The experiments were executed on a machine with 8 vCPUs, 30 GB memory, with a NVIDIA V100
GPU.

We evaluate the performance of Maximum Mean Imprecision using a selective classification task,
following the setup in Shaker and Hiillermeier [57] and Shaker and Hiillermeier [80]. Each dataset is
split into training and test sets. For tabular datasets (the Obesity dataset from UCI and Digits dataset
from Sci-kit learn), we train 10 random forests with randomly chosen hyperparameters (e.g., tree
depth) on the same training set, and evaluate them on the test set. For image datasets (CIFAR10 and
CIFAR100), we use 10 pretrained neural networks per task, available at https://github.com/
chenyaofo/pytorch-cifar-models. These models were trained using PyTorch’s default CIFAR
training sets, and we evaluate the standard CIFAR test sets by dividing them into 10 buckets to
introduce variability.

For both tabular and image data, we use the centroid of the credal set as the predictor, similar to
standard ensemble methods. The corresponding lower probability is computed by evaluating the most
pessimistic likelihood across the set of predictions for each possible outcome.

D IIPM with epsilon-contamination set

In this section of the appendix, we continue from Section 3 and dive deeper into the connections
between IIPM and the epsilon contamination model—a popular class of imprecise models.

39


https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models

D.1 Lower Probability Kantorovich Problem

In this subsection, we provide the background on a recently considered problem called the lower
probability Kantorovich problem, proposed in Caprio [56]. We start by reviewing what a classical
Kantorovich problem is.

Classical Kantorovich problem. Let P,QQ € P(X) be two probability measures on X. Let
c: X x X — R, be a measurable cost function that gives us the cost of moving on unit of probability
mass from the first argument to the other. Then the classical Kantorovich problem is the following
optimisation problem,

arginf,cr(p,g) {/c(a:,z)da(x,z)}

where I'( P, Q) is the set of all joint probability measures whose marginals are P and Q. « is also
denote as the transportation plan, and this is also famously known as the optimal transport problem.

Lower Probability Kantorovich problem. Caprio [56] consider the following research question,

What does Kanotorovich’s problem look like, when instead of transporting probability measures, we
transport lower probabilities?

As his answer, Caprio [56] provided the following characterisation of the problem,

Definition 32 (Lower Probability Kantorovich’s OT problem; LPK). Letc: X x X — Ry bea
Borel measurable cost function. Given lower probabilities P and () on X, we want to find the joint
lower probability alpha on X x X that solves the following optimisation problem

arginfger(gg) {/X . c(z,z)da(z,z)} ,
P X

where I'(P, Q) is the collection of all joint lower probabilities on X x X whose marginals on X are
P and Q, respectively.

While this might seem like a straightforward extension from the classical formulation, it is important
to note that for imprecise probability theory, there is no unique way to perform conditioning, which
means extra care has to be taken into defining I'( P, Q)).In particular, they focus on a subset of the
joint lower probabilities constructed from using geometric conditioning, and called the corresponding
LPK problem restricted to such conditioning set the restricted LPK problem.

Later on in Theorem 11 of [56], they managed to show that the restricted LPK problem coincides
exactly with the classical Kantorovich for epsilon-contaminated sets. We managed to recover this
result in our Theorem 16 without needing to consider any specific type of conditioning. In the future,
we will investigate how could our result complements to their theory, perhaps allow them to consider
other types of conditioning operations in IP.

D.2 Nonparametric Estimator of IIPM with e-contamination set using kernel distance.

Now consider €, § € (0,1) two contamination levels, and distributions P, Q) € P(X’) which we have
i.i.d samples from. Specifically, let X1,..., X, “d P and ZiyeeesZom i () be random variables
taking values in X'. We are interested in quantifying the difference between the e-contaminated model

of P,i.e. P,, with respect to the J-contaminated model @, i.e. Qa.

A short overview of kernel distances (MMD). For generic spaces X, with iid samples from
P and @), a popular class of non-parametric discrepancy estimator is the maximum mean discrep-
ancy (MMD) [67, 71]. Specifically, pick a kernel function k£ : X x X — R and consider the uniform
ball in the corresponding reproducing kernel Hilbert space (RKHS), i.e. Fr, = {f € Hg s.t. ||f|lx =
1}, where || - ||, stands for the RKHS norm. The MMD can be expressed as an IPM with respect to
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function class Fy,,
MMDy (P, Q) =IPMg, (P,Q

e
FeH K| fllk=1

@ {‘U’/k(x,-)dP(X»—<f,/k(X,-)dQ(X)>’}

FeHps| fllk=1

= e (5 6020000 1652000

B /k(X,)dP(X) —/k(X,-)dQ(X)

k

©

= ller — pollk
where in step (A) we first use the reproducing property of RKHS functions, (f(z) = (f, k(x,))),
and then use the linearity of the inner product to ‘push’ the expectation inside. In step (B) we use the
fact that inner product is maximised when the two vectors align, so we pick the unit-norm function to

be
;IR AP0 — [ KX X)
I F(k(X,)dP(X) = [ k(X,)dQ(X)]
Finally, in step (C), we simply write the (Bochner) 1ntegral of the feature representation into a more
familiar-looking expression, called the kernel mean embedding [149, 150]. This simple expression
facilitates further simplification, i.e.

MMDy(P,Q)* = l|lur — polli

= (P = pQ, kP — 1Q)

(2) EX7X/~P[]’C(X, X’)] - 2EXNP,ZNQ[]€(X7 Z)] + EZ7ZINQ[,Z€(Z, Z/)]
Meaning that we don’t need a parametric assumption on how the data is distributed, as long as we
have a way to define similarity between instances through a kernel function, we can estimate the
difference between the distributions based on their samples by estimating the expectations in step
D. Furthermore, for a wide class of kernels, known as charactersitic kernels, the mapping from
P [k(X dP( ) is injective, thus MMDy, is a proper metric between probability distributions.
Owing to its s1mpllclty, kernel mean embeddings and MMDs have been used to tackle a broad range
of statistical tasks, ranging from hypothesis testing [71] to parameter estimation [151, 152], causal
inference [153, 154], feature attribution [155, 43], and learning on distributions [156, 157].

Generalising to contamination sets. In general, given a lower probability P, the notion of samples
from P is ill-defined as lower probability often is used to encode subjective assessment rather than
describing the data-generating process. As such, devising a sample-based estimator for the Choquet
integral, akin to Monte Carlo estimation for the Lebesgue integral, is not yet possible. Nonetheless,
in the case of utilising lower probability constructed through an epsilon contamination model, this is
possible.

Recall ¢,6 € (0,1) are two contamination level, with P, and @) the corresponding contaminated

models. We are now interested in quantifying the difference between this two lower probabilities using
the IIPM framework through the kernel distances. As before, pick Fi, = {f € Hy s.t. || f]lx = 1},

then we have

[IPM£ (P.. Q) = dP, d
7B ly) st = 1{‘/f /f <,

(i su
- fe?-lk§|§)|k—1{ /f (BLF > ) = Q,0f > 1)) dt

(D)
= 1—¢ dP—(1-9 d
ot a0 frar=a=5 [ ral}

(i)
2N = up — (1= gl

=

S
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where in step (i) we simply expand our the definition of Choquet integral. In step (ii), we follow
Lemma 15 and the proof of Theorem 16 to express the Choquet integral now as a weighted Lebesgue
integral. In step (iii), we follow the derivations of standard MMD provided in the previous paragraph.

Subsequently, the square of IIPMx, (P, Q 5) can be expressed as,

IIPM7, (P,, Q;) = (1 — €)°’Ex, x/~p[k(X, X')]
—2(1 = (1 = 6)Expsmolk(X, 2)] + (1 — 6)Ey 2~olk(Z, 2.

This allows us to then construct a non-parametric (unbiased) estimator of (the square of
MPMF, (P, Q;) as follows,

HPME, (P..Qp) = (1= s 30 30 (XL X))

i=1 j=1,j#i
1 n m m
-2l -e)(1- 5)% sz(xi, Zj)+(1-9)? Z Z k(Zi, Z;)
i=1 j=1 i=1j=1,j#i

Due to project scope, we did not further investigate the concrete applications of such a non-parametric
worst-case probability discrepancy estimator, but in future work, we will explore its use case in robust
two-sample testing, akin to Schrab and Kim [158], or in generative model training, akin to Li et al.

[131].
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