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Abstract
Drug discovery is a complex process that
involves multiple stages and tasks. However,
existing molecular generative models can only
tackle some of these tasks. We present Gen-
eralist Molecular generative model (GenMol),
a versatile framework that uses only a single
discrete diffusion model to handle diverse drug
discovery scenarios. GenMol generates Sequen-
tial Attachment-based Fragment Embedding
(SAFE) sequences through non-autoregressive
bidirectional parallel decoding, thereby allowing
the utilization of a molecular context that does
not rely on the specific token ordering while
having better sampling efficiency. GenMol uses
fragments as basic building blocks for molecules
and introduces fragment remasking, a strategy
that optimizes molecules by regenerating masked
fragments, enabling effective exploration of
chemical space. We further propose molecular
context guidance (MCG), a guidance method tai-
lored for masked discrete diffusion of GenMol.
GenMol significantly outperforms the previous
GPT-based model in de novo generation and
fragment-constrained generation, and achieves
state-of-the-art performance in goal-directed hit
generation and lead optimization. These results
demonstrate that GenMol can tackle a wide range
of drug discovery tasks, providing a unified and
versatile approach for molecular design.

1. Introduction
Discovering molecules with the desired chemical profile is
the core objective of drug discovery (Hughes et al., 2011).
To achieve the ultimate goal of overcoming disease, a va-
riety of drug discovery approaches have been established.
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Figure 1: Results on drug discovery tasks. The values are qual-
ity, average quality, sum AUC top-10, and success rate for de novo
generation, fragment-constrained generation, hit generation, and
lead optimization, respectively. The “best baseline” refers to mul-
tiple best-performing task-specific models among prior works.

For example, fragment-constrained molecule generation is
a popular strategy for designing new drug candidates un-
der the constraint of preserving a certain molecular sub-
structure already known to exhibit a particular bioactiv-
ity (Murray & Rees, 2009). Furthermore, real-world drug
discovery pipelines are not a single stage but consist of sev-
eral key stages, such as hit generation and lead optimiza-
tion (Hughes et al., 2011). A drug discovery process that
leads to the finding of drug candidates that can enter clini-
cal trials should consider all of these different scenarios.

Generative models have emerged as a promising method-
ology to accelerate labor-intensive drug discovery
pipelines (Olivecrona et al., 2017; Jin et al., 2018; Yang
et al., 2021; Lee et al., 2023), but previous molecular
generative models have a common limitation: they focus
on only one or two of the drug discovery scenarios.
They either cannot be applied to multiple tasks or require
expensive modifications including retraining of a specific
architecture for each task (Yang et al., 2020; Guo et al.,
2023). Recently, SAFE-GPT (Noutahi et al., 2024) has
been proposed to address this problem by formulating sev-
eral molecular tasks as a fragment-constrained generation
task, solved by sequence completion. SAFE-GPT uses Se-
quential Attachment-based Fragment Embedding (SAFE)
of molecules, which represents a molecule as an unordered
sequence of Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) fragment blocks. However,
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Figure 2: (a) GenMol architecture. GenMol adopts the BERT architecture and is trained with the NELBO loss of masked discrete
diffusion. (b) Generation process of GenMol. Under masked discrete diffusion, GenMol completes a molecule by simulating backward
in time and predicting masked tokens at each time step t until all tokens are unmasked. (c) Illustration of various drug discovery tasks
that can be performed by GenMol. GenMol is endowed with the ability to easily perform (c1) de novo generation, (c2-c5) fragment-
constrained generation, and (c6) fragment remasking that can be applied to goal-directed hit generation and lead optimization.

since all sequence-based molecular representations in-
cluding SMILES and SAFE assume an ordering of tokens
based on heuristic rules such as depth-first search (DFS),
autoregressive models that operate in a left-to-right order
like GPT are unnatural for processing and generating
molecular sequences. In addition, the autoregressive
decoding scheme limits the computational efficiency of the
model and makes it challenging to introduce guidance dur-
ing generation. Moreover, SAFE-GPT relies on finetuning
under expensive reinforcement learning (RL) objectives to
be applied to goal-directed molecule generation.

To tackle these limitations, we propose Generalist Molec-
ular generative model (GenMol), a versatile molecular
generation framework that is endowed with the ability to
handle diverse scenarios that can be encountered in the
multifaceted drug discovery pipeline (Figure 2(c)). Gen-
Mol adopts a masked discrete diffusion framework (Austin
et al., 2021; Sahoo et al., 2024; Shi et al., 2024) with the
BERT architecture (Devlin et al., 2019) to generate SAFE
molecular sequences, thereby enjoying several advantages:
(i) Discrete diffusion allows GenMol to exploit a molec-
ular context that does not rely on the specific ordering of
tokens and fragments by bidirectional attention. (ii) The
non-autoregressive parallel decoding improves GenMol’s
computational efficiency (Figure 2(b)). (iii) Discrete diffu-
sion enables GenMol to explore chemical space with a sim-
ple yet effective remasking strategy. We propose fragment
remasking (Figure 2(c6) and Figure 3), a strategy to opti-
mize molecules by replacing certain fragments in a given
molecule with masked tokens, from which diffusion gen-
erates new fragments. Utilizing fragments as the explo-
rative unit instead of individual tokens is more in line with
chemists’ intuition during optimization in drug discovery,
and GenMol can effectively and efficiently explore the vast
chemical space to find chemical optima. (iv) Discrete diffu-

sion also makes it possible to apply guidance during gener-
ation based on the entire sequence. To this end, we propose
molecular context guidance (MCG), a guidance method to
improve the performance of GenMol by calibrating its pre-
dictions with information in a given molecular context.

We experimentally validate GenMol on a wide range
of molecule generation tasks that simulate real-world
drug discovery problems, including de novo generation,
fragment-constrained generation, goal-directed hit genera-
tion, and goal-directed lead optimization. Across extensive
experiments, GenMol outperforms existing methods by
a large margin (Figure 1). Note that the best baseline
results shown in Figure 1 are not the results of a single
model, but of multiple task-specific models. These results
demonstrate GenMol’s potential as a versatile tool that can
be used throughout the drug discovery pipeline.

We summarize our contributions as follows:
• We introduce GenMol, a framework for unified and ver-

satile molecule generation by building masked discrete
diffusion that generates SAFE molecular sequences.

• We propose fragment remasking, an effective strat-
egy for exploring chemical space using molecular frag-
ments as the unit of exploration.

• We propose MCG, a guidance scheme for GenMol to
effectively utilize molecular context information.

• We validate the efficacy and versatility of GenMol on a
wide range of drug discovery tasks.

2. Related Work
Discrete diffusion. There has been steady progress in
applying discrete diffusion for discrete data generation,
especially in NLP tasks (Hoogeboom et al., 2021; Austin
et al., 2021; He et al., 2023; Zheng et al., 2024; Lou et al.,
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2024; Sahoo et al., 2024). This is mainly due to their
non-autoregressive generation property, which leads to a
potential for better modeling long-rang bidirectional de-
pendencies and acclerating sampling speed, and their flex-
ible design choices in training, sampling, and controllable
generation (Sahoo et al., 2024). Notably, D3PM (Austin
et al., 2021) introduced a general framework with a Markov
forward process represented by transition matrices, and a
transition matrix with an absorbing state corresponds to
the masked language modeling (MLM) such as BERT (De-
vlin et al., 2019). Campbell et al. (2022) proposed a
continuous-time framework for discrete diffusion models
based on the continuous-time Markov chain (CTMC)
theory. SEDD (Lou et al., 2024) introduced a denoising
score entropy loss that extends score matching to discrete
diffusion models. Sahoo et al. (2024) and Shi et al. (2024)
proposed simple masked discrete diffusion frameworks,
with the training objective being a weighted average of
MLM losses across different diffusion time steps.

Recently, a few works have applied discrete diffusion for
molecular generation. For instance, DiGress (Vignac et al.,
2023) followed the D3PM framework to generate molecu-
lar graphs with categorical node and edge attributes. Other
works (Zhang et al., 2023; Lin et al., 2024; Hua et al., 2024)
focused on the 3D molecular structure generation, where
they used discrete diffusion for atom type generation and
continuous diffusion for atom position generation. How-
ever, none of them applied discrete diffusion for molecular
sequence generation that can serve as a generalist founda-
tion model for solving various downstream tasks.

Fragment-based drug discovery. Fragment-based
molecular generative models refer to a class of methods
that reassemble existing molecular substructures (i.e.,
fragments) to generate new molecules. They have been
consider as an effective drug discovery approach as (i) as-
sembling fragments simplifies the generation process and
improves chemical validity and (ii) the unit that determines
biochemical effect of a molecule is a fragment rather
than an individual atom (Li, 2020). A line of works (Jin
et al., 2020; Maziarz et al., 2021; Kong et al., 2022;
Geng et al., 2023) used graph-based VAEs to generate
novel molecules conditioned on discovered substructures.
Xie et al. (2020) proposed to progressively add or delete
fragments of molecular graphs using Markov chain Monte
Carlo (MCMC) sampling. Yang et al. (2021) and Powers
et al. (2023) used a reinforcement learning (RL) framework
and classification, respectively, to progressively add frag-
ments to the incomplete molecule. Graph-based genetic
algorithms (GAs) (Jensen, 2019; Tripp & Hernández-
Lobato, 2023) is a strong approach that decomposes parent
molecules into fragments that are combined to generate
an offspring molecule. However, since their generation
is from random combinations of existing fragments with

a local mutation of a small probability, they suffer from
limited exploration in the chemical space. More recently,
f -RAG (Lee et al., 2024a) introduced a fragment-level
retrieval framework that augments the pre-trained molec-
ular language model SAFE-GPT (Noutahi et al., 2024),
where retrieving fragments from dynamically updated
fragment vocabulary largely improves the exploration-
exploitation trade-off. However, f -RAG still needs to train
an information fusion module before adapting to various
goal-oriented generation tasks.

3. Background
3.1. Masked Diffusion

Masked diffusion models (Sahoo et al., 2024; Shi et al.,
2024) are a simple and effective class of discrete diffu-
sion models, and we follow MDLM (Sahoo et al., 2024)
to define our masked diffusion. Formally, we define xxx as
a sequence of L tokens, each of which, denoted as xxxl, is a
one-hot vector with K categories (i.e., xxxl

i ∈ {0, 1}K and∑K
i=1 xxx

l
i = 1). Without loss of generality, we assume the

K-th category represents the masking token, whose one-
hot vector is denoted by m (i.e., mK = 1). We also define
Cat(·;πππ) as a categorical distribution with a probabilityπππ ∈
∆K , where ∆K represents the simplex over K categories.

The forward masking process independently interpolates
the probability mass between each token in clean data se-
quence xxxl and the masking token m, defined as

q(zzzlt|xxxl) = Cat(zzzlt;αtxxx
l + (1− αt)m), (1)

where zzzlt denotes the l-th token in the noisy data sequence
at the time step t ∈ [0, 1], and αt ∈ [0, 1] denotes the
masking ratio that is monotonically decreasing function of
t, with α0 = 1 to α1 = 0. Accordingly, at time step t = 1,
zzzt becomes a sequence of all masked tokens.

The reverse unmasking process inverts the masking process
and independently infers each token of the less masked data
zzzs from more masked data zzzt with s < t, which is given by

pθ(zzz
l
s|zzzlt) =

{
Cat(zzzls;zzzlt) zzzlt ̸= m

Cat(zzzls;
(1−αs)m+(αs−αt)xxx

l
θ(zzzt,t)

1−αt
) zzzlt = m,

(2)

where xxxθ(zzzt, t) is a denoising network that takes the noisy
data sequence zzzt as input and predicts L probability vectors
for the clean data sequence. This parameterization designs
the reverse process such that it does not change unmasked
tokens. To train the denoising network xxxθ(zzzt, t), the train-
ing objective, which implicitly approximates the negative
ELBO (Sohl-Dickstein et al., 2015), is given by

LNELBO = Eq

∫ 1

0

α′
t

1− αt

∑
l

log⟨xxxl
θ(zzzt, t),xxx

l⟩dt, (3)

3



GenMol: A Drug Discovery Generalist with Discrete Diffusion

which is the weighted average of MLM losses (i.e., cross-
entropy losses) over time steps.

3.2. SAFE Molecular Representation

Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) is the most widely used
molecular string representation, but it relies on a heuristic
depth-first search (DFS) that traverses the atoms of a
molecule. Therefore, atoms that are close in molecular
structure can be tokens that are very far apart in molecular
sequence, and thus it is not straightforward to perform
fragment-constrained molecular generation with SMILES.

Sequential Attachment-based Fragment Embedding
(SAFE) (Noutahi et al., 2024) has been proposed to
alleviate this problem. SAFE represents molecules as an
unordered sequence of fragment blocks, thereby casting
molecular design into sequence completion. SAFE is
a non-canonical SMILES in which the arrangement of
SMILES tokens corresponding to the same molecular frag-
ment is consecutive. Molecules are decomposed into frag-
ments by the BRICS algorithm (Degen et al., 2008) and the
fragments are concatenated using a dot token (“.”) while
preserving their attachment points. SAFE is permutation-
invariant on fragments, i.e., the order of fragments within
a SAFE string does not change the molecular identity.

4. Method
We introduce GenMol, a universal molecule generation
framework that can solve various drug discovery tasks.
We first introduce the construction of the discrete diffu-
sion framework on the SAFE representation in Section 4.1.
Next, we describe the goal-oriented exploration strategy of
GenMol with fragment remasking in Section 4.2. Finally,
we describe MCG, a guidance scheme of GenMol by par-
tially masking the given molecular context, in Section 4.3.

4.1. Masked Diffusion for Molecule Generation

We adopt masked discrete diffusion to generate SAFE se-
quences and establish a flexible and efficient molecule gen-
eration framework. Concretely, GenMol uses the BERT ar-
chitecture (Devlin et al., 2019) as the denoising network xxxθ

and the training scheme of MDLM. Utilizing discrete diffu-
sion instead of an autoregressive model is more in line with
the SAFE representation and has several advantages. First,
due to the bidirectional attention in BERT, GenMol can
leverage parallel decoding where all tokens are decoded si-
multaneously under discrete diffusion (Figure 5). As SAFE
is fragment order-insensitive, this allows GenMol to pre-
dict masked tokens without relying on a specific ordering
of generation while considering the entire molecule. The
non-autoregressive parallel decoding scheme also improves

GenMol’s efficiency. Furthermore, the discrete diffusion
framework enables GenMol to explore the neighborhood
of a given molecule with a remasking strategy.

At each masked index l, GenMol samples zzzls based on the
reverse unmasking process plθ := pθ(zzz

l
s|zzzt) specified by:

plθ,i =
exp

(
logxxxlθ,i(zzzt, t)/τ

)
∑K

j=1 exp
(
logxxxlθ,j(zzzt, t)/τ

) for i = 1, · · · ,K, (4)

where logxxxl
θ,i(zzzt, t) is the logit predicted by the model and

τ is the softmax temperature. All masked tokens are pre-
dicted in a parallel manner and GenMol confirms the top-N
confident predictions with additional randomness r follow-
ing Chang et al. (2022), where N is the number of tokens
to unmask at each time step. Trade-offs between molecu-
lar quality and diversity often arise in drug discovery, and
GenMol can balance them through the softmax temperature
τ and the randomness r. Further details about confidence-
based sampling is provided in Section B.

4.2. Exploration in Chemical Space with GenMol

To perform goal-directed molecular optimization tasks, we
propose a simple yet effective generation method (Figure 3)
that consists of three steps: (1) fragment scoring, (2) frag-
ment attaching, and (3) fragment remasking.

Fragment scoring. We start with constructing a frag-
ment vocabulary. A set of D molecules D =
{
(
xxxd, y(xxxd)

)
}Dd=1, where y(xxxd) is the target property of

molecule xxxj , is decomposed into a set of F fragments F =
{fffk}Fk=1 using a predefined decomposition rule. We define
the score of fragment fffk following Lee et al. (2024a) as:

y(fffk) =
1

|S(fffk)|
∑

xxx∈S(fffk)

y(xxx), (5)

where S(fffk) = {xxx : fffk is a subgraph of xxx} and the top-V
fragments based on Eq. (5) are selected as the vocabulary.

Fragment attaching. During generation, a moleculexxxinit
is first generated by randomly selecting two fragments
from the vocabulary and attaching them. Fragments or
functional groups influence the chemical properties of a
molecule and therefore, fragments that commonly occur
in molecules with desirable properties are likely to carry
them to new molecules. However, with fragment attaching
alone, the model cannot generate new fragments that are
not included in the initial vocabulary, resulting in subopti-
mal exploration in chemical space.

Fragment remasking. Therefore, utilizing discrete dif-
fusion of GenMol, we propose fragment remasking, an
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Figure 3: (a) Goal-directed hit generation and lead optimization process with GenMol. An initial fragment vocabulary is con-
structed by decomposing an existing molecular dataset (hit generation) or a seed molecule (lead optimization). Two fragments are
randomly sampled from the vocabulary and attached, and GenMol performs fragment remasking. The fragment vocabulary is updated
with the generated molecules for the next iteration. (b) Illustration of the molecular optimization trajectory with fragment remask-
ing. With fragment remasking, GenMol can explore beyond the initial fragment vocabulary to find chemical optima.

effective strategy to explore the neighborhood of a given
molecule in chemical space to find optimal molecules. Dis-
crete diffusion allows GenMol to mask and re-predict some
tokens of a given molecule, making neighborhood explo-
ration simple and straightforward. However, although there
exist some works that apply token-wise remasking to pro-
tein sequence optimization (Hayes et al., 2024; Gruver
et al., 2024), it would be suboptimal to naively adopt the
same strategy for small molecule optimization. This is be-
cause each token in a SAFE (or SMILES) sequence rep-
resents a single atom or bond, and masking them individ-
ually results in localized and ineffective exploration. The
units that carry information about molecular properties are
fragments or functional groups, not individual atoms or
bonds (Li, 2020), and thus fragment remasking modifies
a molecule by randomly re-predicting a fragment.

Given xxxinit, xxxmask is constructed by randomly selecting
one of the fragments of xxxinit and replacing it with a mask
chunk. Here, a finer decomposition rule than the one that
constructed the vocabulary is used, allowing fragment re-
masking to operate at a fine-grained level. GenMol then
generates xxxnew by iteratively unmasking xxxmask. The pro-
posed fragment remasking can also be viewed as a muta-
tion operation in GA where the mutation is performed at
the fragment-level rather than at the atom- or bond-level.
xxxnew is decomposed and scored by Eq. (5), and the fragment
vocabulary is dynamically updated by selecting the top-
V fragments, allowing exploration beyond the initial frag-
ments. We summarize the goal-directed generation process
of GenMol with fragment remasking in Algorithm 1.

Instead of using a fixed length, the lengths of the fragment
mask chunks are sampled from a predefined distribution,
e.g., the distribution of fragment lengths in the training set.
The length of the fragment depends on the decomposition
rule used, and this strategy allows GenMol to automatically
adjust the length based on the rule. This also ensures that
GenMol generates fragments of varying lengths, offering
users better controllability over molecule generation.

Algorithm 1 Goal-directed Molecular Optimization of GenMol

Input: A set of molecules D, vocabulary size V ,
decomposition rule for fragment vocabulary Rvocab,
decomposition rule for fragment remasking Rremask,
number of generations G

Set F ← fragments obtained by decomposing D with Rvocab
Set V ← top-V fragments of F (Eq. 5)
Set plen ← fragment length distribution of D based on Rremask
SetM← ∅
while |M| < G do

Select and attach two fragments from V to get xxxinit
Sample the fragment length m ∼ plen
Select one of the fragments of xxxinit based on Rremask and

replace it with m mask tokens to get xxxmask
Generate xxxnew by iteratively unmasking xxxmask with GenMol
UpdateM←M∪ {xxxnew}
Decompose xxxnew into fragments {fff1, fff2, . . . } withRvocab
Update V ← top-V fragments from V ∪ {fff1, fff2, . . . }

end while
Output: Generated moleculesM

Fragment remasking can also be interpreted as Gibbs sam-
pling (Geman & Geman, 1984). Assuming a SAFE molec-
ular sequencexxx is comprised of F fragments, we can repre-
sent xxx as a set of the fragments {fffk}Fk=1, where fffk denotes
an attachment point-assigned SAFE fragment. To sample
a molecule xxx from p(xxx) = p(fff1, . . . , fffF ), fragment re-
masking repeats the process of uniformly selecting the in-
dex k and then sampling fffk from p(fffk|fff\k), where fff\k
denotes fff1, . . . , fffF but with fffk omitted. This is equiva-
lent to performing Gibbs sampling with the Markov kernel
p(fffk|fff\k), allowing GenMol to perform a random walk in
the neighborhood of the given molecule xxx.

4.3. Molecular Context Guidance

Inspired by autoguidance (Karras et al., 2024), we pro-
pose molecular context guidance (MCG), a guidance
method tailored for masked discrete diffusion of GenMol.
Karras et al. (2024) generalized classifier-free guidance
(CFG) (Ho & Salimans, 2021) and proposed to extrapolate
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Table 1: De novo molecule generation results. The results are the means and the standard
deviations of 3 runs. N , τ , and r is the number of tokens to unmask at each time step, the
softmax temperature, and the randomness, respectively. The best results are highlighted in bold.

Method Validity (%) Uniqueness (%) Quality (%) Diversity Sampling time (s)
SAFE-GPT 94.0 ± 0.4 100.0 ± 0.0 54.7 ± 0.3 0.879 ± 0.001 27.7 ± 0.1
GenMol w/o conf. sampling 96.7 ± 0.3 99.3 ± 0.2 53.8 ± 1.7 0.896 ± 0.001 25.4 ± 1.6
GenMol (τ = 0.5, r = 0.5)
N = 1 100.0 ± 0.0 99.7 ± 0.1 84.6 ± 0.8 0.818 ± 0.001 21.1 ± 0.4
N = 2 97.6 ± 0.7 99.5 ± 0.2 76.2 ± 1.3 0.843 ± 0.002 12.2 ± 0.6
N = 3 95.6 ± 0.5 99.0 ± 0.1 67.1 ± 0.7 0.861 ± 0.001 10.1 ± 0.2

GenMol (N = 1)
τ = 0.5, r = 0.5 100.0 ± 0.0 99.7 ± 0.1 84.6 ± 0.8 0.818 ± 0.001 21.1 ± 0.4
τ = 0.5, r = 1.0 99.7 ± 0.1 100.0 ± 0.0 83.8 ± 0.5 0.832 ± 0.001 20.5 ± 0.6
τ = 1.0, r = 1.0 99.8 ± 0.1 100.0 ± 0.1 79.1 ± 0.9 0.845 ± 0.002 21.9 ± 0.6
τ = 1.0, r = 10.0 99.8 ± 0.1 99.6 ± 0.1 63.0 ± 0.4 0.882 ± 0.003 21.5 ± 0.5
τ = 1.5, r = 10.0 95.6 ± 0.3 98.3 ± 0.2 39.7 ± 0.5 0.911 ± 0.004 20.9 ± 0.5
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Figure 4: The quality-diversity
trade-off in de novo generation with
different values of (τ, r).

between the predictions of two denoising networks:

D(w)(zzzs|zzzt, yyy) = wD1(zzzs|zzzt, yyy) + (1− w)D0(zzzs|zzzt, yyy), (6)

where D1 and D0 are a high-quality model and a poor
model, respectively, yyy is the condition to perform the guid-
ance on, and w > 1 is the guidance scale. Typically the
same network Dθ is used for D1 and D0 with additional
degradations applied to D0, such as corrupted input, e.g.,
CFG sets D1 = Dθ(zzzs|zzzt, yyy) and D0 = Dθ(zzzs|zzzt, ∅). The
idea of autoguidance is that the weaker version of the same
model amplifies the errors, and thus emphasizing the output
of D1 over D0 by setting w > 1 eliminates these errors.

However, the above guidance method has only been applied
to continuous diffusion and its application to discrete diffu-
sion has remained unexplored. On the other hand, Nisonoff
et al. (2024) proposed a CFG scheme for continuous-time
Markov chains (CTMCs) (Campbell et al., 2022), a sub-
class of discrete diffusion models based on a continuous-
time formulation. As GenMol is trained under the MDLM
framework which can be interpreted as a CTMC (Sahoo
et al., 2024), we introduce autoguidance for the MDLM
formulation. Specifically, MCG sets D1 as the original pre-
diction of the denoiser xxxθ and D0 as the prediction with
partially corrupted input, replacing the logits in Eq. (4) by

logxxx
(w),l
θ,i (zzzt,t) :=w logxxx

l
θ,i(zzzt,t)+(1−w)logxxx

l
θ,i(z̃zzt,t), (7)

where z̃zzt is constructed by masking γ · 100% of the tokens
in zzzt. We provide the derivation in Section C. Intuitively,
Eq. (7) compares two outputs from a single GenMol model,
with good and poor input, respectively. Specifically, the
good input is a given partially masked sequence, which is
further masked by γ ·100% to yield poor input, and the two
resulting logits are compared to calibrate GenMol’s pre-
dictions. Using MCG, GenMol can fully utilize the given
molecular context information in fragment-constrained and
goal-directed generation.

5. Experiments
GenMol is trained on the SAFE dataset (Noutahi et al.,
2024), which combines molecules from ZINC (Irwin et al.,
2012) and UniChem (Chambers et al., 2013). We empha-
size that a single GenMol checkpoint is used to perform
the following tasks without any additional finetuning spe-
cific to each task. We first conduct experiments on de
novo molecule generation in Section 5.1. Next, we conduct
experiments on fragment-constrained molecule generation
tasks in Section 5.2. We then examine GenMol’s ability to
perform goal-directed hit generation and goal-directed lead
optimization in Section 5.3 and Section 5.4, respectively.
We perform ablation studies in Section 5.5.

5.1. De Novo Generation

Setup. In de novo generation, the goal is to generate
valid, unique, and diverse molecules. We generate 1,000
molecules and evaluate them with the following metrics,
following Noutahi et al. (2024). Validity is the fraction of
generated molecules that are chemically valid. Uniqueness
is the fraction of valid molecules that are unique. Diversity
is defined as the average pairwise Tanimoto distance be-
tween the Morgan fingerprints of the generated molecules.
We further introduce quality, the fraction of valid, unique,
drug-like, and synthesizable molecules, to provide a sin-
gle metric that evaluates the ability to generate chemically
reasonable and unique molecules. Here, drug-like and syn-
thesizable molecules are defined as those satisfying quan-
titative estimate of drug-likeness (QED) (Bickerton et al.,
2012) ≥ 0.6 and synthetic accessibility (SA) (Ertl & Schuf-
fenhauer, 2009) ≤ 4, respectively, following Jin et al.
(2020). Further details are provided in Section D.3.

Results. The results are shown in Table 1. GenMol w/o
conf. sampling is a GenMol that uses the standard diffu-
sion sampling (Austin et al., 2021; Sahoo et al., 2024) in-
stead of confidence sampling. SAFE-GPT (Noutahi et al.,
2024), GenMol w/o conf. sampling, and GenMol all show
a near-perfect uniqueness, while GenMol significantly out-
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Table 2: Fragment-constrained molecule generation results. The results are the means and the standard deviations of 3 runs. The
best results are highlighted in bold.

Method Task Validity (%) Uniqueness (%) Quality (%) Diversity Distance
SAFE-GPT Linker design 76.6 ± 5.1 82.5 ± 1.9 21.7 ± 1.1 0.545 ± 0.007 0.541 ± 0.006

Scaffold morphing 58.9 ± 6.8 70.4 ± 5.7 16.7 ± 2.3 0.514 ± 0.011 0.528 ± 0.009
Motif extension 96.1 ± 1.9 66.8 ± 1.2 18.6 ± 2.1 0.562 ± 0.003 0.665 ± 0.006
Scaffold decoration 97.7 ± 0.3 74.7 ± 2.5 10.0 ± 1.4 0.575 ± 0.008 0.625 ± 0.009
Superstructure generation 95.7 ± 2.0 83.0 ± 5.9 14.3 ± 3.7 0.573 ± 0.028 0.776 ± 0.036

GenMol Linker design 100.0 ± 0.0 83.7 ± 0.5 21.9 ± 0.4 0.547 ± 0.002 0.563 ± 0.003
Scaffold morphing 100.0 ± 0.0 83.7 ± 0.5 21.9 ± 0.4 0.547 ± 0.002 0.563 ± 0.003
Motif extension 82.9 ± 0.1 77.5 ± 0.1 30.1 ± 0.4 0.617 ± 0.002 0.682 ± 0.001
Scaffold decoration 96.6 ± 0.8 82.7 ± 1.8 31.8 ± 0.5 0.591 ± 0.001 0.651 ± 0.001
Superstructure generation 97.5 ± 0.9 83.6 ± 1.0 34.8 ± 1.0 0.599 ± 0.009 0.762 ± 0.007

performs the other two in terms of validity, quality, and
sampling time. Thanks to the non-autoregressive parallel
decoding scheme, GenMol can predict multiple tokens si-
multaneously and shows much faster sampling as N , the
number of tokens to unmask at each time step, increases.
Notably, GenMol with N = 3 shows higher quality than
SAFE-GPT and GenMol w/o conf. sampling with 2.5x
shorter sampling time and comparable diversity. Further-
more, GenMol can balance between quality and diversity
by adjusting the values of the softmax temperature τ and
the randomness r of the confidence sampling. This balance
is also shown in Figure 4, demonstrating that GenMol gen-
erates molecules along the Pareto frontier of the quality-
diversity trade-off. Further analysis on quality and diversity
are provided in Section E.2, Section E.3 and Section E.4.

5.2. Fragment-constrained Generation

Setup. In fragment-constrained generation, the goal is to
complete a molecule given a set of fragments, a frequently
encountered setting in real-world drug discovery. We use
the benchmark of Noutahi et al. (2024), which uses in-
put fragments extracted from 10 known drugs to perform
linker design, scaffold morphing, motif extension, scaf-
fold decoration, and superstructure generation. In addi-
tion to validity, uniqueness, diversity and quality intro-
duced in Section 5.1, distance, the average Tanimoto dis-
tance between the original and generated molecules, is also
measured. 100 molecules are generated for each drug and
averaged. Further details are provided in Section D.4.

Results. The results of fragment-constrained generation
are shown in Table 2. GenMol significantly outperforms
SAFE-GPT on most metrics across the tasks, demonstrat-
ing its general applicability to a variety of fragment con-
straint generation settings. Especially, GenMol generates
high-quality molecules while preserving high diversity un-
der the fragment constraints, again validating GenMol can
strike an improved balance between quality and diversity.

5.3. Goal-directed Hit Generation
Setup. In goal-directed hit generation, the goal is to gen-
erate hits, i.e., molecules with optimized target chemical
properties. Following Lee et al. (2024b) and Lee et al.
(2024a), we construct an initial fragment vocabulary by de-
composing the molecules in the ZINC250k dataset (Irwin
et al., 2012). We adopt the practical molecular optimization
(PMO) benchmark (Gao et al., 2022) which contains 23
tasks. The maximum number of oracle calls is set to 10,000
and performance is measured using the area under the curve
(AUC) of the average top-10 property scores versus oracle
calls. As our baselines, we adopt the recent state-of-the-art
methods, f -RAG (Lee et al., 2024a), Genetic GFN (Kim
et al., 2024), and Mol GA (Tripp & Hernández-Lobato,
2023). We also report the results of the top four methods in
Gao et al. (2022). Note that since Gao et al. (2022) reported
the results of a total of 25 methods, comparing GenMol to
the top methods is equivalent to comparing it to 25 meth-
ods. Further details are provided in Section D.5.

Results. The results are shown in Table 3. As shown in
the table, GenMol significantly outperforms the previous
methods in terms of the sum AUC top-10 value and ex-
hibits the best performance in 19 out of 23 tasks by a large
margin. These results verify that the proposed optimization
strategy of GenMol with fragment remasking is effective in
discovering optimized hits. The results of additional base-
lines are provided in Table 13, Table 14, and Table 15.

5.4. Goal-directed Lead Optimization

Setup. Given an initial seed molecule, the goal in
goal-directed lead optimization is to generate leads, i.e.,
molecules that exhibit improved target properties while
maintaining the similarity with the given seed. Following
Wang et al. (2023), the objective is to optimize the binding
affinity to the target protein while satisfying the following
constraints: QED ≥ 0.6, SA ≤ 4, and sim ≥ δ where
δ ∈ {0.4, 0.6} and sim is the Tanimoto similarity between
the Morgan fingerprints of the generated molecules and the
seed. Performance is evaluated by the docking score of the
most optimized lead. Following Lee et al. (2023), we adopt
five target proteins, parp1, fa7, 5ht1b, braf, and jak2. For
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Table 3: Goal-directed hit generation results. The results are the means of PMO AUC top-10 of 3 runs. The results for f -RAG (Lee
et al., 2024a), Genetic GFN (Kim et al., 2024) and Mol GA (Tripp & Hernández-Lobato, 2023) are taken from the respective papers and
the results for other baselines are taken from Gao et al. (2022). The best results are highlighted in bold.

Oracle GenMol f -RAG Genetic GFN Mol GA REINVENT Graph GA
SELFIES-

REINVENT GP BO

albuterol similarity 0.937 0.977 0.949 0.896 0.882 0.838 0.826 0.898
amlodipine mpo 0.810 0.749 0.761 0.688 0.635 0.661 0.607 0.583
celecoxib rediscovery 0.826 0.778 0.802 0.567 0.713 0.630 0.573 0.723
deco hop 0.960 0.936 0.733 0.649 0.666 0.619 0.631 0.629
drd2 0.995 0.992 0.974 0.936 0.945 0.964 0.943 0.923
fexofenadine mpo 0.894 0.856 0.856 0.825 0.784 0.760 0.741 0.722
gsk3b 0.986 0.969 0.881 0.843 0.865 0.788 0.780 0.851
isomers c7h8n2o2 0.942 0.955 0.969 0.878 0.852 0.862 0.849 0.680
isomers c9h10n2o2pf2cl 0.833 0.850 0.897 0.865 0.642 0.719 0.733 0.469
jnk3 0.906 0.904 0.764 0.702 0.783 0.553 0.631 0.564
median1 0.398 0.340 0.379 0.257 0.356 0.294 0.355 0.301
median2 0.359 0.323 0.294 0.301 0.276 0.273 0.255 0.297
mestranol similarity 0.982 0.671 0.708 0.591 0.618 0.579 0.620 0.627
osimertinib mpo 0.876 0.866 0.860 0.844 0.837 0.831 0.820 0.787
perindopril mpo 0.718 0.681 0.595 0.547 0.537 0.538 0.517 0.493
qed 0.942 0.939 0.942 0.941 0.941 0.940 0.940 0.937
ranolazine mpo 0.821 0.820 0.819 0.804 0.760 0.728 0.748 0.735
scaffold hop 0.628 0.576 0.615 0.527 0.560 0.517 0.525 0.548
sitagliptin mpo 0.584 0.601 0.634 0.582 0.021 0.433 0.194 0.186
thiothixene rediscovery 0.692 0.584 0.583 0.519 0.534 0.479 0.495 0.559
troglitazone rediscovery 0.867 0.448 0.511 0.427 0.441 0.390 0.348 0.410
valsartan smarts 0.822 0.627 0.135 0.000 0.178 0.000 0.000 0.000
zaleplon mpo 0.584 0.486 0.552 0.519 0.358 0.346 0.333 0.221
Sum 18.362 16.928 16.213 14.708 14.196 13.751 13.471 13.156

each target, three molecules from its known active ligands
are selected and each is given as a seed molecule, yield-
ing a total of 30 tasks. An initial fragment vocabulary is
constructed by decomposing the seed molecule. If the gen-
erated molecule is lead, its fragments are added to the vo-
cabulary. Following Wang et al. (2023), we adopt Graph
GA (Jensen, 2019) and RetMol (Wang et al., 2023) as our
baselines. Further details are provided in Section D.6.

Results. The results of goal-directed lead optimization
are shown in Table 4. As shown in the table, GenMol out-
performs the baselines in most tasks. Note that baselines
often fail, i.e., they cannot generate molecules with a higher
binding affinity than the seed molecule while satisfying the
constraints, especially under the harsher (δ = 0.6) similar-
ity constraint. In contrast, GenMol is able to successfully
optimize seed molecules in 26 out of 30 tasks, validating its
effectiveness in exploring chemical space to optimize given
molecules and discover promising lead molecules.

5.5. Ablation Study

Fragment remasking. To examine the effect of the pro-
posed fragment remasking with masked discrete diffusion,
we conduct ablation studies with alternative remasking
strategies in Table 5. Attaching (A) is a baseline that at-
taches two fragments from the vocabulary without further
modifications. On top of it, A + Token remasking ran-
domly re-predicts individual tokens instead of a fragment
chunk with discrete diffusion and A + GPT remasking re-
predicts a randomly chosen fragment chunk with SAFE-

GPT instead of diffusion. A + Fragment remasking (F)
re-predicts a fragment mask chunk with discrete diffusion.
First, A + Token remasking, A + GPT remasking and A
+ Fragment remasking all outperform A, highlighting the
importance of exploration through remasking. A + Frag-
ment remasking outperforms A + Token remasking, prov-
ing that using fragments as the exploration unit is aligned
with chemical intuition and effective in chemical explo-
ration. A + Fragment remasking is also superior to A +
GPT remasking, proving the effectiveness of the masked
discrete diffusion that does not rely on specific ordering of
tokens with bidirectional attention. We also conduct the ab-
lation studies on lead optimization in Table 17. Although
the naive baseline A outperforms other previous baselines
in hit generation, it cannot generate new fragments outside
of the vocabulary and therefore fails frequently in lead op-
timization, and applying fragment remasking on top of it
largely improves lead optimization performance.

Molecular context guidance. To verify the effect of
MCG, we present the results of GenMol with (A + F +
MCG) and without (A + F; i.e., γ = 0) MCG in Table 5. A
+ F + MCG shows its superiority over A + F, demonstrat-
ing that calibrating GenMol’s predictions with molecular
context information with MCG improves GenMol’s perfor-
mance. The full results are shown in Table 16, where A +
F + MCG achieves the best performance in 19 out of 23
tasks. The same trend is also observed in Table 12, where
GenMol w/ MCG outperforms GenMol w/o MCG across
various tasks on fragment-constrained generation.
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Table 4: Lead optimization results (kcal/mol). The results are the mean
docking scores of the most optimized leads of 3 runs. Lower is better.

Target
protein

Seed
score

δ = 0.4 δ = 0.6

GenMol RetMol Graph GA GenMol RetMol Graph GA
-7.3 -10.6 -9.0 -8.3 -10.4 - -8.6

parp1 -7.8 -11.0 -10.7 -8.9 -9.7 - -8.1
-8.2 -11.3 -10.9 - -9.2 - -
-6.4 -8.4 -8.0 -7.8 -7.3 -7.6 -7.6

fa7 -6.7 -8.4 - -8.2 -7.6 - -7.6
-8.5 - - - - - -
-4.5 -12.9 -12.1 -11.7 -12.1 - -11.3

5ht1b -7.6 -12.3 -9.0 -12.1 -12.0 -10.0 -12.0
-9.8 -11.6 - - -10.5 - -
-9.3 -10.8 - -9.8 - - -

braf -9.4 -10.8 -11.6 - -9.7 - -
-9.8 -10.6 - -11.6 -10.5 - -10.4
-7.7 -10.2 -8.2 -8.7 -9.3 - -8.1

jak2 -8.0 -10.0 -9.0 -9.2 -9.4 - -9.2
-8.6 -9.8 - - - - -

Table 5: Ablation study on the goal-
directed hit generation task. The results are
the mean sums of PMO AUC top-10 of 3
runs. The best results are highlighted in
bold. The full results are shown in Table 16.

Method Sum
Attaching (A) 17.641

A + Token remasking 18.091
(A+0.450)

A + GPT remasking 18.074
(A+0.433)

A + Fragment remasking (F) 18.208
(A+0.567)

A + F + MCG 18.362
(A+F+0.154)

6. Conclusion
We proposed GenMol, a molecule generation framework
designed to deal with various drug discovery scenarios ef-
fectively and efficiently by integrating discrete diffusion
with SAFE. Especially, fragment remasking allows Gen-
Mol to effectively explore chemical space and MCG further
improves GenMol’s performance. The experimental results
showed that GenMol can achieve state-of-the-art results in
a wide range of drug discovery tasks, demonstrating its po-
tential as a unified and versatile tool for drug discovery.

Impact Statement
In our paper, we showed that GenMol is capable of address-
ing a broad spectrum of drug discovery challenges, provid-
ing a unified and versatile solution for molecular design.
However, as effective as GenMol is in drug discovery tasks,
it has the potential to generate harmful drugs if used mali-
ciously. To prevent this, GenMol could be equipped with
features that incorporate target properties that take toxicity
into account, exclude toxic fragments from the fragment
vocabulary, or filter the proposed drug candidates by pre-
dicting the toxicity.
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Figure 5: Illustration of the fragment-constrained motif extension process of (a) GenMol and (b) autoregressive models. GenMol
starts by sampling the length of the sequence and then filling the sequence with mask tokens corresponding to the sampled length.
GenMol employs parallel decoding where all tokens are decoded simultaneously under discrete diffusion, and confirms only the most
confident predictions. The decoding proceeds progressively until all mask tokens are predicted. In contrast, autoregressive models like
SAFE-GPT (Noutahi et al., 2024) need to predict one token per step, requiring many more decoding steps.

A. Limitations
The proposed GenMol is designed with the goal of being a versatile tool for various drug discovery scenarios without
any task-specific finetuning. In addition to its versatility, GenMol shows improved molecular generation in terms of both
effectiveness and efficiency thanks to its masked discrete diffusion with non-autoregressive bidirectional parallel decoding.
However, while the parallel decoding scheme reduces sampling time, unmasking more than one token at each time step
(i.e., setting N > 1) results in degraded generation quality. Overcoming this trade-off between generation quality and
sampling efficiency is left as a future work.

B. Confidence Sampling of GenMol
Following Chang et al. (2022), GenMol adopts confidence sampling that decides which tokens to unmask at each sampling
step based on the confidence scores of the sampled tokens. After sampling zzzls according to Eq. (4), let plθ,i∗ denote the
corresponding prediction score, where i∗ is the index of the sampled category. With introduction of a Gumbel noise
decreasing over the sampling process, the confidence score clt of the l-th token at time step t is defined as follows:

clt := log plθ,i∗ + r · t · ϵ, ϵ ∼ Gumbel(0, 1), (8)

where r is the randomness.

Based on their confidence scores clt (Eq. (8)), GenMol unmask the top-N currently masked tokens. In other words, this is
equivalent to predicting all tokens simultaneously, but only confirming the most confident predictions. The other tokens
are masked again and predicted in the next step. With confidence sampling, GenMol can exploit the dependencies between
tokens in a given molecular sequence for better sampling quality, rather than randomly and independently selecting tokens
to unmask, as in the standard diffusion sampling (Austin et al., 2021; Sahoo et al., 2024).
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C. Derivation of MCG (Eq. (7))
Nisonoff et al. (2024) proposed a CFG scheme for CTMC-based discrete diffusion models (Campbell et al., 2022) as
follows:

R
(w)
t (zzzt, zzzs|yyy) = Rt(zzzt, zzzs|yyy)wRt(zzzt, zzzs)

1−w, (9)

where R(zzz,zzz′) is a rate matrix that describes the transition probability for zzz → zzz′.

Applying the same generalization of CFG proposed by Karras et al. (2024) (Eq. (6)) to Eq. (9), we have the following
guided rate matrix:

R
(w)
t (zzzt, zzzs|yyy) = R1,t(zzzt, zzzs|yyy)wR0,t(zzzt, zzzs|yyy)1−w, (10)

where R1,t and R0,t are the rate matrices describing a high-quality model and a poor model, respectively.

On the other hand, MDLM can be interpreted as a CTMC with the following reverse rate matrix (Sahoo et al., 2024):

Rt(zzzt, zzzs) =


− α′

t

1−αt
⟨xxxθ(zzzt, t), zzzs⟩ zzzs ̸= m, zzzt = m

α′
t

1−αt
zzzs = m, zzzt = m

0 otherwise.

(11)

If we set R1,t and R0,t as the rate matrices resulted by the original prediction of the denoiser xxxθ(zzzt, t) and the prediction
with partially corrupted input xxxθ(z̃zzt, t), respectively, substituting Eq. (11) for R1,t and R0,t in Eq. (10) yields:

R
(w)
t (zzzt, zzzs) =


− α′

t

1−αt
⟨xxxθ(zzzt, t), zzzs⟩w⟨xxxθ(z̃zzt, t), zzzs⟩1−w zzzs ̸= m, zzzt = m

α′
t

1−αt
zzzs = m, zzzt = m

0 otherwise

=


− α′

t

1−αt
⟨xxxθ(zzzt, t)

w ⊙ xxxθ(z̃zzt, t)
1−w, zzzs⟩ zzzs ̸= m, zzzt = m

α′
t

1−αt
zzzs = m, zzzt = m

0 otherwise,

(12)

where ⊙ denotes the Hadamard product. Here, we utilized the facts that zzzs is an one-hot vector and zzzt = m ⇒ z̃zzt = m as
z̃zzt is the corrupted (i.e., more masked) zzzt.

Therefore, using the guided rate matrix R
(w)
t in Eq. (12) is equivalent to using the following guided prediction xxx

(w)
θ :

xxx
(w)
θ (zzzt, t) = xxxθ(zzzt, t)

w ⊙ xxxθ(z̃zzt, t)
1−w

⇔ logxxx
(w)
θ (zzzt, t) = w logxxxθ(zzzt, t) + (1− w) logxxxθ(z̃zzt, t).

(13)

13



GenMol: A Drug Discovery Generalist with Discrete Diffusion

Table 6: Statistics of the SAFE dataset.

Train Test Validation
Number of examples 945,455,307 118,890,444 118,451,032

D. Experimental Details
D.1. Computing Resources

GenMol was trained using 8 NVIDIA A100 GPUs. The training took approximately 5 hours. All the molecular generation
experiments were conducted using a single NVIDIA A100 GPU and 32 CPU cores.

D.2. Training GenMol

In this section, we describe the details for training GenMol. We used the BERT (Devlin et al., 2019) architec-
ture of the HuggingFace Transformers library (Wolf et al., 2019) with the default configuration, except that we set
max position embeddings to 256. We used the SAFE dataset and SAFE tokenizer (Noutahi et al., 2024) that has a vo-
cabulary size of K = 1880. The statistics of the dataset is provided in Table 6. We set the batch size to 2048, the learning
rate to 3e − 4, and the number of training steps to 50k. We used the log-linear noise schedule of Sahoo et al. (2024) and
the AdamW optimizer (Loshchilov & Hutter, 2019) with β1 = 0.9 and β2 = 0.999.

D.3. De Novo Generation

In this section, we describe the details for conducting experiments in Section 5.1. We used the RDKit library (Landrum
et al., 2016) to obtain Morgan fingerprints and the Therapeutics Data Commons (TDC) library (Huang et al., 2021) to
calculate diversity, QED, and SA. The lengths of the mask chunks were sampled from the ZINC250k distribution.

D.4. Fragment-constrained Generation

In Section 5.2, we used the benchmark proposed by Noutahi et al. (2024). The benchmark contains extracted fragments
from 10 known drugs: Cyclothiazide, Maribavir, Spirapril, Baricitinib, Eliglustat, Erlotinib, Futibatinib, Lesinurad, Lio-
thyronine, and Lovastatin. Specifically, from each drug, side chains, a starting motif, the main scaffold with attachment
points, and a core substructure are extracted, and then serve as input for linker design & scaffold morphing, motif exten-
sion, scaffold decoration, and superstructure generation, respectively. Linker design and scaffold morphing are tasks
where the goal is to generate a linker fragment that connects given two side chains. In GenMol, linker design and scaffold
morphing correspond to the same task. Motif extension and scaffold decoration are tasks where the goal is to generate a
side fragment to complete a new molecule when a motif or scaffold and attachment points are given. Superstructure gen-
eration is a task where the goal is to generate a molecule when a substructure constraint is given. Following Noutahi et al.
(2024), we first generate random attachment points on the substructure to create new scaffolds and conduct the scaffold
decoration task.

We used N = 1. We performed the grid search with the search space τ ∈ {0.5, 0.8, 1, 1.2, 1.5} and r ∈ {1, 1.2, 2, 3}, and
set r to 3 for linker design and scaffold morphing, 1.2 for motif extension, and 2 for scaffold decoration and superstructure
generation. We set τ to 1.2 for all the tasks. The lengths of the mask chunks were sampled from the ZINC250k distribution.
For MCG, we set w = 2 and performed a search with the search space γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The values of γ are
provided in Table 7.

D.5. Goal-directed Hit Generation

In this section, we describe the details for conducting experiments in Section 5.3. To construct an initial fragment vocabu-
lary, we adopted a simple decomposition rule Rvocab that randomly cut one of the non-ring single bonds of a given molecule
three times and apply it to the ZINC250k dataset. With this decomposition rule, we can ensure that all fragments have one
attachment point and are of appropriate size. For the finer decomposition rule Rremask that determines which fragments
fragment remasking will operate on, we used the rule that cut all of the non-ring single bonds in a given molecule. We set
the size of the fragment vocabulary to V = 100. We applied the warmup scheme that let GenMol generate molecules by
concatenating two randomly chosen fragments without fragment remasking for the first 1,000 generations. We used N = 1,
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Table 7: γ in fragment-constrained
generation.

Task γ

Linker design 0.0
Scaffold morphing 0.0
Motif extension 0.3
Scaffold decoration 0.3
Superstructure generation 0.4

Table 8: γ in hit generation.

Oracle γ

albuterol similarity 0.2
amlodipine mpo 0.3
celecoxib rediscovery 0.0
deco hop 0.2
drd2 0.0
fexofenadine mpo 0.0
gsk3b 0.0
isomers c7h8n2o2 0.5
isomers c9h10n2o2pf2cl 0.0
jnk3 0.5
median1 0.2
median2 0.2
mestranol similarity 0.0
osimertinib mpo 0.0
perindopril mpo 0.4
qed 0.0
ranolazine mpo 0.0
scaffold hop 0.0
sitagliptin mpo 0.2
thiothixene rediscovery 0.3
troglitazone rediscovery 0.0
valsartan smarts 0.4
zaleplon mpo 0.4

Table 9: γ in lead optimization.

Target protein Seed score γ

-7.3 0.2
parp1 -7.8 0.2

-8.2 0.2
-6.4 0.3

fa7 -6.7 0.4
-8.5 0.0
-4.5 0.3

5ht1b -7.6 0.0
-9.8 0.4
-9.3 0.2

braf -9.4 0.1
-9.8 0.5
-7.7 0.5

jak2 -8.0 0.0
-8.6 0.1

τ = 1.2, and r = 2. For MCG, we set w = 2 and performed a search with the search space γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The values of γ are shown in Table 8.

D.6. Goal-directed Lead Optimization

In this section, we describe the details for conducting experiments in Section 5.4. For each target, three molecules were
randomly selected from known active compounds from DUD-E (Mysinger et al., 2012) (parp1, fa7, braf and jak2) or
ChEMBL (Zdrazil et al., 2024) (5ht1b) as seed molecules. The same decomposition rules Rvocab and Rremask explained
in Section D.5 were used and the fragment vocabulary size was set to V = ∞. Following the setting of Wang et al.
(2023), for each target protein and each seed molecule, we run 10 optimization iterations with 100 generation per iteration.
We used N = 1, τ = 1.2, and r = 2. For MCG, we set w = 2 and performed a search with the search space γ ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5}. The values of γ are shown in Table 9.

E. Additional Experimental Results
E.1. Additional Baseline in De Novo Generation

We provide comparison of GenMol with another widely used baseline trained on ZINC250k (Irwin et al., 2012), JT-
VAE (Jin et al., 2018), and a graph discrete diffusion model trained on GuacaMol (Brown et al., 2019), DiGress (Vignac
et al., 2023), in Table 10. GenMol significantly outperforms JT-VAE and DiGress in terms of quality and sampling time.
We used the fast version of the JT-VAE code1 and the official code of DiGress2.

E.2. QED and SA Distributions in De Novo Generation

We provide the QED and SA distributions of molecules generated by GenMol and SAFE-GPT, respectively, in Figure 6.
The distributions of 100k molecules randomly sampled from the test set are also shown in the figure. As shown in the
figure, GenMol is able to generate molecules of higher QED (more drug-like) and lower SA (more synthesizable) values

1https://github.com/Bibyutatsu/FastJTNNpy3
2https://github.com/cvignac/DiGress
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Table 10: De novo molecule generation results. The results are the means and the standard deviations of 3 runs. N , τ , and r is
the number of tokens to unmask at each time step, the softmax temperature, and the randomness, respectively. The best results are
highlighted in bold.

Method Validity (%) Uniqueness (%) Quality (%) Diversity Sampling time (s)
JT-VAE 100.0 ± 0.0 65.9 ± 1.3 45.2 ± 1.4 0.855 ± 0.001 96.5 ± 2.1
DiGress 89.6 ± 0.8 100.0 ± 0.0 36.8 ± 1.0 0.885 ± 0.002 1241.9 ± 9.2
GenMol (N = 1)
τ = 0.5, r = 0.5 100.0 ± 0.0 99.7 ± 0.1 84.6 ± 0.8 0.818 ± 0.001 21.1 ± 0.4
τ = 1.0, r = 10.0 99.8 ± 0.1 99.6 ± 0.1 63.0 ± 0.4 0.882 ± 0.003 21.5 ± 0.5

Test data
GenMol (𝑁 = 1, 𝜏 = 0.5, 𝑟 = 0.5)
GenMol (𝑁 = 1, 𝜏 = 1.5, 𝑟 = 10)
SAFE-GPT

QED SA

Figure 6: QED and SA distributions of molecules in de novo generation.

Table 11: Quality (%) results in de novo molecule generation with various QED and SA thresholds. The results are the means and
the standard deviations of 3 runs. The best results are highlighted in bold.

Method
Quality

QED ≥ 0.6,SA ≤ 4 QED ≥ 0.5,SA ≤ 5 QED ≥ 0.7,SA ≤ 3

SAFE-GPT 54.7 ± 0.3 78.3 ± 1.7 18.5 ± 0.1
GenMol (N = 1, τ = 0.5, r = 0.5) 84.6 ± 0.8 97.1 ± 0.1 50.6 ± 1.0

than SAFE-GPT, resulting in high quality in Table 1. Furthermore, GenMol can freely control these distributions by
adjusting the values of the softmax temperature τ and the randomness r.

E.3. Analysis on Quality and Diversity in De Novo Generation

The quality and diversity values of 100k molecules randomly sampled from the test set are 38.2% and 0.897, respectively.
The quality and diversity values of molecules generated by GenMol (N = 1, τ = 0.5, r = 0.5) are 84.6% and 0.818,
respectively, as shown in Table 1. We can think of this as sacrificing diversity and selecting a specific mode of high quality.
GenMol can control this mode-selecting behavior by adjusting τ and r (e.g., the quality and diversity values of GenMol
(N = 1, τ = 1.5, r = 10) shown in Table 1 are 39.7% and 0.911, respectively).

E.4. Analysis on QED and SA Thresholds in Quality Metric

In Section 5.1 and Section 5.2, we introduced quality to provide a metric that summarizes the model’s ability to generate
chemically plausible molecules. We followed Jin et al. (2020) and set the QED and SA thresholds to 0.6 and 4, respectively.
To validate the robustness of the quality metric to threshold selection, we additionally provide quality results on the de
novo generation task with different thresholds in Table 11. QED ≥ 0.5,SA ≤ 5 corresponds to the softer condition, while
QED ≥ 0.7,SA ≤ 3 is the harsher condition. As shown in the table, different QED and SA thresholds yield a consistent
quality trend, with GenMol outperforming SAFE-GPT in all three settings.

E.5. Additional Baseline in Fragment-constrained Generation

We compare the results of GenMol and DiGress in the fragment-constrained generation tasks in Table 12. As shown in the
table, GenMol significantly outperforms DiGress in validity and quality.

16



GenMol: A Drug Discovery Generalist with Discrete Diffusion

Table 12: Fragment-constrained molecule generation results. The results are the means and the standard deviations of 3 runs. The
purple parentheses indicate the performance gain by MCG.

Method Task Validity (%) Uniqueness (%) Quality (%) Diversity Distance
DiGress Linker design 31.2 ± 1.2 84.3 ± 0.4 6.1 ± 0.2 0.745 ± 0.001 0.724 ± 0.003

Scaffold morphing 31.2 ± 1.2 84.3 ± 0.4 6.1 ± 0.2 0.745 ± 0.001 0.724 ± 0.003
Motif extension 21.8 ± 0.8 94.5 ± 0.3 4.2 ± 0.1 0.818 ± 0.003 0.794 ± 0.003
Scaffold decoration 29.3 ± 0.7 91.0 ± 0.8 9.1 ± 0.4 0.793 ± 0.003 0.785 ± 0.002
Superstructure generation 26.7 ± 1.3 85.9 ± 1.4 7.4 ± 0.9 0.789 ± 0.005 0.776 ± 0.004

GenMol w/o MCG Linker design 100.0 ± 0.0 83.7 ± 0.5 21.9 ± 0.4 0.547 ± 0.002 0.563 ± 0.003
Scaffold morphing 100.0 ± 0.0 83.7 ± 0.5 21.9 ± 0.4 0.547 ± 0.002 0.563 ± 0.003
Motif extension 77.2 ± 0.1 77.8 ± 0.2 27.5 ± 0.8 0.617 ± 0.002 0.682 ± 0.002
Scaffold decoration 96.8 ± 0.2 78.0 ± 1.2 29.6 ± 0.8 0.576 ± 0.001 0.650 ± 0.001
Superstructure generation 98.2 ± 1.1 78.3 ± 3.4 33.3 ± 1.6 0.574 ± 0.008 0.757 ± 0.003

GenMol Linker design 100.0 ± 0.0 (+0.0) 83.7 ± 0.5 (+0.0) 21.9 ± 0.4 (+0.0) 0.547 ± 0.002 (+0.000) 0.563 ± 0.003 (+0.000)

Scaffold morphing 100.0 ± 0.0 (+0.0) 83.7 ± 0.5 (+0.0) 21.9 ± 0.4 (+0.0) 0.547 ± 0.002 (+0.000) 0.563 ± 0.003 (+0.000)

Motif extension 82.9 ± 0.1 (+5.7) 77.5 ± 0.1 (-0.3) 30.1 ± 0.4 (+2.6) 0.617 ± 0.002 (+0.000) 0.682 ± 0.001 (+0.000)

Scaffold decoration 96.6 ± 0.8 (-0.2) 82.7 ± 1.8 (+4.7) 31.8 ± 0.5 (+2.2) 0.591 ± 0.001 (+0.015) 0.651 ± 0.001 (+0.001)

Superstructure generation 97.5 ± 0.9 (-0.7) 83.6 ± 1.0 (+5.3) 34.8 ± 1.0 (+1.5) 0.599 ± 0.009 (+0.025) 0.762 ± 0.007 (+0.005)

E.6. Ablation Study on MCG in Fragment-constrained Generation

We compare the results of GenMol and GenMol without MCG in the fragment-constrained generation tasks in Table 12.
As shown in the table, using MCG improves the performance of GenMol across various tasks and metrics, verifying the
effectiveness of the proposed MCG scheme.

E.7. Full Goal-directed Hit Generation Results

We provide the full results of Table 3 including the additional baselines from Gao et al. (2022) in Table 13, Table 14, and
Table 15. As shown in the tables, GenMol outperforms all baselines by a large margin.

On the other hand, to simulate the fragment-based drug discovery (FBDD) scenario following Lee et al. (2024a), we have
assumed that a high-quality fragment vocabulary of size 100 is given for each task in Table 3. Here, similar to Wang et al.
(2023), we also provide the results of GenMol (10 fragments), which starts with only 10 of these fragments to simulate a
scenario where high-quality fragments are sparse, in Table 13.

E.8. Full Goal-directed Hit Generation Results in Ablation Study

We provide the full results of the ablated GenMol variants baselines in the goal-directed hit generatino task in Table 5 in
Table 16. As shown in the table, A, A + Token remasking, A + GPT remasking and A + Fragment remasking show inferior
performance to A + F + MCG, the full GenMol, as discussed in Section 5.5.

E.9. Ablation Study in Goal-directed Lead Optimization

We compare the results of the ablated GenMol baselines in the goal-directed lead optimization task in Table 17. As in
Table 5, A + Token remasking, A + GPT remasking and A + Fragment remasking all outperform A, demonstrating the
importance of further modification on top of A through remasking. Moreover, A + Fragment remasking generally outper-
forms A + Token remasking and A + GPT remasking, showing the effectiveness of the proposed remasking strategy that
uses fragments as the exploration unit under discrete diffusion. Lastly, A + F + MCG shows further improved performance
compared to A + F, validating the effectiveness of MCG in the lead optimization task.

E.10. Examples of Generated Molecules

We provide examples of the molecules generated by GenMol (N = 1, τ = 0.5, r = 0.5) on de novo generation Figure 7.
We provide examples of generated molecules on fragment-constrained generation in Figure 8.
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Table 13: Goal-directed hit generation results. The results are the means and standard deviations of PMO AUC top-10 of 3 runs. The
results for f -RAG (Lee et al., 2024a), Genetic GFN (Kim et al., 2024) and Mol GA (Tripp & Hernández-Lobato, 2023) are taken from
the respective papers and the results for other baselines are taken from Gao et al. (2022). The best results are highlighted in bold.

Oracle GenMol
GenMol

(10 fragments) f -RAG Genetic GFN Mol GA

albuterol similarity 0.937 ± 0.010 0.847 ± 0.036 0.977 ± 0.002 0.949 ± 0.010 0.896 ± 0.035
amlodipine mpo 0.810 ± 0.012 0.762 ± 0.012 0.749 ± 0.019 0.761 ± 0.019 0.688 ± 0.039
celecoxib rediscovery 0.826 ± 0.018 0.619 ± 0.005 0.778 ± 0.007 0.802 ± 0.029 0.567 ± 0.083
deco hop 0.960 ± 0.010 0.957 ± 0.016 0.936 ± 0.011 0.733 ± 0.109 0.649 ± 0.025
drd2 0.995 ± 0.000 0.995 ± 0.000 0.992 ± 0.000 0.974 ± 0.006 0.936 ± 0.016
fexofenadine mpo 0.894 ± 0.028 0.806 ± 0.008 0.856 ± 0.016 0.856 ± 0.039 0.825 ± 0.019
gsk3b 0.986 ± 0.003 0.985 ± 0.004 0.969 ± 0.003 0.881 ± 0.042 0.843 ± 0.039
isomers c7h8n2o2 0.942 ± 0.004 0.984 ± 0.002 0.955 ± 0.008 0.969 ± 0.003 0.878 ± 0.026
isomers c9h10n2o2pf2cl 0.833 ± 0.014 0.866 ± 0.010 0.850 ± 0.005 0.897 ± 0.007 0.865 ± 0.012
jnk3 0.906 ± 0.023 0.828 ± 0.007 0.904 ± 0.004 0.764 ± 0.069 0.702 ± 0.123
median1 0.398 ± 0.000 0.336 ± 0.008 0.340 ± 0.007 0.379 ± 0.010 0.257 ± 0.009
median2 0.359 ± 0.004 0.354 ± 0.000 0.323 ± 0.005 0.294 ± 0.007 0.301 ± 0.021
mestranol similarity 0.982 ± 0.000 0.991 ± 0.002 0.671 ± 0.021 0.708 ± 0.057 0.591 ± 0.053
osimertinib mpo 0.876 ± 0.008 0.870 ± 0.004 0.866 ± 0.009 0.860 ± 0.008 0.844 ± 0.015
perindopril mpo 0.718 ± 0.012 0.695 ± 0.004 0.681 ± 0.017 0.595 ± 0.014 0.547 ± 0.022
qed 0.942 ± 0.000 0.943 ± 0.000 0.939 ± 0.001 0.942 ± 0.000 0.941 ± 0.001
ranolazine mpo 0.821 ± 0.011 0.777 ± 0.016 0.820 ± 0.016 0.819 ± 0.018 0.804 ± 0.011
scaffold hop 0.628 ± 0.008 0.648 ± 0.005 0.576 ± 0.014 0.615 ± 0.100 0.527 ± 0.025
sitagliptin mpo 0.584 ± 0.034 0.588 ± 0.064 0.601 ± 0.011 0.634 ± 0.039 0.582 ± 0.040
thiothixene rediscovery 0.692 ± 0.123 0.569 ± 0.013 0.584 ± 0.009 0.583 ± 0.034 0.519 ± 0.041
troglitazone rediscovery 0.867 ± 0.022 0.848 ± 0.040 0.448 ± 0.017 0.511 ± 0.054 0.427 ± 0.031
valsartan smarts 0.822 ± 0.042 0.803 ± 0.011 0.627 ± 0.058 0.135 ± 0.271 0.000 ± 0.000
zaleplon mpo 0.584 ± 0.011 0.571 ± 0.016 0.486 ± 0.004 0.552 ± 0.033 0.519 ± 0.029
Sum 18.362 17.643 16.928 16.213 14.708

Oracle REINVENT Graph GA
SELFIES-

REINVENT GP BO STONED

albuterol similarity 0.882 ± 0.006 0.838 ± 0.016 0.826 ± 0.030 0.898 ± 0.014 0.745 ± 0.076
amlodipine mpo 0.635 ± 0.035 0.661 ± 0.020 0.607 ± 0.014 0.583 ± 0.044 0.608 ± 0.046
celecoxib rediscovery 0.713 ± 0.067 0.630 ± 0.097 0.573 ± 0.043 0.723 ± 0.053 0.382 ± 0.041
deco hop 0.666 ± 0.044 0.619 ± 0.004 0.631 ± 0.012 0.629 ± 0.018 0.611 ± 0.008
drd2 0.945 ± 0.007 0.964 ± 0.012 0.943 ± 0.005 0.923 ± 0.017 0.913 ± 0.020
fexofenadine mpo 0.784 ± 0.006 0.760 ± 0.011 0.741 ± 0.002 0.722 ± 0.005 0.797 ± 0.016
gsk3b 0.865 ± 0.043 0.788 ± 0.070 0.780 ± 0.037 0.851 ± 0.041 0.668 ± 0.049
isomers c7h8n2o2 0.852 ± 0.036 0.862 ± 0.065 0.849 ± 0.034 0.680 ± 0.117 0.899 ± 0.011
isomers c9h10n2o2pf2cl 0.642 ± 0.054 0.719 ± 0.047 0.733 ± 0.029 0.469 ± 0.180 0.805 ± 0.031
jnk3 0.783 ± 0.023 0.553 ± 0.136 0.631 ± 0.064 0.564 ± 0.155 0.523 ± 0.092
median1 0.356 ± 0.009 0.294 ± 0.021 0.355 ± 0.011 0.301 ± 0.014 0.266 ± 0.016
median2 0.276 ± 0.008 0.273 ± 0.009 0.255 ± 0.005 0.297 ± 0.009 0.245 ± 0.032
mestranol similarity 0.618 ± 0.048 0.579 ± 0.022 0.620 ± 0.029 0.627 ± 0.089 0.609 ± 0.101
osimertinib mpo 0.837 ± 0.009 0.831 ± 0.005 0.820 ± 0.003 0.787 ± 0.006 0.822 ± 0.012
perindopril mpo 0.537 ± 0.016 0.538 ± 0.009 0.517 ± 0.021 0.493 ± 0.011 0.488 ± 0.011
qed 0.941 ± 0.000 0.940 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.941 ± 0.000
ranolazine mpo 0.760 ± 0.009 0.728 ± 0.012 0.748 ± 0.018 0.735 ± 0.013 0.765 ± 0.029
scaffold hop 0.560 ± 0.019 0.517 ± 0.007 0.525 ± 0.013 0.548 ± 0.019 0.521 ± 0.034
sitagliptin mpo 0.021 ± 0.003 0.433 ± 0.075 0.194 ± 0.121 0.186 ± 0.055 0.393 ± 0.083
thiothixene rediscovery 0.534 ± 0.013 0.479 ± 0.025 0.495 ± 0.040 0.559 ± 0.027 0.367 ± 0.027
troglitazone rediscovery 0.441 ± 0.032 0.390 ± 0.016 0.348 ± 0.012 0.410 ± 0.015 0.320 ± 0.018
valsartan smarts 0.179 ± 0.358 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.358 ± 0.062 0.346 ± 0.032 0.333 ± 0.026 0.221 ± 0.072 0.325 ± 0.027
Sum 14.196 13.751 13.471 13.156 13.024

18



GenMol: A Drug Discovery Generalist with Discrete Diffusion

Table 14: Goal-directed hit generation results (continued).

Oracle LSTM HC SMILES-GA SynNet DoG-Gen DST
albuterol similarity 0.719 ± 0.018 0.661 ± 0.066 0.584 ± 0.039 0.676 ± 0.013 0.619 ± 0.020
amlodipine mpo 0.593 ± 0.016 0.549 ± 0.009 0.565 ± 0.007 0.536 ± 0.003 0.516 ± 0.007
celecoxib rediscovery 0.539 ± 0.018 0.344 ± 0.027 0.441 ± 0.027 0.464 ± 0.009 0.380 ± 0.006
deco hop 0.826 ± 0.017 0.611 ± 0.006 0.613 ± 0.009 0.800 ± 0.007 0.608 ± 0.008
drd2 0.919 ± 0.015 0.908 ± 0.019 0.969 ± 0.004 0.948 ± 0.001 0.820 ± 0.014
fexofenadine mpo 0.725 ± 0.003 0.721 ± 0.015 0.761 ± 0.015 0.695 ± 0.003 0.725 ± 0.005
gsk3b 0.839 ± 0.015 0.629 ± 0.044 0.789 ± 0.032 0.831 ± 0.021 0.671 ± 0.032
isomers c7h8n2o2 0.485 ± 0.045 0.913 ± 0.021 0.455 ± 0.031 0.465 ± 0.018 0.548 ± 0.069
isomers c9h10n2o2pf2cl 0.342 ± 0.027 0.860 ± 0.065 0.241 ± 0.064 0.199 ± 0.016 0.458 ± 0.063
jnk3 0.661 ± 0.039 0.316 ± 0.022 0.630 ± 0.034 0.595 ± 0.023 0.556 ± 0.057
median1 0.255 ± 0.010 0.192 ± 0.012 0.218 ± 0.008 0.217 ± 0.001 0.232 ± 0.009
median2 0.248 ± 0.008 0.198 ± 0.005 0.235 ± 0.006 0.212 ± 0.000 0.185 ± 0.020
mestranol similarity 0.526 ± 0.032 0.469 ± 0.029 0.399 ± 0.021 0.437 ± 0.007 0.450 ± 0.027
osimertinib mpo 0.796 ± 0.002 0.817 ± 0.011 0.796 ± 0.003 0.774 ± 0.002 0.785 ± 0.004
perindopril mpo 0.489 ± 0.007 0.447 ± 0.013 0.557 ± 0.011 0.474 ± 0.002 0.462 ± 0.008
qed 0.939 ± 0.000 0.940 ± 0.000 0.941 ± 0.000 0.934 ± 0.000 0.938 ± 0.000
ranolazine mpo 0.714 ± 0.008 0.699 ± 0.026 0.741 ± 0.010 0.711 ± 0.006 0.632 ± 0.054
scaffold hop 0.533 ± 0.012 0.494 ± 0.011 0.502 ± 0.012 0.515 ± 0.005 0.497 ± 0.004
sitagliptin mpo 0.066 ± 0.019 0.363 ± 0.057 0.025 ± 0.014 0.048 ± 0.008 0.075 ± 0.032
thiothixene rediscovery 0.438 ± 0.008 0.315 ± 0.017 0.401 ± 0.019 0.375 ± 0.004 0.366 ± 0.006
troglitazone rediscovery 0.354 ± 0.016 0.263 ± 0.024 0.283 ± 0.008 0.416 ± 0.019 0.279 ± 0.019
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.206 ± 0.006 0.334 ± 0.041 0.341 ± 0.011 0.123 ± 0.016 0.176 ± 0.045
Sum 12.223 12.054 11.498 11.456 10.989

Oracle MARS MIMOSA MolPal
SELFIES-
LSTM HC DoG-AE

albuterol similarity 0.597 ± 0.124 0.618 ± 0.017 0.609 ± 0.002 0.664 ± 0.030 0.533 ± 0.034
amlodipine mpo 0.504 ± 0.016 0.543 ± 0.003 0.582 ± 0.008 0.532 ± 0.004 0.507 ± 0.005
celecoxib rediscovery 0.379 ± 0.060 0.393 ± 0.010 0.415 ± 0.001 0.385 ± 0.008 0.355 ± 0.012
deco hop 0.589 ± 0.003 0.619 ± 0.003 0.643 ± 0.005 0.590 ± 0.001 0.765 ± 0.055
drd2 0.891 ± 0.020 0.799 ± 0.017 0.783 ± 0.009 0.729 ± 0.034 0.943 ± 0.009
fexofenadine mpo 0.711 ± 0.006 0.706 ± 0.011 0.685 ± 0.000 0.693 ± 0.004 0.679 ± 0.017
gsk3b 0.552 ± 0.037 0.554 ± 0.042 0.555 ± 0.011 0.423 ± 0.018 0.601 ± 0.091
isomers c7h8n2o2 0.728 ± 0.027 0.564 ± 0.046 0.484 ± 0.006 0.587 ± 0.031 0.239 ± 0.077
isomers c9h10n2o2pf2cl 0.581 ± 0.013 0.303 ± 0.046 0.164 ± 0.003 0.352 ± 0.019 0.049 ± 0.015
jnk3 0.489 ± 0.095 0.360 ± 0.063 0.339 ± 0.009 0.207 ± 0.013 0.469 ± 0.138
median1 0.207 ± 0.011 0.243 ± 0.005 0.249 ± 0.001 0.239 ± 0.009 0.171 ± 0.009
median2 0.181 ± 0.011 0.214 ± 0.002 0.230 ± 0.000 0.205 ± 0.005 0.182 ± 0.006
mestranol similarity 0.388 ± 0.026 0.438 ± 0.015 0.564 ± 0.004 0.446 ± 0.009 0.370 ± 0.014
osimertinib mpo 0.777 ± 0.006 0.788 ± 0.014 0.779 ± 0.000 0.780 ± 0.005 0.750 ± 0.012
perindopril mpo 0.462 ± 0.006 0.490 ± 0.011 0.467 ± 0.002 0.448 ± 0.006 0.432 ± 0.013
qed 0.930 ± 0.003 0.939 ± 0.000 0.940 ± 0.000 0.938 ± 0.000 0.926 ± 0.003
ranolazine mpo 0.740 ± 0.010 0.640 ± 0.015 0.457 ± 0.005 0.614 ± 0.010 0.689 ± 0.015
scaffold hop 0.469 ± 0.004 0.507 ± 0.015 0.494 ± 0.000 0.472 ± 0.002 0.489 ± 0.010
sitagliptin mpo 0.016 ± 0.003 0.102 ± 0.023 0.043 ± 0.001 0.116 ± 0.012 0.009 ± 0.005
thiothixene rediscovery 0.344 ± 0.022 0.347 ± 0.018 0.339 ± 0.001 0.339 ± 0.009 0.314 ± 0.015
troglitazone rediscovery 0.256 ± 0.016 0.299 ± 0.009 0.268 ± 0.000 0.257 ± 0.002 0.259 ± 0.016
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.187 ± 0.046 0.172 ± 0.036 0.168 ± 0.003 0.218 ± 0.020 0.049 ± 0.027
Sum 10.989 10.651 10.268 10.246 9.790
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Table 15: Goal-directed hit generation results (continued).

Oracle GFlowNet GA+D
SELFIES-
VAE BO Screening

SMILES-
VAE BO

albuterol similarity 0.447 ± 0.012 0.495 ± 0.025 0.494 ± 0.012 0.483 ± 0.006 0.489 ± 0.007
amlodipine mpo 0.444 ± 0.004 0.400 ± 0.032 0.516 ± 0.005 0.535 ± 0.001 0.533 ± 0.009
celecoxib rediscovery 0.327 ± 0.004 0.223 ± 0.025 0.326 ± 0.007 0.351 ± 0.005 0.354 ± 0.002
deco hop 0.583 ± 0.002 0.550 ± 0.005 0.579 ± 0.001 0.590 ± 0.001 0.589 ± 0.001
drd2 0.590 ± 0.070 0.382 ± 0.205 0.569 ± 0.039 0.545 ± 0.015 0.555 ± 0.043
fexofenadine mpo 0.693 ± 0.006 0.587 ± 0.007 0.670 ± 0.004 0.666 ± 0.004 0.671 ± 0.003
gsk3b 0.651 ± 0.026 0.342 ± 0.019 0.350 ± 0.034 0.438 ± 0.034 0.386 ± 0.006
isomers c7h8n2o2 0.366 ± 0.043 0.854 ± 0.015 0.325 ± 0.028 0.168 ± 0.034 0.161 ± 0.017
isomers c9h10n2o2pf2cl 0.110 ± 0.031 0.657 ± 0.020 0.200 ± 0.030 0.106 ± 0.021 0.084 ± 0.009
jnk3 0.440 ± 0.022 0.219 ± 0.021 0.208 ± 0.022 0.238 ± 0.024 0.241 ± 0.026
median1 0.202 ± 0.004 0.180 ± 0.009 0.201 ± 0.003 0.205 ± 0.005 0.202 ± 0.006
median2 0.180 ± 0.000 0.121 ± 0.005 0.185 ± 0.001 0.200 ± 0.004 0.195 ± 0.001
mestranol similarity 0.322 ± 0.007 0.371 ± 0.016 0.386 ± 0.009 0.409 ± 0.019 0.399 ± 0.005
osimertinib mpo 0.784 ± 0.001 0.672 ± 0.027 0.765 ± 0.002 0.764 ± 0.001 0.771 ± 0.002
perindopril mpo 0.430 ± 0.010 0.172 ± 0.088 0.429 ± 0.003 0.445 ± 0.004 0.442 ± 0.004
qed 0.921 ± 0.004 0.860 ± 0.014 0.936 ± 0.001 0.938 ± 0.000 0.938 ± 0.000
ranolazine mpo 0.652 ± 0.002 0.555 ± 0.015 0.452 ± 0.025 0.411 ± 0.010 0.457 ± 0.012
scaffold hop 0.463 ± 0.002 0.413 ± 0.009 0.455 ± 0.004 0.471 ± 0.002 0.470 ± 0.003
sitagliptin mpo 0.008 ± 0.003 0.281 ± 0.022 0.084 ± 0.015 0.022 ± 0.003 0.023 ± 0.004
thiothixene rediscovery 0.285 ± 0.012 0.223 ± 0.029 0.297 ± 0.004 0.317 ± 0.003 0.317 ± 0.007
troglitazone rediscovery 0.188 ± 0.001 0.152 ± 0.013 0.243 ± 0.004 0.249 ± 0.003 0.257 ± 0.003
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.003 0.000 ± 0.000 0.002 ± 0.004
zaleplon mpo 0.035 ± 0.030 0.244 ± 0.015 0.206 ± 0.015 0.072 ± 0.014 0.039 ± 0.012
Sum 9.131 8.964 8.887 8.635 8.587

Oracle Pasithea GFlowNet-AL JT-VAE BO Graph MCTS MolDQN
albuterol similarity 0.447 ± 0.007 0.390 ± 0.008 0.485 ± 0.029 0.580 ± 0.023 0.320 ± 0.015
amlodipine mpo 0.504 ± 0.003 0.428 ± 0.002 0.519 ± 0.009 0.447 ± 0.008 0.311 ± 0.008
celecoxib rediscovery 0.312 ± 0.007 0.257 ± 0.003 0.299 ± 0.009 0.264 ± 0.013 0.099 ± 0.005
deco hop 0.579 ± 0.001 0.583 ± 0.001 0.585 ± 0.002 0.554 ± 0.002 0.546 ± 0.001
drd2 0.255 ± 0.040 0.468 ± 0.046 0.506 ± 0.136 0.300 ± 0.050 0.025 ± 0.001
fexofenadine mpo 0.660 ± 0.015 0.688 ± 0.002 0.667 ± 0.010 0.574 ± 0.009 0.478 ± 0.012
gsk3b 0.281 ± 0.038 0.588 ± 0.015 0.350 ± 0.051 0.281 ± 0.022 0.241 ± 0.008
isomers c7h8n2o2 0.673 ± 0.030 0.241 ± 0.055 0.103 ± 0.016 0.530 ± 0.035 0.431 ± 0.035
isomers c9h10n2o2pf2cl 0.345 ± 0.145 0.064 ± 0.012 0.090 ± 0.035 0.454 ± 0.067 0.342 ± 0.026
jnk3 0.154 ± 0.018 0.362 ± 0.021 0.222 ± 0.009 0.110 ± 0.019 0.111 ± 0.008
median1 0.178 ± 0.009 0.190 ± 0.002 0.179 ± 0.003 0.195 ± 0.005 0.122 ± 0.007
median2 0.179 ± 0.004 0.173 ± 0.001 0.180 ± 0.003 0.132 ± 0.002 0.088 ± 0.003
mestranol similarity 0.361 ± 0.016 0.295 ± 0.004 0.356 ± 0.013 0.281 ± 0.008 0.188 ± 0.007
osimertinib mpo 0.749 ± 0.007 0.787 ± 0.003 0.775 ± 0.004 0.700 ± 0.004 0.674 ± 0.006
perindopril mpo 0.421 ± 0.008 0.421 ± 0.002 0.430 ± 0.009 0.277 ± 0.013 0.213 ± 0.043
qed 0.931 ± 0.002 0.902 ± 0.005 0.934 ± 0.002 0.892 ± 0.006 0.731 ± 0.018
ranolazine mpo 0.347 ± 0.012 0.632 ± 0.007 0.508 ± 0.055 0.239 ± 0.027 0.051 ± 0.020
scaffold hop 0.456 ± 0.003 0.460 ± 0.002 0.470 ± 0.005 0.412 ± 0.003 0.405 ± 0.004
sitagliptin mpo 0.088 ± 0.013 0.006 ± 0.001 0.046 ± 0.027 0.056 ± 0.012 0.003 ± 0.002
thiothixene rediscovery 0.288 ± 0.006 0.266 ± 0.005 0.282 ± 0.008 0.231 ± 0.004 0.099 ± 0.007
troglitazone rediscovery 0.240 ± 0.002 0.186 ± 0.003 0.237 ± 0.005 0.224 ± 0.009 0.122 ± 0.004
valsartan smarts 0.006 ± 0.012 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.091 ± 0.013 0.010 ± 0.001 0.125 ± 0.038 0.058 ± 0.019 0.010 ± 0.005
Sum 8.556 8.406 8.358 7.803 5.620
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Table 16: Ablation study on goal-directed hit generation. The results are the means and standard deviations of PMO AUC top-10 of
3 runs. The best results are highlighted in bold.

Oracle Attaching (A)
A +

Token remasking
A +

GPT remasking
A +

Frag. remasking (F) A + F + MCG

albuterol similarity 0.872 ± 0.032 0.895 ± 0.033 0.908 ± 0.039 0.932 ± 0.007 0.937 ± 0.010
amlodipine mpo 0.769 ± 0.029 0.802 ± 0.016 0.780 ± 0.032 0.804 ± 0.006 0.810 ± 0.012
celecoxib rediscovery 0.859 ± 0.008 0.821 ± 0.010 0.847 ± 0.006 0.826 ± 0.018 0.826 ± 0.018
deco hop 0.917 ± 0.009 0.945 ± 0.006 0.955 ± 0.005 0.953 ± 0.016 0.960 ± 0.010
drd2 0.995 ± 0.000 0.995 ± 0.000 0.995 ± 0.000 0.995 ± 0.000 0.995 ± 0.000
fexofenadine mpo 0.875 ± 0.019 0.886 ± 0.017 0.905 ± 0.012 0.894 ± 0.028 0.894 ± 0.028
gsk3b 0.985 ± 0.003 0.985 ± 0.003 0.986 ± 0.003 0.986 ± 0.003 0.986 ± 0.001
isomers c7h8n2o2 0.897 ± 0.016 0.934 ± 0.003 0.915 ± 0.008 0.934 ± 0.002 0.942 ± 0.004
isomers c9h10n2o2pf2cl 0.816 ± 0.025 0.830 ± 0.016 0.820 ± 0.018 0.833 ± 0.014 0.833 ± 0.014
jnk3 0.845 ± 0.035 0.848 ± 0.016 0.840 ± 0.021 0.856 ± 0.016 0.906 ± 0.023
median1 0.397 ± 0.000 0.397 ± 0.000 0.396 ± 0.000 0.397 ± 0.000 0.398 ± 0.000
median2 0.349 ± 0.004 0.350 ± 0.006 0.353 ± 0.004 0.355 ± 0.003 0.359 ± 0.004
mestranol similarity 0.970 ± 0.004 0.980 ± 0.002 0.980 ± 0.002 0.981 ± 0.003 0.982 ± 0.000
osimertinib mpo 0.876 ± 0.003 0.876 ± 0.008 0.873 ± 0.003 0.876 ± 0.008 0.876 ± 0.008
perindopril mpo 0.697 ± 0.014 0.703 ± 0.006 0.703 ± 0.000 0.703 ± 0.009 0.718 ± 0.012
qed 0.927 ± 0.000 0.942 ± 0.000 0.941 ± 0.000 0.942 ± 0.000 0.942 ± 0.000
ranolazine mpo 0.809 ± 0.009 0.818 ± 0.016 0.824 ± 0.012 0.821 ± 0.011 0.821 ± 0.011
scaffold hop 0.617 ± 0.002 0.621 ± 0.012 0.626 ± 0.005 0.628 ± 0.008 0.628 ± 0.008
sitagliptin mpo 0.573 ± 0.006 0.560 ± 0.037 0.566 ± 0.010 0.573 ± 0.050 0.584 ± 0.034
thiothixene rediscovery 0.650 ± 0.073 0.686 ± 0.121 0.677 ± 0.122 0.687 ± 0.125 0.692 ± 0.123
troglitazone rediscovery 0.801 ± 0.062 0.853 ± 0.035 0.832 ± 0.052 0.867 ± 0.022 0.867 ± 0.022
valsartan smarts 0.739 ± 0.043 0.797 ± 0.036 0.764 ± 0.038 0.797 ± 0.033 0.822 ± 0.042
zaleplon mpo 0.406 ± 0.002 0.569 ± 0.014 0.586 ± 0.011 0.569 ± 0.005 0.584 ± 0.011
Sum 17.641 18.091 18.074 18.208 18.362

Table 17: Ablation study on goal-directed lead optimization (kcal/mol) with δ = 0.4. The results are the mean docking scores of
the most optimized leads of 3 runs. Lower is better and the best results are highlighted in bold.

Target protein Seed score Attaching (A)
A +

Token remasking
A +

GPT remasking
A +

Frag. remasking (F) A + F + MCG

-7.3 -8.2 -8.7 -10.4 -10.6 -10.6
parp1 -7.8 -8.3 -8.2 -11.5 -11.0 -11.0

-8.2 - -10.9 -11.1 -10.9 -11.3
-6.4 -7.2 -7.8 -8.1 -8.4 -8.4

fa7 -6.7 -8.3 -8.0 -8.1 -8.4 -8.4
-8.5 - - - - -
-4.5 - -12.8 -12.1 -12.9 -12.9

5ht1b -7.6 -11.9 -11.8 -12.1 -12.3 -12.3
-9.8 - -11.3 -11.2 -11.8 -11.8
-9.3 -9.7 -10.7 -10.8 -10.8 -10.8

braf -9.4 - -10.8 -10.1 -10.2 -10.8
-9.8 - -10.5 -10.6 -10.6 -10.6
-7.7 -8.6 -8.7 -10.2 -10.0 -10.2

jak2 -8.0 -8.9 -9.0 -10.1 -9.9 -10.0
-8.6 - -9.2 -9.8 -9.5 -9.8
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Figure 7: Examples of generated molecules on de novo generation.
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Figure 8: Examples of generated molecules on fragment-constrained generation of Eliglustat.
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