

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOOLWEAVE: FINE-GRAINED AND CONTROLLABLE SYNTHETIC DATA GENERATION FOR MULTI-TURN TOOL CALLING WITH NON-FRONTIER LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-turn tool-calling is a crucial capability for LLM-based agents and is typically improved via supervised fine-tuning on synthetic data. Existing multi-turn tool-calling synthetic data pipelines often rely on proprietary frontier LLMs (e.g., GPT-4) or commercial APIs (e.g., RapidAPI), introducing restrictive licensing. In contrast, data generated directly from non-frontier LLMs suffers from low fidelity, poor diversity, and weak adherence to multi-constraint instructions, resulting in producing lower-quality datasets than frontier models. To address these limitations, we propose *ToolWeave*, a modular and controllable pipeline that synthesises high-quality multi-turn tool-calling datasets using non-frontier, license-friendly LLMs. *ToolWeave* supports both API and dialogue synthesis. Our framework's novelty is threefold: (1) it is fully synthetic; given only a domain name, it builds a domain context from Wikipedia and Wikidata to synthesize a *Tool Graph* of APIs. (2) In contrast to other pipelines' single, failure-prone planning step, *ToolWeave*'s *scaffolding* process first generates a high-level goal from the *Tool Graph*, then decomposes it into a turn-level dialogue plan. This two-stage approach enables non-frontier LLMs to generate high-fidelity, grounded dialogues. (3) A final post-processing stage injects lexical diversity and robustness patterns (e.g., error recovery) to simulate real-world scenarios. To validate our framework, we generated a dataset of $\sim 3.2k$ dialogues using the open-source `gpt-oss-120b`. Compared to baselines, *ToolFlow* and *ToolDial*, *ToolWeave* shows clear gains: on the BFCL-V3 benchmark, our data improves Llama-3.1-70B to **33.25%** (vs. *ToolFlow*'s 21.00% & *ToolDial*'s 3.75%) and Phi-4 to **24.50%** (vs. *ToolFlow*'s 8.88% & *ToolDial*'s 2.0%). Our data also shows strong generalization, with peak gains of **37.6%** on the API Bank benchmark.

1 INTRODUCTION

The ability to leverage external tools has transformed large language models (LLMs) from static predictors into autonomous agents capable of accomplishing complex, real-world tasks (Yao et al., 2023; Schick et al., 2023; Paranjape et al., 2023). A central capability for such agents is *multi-turn tool calling*: identifying the right tool, chaining multiple tools to complete a workflow, eliciting missing information from the user, and presenting results back. A common strategy to improve this ability is fine-tuning on synthetic datasets (Liu et al., 2025; Prabhakar et al., 2025; Shim et al., 2025; Qin et al., 2024). However, existing pipelines were designed for frontier LLMs and make assumptions that break down when applied to non-frontier, open models.

We identify four critical failure modes in prior work. (1) To obtain multi-turn, multi-tool workflows, many pipelines build a graph of tools and perform a random walk over it. This often produces incoherent tool sequences for dialogues, leading to *less realistic data*. (2) Given such tool sequences, pipelines usually ask an LLM to generate the entire dialogue plan in one shot. Frontier LLMs can manage this, but weaker LLMs struggle with such broad prompts, causing *complex instruction following* failures. (3) *Dialogue drift and state loss*: even when a plan exists, generating the dialogue directly from a high-level plan often leads to hallucinated arguments, loss of parameter provenance, or contradictions across turns. (4) *Licensing and coverage constraints*: many pipelines rely on APIs from marketplaces like RapidAPI, causing licensing issues and limited domain coverage.

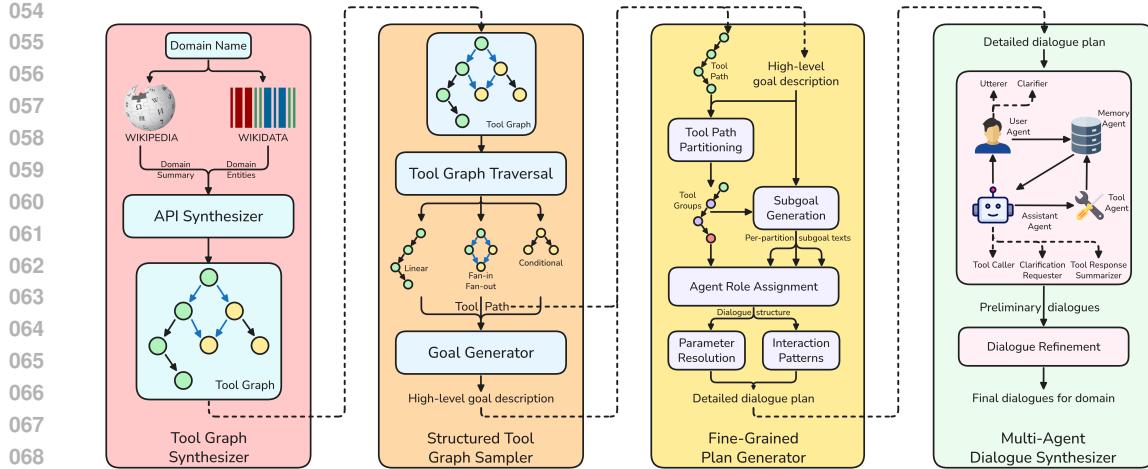


Figure 1: The modular architecture of ToolWeave. Starting with a domain name, the *Tool Graph Synthesizer* creates synthetic APIs and organizes them into an interconnected graph; the *Structured Tool Graph Sampler* extracts coherent subgraphs as goals; the *Fine-Grained Plan Generator* expands these goals into detailed plans; and the *Multi-Agent Dialogue Synthesizer* instantiates the plans into natural multi-turn conversations.

Our approach: We introduce *ToolWeave*, a controllable pipeline that synthesizes domain-specific tools and realistic multi-turn tool-calling dialogues using only open knowledge sources and models (e.g., gpt-oss-120b). Given a domain label (e.g., customer_service), ToolWeave (1) synthesizes a license-friendly library of tools and organizes them into a **Tool Graph** (where nodes represent APIs and edges represent validated parameter dependencies), (2) samples coherent subgraphs from structural workflow motifs, (3) produces explicit, fine-grained plans that decomposes dialogue planning into deterministic atomic steps (specifying agent roles, subgoals, and parameter sources at every turn), and (4) executes them via a plan-driven multi-agent synthesizer with dynamic roles and a Memory agent to preserve state, followed by post-processing for diversity and robustness (Figure 1).

Design principle: granularity and control. Prior pipelines rely on heuristics to construct edges in the tool graph, high-level goal planning, and one-shot dialogue synthesis from coarse plans. In contrast, ToolWeave introduces validated, fine-grained control across all stages of the data synthesis process. Each component—API synthesis, tool-graph construction, workflow sampling, subgoal planning, and multi-agent execution—produces controlled, verifiable inputs for the next stage, enabling non-frontier LLMs to reliably generate complex multi-turn tool-calling dialogues. This end-to-end scaffolding enforces consistent data flows and small, verifiable reasoning steps, providing structural reliability that prior pipelines lack.

The key novelties of ToolWeave and how they map to failure modes are:

- *Knowledge-grounded synthetic tools* address licensing and coverage constraints by generating tools from open textual and structured sources, producing domain-aware schemas without proprietary APIs.
- *Structured tool-graph sampler* addresses diversity/realism by sampling workflows from structural motifs (linear, fan-in/out, conditional) rather than random walks.
- *Fine-grained plan generator* addresses complex instruction following by decomposing planning into targeted steps that non-frontier LLMs can reliably execute.
- *Plan-driven multi-agent synthesizer with Memory* addresses drift and state loss by executing plans via dynamic-role agents and explicit state tracking.

LLMs fine-tuned on ToolWeave data generated using gpt-oss-120b outperform SOTA baselines *ToolFlow* (Wang et al., 2025) and *ToolDial* (Shim et al., 2025) across multiple benchmarks, including BFCL-V3 (Patil et al., 2025a), API Bank (Li et al., 2023), CONFETTI (Alkhouri et al., 2025), and *ToolHop* (Ye et al., 2025). We will release code, synthesized tools, and dialogues upon acceptance.

108

2 RELATED WORK

110 **Fine-Tuning Datasets and Models for Tool Calling:** Toolformer (Schick et al., 2023), one of
 111 the first works, replaced text segments with tool calls to train LLMs to produce tool calls. Several
 112 instruction-tuning datasets have been created to improve tool-calling capabilities in LLMs. Most of
 113 these datasets are designed to introduce single-turn tool-calling capabilities in models (Liu et al.,
 114 2024; Basu et al., 2024a;b; Shi et al., 2025; Qin et al., 2024) using APIs extracted from sources such
 115 as RapidAPI (RapidAPI, 2025) or APIBench (Patil et al., 2025b). Reinforcement learning methods
 116 and other tuning strategies to improve tool calling capabilities are presented in Li et al. (2025); Chen
 117 et al. (2025b). Tool retrieval becomes an important aspect with increasing tools and is addressed in
 118 the works Qin et al. (2025); Chen et al. (2024). Recently, researchers have started looking at creating
 119 multi-turn tool calling data using synthetic data generation pipelines and models (Wang et al., 2025;
 120 Shim et al., 2025; Prabhakar et al., 2025; Liu et al., 2025; Yin et al., 2025; Chen et al., 2025a). The
 121 APIs and frontier models used in these pipelines make them very restrictive and not licensable for
 122 commercial deployments. The goal of ToolWeave is to address this gap with an end-to-end license-
 123 friendly open synthetic data pipeline that gives control at each stage without any restrictions. Table 1
 124 provides the comparison of the features around licenses of the model used, the code, the generated
 125 data and the fine-grained control it offers.

126 **Tool Calling Evaluation Benchmarks:** BFCL (Patil et al., 2025a) is one of the comprehensive
 127 benchmarks aimed at evaluating various aspects of function calling including multi-turn. Apart from
 128 this, several other benchmarks evaluate single-turn capabilities of the models like (Wu et al., 2024;
 129 Patil et al., 2025a; Ross et al., 2025; Shi et al., 2025; Xu et al., 2023; Zhuang et al., 2023; Huang
 130 et al., 2024; Basu et al., 2024a). Benchmarks like CONFETTI (Alkhouli et al., 2025), APIBank (Li
 131 et al., 2023), ToolHop (Ye et al., 2025) are built for evaluating multi-turn capabilities of the models.
 132 τ -bench (Yao et al., 2025) and Agentboard (Chang et al., 2024) are benchmarks for evaluating
 133 agentic capabilities such as multi-turn tool calling along with policy adherence.

134 Table 1: Comparison of multi-turn synthetic data pipelines across different dimensions.

135 Framework	Synthesize APIs	Code Released	Data Released, License Friendly	License Friendly Synthesis Model	Fine-Grained Plan
136 Tooldial (Shim et al.)	✗	✓	✓, ✗	✗	✗
137 ToolAce (Liu et al.)	✓	✗	✓, ✗	✗	✗
138 APIgen-MT (Prabhakar et al.)	✗	✗	✓, ✗	✗	✗
139 ToolFlow (Wang et al.)	✗	✗	✗, ✗	✗	✗
140 Button (Chen et al.)	✓	✗	✓, ✗	✗	✗
141 ToolLLM (Qin et al.)	✗	✓	✓, ✗	✗	✗
142 ToolWeave (Ours)	✓	✓*	✓, ✓	✓	✓

143 * Will be released upon paper acceptance.

145

3 TOOLWEAVE ARCHITECTURE

146 The architecture of ToolWeave is guided by a core design philosophy: to enable non-frontier LLMs
 147 to generate high-quality, complex, license-friendly tool-calling data. To achieve this, we designed a
 148 *modular, fine-grained framework* that provides precise “scaffolding” at each stage as shown in Figure 1. The process begins with the *Tool Graph Synthesizer*, which creates a pool of domain-specific
 149 synthetic APIs (or tools) and organizes them into an interconnected *Tool Graph*. Next, the *Structured Tool Graph Sampler* searches the Tool Graph to find coherent subgraphs that represent plausible
 150 goals. These goals are then expanded by the *Fine-Grained Plan Generator*, which decomposes them into subgoals and generates a fine-grained plan. Next, the *Multi-Agent Dialog Synthesizer*
 151 instantiates this plan into a natural, multi-turn conversation. Finally, the *Dialogue Post-Processor*
 152 refines the dialogue, injecting realistic error patterns and lexical diversity to create a robust final
 153 dataset. Appendix I.1 to I.4 demonstrate the output of each stage through an example.

154

3.1 TOOL GRAPH SYNTHESIZER

155 **Motivation:** Prior work in multi-turn tool-calling dialogues, such as ToolDial (Shim et al., 2025)
 156 and ToolFlow (Wang et al., 2025) has largely relied on real-world APIs from marketplaces such as

162 RapidAPI (RapidAPI, 2025). However, such resources are subject to licensing and usage restrictions
 163 that preclude their use in commercial training (RapidAPI, Inc., 2025). Moreover, for academic
 164 research they hinder reproducibility (Guo et al., 2024) and experimental control, as APIs are
 165 volatile and their fixed schemas limit systematic studies of properties such as schema complexity.
 166 In addition, these marketplaces have skewed and limited coverage, often lacking APIs for new or
 167 specialized domains. To address these challenges, our *ToolWeave* framework employs *synthetic tool
 168 generation*, a scalable, safe, and fully controllable alternative that ensures *breadth* (many distinct
 169 tools), *depth* (realistic schemas), and *connectivity* (linked and composable tools).

170 **Key idea:** Our key insight is to bootstrap the process from openly available domain knowledge.
 171 Starting with a domain string (e.g., `customer-support`), we retrieve two complementary views
 172 of the domain: (1) narrative summaries from Wikipedia (Wikipedia, 2025) and (2) structured entities
 173 from Wikidata (Wikidata, 2025). This grounding step provides domain-specific vocabulary, roles,
 174 and objects that seed tool schemas with realistic names and argument structures. For instance, in the
 175 `travel_booking` domain, Wikipedia may introduce workflows around itineraries, while Wikidata
 176 supplies entities such as airports, cities, and airlines, together yielding realistic tool definitions.
 177

178 **Iterative, curriculum-driven synthesis:** A tempting solution would be to simply ask an LLM
 179 to generate all the APIs for a domain. In practice, this produces only obvious functions (e.g., in
 180 `travel`, `search_flight` or `book_flight`), missing broader workflows such as loyalty or re-
 181 views. Moreover, LLMs invent parameters with conflicting types and naming conventions. The
 182 resultant tools rarely share arguments that enable the composition of tools. Hence, rather than asking
 183 an LLM to generate all the tools in one step, we follow a *synthesis plan*—a curriculum that
 184 decomposes the task into progressively harder stages.

- 185 *Seed generation:* Generate a minimal set of core APIs covering fundamental workflows.
- 186 *Entity expansion:* Integrate APIs tied to Wikidata entities, broadening coverage.
- 187 *Schema enrichment:* Add depth with nested objects, enums, defaults, and optional parameters.
- 188 *Connection discovery and Tool Graph Construction:* In contrast to prior work (Shim et al.,
 189 2025; Wang et al., 2025), where edges of the tool graph are inferred using semantic similarity,
 190 ToolWeave generates tools with candidate links in mind (e.g., `search_hotel` API produces
 191 a `hotel_id` specifically for `book_hotel` API to consume). These proposed edges are then
 192 validated by an LLM to confirm that data flows are semantically correct.

193 After each stage, candidate APIs are syntactically validated, deduplicated with embedding-based
 194 checks, and refined. This incremental approach ensures APIs become richer and more connected
 195 over time. The output of this stage is a domain-specific Tool Graph \mathcal{G} and an API pool \mathcal{A} that are
 196 diverse, interconnected, and semantically robust.

197 3.2 STRUCTURED TOOL GRAPH SAMPLER

199 **Motivation:** Once the Tool Graph is constructed, we identify subgraphs that can be used to construct
 200 user goals. A common strategy, used in ToolFlow (Wang et al., 2025), is to perform a random
 201 walk on the Tool Graph to get a tool sequence. This ensures that tools are *syntactically compatible*—
 202 the output of one tool can be used as the input of the next—but it does not guarantee that the
 203 tools form a *coherent goal*. For instance, a tool that returns a `user_id` could be randomly chained
 204 to a tool that deletes an account, even if the more natural follow-up would be to query a profile or
 205 update preferences.

207 **Key idea:** Instead of assuming that type-compatible tools naturally form a workflow, ToolWeave
 208 enforces *tool-goal alignment* by identifying subgraphs that represent coherent user objectives. To
 209 do this, sampling is restricted to structural motifs (linear, fan-in/fan-out, conditional) that reflect
 210 common task patterns, followed by validation for semantic plausibility. This ensures that every
 211 selected path corresponds to a realistic, goal-directed sequence of tools.

212 **Process:** The Structured Tool Graph Sampler operates in three stages.

- 213 *Tool-Graph traversal:* Subgraphs are extracted by searching the Tool Graph for common workflow
 214 motifs. We focus on three structural patterns: (1) *linear paths*, discovered through bounded beam
 215 search and representing sequential workflows such as `search_flight` → `book_flight`, (2)

216 *fan-in/fan-out patterns*, identified by tracing nodes that feed into multiple successors or aggregate
 217 multiple inputs, capturing parallel subtasks such as `get_user_profile` branching into both
 218 `search_flights` and `search_hotels`, which later converge on `book_package`, and (3)
 219 *conditional branches*, extracted by scanning output schemas for boolean or enum fields, introducing
 220 decision-making, e.g., calling `retry_payment` if `payment_success=false`.

- 221 • *Path Ranking and Filtering*: Candidate paths/subgraphs are scored and filtered before conversion
 222 to natural-language goals. For linear paths, we retain the top- k paths by applying *Maximal*
 223 *Marginal Relevance (MMR)* (Carbonell & Stewart, 1999). MMR operates on semantic embeddings
 224 of the natural language goal descriptions for each path, ensuring a balance between path
 225 relevance and diversity. Fan-in/fan-out patterns are constrained by schema-compatibility, while
 226 conditional candidates are validated by checking that the predicate field exists and that downstream
 227 tools consume the relevant output type. The detailed implementation is described in Appendix C.
 228 For a visualization of a representative tool graph illustrating the specific structural patterns dis-
 229 cussed (linear, fan-in-fan-out, and conditional), please refer to Appendix B.3.
- 230 • *Goal description generation*: Each retained tool path is then converted into a natural-language
 231 goal using an LLM. We prompt the LLM with the full tool sequence, the respective API schemas,
 232 and the specific pattern type (e.g., linear, fan-in/out). For conditional patterns, the prompt also
 233 includes the branch predicates to ensure the final goal contains the necessary branching logic.

234 The output of this stage is a structured set of goal objects, each containing the tool path, motif type,
 235 and a goal description, which serve as inputs to the Fine-Grained Plan Generator.

236 3.3 FINE-GRAINED PLAN GENERATOR

238 **Motivation:** Given a candidate goal (a natural-language objective and its corresponding tool path),
 239 the challenge is to map this abstract sequence of tool calls into a *coherent, multi-turn conversation*.
 240 A naïve approach would be to ask an LLM to directly generate the dialogue end-to-end. However,
 241 this is fragile, as the model may hallucinate parameter values, confuse which arguments come from
 242 the user vs. prior tool outputs, or fail to insert necessary clarification turns for missing information.
 243 While frontier models such as GPT-5 OpenAI (2025) are less prone to such mistakes, open-source
 244 non-frontier LLMs often struggle with this mapping, producing ambiguous or incoherent dialogues.

246 **Key idea:** To prevent such errors, ToolWeave *explicitly controls* this mapping through the *Fine-
 247 Grained Plan Generator*: Rather than relying on an LLM’s implicit reasoning, we deterministically
 248 construct a step-by-step JSON plan that encodes: (1) which agent acts at each diaogue step, (2)
 249 which subgoal is advanced, (3) which tool(s) must be invoked, (4) how parameters are sourced
 250 (user-supplied, upstream tool outputs, or schema defaults), and (5) where clarifications should be
 251 injected. This plan serves as precise scaffolding that non-frontier LLMs can follow without drifting.

252 **Process:** The Fine-Grained Plan Generator proceeds in three steps:

- 254 1. *Partitioning the tool path*: The input tool sequence is partitioned into turn-level groups (e.g.,
 255 $[A, B, C, D] \rightarrow [[A], [B, C], [D]]$). For linear paths, this is done by an LLM conditioned
 256 on the goal text to ensure natural subgoal boundaries; for fan-in/fan-out or conditional patterns,
 257 deterministic rules preserve structural dependencies.
- 258 2. *Subgoal synthesis and parameter planning*: Each partition is associated with a concise subgoal
 259 utterance (e.g., “First, retrieve the user’s account details”). Then, for each tool in the partition, the
 260 planner resolves parameters by tracing the Tool Graph: *user-supplied* parameters are explicitly
 261 requested in a user turn, *clarification-gated* parameters are withheld to trigger a clarification turn,
 262 and *derivable* parameters are filled automatically from previous tool outputs or schema defaults.
 263 This ensures a precise data flow with no ambiguity.
- 264 3. *Plan construction*: The planner encodes the dialogue as an ordered sequence of JSON
 265 steps. Each step specifies the *role* (user, assistant, or tool), the *type* of action
 266 (USER_UTTERANCE, TOOL_OUTPUT, ASSISTANT_CLARIFICATION, etc.), the subgoal (if
 267 any), and all parameter bindings with explicit source hints. The planner also inserts micro-
 268 interactions, such as clarification turns (ASSISTANT_CLARIFICATION \rightarrow USER_RESPONSE)
 269 or optional chit-chat, making conversations natural while preserving determinism.

The output is an ordered, fine-grained JSON plan that clearly specifies the dialogue structure.

270 3.4 MULTI-AGENT DIALOGUE SYNTHESIZER
271272 **Motivation:** Once a fine-grained JSON plan has been generated, the challenge is to *instantiate* it
273 into a coherent, natural multi-turn dialogue. A straightforward option would be to let an LLM read
274 the plan and generate the conversation freely. However, this creates two problems, particularly for
275 non-frontier LLMs: (1) they often lose track of long-range state (e.g., which parameter values were
276 resolved earlier), and (2) they may deviate from the plan, skipping steps or hallucinating tool calls.
277 Thus, while the plan provides structure, a mechanism is needed to enforce faithful execution.278 **Key idea:** ToolWeave addresses this with a *plan-driven multi-agent execution framework*, where
279 specialized agents follow the plan under strict role control. The User and Assistant act as
280 *dynamic-role agents*, adopting different personas depending on the step (e.g., Utterer vs. Clarifier
281 for the User, Tool Caller vs. Summarizer for the Assistant). A dedicated *Memory agent* maintains
282 an explicit JSON state of facts, resolved parameters, and tool outputs, offloading context tracking
283 from the LLM. Finally, a *Tool Simulator* enforces schema-consistent outputs for tool calls, ensuring
284 plausibility without live APIs. This design keeps execution faithful to the plan while maintaining
285 natural dialogue flow.
286287 **Process:** The synthesis process is a deterministic, stateful loop that executes the JSON plan step-
288 by-step. At each step, the plan dictates the agent’s *role*; that agent is then invoked with the current
289 dialogue history and Memory state. The agent’s output (e.g., an utterance or tool call) is appended
290 to the transcript and used to update the Memory before proceeding to the next step. This stage
291 yields coherent, plan-aligned, and tool-grounded dialogues, which are then refined in the Dialogue
292 Post-Processing stage.
293

294 3.5 DIALOGUE POST-PROCESSING

295 The final stage of the ToolWeave framework, *Dialogue Post-Processing*, takes the “clean” dialogues
296 from the Synthesizer and transforms them into a robust, challenging, and realistic final dataset as
297 described below.
298299 1. *Improving Naturalness and Diversity*: To address the tendency of non-frontier models to produce
300 repetitive utterances, we apply *User Utterance Paraphrasing*. An LLM paraphrases user turns,
301 increasing lexical and syntactic variety while preserving the turn’s subgoal and slot values. This
302 reduces the risk of overfitting to repeated user phrasing.
303 2. *Injecting Robustness and Refusal Logic*: We further enhance robustness by deterministically in-
304 jecting real-world challenges, including *Error Recovery* (introducing erroneous tool calls with
305 realistic failures) and *Missing-Function* scenarios (temporarily withholding an API to train cali-
306 brated refusal and recovery once the schema is reintroduced). **Detailed algorithms for these error
307 injection strategies are presented in Appendix F.**
308 3. *Preventing Shortcut Learning*: To prevent shortcut learning and force the model to reason over
309 schemas instead of memorizing names, we apply *Masking*, which systematically replaces API
310 and argument names with generic IDs (e.g., func_01, arg_01).

311 Together, these transformations produce a final dataset that is diverse, robust, and challenging.

312 4 ANALYSIS OF DATA QUALITY

313 4.1 API QUALITY AND COVERAGE

314 We evaluate our synthetic APIs on three key properties. First, we measure *breadth* using the average
315 number of APIs per domain and input parameters per API. Second, we assess *depth* (schema com-
316 plexity) using two key metrics: the *Complex API Use (CAU)*—the proportion of APIs with nested
317 objects or arrays—and the *Required Parameter Ratio (RPR)*, the proportion of an API’s parameters
318 that are required. Finally, we evaluate *connectivity* using *Interconnectivity (IC)*, which measures
319 direct data-flow potential, and the average longest tool chain. (Formal definitions for all metrics are
320 in Appendix B.7). We generated API sets for 20 domains (B.2) using the gpt-oss-120b and
321 mstral-medium-2505 as synthesis LLMs. Per-domain averages, shown in Table 2a, reveal an
322 interesting trade-off: the open-source model produces APIs with greater *breadth* and *depth*, while
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 2: Comparison of API statistics (left) and dialogue statistics (right).

(a) Avg. API stats per domain.

Metric	GPT-OSS	Mistral
Avg. APIs / Domain	25.25	20.85
Avg. Params / API	3.60	2.92
Complex API Use (CAU)	23.6%	19.8%
Required Param Ratio (RPR)	65.6%	68.4%
Interconnectivity (IC)	1.08	1.85
Longest Chain (avg.)	5.5	5.9

(b) Statistics of synthetic dialogues.

Dataset	Min/Max/Avg. Turns	Min/Max/Avg. Tool Calls	% Total/ % True Multi-step Turns
ToolWeave (GPT-OSS)	1/8/2.96	1/6/3.24	35.69/31.69
ToolWeave (Mistral)	1/7/2.49	1/5/3.20	44.12/36.14
ToolFlow (GPT-OSS)	1/69/5.65	0/37/2.45	4.45/0.0
ToolDial (GPT-4o)	2/6/4.48	0/2/1.51	4.47/0.0

the proprietary model excels at creating a more tightly interconnected *Tool Graph*. This shows our framework guides both models to generate high-quality, but stylistically different APIs.

Comparison with Real-World APIs: We compare our synthetic APIs to 4,474 real-world APIs from RapidAPI (used in ToolDial (Shim et al., 2025)). Our APIs show higher complexity, with an average parameter count of 3.6 vs. 2.4 and a *Complex API Use (CAU)* score of up to 23.6% (vs. 1.0% for real APIs). In connectivity, our method achieves an Interconnectivity score of up to 1.85. For ToolDial, we compute the Interconnectivity score in two ways: *exact parameter name matching* yields 1.61, while *semantic similarity* based on parameter descriptions (threshold 0.82) raises it to 2.37. Both inflate scores with false positives: exact matching links generic names (e.g., `id`), while semantic similarity provides only a “soft” match. By contrast, our generative approach with LLM validation prunes such edges, producing a cleaner, causally-sound *Tool Graph*.

4.2 DIALOGUE STRUCTURE AND COMPLEXITY

Using the APIs generated for 20 domains, we synthesize two distinct datasets of $\sim 3.2k$ dialogues each with ToolWeave (using `gpt-oss-120b` and `mistral-medium-2505` as synthesis LLMs). For a direct comparison, we also generate a comparable $\sim 3.2k$ dialogue baseline using the *ToolFlow* pipeline, driven by the same `gpt-oss-120b` model. We compare their structure in Table 2b. We measure the number of *turns* (interactions between user utterances) and the total *tool calls* per dialogue. Crucially, we also measure the percentage of *multi-step turns*. A turn is considered multi-step if it requires at least two tool calls. We further define a *True multi-step turn* as one where these tool calls are directly dependent, meaning the output of one tool call is consumed by another within the same turn. For example, a turn where an assistant calls `search_flights` and immediately uses the resulting `flight_id` to call `book_flight` is a *True multi-step turn*. The results highlight a key difference in generation quality. The unusually high maximum turn and tool call counts for ToolFlow (69 and 37, respectively) do not indicate complexity, but rather uncontrolled generation; this is evidenced by its 0.0% *True multi-step turn rate*. Without a fine-grained plan, the non-frontier LLM enters long, unproductive loops of shallow, independent tool calls. In contrast, ToolWeave’s detailed plans produce shorter, more focused dialogues that are dense with genuine multi-step reasoning (up to 36.14% *True multi-step*), demonstrating a more effective and controlled synthesis process. ToolDial (Shim et al., 2025), despite leveraging GPT-4o with real APIs, yields shallow dialogues averaging only ~ 1.5 tool calls in a conversation and no true multi-step turns. Some examples of these issues for ToolFlow and ToolDial are provided in Appendix J and K.

4.3 LLM-AS-JUDGE EVALUATION OF DIALOGUES

Following ToolFlow (Wang et al., 2025), we adopt an LLM-as-judge evaluation protocol to assess the semantic quality of dialogues. Specifically, we employ Llama-3-405B-Instruct (Grattafiori et al., 2024) to evaluate a random sample of 200 dialogues from each dataset, distributed evenly across all 20 domains (except for ToolDial). The judge rates each dialogue on a scale of 1-5 along four dimensions: *Naturalness* (human-likeness of conversation), *Coherence* (logical flow and relevance), *Helpfulness* (usefulness of the information provided), and *Accuracy* (factual correctness).

Table 3: LLM evaluation of synthetic dialogues. Nat=Naturalness, Coh=Coherence, Hel=Helpfulness, Acc=Accuracy.

Dataset	Nat	Coh	Hel	Acc
ToolWeave (GPT-OSS-seed)	4.74	4.96	4.97	4.95
ToolWeave (Mistral-seed)	4.76	4.99	4.99	4.98
ToolFlow (GPT-OSS-seed)	4.51	4.83	4.87	4.79
ToolDial (GPT-4o)	4.09	4.68	4.53	4.91

378 Table 3 summarizes the results. ToolWeave outperforms baselines across all four dimensions. Score
 379 differences across different synthesis seeds are ≤ 0.03 , indicating backbone-agnostic robustness.
 380 These findings complement our structural analysis in Table 2b. ToolFlow’s comparatively lower rat-
 381 ings align with its uncontrolled, loop-heavy dialogues, which undermine coherence and helpfulness.
 382 ToolDial achieves relatively high accuracy but lags in naturalness and helpfulness. By contrast,
 383 ToolWeave’s fine-grained planning, structural motifs, and post-processing yield dialogues that are
 384 not only structurally complex but also conversationally natural, coherent, and useful.

386 5 EXPERIMENTS

388 In this section, we experimentally evaluate the efficacy of our *ToolWeave* framework. Our goal is to
 389 answer three key questions: (1) Does fine-tuning on ToolWeave data substantially improve the multi-
 390 turn, multi-step tool-calling capabilities of base LLMs? (2) How does our data perform compared
 391 to prior state-of-the-art baselines, *ToolFlow* (Wang et al., 2025) and *ToolDial* (Shim et al., 2025)?
 392 (3) Do these performance gains generalize across different model families (Llama-3.1, Phi-4) and a
 393 diverse suite of evaluation benchmarks?

395 5.1 EXPERIMENTAL SETUP

397 **Training Datasets:** We experiment with four distinct training datasets. We generate two dis-
 398 tinct datasets using ToolWeave framework, each containing $\sim 3.2k$ dialogues: one seeded with the
 399 proprietary `mistral-medium-2505` model (Mistral AI, 2025), and one with the open-source
 400 `gpt-oss-120b` model (Agarwal et al., 2025). We compare these against two strong baselines.
 401 First, we use the full, publicly available ToolDial training dataset, consisting of 8859 dialogues
 402 synthesized with GPT-4o. Second, as the original implementation and data are not public, we re-
 403 implemented the ToolFlow pipeline and generated a comparable dataset of $\sim 3.2k$ dialogues. For
 404 a fair comparison, both our ToolWeave and our re-implemented ToolFlow datasets were generated
 405 using the exact same `gpt-oss-120b` model and the same set of synthetic APIs from our API
 406 generation module (Section 3).

407 **Models and Fine-Tuning Setup:** We evaluate three base models to assess performance across
 408 different scales and architectures: *Llama-3.1-8B-Instruct*, its larger counterpart *Llama-3.1-70B-
 409 Instruct* (Grattafiori et al., 2024), and *Phi-4* (Abdin et al., 2024). All models are fine-tuned using the
 410 LLaMA-Factory framework¹ (Zheng et al., 2024) with QLoRA (Dettmers et al., 2023). Detailed
 411 hyperparameters are provided in Appendix G.

412 **Evaluation Benchmarks:** We evaluate all models on a diverse suite of four multi-turn tool-calling
 413 benchmarks: *BFCL-V3* (Patil et al., 2025a), a live, executable environment focused on complex
 414 conversational scenarios and error recovery; *API Bank* (Li et al., 2023) and *CONFETTI* (Alkhouli
 415 et al., 2025), which evaluate turn-level accuracy on fixed dialogue trajectories; and *ToolHop* (Ye
 416 et al., 2025), a multi-step benchmark with locally executable tools. Detailed descriptions of each
 417 benchmark are provided in Appendix H.

419 5.2 RESULTS AND ANALYSIS

421 5.2.1 PERFORMANCE ON BFCL-V3

423 Table 4 summarizes our results on the BFCL-V3 benchmark, which is designed to test complex
 424 conversational flows and robustness.

425 The results in Table 4 reveal four key trends:

- 426 1. **Cross-Family Efficacy:** ToolWeave-generated data transfers effectively across model architec-
 427 tures. For instance, the *Phi-4* model starts at **3.12%** but improves to **24.50%** after fine-tuning.
- 428 2. **Intra-Family Scaling:** Larger models within the same family benefit more from the
 429 GPT-OSS-seed data. *Llama-3.1-70B-Instruct* improves from **12.50%** to **33.25%**,
 430 outperforming its smaller 8B counterpart.

431 ¹<https://github.com/hiyouga/LLaMA-Factory>

432
433
434 Table 4: Comparison of model performance across BFCL-V3 multi-turn categories.
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

Model	Multi Turn Acc	Multi Turn Base	Multi Turn Miss Func	Multi Turn Miss Param	Multi Turn Long Context
Llama-3.1-8B-Instruct	9.25	11.00	8.00	8.50	9.50
+ FT on ToolDial (GPT-4o-seed)	1.75	0.50	3.50	2.50	0.50
+ FT on ToolFlow (GPT-OSS-seed)	7.62	11.00	4.50	5.50	9.50
+ FT on ToolWeave (Mistral-seed)	25.00	31.50	20.50	24.50	23.50
+ FT on ToolWeave (GPT-OSS-seed)	19.88	23.00	21.50	15.50	19.50
Llama-3.1-70B-Instruct	12.50	17.00	13.00	10.50	9.50
+ FT on ToolDial (GPT-4o-seed)	3.75	4.50	3.00	4.00	3.50
+ FT on ToolFlow (GPT-OSS-seed)	21.00	22.50	24.50	18.50	18.50
+ FT on ToolWeave (Mistral-seed)	28.88	27.50	39.00	30.00	19.00
+ FT on ToolWeave (GPT-OSS-seed)	33.25	37.50	35.00	32.00	28.50
Phi-4	3.12	7.50	0.00	2.50	2.50
+ FT on ToolDial (GPT-4o-seed)	2.00	2.00	0.50	3.50	2.00
+ FT on ToolFlow (GPT-OSS-seed)	8.88	11.50	7.50	10.50	6.00
+ FT on ToolWeave (Mistral-seed)	19.37	20.50	23.50	20.50	13.00
+ FT on ToolWeave (GPT-OSS-seed)	24.50	24.00	28.50	31.00	14.50

450
451
452
453
454 3. **Targeted Capability Improvement:** Fine-tuning with ToolWeave data yields notable robustness
455 on challenging categories. Base models often fail on *Missing Function* and *Missing Parameter*
456 tasks. After fine-tuning, accuracy on *Missing Function* rises significantly to **39.00%** (Mistral-
457 seed) and **35.00%** (GPT-OSS-seed).
458 4. **Superiority over SOTA Baselines:** Data from ToolWeave yields superior performance on the
459 BFCL benchmark compared to the ToolFlow and ToolDial baselines. The poor performance of
460 ToolDial (e.g., 3.75% on Llama-70B) is because its training data lacks the implicit multi-step
461 dependencies and error recovery patterns required to succeed on a live, executable benchmark.
462 ToolFlow’s high-level plans, on the other hand, lack the fine-grained control needed by non-
463 frontier LLMs like gpt-oss-120b, resulting in hallucinated or inferior dialogues that fail to
464 train the model effectively. This is reflected in the results: when using the same synthesis LLM,
465 Llama-3.1-70B achieves **33.25%** accuracy with ToolWeave data, compared to only **21.00%** with
466 ToolFlow data. This demonstrates that our modular, fine-grained pipeline is critical for generating
467 high-quality training data from non-frontier LLMs.

468
469
470
471
472
473
474
475
476 5.2.2 GENERALIZATION TO DIVERSE BENCHMARKS
477
478
479
480
481
482
483
484
485

To assess generalization, we evaluate models fine-tuned on ToolWeave and baseline data across three additional, diverse benchmarks. As shown in Table 5, ToolWeave-tuned models consistently outperform base models, while baseline-trained models sometimes underperform. On both ToolHop and CONFETTI, baseline models fail to extract necessary information from user queries and tool documentation, often overlooking critical details, asking redundant clarifying questions, or hallucinating arguments. In contrast, ToolWeave-trained models demonstrate marked improvements in these areas. These results highlight the robustness of ToolWeave-generated data, indicating that the learned capabilities generalize effectively across tasks rather than being limited to specific benchmarks.

486
487
488 6 CONCLUSION
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816

486 Table 5: Comparison of model performance on API Bank, CONFETTI, and ToolHop.
487

488 Model	489 API Bank 490 Level 1	491 API Bank 492 Level 2	493 Confetti	494 ToolHop
495 Llama-3.1-8B-Instruct	496 62.91	497 59.46	498 20.55	499 10.05
+ FT on ToolDial (GPT-4o-seed)	59.15	52.70	23.12	9.55
+ FT on ToolFlow (GPT-OSS-seed)	67.67	55.41	17.19	16.98
+ FT on ToolWeave (GPT-OSS-seed)	68.92	60.81	36.76	21.61
Llama-3.1-70B-Instruct	54.89	59.46	33.00	11.46
+ FT on ToolDial (GPT-4o-seed)	71.93	40.54	11.46	5.83
+ FT on ToolFlow (GPT-OSS-seed)	65.66	60.81	21.34	12.76
+ FT on ToolWeave (GPT-OSS-seed)	71.18	64.86	45.45	22.51
Phi-4	34.09	25.68	13.44	10.55
+ FT on ToolDial (GPT-4o-seed)	55.64	44.59	13.64	5.13
+ FT on ToolFlow (GPT-OSS-seed)	44.11	39.19	16.80	6.03
+ FT on ToolWeave (GPT-OSS-seed)	71.68	62.16	33.60	12.56

501
502 REPRODUCIBILITY STATEMENT
503

504 We have taken several concrete steps to ensure the reproducibility of our results. ToolWeave’s core
505 contribution lies in its ability to generate high-quality, fully synthetic multi-turn tool-calling data using
506 open and non-frontier models. This makes the generated data license-friendly for both academic
507 and commercial use. We believe this is a valuable contribution to the community, and have made
508 efforts to clearly document our methodology and release all necessary resources. Section 3 outlines
509 the overall pipeline, while Appendix B, C, D and E provides formal and detailed descriptions of each
510 component. Appendix G includes hardware, software, and hyperparameter details used for model
511 training, and Appendix H describes the evaluation benchmarks. Sample inputs and outputs for each
512 component are shown in Appendix I. The prompts used throughout ToolWeave are provided in the
513 supplementary materials. Finally, the source code and dataset will be released upon acceptance of
514 the paper to facilitate verification and reuse.

546 REFERENCES
547

548 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
549 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
550 report. *arXiv preprint arXiv:2412.08905*, 2024.

551 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
552 Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. *arXiv*
553 preprint *arXiv:2508.10925*, 2025.

554 Tamer Alkhouli, Katerina Margatina, James Gung, Raphael Shu, Claudia Zaghi, Monica Sunkara,
555 and Yi Zhang. CONFETTI: Conversational function-calling evaluation through turn-level inter-
556 actions. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
557 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7993–8006. Association for Computational Linguistics, July
558 2025. doi: 10.18653/v1/2025.acl-long.394. URL <https://aclanthology.org/2025.acl-long.394/>.

559 Kinjal Basu, Ibrahim Abdelaziz, Kelsey Bradford, Maxwell Crouse, Kiran Kate, Sadhana Kumar-
560 avel, Saurabh Goyal, Asim Munawar, Yara Rizk, Xin Wang, Luis A. Lastras, and Pavan Kapa-
561 nipathi. NESTFUL: A benchmark for evaluating llms on nested sequences of API calls. *CoRR*,
562 abs/2409.03797, 2024a. doi: 10.48550/ARXIV.2409.03797. URL <https://doi.org/10.48550/arXiv.2409.03797>.

563 Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury, Soham Dan, Maxwell Crouse, Asim Mu-
564 nawar, Sadhana Kumaravel, Vinod Muthusamy, Pavan Kapanipathi, and Luis A. Lastras. API-
565 BLEND: a comprehensive corpora for training and benchmarking api llms. In *Proceedings of the*
566 *62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024, Long Papers*,

540 pp. 12658–12674. Association for Computational Linguistics, 2024b. doi: 10.18653/v1/2024.
 541 acl-long.694. URL <https://aclanthology.org/2024.acl-long.694/>.

542

543 Jaime Carbonell and Jade Stewart. The use of mmr, diversity-based reranking for reordering doc-
 544 uments and producing summaries. *SIGIR Forum (ACM Special Interest Group on Information*
 545 *Retrieval)*, 06 1999. doi: 10.1145/290941.291025.

546 Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
 547 peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
 548 *Advances in neural information processing systems*, 37:74325–74362, 2024.

549 Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wen-
 550 tao Zhang, Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms
 551 via compositional instruction tuning. In *The Thirteenth International Conference on Learn-
 552 ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025a. URL
 553 <https://openreview.net/forum?id=owP2mymrTD>.

554

555 Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan, Qingze Wang, Vincent Cohen-Addad, Moham-
 556 madhossein Bateni, Chen-Yu Lee, and Tomas Pfister. Re-invoke: Tool invocation rewriting for
 557 zero-shot tool retrieval. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings*
 558 *of the Association for Computational Linguistics: EMNLP 2024*, pp. 4705–4726, Miami, Florida,
 559 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 560 findings-emnlp.270. URL <https://aclanthology.org/2024.findings-emnlp.270/>.

561

562 Yi-Chang Chen, Po-Chun Hsu, Chan-Jan Hsu, and Da-shan Shiu. Enhancing function-calling capa-
 563 bilities in LLMs: Strategies for prompt formats, data integration, and multilingual translation. In
 564 Weizhu Chen, Yi Yang, Mohammad Kachuee, and Xue-Yong Fu (eds.), *Proceedings of the 2025*
 565 *Conference of the Nations of the Americas Chapter of the Association for Computational Lin-
 566 guistics: Human Language Technologies (Volume 3: Industry Track)*, pp. 99–111, Albuquerque,
 567 New Mexico, April 2025b. Association for Computational Linguistics. ISBN 979-8-89176-194-
 568 0. doi: 10.18653/v1/2025.naacl-industry.9. URL <https://aclanthology.org/2025.naacl-industry.9/>.

569

570 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 571 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

572

573 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 574 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 575 of models. *arXiv preprint arXiv:2407.21783*, 2024.

576

577 Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
 578 Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
 579 large language models. In *Findings of the Association for Computational Linguistics ACL 2024*,
 580 pp. 11143–11156, 2024.

581

582 Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
 583 Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
 584 whether to use tools and which to use. In *The Twelfth International Conference on Learning*
 585 *Representations*, 2024.

586

587 VI Lcvenshtcin. Binary coors capable or ‘correcting deletions, insertions, and reversals. In *Soviet*
 588 *physics-doklady*, volume 10, 1966.

589

590 Jiaxuan Li, Boyuan Wang, Hao Xu, Yifei Li, Hongwei Li, Yu Hou, Guangchao Li, Weiguang Song,
 591 Guoliang Liu, and Jinfeng Liu. Exploring superior function calls via reinforcement learning.
 592 *arXiv preprint arXiv:2508.05118*, 2025.

593

594 Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
 595 Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
 596 In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference*
 597 *on Empirical Methods in Natural Language Processing*, pp. 3102–3116, Singapore, December
 598 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
 599 <https://aclanthology.org/2023.emnlp-main.187/>.

594 Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 595 Gan, Zhengying Liu, Yuanqing Yu, Zehong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
 596 Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
 597 Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning
 598 the points of LLM function calling. In *The Thirteenth International Conference on Learning
 599 Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 600 <https://openreview.net/forum?id=8EB8k6DdCU>.

601 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
 602 Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
 603 Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline
 604 for generating verifiable and diverse function-calling datasets. In Amir Globersons, Lester
 605 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 606 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 607 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
 608 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html.

609 Mistral AI. Medium is the new large., May 2025. URL <https://mistral.ai/news/mistral-medium-3>. Accessed: 2025-09-19.

610

611 P Norvig and S Russel. A modern approach. *Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP* (2015). *An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-Based Systems*, 90:33–48, 2002.

612

613 OpenAI. Introducing gpt-5. <https://openai.com/research/gpt-5>, August 2025.

614

615 Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
 616 Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
 617 *arXiv preprint arXiv:2303.09014*, 2023.

618

619 Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
 620 Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
 621 tic evaluation of large language models. In *Forty-second International Conference on Machine
 622 Learning*, 2025a. URL <https://openreview.net/forum?id=2GmDdhBdDk>.

623

624 Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: large language model
 625 connected with massive apis. In *Proceedings of the 38th International Conference on Neural
 626 Information Processing Systems, NIPS '24*, Red Hook, NY, USA, 2025b. Curran Associates Inc.
 627 ISBN 9798331314385.

628

629 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
 630 wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
 631 Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
 632 generation via simulated agent-human interplay, 2025. URL <https://arxiv.org/abs/2504.03601>.

633

634 Shengqian Qin, Yakun Zhu, Linjie Mu, Shaoting Zhang, and Xiaofan Zhang. Meta-tool: Un-
 635 leash open-world function calling capabilities of general-purpose large language models. In
 636 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 637 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 30653–30677, Vienna, Austria, July 2025. Association for Compu-
 638 tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1481. URL
 639 <https://aclanthology.org/2025.acl-long.1481/>.

640

641 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 642 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
 643 dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
 644 16000+ real-world APIs. In *The Twelfth International Conference on Learning Representations*,
 645 2024. URL <https://openreview.net/forum?id=dHng200Jjr>.

648 RapidAPI. Rapidapi. <https://rapidapi.com/>, 2025. Accessed July 2025.
 649

650 RapidAPI, Inc. Rapidapi: Terms of service. <https://rapidapi.com/page/terms>, 2025.
 651 Accessed July 2025.

652 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 653 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 654 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.
 655

656 Candace Ross, Anjali Mahabaleshwarkar, and Yoshi Suhara. When2call: When (not) to call tools.
 657 In *NAACL (Long Papers)*, pp. 3391–3409. Association for Computational Linguistics, 2025.
 658

659 Timo Schick, Jane Dwivedi-Yu, Roberto Dessí, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 660 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: language models can
 661 teach themselves to use tools. In *Proceedings of the 37th International Conference on Neural
 662 Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
 663

664 Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin,
 665 Suzan Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language mod-
 666 els as automatic tool agents. In *Proceedings of the ACM on Web Conference 2025*, WWW
 667 '25, pp. 2222–2237, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
 668 9798400712746. doi: 10.1145/3696410.3714825. URL <https://doi.org/10.1145/3696410.3714825>.
 669

670 Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and Yohan Jo. Tooldial: Multi-turn dialogue
 671 generation method for tool-augmented language models. In *The Thirteenth International Confer-
 672 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=J1J5eGJsKZ>.
 673

674 Zezhong Wang, Xingshan Zeng, Weiwen Liu, Liangyou Li, Yasheng Wang, Lifeng Shang, Xin
 675 Jiang, Qun Liu, and Kam-Fai Wong. ToolFlow: Boosting LLM tool-calling through natural and
 676 coherent dialogue synthesis. In *Proceedings of the 2025 Conference of the Nations of the Amer-
 677 icas Chapter of the Association for Computational Linguistics: Human Language Technologies
 678 (Volume 1: Long Papers)*, pp. 4246–4263, 2025.

679 Wikidata. Wikidata. <https://www.wikidata.org/>, 2025. Accessed July 2025.
 680

681 Wikipedia. Wikipedia. <https://www.wikipedia.org/>, 2025. Accessed July 2025.
 682

683 Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-tools:
 684 Self-instruct tool learning dataset for agent tuning and detailed benchmark. In *CCF International
 685 Conference on Natural Language Processing and Chinese Computing*, pp. 372–384. Springer,
 2024.
 686

687 Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
 688 manipulation capability of open-source large language models, 2023.

689 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 690 React: Synergizing reasoning and acting in language models. In *International Conference on
 691 Learning Representations (ICLR)*, 2023.
 692

693 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R. Narasimhan. $\{\tau\}$ -bench: A benchmark
 694 for \underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In *The Thirteenth International Confer-
 695 ence on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=r0NSXZpUDN>.
 696

697 Junjie Ye, Zhengyin Du, Xuesong Yao, Weijian Lin, Yufei Xu, Zehui Chen, Zaiyuan Wang, Sining
 698 Zhu, Zhiheng Xi, Siyu Yuan, Tao Gui, Qi Zhang, Xuanjing Huang, and Jiecao Chen. Toolhop:
 699 A query-driven benchmark for evaluating large language models in multi-hop tool use. In *Pro-
 700 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL)*.
 701 Association for Computational Linguistics, 2025.

702 Fan Yin, Zifeng Wang, I-Hung Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long Le, Kai-Wei
703 Chang, Chen-Yu Lee, Hamid Palangi, and Tomas Pfister. Magnet: Multi-turn tool-use data syn-
704 thesis and distillation via graph translation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
705 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
706 for Computational Linguistics (Volume 1: Long Papers)*, pp. 32600–32616, Vienna, Austria, July
707 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
708 2025.acl-long.1566. URL <https://aclanthology.org/2025.acl-long.1566/>.

709 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
710 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
711 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
712 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
713 tics. URL <http://arxiv.org/abs/2403.13372>.

714 Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. ToolQA: A dataset for LLM
715 question answering with external tools. In *Thirty-seventh Conference on Neural Information
716 Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=pV1xV2RK6I>.

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

A USE OF LARGE LANGUAGE MODELS

In preparing this paper, we made limited use of Large Language Models (LLMs) as writing assistance tools. Specifically, we used Grammarly² for spell checking and grammar correction to improve clarity and readability. In line with the conference policy, we confirm that LLMs were not used for generating research ideas or making any substantive contributions to the scientific content of this work.

B TOOL GRAPH SYNTHESIZER DETAILS

B.1 PROMPTS USED

All prompts used in the tool graph synthesis stage are provided in a zip file included with the supplementary data. After extraction, they can be found in the `tool_graph_synthesizer` directory.

B.2 DOMAINS FOR TOOL GRAPH SYNTHESIS

The 20 domains used to generate the synthetic API pool are:

Agriculture	Human Resources	Real Estate
Customer Support	Insurance	Retail
Cybersecurity	Legal Services	Supply Chain
E-commerce	Logistics	Telecommunications
Education	Manufacturing	Tourism
Energy	Marketing	Transportation
Film Industry	Online Banking	

B.3 SAMPLE TOOL GRAPH

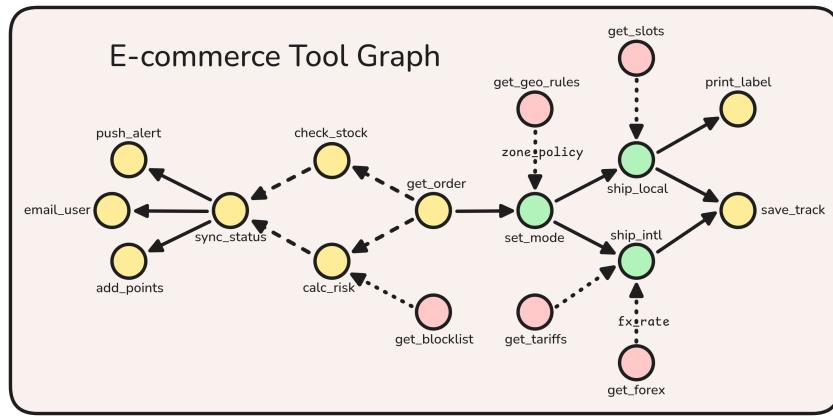
Figure 2 illustrates a representative tool graph for the E-commerce domain. The nodes represent discrete tools (APIs), connected by directed edges that signify data dependencies; specifically, a parameter from the output schema of a predecessor node maps to an input parameter of the successor (e.g., `zone_policy` from `get_geo_rules` acts as an input for `set_mode`).

The graph topology highlights three distinct execution patterns, corresponding to the Tool-Graph traversal strategies discussed in Section 3.2:

- **Linear Chains:** Standard sequential dependencies connected by any type of edge, such as `get_order` → `set_mode` → `ship_local` → `save_track`.
- **Fan-in-Fan-out (Dashed):** Illustrated by the sequence `get_order` → {`check_stock`, `calc_risk`} → `sync_status`. Here, the initial tool provides inputs to a parallel stage of tools that are independent of one another, the outputs of which collectively feed into a common successor.
- **Conditional Branching (Green):** Represented by the `set_mode` node, where the downstream execution path (`ship_local` vs. `ship_intl`) is determined dynamically based on the output value of the decision node.

²<https://app.grammarly.com/>

810
811
812
813
814
815
816
817
818
819
820
821
822
823



824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 2: E-commerce tool graph demonstrating linear, fan-in-fan-out (dashed), and conditional (green) dependency patterns. Red nodes indicate auxiliary tools providing specific configuration parameters, such as foreign exchange rates or zone policies, to the primary workflow.

B.4 DETAILED ALGORITHMS FOR TOOL GRAPH SYNTHESIZER

This section expands upon the Tool Graph Synthesizer process from Section 3.1. While the description in the main paper presents the high-level methodology, here we provide the main algorithm, the synthesis plan, and detailed sub-algorithms for key steps like domain context construction and API refinement.

Algorithm 1: Tool Graph Synthesis

Input: Domain descriptor D , synthesis plan P , LLM L , embedding model E
Output: API pool \mathcal{A} , Tool Graph \mathcal{G}
 Initialize $\mathcal{A} \leftarrow \emptyset$, $\mathcal{G} \leftarrow \emptyset$;
 $C \leftarrow \text{CONSTRUCTDOMAINCONTEXT}(D)$; // See Appendix B.6.1
foreach step $s \in P$ **do**
 Generate n_s candidate APIs with L using domain context C and prompt from step s ;
 Parse and validate candidates syntactically;
 Deduplicate candidates against \mathcal{A} using embeddings from E and structural checks;
 Refine and semantically validate schemas (defaults, enums, nested objects, etc.);
 Add accepted APIs to \mathcal{A} ;
 Construct Tool Graph $\mathcal{G}_{\text{tool}}$ by validating data-flows between APIs in \mathcal{A} ;
return $\mathcal{A}, \mathcal{G}_{\text{tool}}$

B.5 SYNTHESIS PLAN

Our synthesis plan acts as a curriculum for the API-generating LLM. It specifies a sequence of generation steps, each with a unique prompt template and a target number of APIs. This design is extensible and allows us to control the breadth and depth of the final API pool. Our implementation consists of five main stages:

- 1. Seed Generation:** This initial stage generates a small batch of fundamental, “entry-point” APIs for the domain (e.g., `search_product` in e-commerce).
- 2. Entity Expansion:** This stage uses the entities extracted from Wikidata (see Appendix B.6.1) to generate new APIs that specifically cover domain-relevant entities, ensuring breadth.
- 3. Schema Enrichment:** This stage focuses on depth. It takes existing, simple APIs and iteratively increases their structural complexity by adding nested objects, enums, default values, and required flags to mimic real-world enterprise-grade schemas.

864 4. **Connection Discovery:** It generates new APIs that plausibly connect existing APIs, creating
 865 data-flow paths (e.g., a `get_product_details` API that takes a `product_id` from
 866 `search_product`).

867 5. **Pattern Expansion:** This final stage diversifies the API pool by generating parallel variations of
 868 existing APIs (e.g., different ways to search, like `search_by_name`, `search_by_category`,
 869 etc.).

870 For reproducibility, we include the synthesis plan used in our experiments below. Prompt paths have
 871 been abstracted for clarity.

```

874 {
875     "steps": [
876         {"name": "Seed Generation", "num_to_generate": 8},
877         {"name": "Entity Expansion", "num_to_generate": 8},
878         {"name": "Schema Enrichment", "num_to_generate": 5},
879         {"name": "Connection Discovery", "num_to_generate": 8},
880         {"name": "Pattern Expansion", "num_to_generate": 5}
881     ]
882 }

```

887 B.6 DETAILED SUB-ALGORITHMS

889 The main generation algorithm (Algorithm 1) relies on several key sub-routines, which are detailed
 890 below.

893 B.6.1 DOMAIN CONTEXT CONSTRUCTION

896 Algorithm 2: CreateDomainContext

897 **Input:** Domain name string d
 898 **Output:** Domain context C
 899 Resolve d to canonical Wikidata entity QID ;
 900 Retrieve Wikipedia summary T_{wiki} for d ;
 901 Extract structured facts $F_{wikidata}$ (classes, subclasses, properties) from QID ;
 902 Assemble $C \leftarrow (T_{wiki}, F_{wikidata})$;
 903 **return** C

905 B.6.2 API REFINEMENT

908 Algorithm 3: RefineAPI

909 **Input:** Candidate API a , current API set \mathcal{A}
 910 **Output:** Refined API a' or \emptyset
 911 Check if a is duplicate of any in \mathcal{A} (lexical, structural, semantic);
 912 **if** *duplicate* **then**
 913 **return** \emptyset
 914 Remove echo parameters (outputs attributes that are same as inputs);
 915 Enrich schema: infer enums, default values, required fields;
 916 Normalize parameter names and types;
 917 Paraphrase descriptions for stylistic variance;
 918 **return** refined API a'

918 B.6.3 CONNECTION GRAPH CONSTRUCTION
 919

920 **Algorithm 4:** ConstructToolGraph
 921 **Input:** API set \mathcal{A}
 922 **Output:** Connection graph \mathcal{G}
 923 Initialize graph $\mathcal{G} = (V = \mathcal{A}, E = \emptyset)$;
 924 **foreach** ordered pair $(a_i, a_j) \in \mathcal{A} \times \mathcal{A}$ **do**
 925 Identify candidate parameter matches (p_{out}, p_{in}) ; // By param name matches
 926 Validate match using LLM judgment;
 927 **if** valid **then**
 928 Add edge $(a_i.p_{out} \rightarrow a_j.p_{in})$ to E ;
 929 **return** \mathcal{G}

931 Matching parameters between APIs by exact name is justified in our case because, during API
 932 synthesis, the prompts instruct the model to design new APIs such that connections to existing APIs
 933 occur only through parameters with identical names.

934

935 B.7 API QUALITY METRIC DEFINITIONS

936

937 This section provides the formal definitions for the metrics used to evaluate the quality of the syn-
 938 thetic APIs in Section 4.1. In all definitions, $A = \{a_1, a_2, \dots, a_n\}$ represents the set of n APIs in a
 939 given domain.

940

941 1. INTERCONNECTIVITY (IC)

942

943 The average number of input parameters per API that can be filled by an output from another API
 944 in the graph. This measures the data-flow potential.

945

$$946 IC = \frac{\sum_{i=1}^n |I_{a_i} \cap O|}{n}$$

947

948 Where:

949

- 950 • $O = \bigcup_{i=1}^n O_{a_i}$: The set of all unique output parameters from all APIs.
- 951 • I_{a_i} : The set of input parameters for API a_i .
- 952 • $|I_{a_i} \cap O|$: The count of input parameters for a_i that match any output from the entire API
 953 set A .

954

955 2. COMPLEX API USE (CAU)

956

957 The proportion of APIs that use at least one complex parameter type (i.e., “object” or “array”),
 958 measuring schema depth.

959

$$960 CAU = \frac{\sum_{i=1}^n C(a_i)}{n}$$

961

962 Where the indicator function $C(a_i)$ is defined as:

963

964

$$965 C(a_i) = \begin{cases} 1 & \text{if API } a_i \text{ has at least one parameter of type “object” or “array”} \\ 966 0 & \text{otherwise} \end{cases}$$

967

968

969 3. REQUIRED PARAMETER RATIO (RPR)

970

971 The average proportion of an API’s input parameters that are marked as “required”, measuring
 972 schema strictness.

$$RPR = \frac{1}{n} \sum_{i=1}^n \frac{|I_{\text{req}}(a_i)|}{|I_{\text{total}}(a_i)|}$$

Where $I_{\text{req}}(a_i)$ is the set of required input parameters for API a_i , and $I_{\text{total}}(a_i)$ is the set of all input parameters for a_i .

4. LONGEST CHAIN LENGTH

The length of the longest simple path (a path with no repeated nodes) in the *Tool Graph*. This metric quantifies the maximum number of sequential, multi-step operations possible in a single dialogue.

C GOAL GENERATION IMPLEMENTATION DETAILS

This section provides the low-level implementation details for the *Goal Generation* stage (Section 3.2), including the algorithms and heuristics used to extract, score, and synthesize goals.

C.1 PROMPTS USED

All prompts used in the tool graph sampler and goal generation stage are provided in a zip file included with the supplementary data. After extraction, they can be found in the `tool_graph_sampler` directory.

C.2 PATTERN EXTRACTION ALGORITHMS

The main paper outlines three pattern classes. Here is how they are discovered:

1. **Linear Paths:** These are found using a bounded *beam search* (Norvig & Russel, 2002). The search explores paths from a start node, expanding a “beam” of the top- k candidates at each depth.
2. **Fan-in / Fan-out:** These patterns are found by analyzing node connectivity. For a given `start_node`, we find its successors. We then find the “common children” of combinations of these successors using set intersection. This allows us to identify points where parallel data flows (fan-out) later merge (fan-in).
3. **Conditional Branches:** These are identified by scanning an API’s output schema. We scan for output fields that can act as a logical predicate, specifically those typed as `boolean`, `enum`, or other simple types, while filtering out non-conditional fields like IDs.

C.3 PATH SCORING AND RANKING

To rank the paths found by our algorithms, we use a combination of a hybrid score and a diversification algorithm.

Hybrid Heuristic Score: The `final_score` for any given path is a weighted sum of three components, and is calculated as:

$$S_{\text{final}} = w_l \cdot (S_{\text{coherence}} + S_{\text{relevance}}) + w_d \cdot S_{\text{dataflow}} + w_b \cdot S_{\text{length}}$$

Where:

- $S_{\text{coherence}}$ and $S_{\text{relevance}}$ are *LLM-based ratings* (from -2 to $+2$) where the LLM judges the quality of a synthesized goal for the provided tool path.
- S_{dataflow} is the *semantic dataflow score*, calculated by checking cosine similarity between embeddings of output and input parameters of sequential tools.
- S_{length} is a *length bonus* to reward longer, more complex paths.
- w_l , w_d , and w_b are the respective weights for LLM rating, dataflow, and length, set as hyperparameters (we use $w_l = 0.5$, $w_d = 0.8$, $w_b = 0.3$ in our experiments).

1026 **Ranking and Embedding Model:** To ensure a diverse set of goals, we rank the top-scoring linear
 1027 paths using *Maximal Marginal Relevance (MMR)* (Carbonell & Stewart, 1999). This balances the
 1028 `final_score` (relevance) with the cosine dissimilarity from already-selected goals (diversity). In
 1029 our experiments, we use a value of 0.7 for λ . All embeddings for MMR and semantic dataflow
 1030 are computed using the `all-MiniLM-L6-v2` model from the *SentenceTransformers* (Reimers &
 1031 Gurevych, 2019) library.

1032
 1033 **C.4 GOAL GENERATION ALGORITHM**
 1034

1035 **Algorithm 5:** Domain-level Goal Generation

1036 **Input:** Tool graph for domain \mathcal{G}_{tool} , beam width B , max depth D_{max} , selection size K , MMR

1037 weight λ , LLM L , embedding model E

1038 **Output:** Goal set \mathcal{G}_{goals} (JSON objects: {`tool_path`, `pattern_type`, `goal_text`,
 1039 `metadata`})

1040 Initialize $\mathcal{G}_{goals} \leftarrow \emptyset, \mathcal{S} \leftarrow \emptyset$, where \mathcal{S} is the set of selected tool paths;

1041 $S_{linear} \leftarrow \text{BEAMSEARCH}(\mathcal{G}_{tool}, B, D_{max}, L);$

1042 $S_{linear} \leftarrow \text{TOPKMMR}(S_{linear}, K, \lambda, E);$

1043 $S_{fan} \leftarrow \text{FINDFANINFANOUT}(\mathcal{G}_{tool});$

1044 $S_{cond} \leftarrow \text{FINDCONDITIONAL}(\mathcal{G}_{tool});$

1045 $S \leftarrow S_{linear} \cup S_{fan} \cup S_{cond};$

1046 **foreach** $p \in S$ **do**

1047 $prompt \leftarrow \text{BUILDGOALPROMPT}(p, \text{PATTERNTYPE}(p));$

1048 $goal_text \leftarrow L.\text{GENERATE}(prompt);$

1049 $obj \leftarrow \text{BUILDJSON}(p, \text{PATTERNTYPE}(p), goal_text, \text{METADATA}(p));$

1050 $\mathcal{G}_{goals} \leftarrow \mathcal{G}_{goals} \cup \{obj\};$

1051 **return** \mathcal{G}_{goals}

1052
 1053 **C.5 EXAMPLE GOAL SYNTHESIS PROMPT**

1054 The final step, ‘Goal synthesis via LLM’, uses different prompts for each pattern type. The prompt
 1055 provides the LLM with the tool sequence and their schemas, and asks it to generate a natural-
 1056 language goal.

1057 **D DIALOGUE PLANNER IMPLEMENTATION DETAILS**

1058 This section provides the low-level implementation details for the *Dialogue Planner* stage (Sec-
 1059 tion 3.3), including the algorithm and the logic used to partition tool paths, generate subgoals, plan
 1060 parameters, and inject interaction patterns.

1061 **D.1 PROMPTS USED**

1062 The prompts relevant to this planner stage are provided in a supplementary zip file. After extracting
 1063 the zip file, they can be found in the `plan_generator` directory.

1064 **D.2 DIALOGUE PLANNER ALGORITHM**

1065 Algorithm 6 summarizes the high-level process, highlighting subgoal generation, speaker sequenc-
 1066 ing, parameter planning, and clarification insertion.

1080
1081 **Algorithm 6:** Dialogue Planning
1082 **Input:** Tool path P , pattern type $T \in \{\text{linear, fan, conditional}\}$, overall goal text G ,
1083 relevant tool schemas Σ , goal metadata M , clarification probability p_{clar} , LLM for
1084 partitioning and subgoal synthesis L
1085 **Output:** Ordered plan \mathcal{D} (step-level JSON objects with keys: `step_idx`, `role`, `subgoal`,
1086 `tools`, `params`, `metadata`)
1087 Initialize partition list $\mathcal{P}^* \leftarrow \text{PARTITIONTOOLPATH}(P, T, \Sigma, L)$, subgoal text list $\mathcal{S} \leftarrow []$;
1088 **foreach** $partition p \in \mathcal{P}^*$ **do**
1089 $\mathcal{S}.\text{APPEND}(\text{SYNTHEZISESUBGOAL}(p, G, L))$;
1090 $\mathcal{D} \leftarrow []$;
1091 **for** $i \leftarrow 1$ **to** $|\mathcal{P}^*|$ **do**
1092 $p \leftarrow \mathcal{P}^*[i]$, $s \leftarrow \mathcal{S}[i]$;
1093 $\text{Params} \leftarrow \text{EXTRACTTOOLPARAMS}(p, \Sigma)$;
1094 $\text{Params} \leftarrow \text{Params} \setminus \text{UPSTREAMTOOLOUTPUTS}(\mathcal{P}^*, i - 1, \Sigma)$;
1095 $(\text{ReqParams}, \text{ClarParams}) \leftarrow \text{SPLITPARAMS}(\text{Params}, p_{clar})$;
1096 $\mathcal{D}.\text{APPEND}(\text{CREATEUSERTURN}(i, s, p, \text{ReqParams}))$;
1097 **if** $\text{ClarParams} \neq \emptyset$ **then**
1098 $\mathcal{D}.\text{APPEND}(\text{CREATEASSISTANTCLARIFICATIONTURN}(i, \text{ClarParams}))$;
1099 $\mathcal{D}.\text{APPEND}(\text{CREATEUSERCLARIFICATIONTURN}(i, \text{ClarParams}))$;
1100 **foreach** $tool t \in p$ **do**
1101 $\text{ToolParams} \leftarrow \text{EXTRACTTOOLPARAMS}([t], \Sigma)$;
1102 $\mathcal{D}.\text{APPEND}(\text{CREATEASSISTANTTOOLCALLTURN}(i, t, \text{ToolParams}, M))$; // Goal
1103 metadata M attaches decision variables for conditionals
1104 $\mathcal{D}.\text{APPEND}(\text{CREATEASSISTANTSUMMARYTURN}(i, p))$;
1105 **return** \mathcal{D}

1112
1113 **D.3 TOOL PATH PARTITIONING**
1114

1115 The `PARTITIONTOOLPATH` function uses different strategies based on the pattern type:

1116 • **Linear:** We use an LLM-based approach. The prompt provides the full tool path and their
1117 schemas, and asks the LLM to split them into coherent segments, based on logical groupings
1118 and dataflow, while also ensuring meaningful multi-step tool sequences.
1119 • **Fan-in / Fan-out:** We use a deterministic graph-based approach. We identify the branching
1120 point (fan-out) and the merging point (fan-in) in the path, and create partitions accordingly. The
1121 intermediate tools between these points are grouped into either segment, and all possible valid
1122 partitions are generated to allow for diverse dialogue structures.
1123 • **Conditional:** Based on the value of the decision variable (from goal metadata M), the second tool
1124 is chosen from the available branches. The first tool and this chosen branch form a single partition
1125 to ensure the conditional logic is preserved in the dialogue, while also generating high-quality
1126 multi-step dialogues.

1127
1128 **D.4 SUBGOAL SYNTHESIS**
1129

1130 The `SYNTHEZISESUBGOAL` function uses an LLM prompt that provides the tool schemas in the
1131 partition and the overall goal text G . The LLM is instructed to generate a concise, user-friendly
1132 subgoal that accurately reflects the purpose of the tools in the partition, while ensuring it is distinct
1133 from other subgoals in the dialogue.

1134
1135

D.5 PARAMETER PLANNING AND CLARIFICATION INSERTION

1136
1137
1138

The parameter planning and clarification insertion process involves several steps to ensure that the dialogue captures realistic user-assistant interactions.

1139

1140
1141

D.5.1 PARAMETER PREPARATION

1142
1143
1144
1145

The EXTRACTTOOLPARAMS function retrieves all input parameters for the tools in the current partition. The UPSTREAMTOOLOUTPUTS function identifies any parameters that can be automatically filled from outputs of tools in previous partitions, and these are removed from the required parameters.

1146

1147

1148

D.5.2 CLARIFICATION INSERTION

1149
1150
1151
1152

The SPLITPARAMS function randomly selects a subset of the remaining parameters to be clarified, based on the clarification probability p_{clar} . This introduces variability and simulates real-world scenarios where users may not provide all necessary information upfront.

1153

1154
1155

D.5.3 SPEAKER SEQUENCING AND TURN CREATION

1156
1157
1158
1159

The turn creation functions add well-formatted JSON objects to the dialogue plan, specifying the role and the associated content (subgoal, tool calls, parameter requests, clarifications, summaries). Following is the structure of these turns:

1160
1161
1162
1163
1164
1165
1166
1167
1168

- CreateUserTurn: User turn with subgoal and parameters to provide upfront.
- CreateAssistantClarificationTurn: Assistant turn asking for clarification on missing parameters required for the tool calls in the current partition.
- CreateUserClarificationTurn: User turn providing values for the requested parameters.
- CreateAssistantToolCallTurn: Assistant turn invoking a tool with the provided parameters and source hints for each parameter, either from the user or from upstream tool outputs.
- CreateAssistantSummaryTurn: Assistant turn summarizing the results of the tools in the current partition.

1169

1170

1171

E DIALOGUE SYNTHESIZER IMPLEMENTATION DETAILS

1172
1173
1174

This section provides the low-level implementation details for the *Dialogue Synthesizer* stage (Section 3.4), including the overall algorithm and the logic used to build context for each role across agents.

1175

1176

1177

E.1 PROMPTS USED

1178

1179
1180
1181
1182

The prompts associated with each agent role in this stage, including the post-processing state for user message paraphrasing, as well as those relevant to the dialogue synthesis and refinement stages, are provided in the `dialogue-synthesizer` directory, available after extracting the supplementary zip file.

1183

1184

1185

E.2 DIALOGUE SYNTHESIS ALGORITHM

1186

1187

Algorithm 7 summarizes the high-level process, highlighting context construction, dynamic role-based agent selection, response generation, and memory updates.

1188
1189 **Algorithm 7:** Plan-Driven Dialogue Synthesis
1190 **Input:** Ordered plan \mathcal{D} , tool schemas Σ , language models for agents L
1191 **Output:** Dialogue transcript \mathcal{T}
1192 Initialize memory $\mathcal{M} \leftarrow \emptyset$, transcript $\mathcal{T} \leftarrow []$;
1193 **foreach** step $d \in \mathcal{D}$ **do**
1194 $ctx \leftarrow \text{BUILDCONTEXT}(\mathcal{M}, d, \Sigma)$; // Get memory and plan step
1195 $role \leftarrow d.role$;
1196 $agent_prompt \leftarrow \text{SELECTPROMPT}(role)$; // Prompt with agent's role
1197 $response \leftarrow L.\text{GENERATE}(agent_prompt, ctx)$; // Utterance/tool call
1198 $\mathcal{T}.\text{APPEND}(response)$;
1199 $\mathcal{M} \leftarrow \text{UPDATMEMORY}(\mathcal{M}, response, d)$; // Update memory with output
1200 **return** \mathcal{T}

F DIALOGUE POST-PROCESSING

F.1 DIALOGUE ERROR INJECTION

1211 To rigorously evaluate and improve the robustness of models trained on ToolWeave data, we im-
1212 plemented a systematic error injection pipeline. This pipeline deterministically introduces schema
1213 violations, logical ordering errors, and tool confusion scenarios to force the model to learn error
1214 recovery in simulated real-world settings. Algorithm 8 details the high-level injection logic, while
1215 Algorithm 9 illustrates the complex logic required to synthesize cascading failure scenarios.

1216 **Algorithm 8:** Dialogue Error Injection
1217 **Input:** Dialogue set \mathcal{D} , Tool Schemas \mathcal{S} , Injection Probability p_{inject} , Similarity Matcher M
1218 **Output:** Augmented Dialogue set \mathcal{D}_{aug}
1219 Initialize $\mathcal{D}_{\text{aug}} \leftarrow \emptyset$;
1220 **foreach** dialogue $d \in \mathcal{D}$ **do**
1221 Add original d to \mathcal{D}_{aug} ;
1222 **if** $\text{Random}(0, 1) < p_{\text{inject}}$ **then**
1223 $d_{\text{error}} \leftarrow \text{DeepCopy}(d)$;
1224 $\text{injected} \leftarrow \text{False}$;
1225 // Attempt Complex Logical Errors (30% chance)
1226 **if** $\text{Random}(0, 1) < 0.3$ **then**
1227 **if** $\text{INJECTCASCADINGFAILURE}(d_{\text{error}}, \mathcal{S})$ is Success **then**
1228 $\text{injected} \leftarrow \text{True}$;
1229 **else if** $\text{INJECTOUTOFORDERERROR}(d_{\text{error}}, \mathcal{S})$ is Success **then**
1230 $\text{injected} \leftarrow \text{True}$;
1231 **else if** $\text{INJECTWRONGTOOLERROR}(d_{\text{error}}, \mathcal{S}, M)$ is Success **then**
1232 $\text{injected} \leftarrow \text{True}$;
1233 // Attempt Simple Parameter Errors (70% chance or if
1234 // complex failed)
1235 **if** not injected **then**
1236 $\text{INJECTSCHEMAERROR}(d_{\text{error}}, \mathcal{S})$;
1237 **if** error injected successfully **then**
1238 Mark d_{error} as modified;
1239 Add d_{error} to \mathcal{D}_{aug} ;
1240
1241 **return** \mathcal{D}_{aug}

1242
1243 **Algorithm 9: Inject Cascading Failure**
1244 **Input:** Dialogue d , Tool Schemas \mathcal{S}
1245 **Output:** Modified Dialogue d' , Success boolean
1246 Identify long multi-step sequences T_{seq} (len ≥ 3) in d ;
1247 **if** T_{seq} is empty **then**
1248 **return** d , False
1249 Select random sequence $S \in T_{seq}$;
1250 // 1. Simulate Reverse-Order Execution
1251 Initialize failure_turns $\leftarrow \emptyset$;
1252 **for** $i \leftarrow \text{length}(S)-1$ **down to** 1 **do**
1253 $step_{curr} \leftarrow S[i]$, $step_{prev} \leftarrow S[i-1]$;
1254 Identify param p_{dep} in $step_{curr}$ dependent on $step_{prev}$;
1255 Create turn t_{call} : Call $step_{curr}$ missing p_{dep} ;
1256 Create turn t_{err} : Error "Prerequisite step not completed/Missing input";
1257 Append (t_{call}, t_{err}) to failure_turns;
1258 // 2. Inject Full Recovery
1259 Construct new history: $history_{original} + failure_{turns} + S_{original}$;
1260 Update $d'.conversations$ and re-index $d'.plan$ with error steps;
1261 **return** d' , True

1262 **Additional Error Injection Modules:** Beyond the cascading failures detailed in Algorithm 9, our
1263 pipeline includes:

- **Out-of-Order Execution:** We simulate scenarios where the model attempts to execute a tool call before its dependencies are met. Specifically, we identify dependent tool pairs and inject a premature call to the downstream tool (missing the dependent parameter) prior to the prerequisite tool. The model receives a missing dependency error and must recover by executing the sequence in the correct order.
- **Semantic Confusion (Wrong Tool):** We utilize a hybrid similarity matcher (Sentence-BERT (Reimers & Gurevych, 2019) + Levenshtein distance (Levenshtcin, 1966)) to identify semantically similar but incorrect tools (e.g., `search_ticket` vs. `get_ticket_details`). We inject a turn where the model mistakenly calls the confusable tool, receives an unhelpful response, and must self-correct.
- **Schema Violations:** We deterministically mutate valid tool calls to violate JSON schema constraints. This includes removing required parameters (MISSING_PARAM), violating type constraints (e.g., passing an integer for a string field), or using invalid enum values. The model is trained to read the resulting standardized error message and retry with the correct schema.
- **Missing Function Recovery:** We simulate scenarios where a necessary tool is initially absent from the provided context. The algorithm identifies a scheduled tool call in the plan and temporarily "hides" it. We inject an Assistant turn refusing the request due to the missing tool, followed by a User turn that explicitly provides the missing tool's schema JSON. The model is trained to recognize the new tool definition in the context window and immediately proceed with the correct tool call.

1284 G FINE-TUNING HYPERPARAMETERS

1285 We fine-tune all models on 8 NVIDIA A100 SXM4 80GB GPUs using QLoRA via the
1286 LLaMA-Factory framework³. The primary hyperparameters used for each model are detailed
1287 in Table 6. Common settings across all models include a learning_rate of 5.0×10^{-5} , bf16
1288 mixed-precision, 4-bit bnb quantization, and a cosine learning rate scheduler.

1291 H EVALUATION BENCHMARK DETAILS

1292 This section provides additional details on the benchmarks used in our experiments (Section 5).

1293
1294
1295 ³<https://github.com/hiyouga/LLaMA-Factory>

Table 6: Key fine-tuning hyperparameters for all models.

Hyperparameter	Llama-3.1-8B-Instruct	Llama-3.1-70B-Instruct	Phi-4
<i>Model Details</i>			
quantization_bit	4	4	4
flash_attn	fa2	fa2	fa2
<i>LoRA Configuration</i>			
lora_rank	32	8	16
lora_alpha	64	32	32
lora_dropout	0.05	0.05	0.05
lora_target	all	all	all
<i>Training Details</i>			
num_train_epochs	1.0	1.0	1.0
warmup_ratio	0.05	0.1	0.1
per_device_train_batch_size	1	1	1
gradient_accumulation_steps	8	2	8
gradient_checkpointing	false	true	false

BFCL-V3: The BFCL-V3 (Patil et al., 2025a) benchmark evaluates multi-turn tool-calling across four challenging categories: *Base*, *Missing Function*, *Missing Parameter*, and *Long Context*. It focuses on conversational scenarios that require clarification, refusal, and robustness. Performance is reported as execution accuracy in a live, executable environment, with credit awarded only when all steps in a dialogue are correctly resolved.

API Bank: The API Bank (Li et al., 2023) benchmark consists of 8 domains, 73 tools, and 314 dialogues. We evaluate on Level 1 (“Call”) and Level 2 (“Retrieve+Call”). As tool retrieval is not the focus of this paper, we provide the set of required tools to the model for both levels. The evaluation is conducted in an off-policy, teacher-forced manner, where the model must predict the next step given the correct history.

CONFETTI: The CONFETTI (Alkhouri et al., 2025) benchmark is a multi-turn, multi-step conversational benchmark with 109 human-simulated conversations covering 86 tools. A key characteristic is its explicit inclusion of conversational complexities, such as follow-ups, goal correction, goal switching, ambiguous goals, and over- or under-filled parameters. We focus on evaluating the turn-level tool-calling accuracy.

ToolHop: The ToolHop (Ye et al., 2025) benchmark is specifically designed to evaluate multi-step tool use within a single turn. It comprises 995 queries and 3912 locally executable tools. Answering a query requires the implicit decomposition of the request and sequential invocation of multiple tools where the output of one tool is the input for another. ToolHop evaluates models in a live environment, testing both planning and error recovery, with accuracy computed based on the final answer.

1350 I TOOLWEAVE SAMPLE DATA - GOAL, PLAN, TOOLS, AND DIALOGUE

1351
 1352 We present a detailed example from the customer support domain that illustrates a complex, multi-
 1353 step dialogue. The example showcases the five available tools, the high-level goal constructed using
 1354 these tools, the 15-step fine-grained plan, and the final multi-turn dialogue that realizes the plan.
 1355 The following subsections present each component in turn.

1356
 1357 I.1 TOOLS LIST
 1358

1359 **Tool 1: create_support_ticket**

```
1360
1361
1362 {
1363   "name": "create_support_ticket",
1364   "description": "Create support ticket.",
1365   "parameters": {
1366     "type": "object",
1367     "properties": {
1368       "issue_description": {"type": "string", "description": "A
1369       ↵ detailed description of the issue."},
1370       "category": {"type": "string", "enum": ["technical",
1371       ↵ "billing", "general"], "default": "general"},
1372       "requester_id": {"type": "string", "description": "The
1373       ↵ unique identifier for the customer requesting
1374       ↵ support."},
1375       "urgency_level": {"type": "string", "enum": ["low",
1376       ↵ "medium", "high"], "default": "medium"}
1377     },
1378     "required": ["issue_description", "requester_id"]
1379   },
1380   "results": {
1381     "type": "object",
1382     "properties": {
1383       "ticket_id": {"type": "string", "description": "The unique
1384       ↵ identifier for the newly created ticket."},
1385       "creation_date": {"type": "string", "format":
1386       ↵ "date-time"},
1387       "status": {"type": "string", "enum": ["open",
1388       ↵ "in_progress", "resolved", "closed", "on_hold"]}
1389     }
1390   }
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
```

```

1404
1405 Tool 2: get_ticket_details
1406
1407
1408 {
1409     "name": "get_ticket_details",
1410     "description": "Retrieve comprehensive details about a
1411     ↪ specific support ticket.",
1412     "parameters": {
1413         "type": "object",
1414         "properties": {
1415             "support_ticket_identifier": {"type": "string",
1416             ↪ "description": "The unique reference number of the
1417             ↪ ticket"}
1418         },
1419         "required": ["support_ticket_identifier"]
1420     },
1421     "results": {
1422         "type": "object",
1423         "properties": {
1424             "customer_id": {"type": "string"},
1425             "issue_description": {"type": "string"},
1426             "priority": {"type": "string", "enum":
1427             ↪ ["low", "medium", "high"]},
1428             "category": {"type": "string", "enum":
1429             ↪ ["technical", "billing", "general"]},
1430             "status": {"type": "string", "enum":
1431             ↪ ["open", "in_progress", "resolved", "closed", "on_hold"]},
1432             "creation_date": {"type": "string", "format":
1433             ↪ "date-time"},
1434             "last_updated": {"type": "string", "format": "date-time"}
1435         }
1436     }
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

```

1458
1459 Tool 3: search_tickets
1460
1461
1462 {
1463   "name": "search_tickets",
1464   "description": "Find support tickets by criteria.",
1465   "parameters": {
1466     "type": "object",
1467     "properties": {
1468       "start_date": {"type": "string", "format": "date"},
1469       "end_date": {"type": "string", "format": "date"},
1470       "user_account_id": {"type": "string"},
1471       "issue_type": {"type": "string", "enum": [
1472         "technical", "billing", "general"], "default": "general"},
1473       "ticket_state": {"type": "string", "enum": [
1474         "open", "in_progress", "resolved", "closed"], "default": "open"},
1475       "urgency_level": {"type": "string", "enum": [
1476         "low", "medium", "high"], "default": "medium"}
1477     },
1478     "required": ["user_account_id"]
1479   },
1480   "results": {
1481     "type": "object",
1482     "properties": {
1483       "tickets": {
1484         "type": "array",
1485         "items": {
1486           "type": "object",
1487           "properties": {
1488             "ticket_id": {"type": "string"},
1489             "issue_description": {"type": "string"},
1490             "creation_date": {"type": "string", "format": "date-time"},
1491             "last_updated": {"type": "string", "format": "date-time"}
1492           }
1493         }
1494       }
1495     }
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```

1512
 1513
 1514
 1515
 1516
 1517 **Tool 4: escalate_ticket_to_specialist**
 1518
 1519
 1520
 1521
 1522 {
 1523 "**name**": "escalate_ticket_to_specialist",
 1524 "**description**": "Elevates a support ticket to a specialist
 1525 ↳ **team**.",
 1526 "**parameters**": {
 1527 "**type**": "object",
 1528 "**properties**": {
 1529 "**specialist_team**": {"**type**": "string", "**enum**":
 1530 ↳ ["technical", "billing", "legal", "management"]},
 1531 "**urgency_level**": {"**type**": "string", "**enum**":
 1532 ↳ ["low", "medium", "high", "critical"], "**default**":
 1533 ↳ "medium"},
 1534 "**attachments**": {"**type**": "array", "**items**": {"**type**":
 1535 ↳ "object"}},
 1536 "**support_case_id**": {"**type**": "string"},
 1537 "**specialist_notes**": {"**type**": "string"}
 1538 },
 1539 "**required**":
 1540 ↳ ["specialist_team", "support_case_id", "specialist_notes"]
 1541 },
 1542 "**results**": {
 1543 "**type**": "object",
 1544 "**properties**": {
 1545 "**escalation_id**": {"**type**": "string"},
 1546 "**escalation_date**": {"**type**": "string", "**format**":
 1547 ↳ "date-time"},
 1548 "**status**": {"**type**": "string", "**enum**":
 1549 ↳ ["pending", "in_progress", "resolved", "rejected"]}
 1550 }
 1551 }
 1552 }
 1553 }

1544
 1545
 1546 **Tool 5: update_escalation_status**
 1547
 1548
 1549 {
 1550 "**name**": "update_escalation_status",
 1551 "**description**": "Modify ticket escalation status.",
 1552 "**parameters**": {
 1553 "**type**": "object",
 1554 "**properties**": {
 1555 "**status**": {"**type**": "string", "**enum**":
 1556 ↳ ["pending", "in_progress", "resolved", "rejected"]},
 1557 "**ticket_escalation_id**": {"**type**": "string"}
 1558 },
 1559 "**required**": ["status", "ticket_escalation_id"]
 1560 },
 1561 "**results**": {
 1562 "**type**": "object",
 1563 "**properties**": {
 1564 "**last_updated**": {"**type**": "string", "**format**": "date-time"}
 1565 }
 1566 }
 1567 }

1566 I.2 HIGH LEVEL GOAL
15671568 **Goal**
15691570 *Create a support ticket, review its details, and escalate it to a specialist team for urgent
1571 resolution.*

1572

1573

1574 I.3 PLAN
15751576 **Multi-step Plan**
1577**Step 1 (USER_UTTERANCE)**Utterance: *I need to create a support ticket and get all the details about it.*

Provided params:

```

1581 {
1582     "create_support_ticket.requester_id":
1583         "$user_provided_$create_support_ticket.requester_id"
1584     }
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
  
```

Step 2 (ASSISTANT_CLARIFICATION)

Parameter names:

```

1590 ["create_support_ticket.issue_description"]
1591
  
```

Step 3 (USER_RESPONSE_TO_CLARIFICATION)

Provides params:

```

1596 {
1597     "create_support_ticket.issue_description":
1598         "$user_provided_$create_support_ticket.issue_description"
1599     }
1600
  
```

Step 4 (CALL_TOOL: create_support_ticket)

Parameters:

```

1604 {
1605     "create_support_ticket.issue_description":
1606         "$user_provided_$create_support_ticket.issue_description",
1607     "create_support_ticket.requester_id":
1608         "$user_provided_$create_support_ticket.requester_id"
1609     }
1610
  
```

Step 5 (CALL_TOOL: get_ticket_details)

Parameters:

```

1615 {
1616     "get_ticket_details.support_ticket_identifier":
1617         "$create_support_ticket.ticket_id"
1618     }
1619
  
```

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

Step 6 (ASSISTANT_RESPONSE_TOOL)

Summarizes tools:

```
[ "create_support_ticket", "get_ticket_details" ]
```

Outputs:

```
[  
    "create_support_ticket.ticket_id",  
    "create_support_ticket.creation_date",  
    "create_support_ticket.status",  
    "get_ticket_details.customer_id",  
    "get_ticket_details.issue_description",  
    "get_ticket_details.priority",  
    "get_ticket_details.category",  
    "get_ticket_details.status",  
    "get_ticket_details.creation_date",  
    "get_ticket_details.last_updated"  
]
```

Step 7 (USER_UTTERANCE)Utterance: *Can you search for the ticket I just created?***Step 8 (CALL_TOOL: search_tickets)**

Parameters:

```
{  
    "search_tickets.user_account_id":  
        "$get_ticket_details.customer_id",  
    "search_tickets.issue_type": "$get_ticket_details.category",  
    "search_tickets.ticket_state": "$create_support_ticket.status"  
}
```

Step 9 (ASSISTANT_RESPONSE_TOOL)

Summarizes tools:

```
[ "search_tickets" ]
```

Outputs:

```
[  
    "search_tickets.tickets[].ticket_id",  
    "search_tickets.tickets[].issue_description",  
    "search_tickets.tickets[].creation_date",  
    "search_tickets.tickets[].last_updated"  
]
```

Step 10 (USER_UTTERANCE)Utterance: *Now, please escalate this ticket to a specialist team for urgent resolution and update the escalation status.*

Provided params:

1672

1673

```
1674
1675
1676
1677
1678
1679 {  
  "escalate_ticket_to_specialist.specialist_team":  
  "$user_provided_$escalate_ticket_to_specialist.specialist_te  
  ↵  m"  
}
```

Step 11 (ASSISTANT_CLARIFICATION)

Parameter names:

```
[  
  "escalate_ticket_to_specialist.specialist_notes",  
  "update_escalation_status.status"  
]
```

Step 12 (USER_RESPONSE_TO_CLARIFICATION)

Provides params:

```
{  
  "escalate_ticket_to_specialist.specialist_notes":  
    "$user_provided_$escalate_ticket_to_specialist.specialist_n  
     ↴ _otes",  
  "update_escalation_status.status":  
    "$user_provided_$update_escalation_status.status"  
}
```

Step 13 (CALL_TOOL: escalate_ticket_to_specialist)

Step 11 (3)

```
{  
  "escalate_ticket_to_specialist.specialist_team":  
    "$user_provided_$escalate_ticket_to_specialist.specialist_t  
    ↵  eam",  
  "escalate_ticket_to_specialist.support_case_id":  
    "$create_support_ticket.ticket_id",  
  "escalate_ticket_to_specialist.specialist_notes":  
    "$user_provided_$escalate_ticket_to_specialist.specialist_n  
    ↵  otes"  
}
```

Step 14 (CALL TOOL: update escalation status)

Step 14 (CF)

```
{  
  "update_escalation_status.status":  
  "$user_provided_update_escalation_status.status",  
  "update_escalation_status.ticket_escalation_id":  
  "$escalate_ticket_to_specialist.escalation_id"  
}
```

Step 15 (ASSISTANT RESPONSE TOOL)

Step 15 (Assistive Summarizes tools:

```

1728
1729
1730 ["escalate_ticket_to_specialist", "update_escalation_status"]
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

```

Outputs:

```

[ "escalate_ticket_to_specialist.escalation_id",
  "escalate_ticket_to_specialist.escalation_date",
  "escalate_ticket_to_specialist.status",
  "update_escalation_status.last_updated"
]

```

I.4 DIALOGUE

Multi-turn Dialogue

System: Current time: 2025-08-27 21:24:05.

User: I need to create a support ticket for an issue I'm having with my account login. I keep getting an error message saying 'Invalid credentials' even though I'm sure I'm entering the correct username and password. I've tried resetting my password multiple times, but the issue persists. I need this resolved as soon as possible because I can't access any of my account features.

Assistant: Could you please provide your requester ID so I can create a support ticket for your account login issue?

User: My requester ID is cust123456789.

Assistant:

```

create_support_ticket({"issue_description": "I keep
getting an error message saying 'Invalid credentials'
even though I'm sure I'm entering the correct username
and password. I've tried resetting my password
multiple times, but the issue persists. I need this
resolved as soon as possible because I can't access
any of my account features.", "requester_id":
"cust123456789", "urgency_level": "high", "category":
"general"})

```

Tool:

```
{"ticket_id": "tkt987654321", "creation_date":
"2025-08-27T21:24:05Z", "status": "open"}
```

Assistant:

```
get_ticket_details({"support_ticket_identifier":
"tkt987654321"})
```

Tool:

```
{"customer_id": "cust123456789", "issue_description":
"I keep getting an error message saying 'Invalid
credentials' even though I'm sure I'm entering the
correct username and password. I've tried resetting
my password multiple times, but the issue persists. I
need this resolved as soon as possible because I can't
access any of my account features.", "priority":
"high", "category": "general", "status": "open",
"creation_date": "2025-08-27T21:24:05Z",
"last_updated": "2025-08-27T21:24:05Z"}
```

1782

Assistant: I've created a support ticket for your account login issue. Your ticket ID is tkt987654321, created on August 27, 2025, and it is currently open. The ticket details confirm that the issue is related to receiving an 'Invalid credentials' error message despite entering the correct username and password, and that you've attempted to reset your password multiple times without success. The ticket is categorized as 'general' with high priority. The ticket status remains open, and it was last updated on August 27, 2025. Our support team will address this as soon as possible.

1789

User: Can you search for the ticket I just created?

1791

Assistant:

```
search_tickets({"user_account_id": "cust123456789",
"issue_type": "general", "ticket_state": "open",
"urgency_level": "medium"})
```

1795

Tool:

```
{"tickets": [{"ticket_id": "tkt987654321",
"issue_description": "I keep getting an error message
saying 'Invalid credentials' even though I'm sure I'm
entering the correct username and password. I've
tried resetting my password multiple times, but the
issue persists. I need this resolved as soon as
possible because I can't access any of my account
features.", "creation_date": "2025-08-27T21:24:05Z",
"last_updated": "2025-08-27T21:24:05Z"}]}
```

1805

Assistant: I found your open support ticket with ID tkt987654321. It was created on August 27, 2025, regarding the 'Invalid credentials' error you're experiencing despite entering the correct username and password. The issue description mentions that you've tried resetting your password multiple times without success. This ticket was last updated on August 27, 2025, and our support team is working to resolve it as quickly as possible.

1809

User: Please escalate my ticket to a specialist team for urgent resolution. Here are some additional details: I've been experiencing this issue for the past three days, and it's preventing me from accessing critical account features. I've tried all the standard troubleshooting steps, including clearing my browser cache and trying different devices, but nothing has worked. I suspect there might be an issue with the account authentication system itself.

1815

Assistant: To which specialist team would you like me to escalate your ticket for urgent resolution?

1818

User: Please escalate my ticket to the technical team and set the escalation status to in_progress.

1819

Assistant:

```
escalate_ticket_to_specialist({"specialist_team": "technical", "support_case_id": "tkt987654321",
"specialist_notes": "I've been experiencing this issue
for the past three days, and it's preventing me from
accessing critical account features. I've tried all
the standard troubleshooting steps, including clearing
my browser cache and trying different devices, but
nothing has worked. I suspect there might be an issue
with the account authentication system itself.",
"attachments": [], "urgency_level": "high"})
```

1830

Tool:

```
{"escalation_id": "esc987654321", "escalation_date": "2025-08-27T21:24:05Z", "status": "in_progress"}
```

1833

Assistant:

```
update_escalation_status({"status": "in_progress",
"ticket_escalation_id": "esc987654321"})
```

1836

1837

Tool:

```
{"last_updated": "2025-08-27T21:24:05Z"}
```

1839

1840

Assistant: Your ticket has been successfully escalated to the technical team. The escalation ID is esc987654321, created on August 27, 2025, with a status of "in-progress". This escalation was last updated on August 27, 2025. The technical team will now prioritize resolving your account login issue, considering the additional details you've provided about the problem's duration and your troubleshooting attempts.

1844

1845

J EXAMPLE DIALOGUE GENERATED VIA TOOLFLOW

1848

1849

1850

1851

This example dialogue highlights a common issue in dialogues generated via the ToolFlow pipeline, where the tool agent hallucinates a tool response without the assistant agent providing an actual tool call, resulting in a fabricated tool reply (as seen in the first assistant response and the first tool response).

1852

1853

Multi-turn Dialogue

1854

1855

1856

1857

1858

User: I've just bought a new field and have the map outline. Could you define its boundary with this GeoJSON: {"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[30.0, 10.0], [40.0, 40.0], [20.0, 40.0], [10.0, 20.0], [30.0, 10.0]]]}, "properties": {}}? The field ID is "field-12345".

1859

1860

Assistant: Sure, defining the boundary for field field-12345 now.

1861

1862

1863

Tool:

```
{"field_boundary_id": "boundary-67890", "status": "defined"}
```

1864

1865

1866

Assistant: Great! The boundary for field field-12345 has been successfully defined (status: defined). I can now pull a short-term weather forecast for the next week for this field. Would you like me to retrieve that for you?

1867

1868

User: Yes, please pull the short-term weather forecast for the next week for field-12345.

1869

1870

1871

Assistant: Sure! To get the short-term weather forecast I'll need the farm identifier that corresponds to this field. Could you provide the farm ID (or let me know if the field ID can be used in place of a farm ID)?

1872

1873

User: Sure, the farm ID is farm-abc123.

Assistant:

```
get_weather_forecast({"farm_identifier": "farm-abc123"})
```

1876

1877

Tool:

```
{"temperature_celsius": 22.3, "precipitation_mm": 0.0, "wind_speed_kph": 14.5, "condition": "sunny"}
```

1880

1881

Assistant: Here's the forecast I've retrieved for tomorrow at your field field-12345 (farm-abc123):

1882

1883

1884

1885

1886

1887

1888

1889

1890 **K SOME EXAMPLE DIALOGUES FROM TOOLDIAL TRAINING SET**
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

The following examples illustrate some of the issues why LLMs fine-tuned on ToolDial data exhibit inferior performance on the BFCL-V3 benchmark (see Table 4).

Example K.1 shows that models trained on such data struggle with parameter elicitation and error recovery—the assistant neither asks for the missing hotel IP address nor attempts to resolve the misunderstanding after the user’s correction.

K.1 EXAMPLE 1

Multi-turn Dialogue

User: Can you help me find detailed information about local businesses, such as restaurants and cafes, near my hotel? I only have the hotel’s IP address and need to find its geo-location first to get the coordinates.

Assistant: I can help you find detailed information about local businesses near your hotel. Would you like me to proceed with finding nearby businesses?

User: No, that’s not what I need.

Assistant: I’m sorry, but I cannot fulfill your request due to insufficient information. Please provide more details or try a different query.

K.2 EXAMPLE 2

Example K.2 illustrates two issues. The user’s initial request is somewhat unrealistic and unlikely to occur in a real-world setting. The assistant’s clarification questions are phrased using internal parameter names rather than natural, intuitive language that a user would expect.

Multi-turn Dialogue

User: What is the population within a defined area around a city, given only the city’s name and its country?

Assistant: Would it be appropriate to retrieve the population data within a defined area around the city you mentioned?

User: That would be great. Sure, that sounds good.

Assistant: Please tell me the radius of the circular area around the coordinates and the coordinates of the geographic point to search nearby.

User: I can provide the radius, which is 300, but I don’t know the coordinates.

Assistant: Please provide the namePrefixDefaultLangResults for the city.

User: Sure! The namePrefixDefaultLangResults for the city is San Francisco.

Assistant:

```
[{ "name": "cities", "arguments": {  
    "namePrefixDefaultLangResults": "San Francisco" } } ]
```

1944

1945

Tool:

```
{
  "error": "", "response": { "data": [{ "id": 5392171, "wikiDataId": "Q123456", "type": "CITY", "city": "San Francisco", "name": "San Francisco", "country": "United States", "countryCode": "US", "region": "California", "regionCode": "CA", "regionWdId": "Q99", "population": 883305, "coordinates": "[37.7749, -122.4194]"}, { "id": 5902958, "wikiDataId": "Q123457", "type": "CITY", "city": "San Jose", "name": "San Jose", "country": "United States", "countryCode": "US", "region": "California", "regionCode": "CA", "regionWdId": "Q99", "population": 1035317, "coordinates": "[37.3382, -121.8863]"}, { "id": 5322760, "wikiDataId": "Q123458", "type": "CITY", "city": "San Diego", "name": "San Diego", "country": "United States", "countryCode": "US", "region": "California", "regionCode": "CA", "regionWdId": "Q99", "population": 1423851, "coordinates": "[32.7157, -117.1611]"}], "links": { "next": "/v1/geo/cities?offset=60&limit=50" }, "metadata": { "currentOffset": 10, "totalCount": 150 } } }
```

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

Assistant: Please choose one of the following cities: San Francisco, San Jose, San Diego.

User: I choose San Francisco.

Assistant:

```
get_population({ "radius": "300", "coordinate": "[37.7749, -122.4194] " })
```

Tool:

```
{
  "error": "", "response": { "radius": 300, "population": 12000, "description": "The estimated resident population within a 300-meter radius of the specified coordinates in San Francisco is approximately 12,000 individuals. This figure is based on the latest demographic data and reflects the density of the area, which includes residential buildings, parks, and commercial establishments.", "coordinates": [37.7749, -122.4194] } }
```

Assistant: The estimated resident population within a 300-meter radius of the specified coordinates in San Francisco is approximately 12,000 individuals. This figure is based on the latest demographic data and reflects the density of the area, which includes residential buildings, parks, and commercial establishments.

User: Thank you for the information. Goodbye!

Assistant: You're welcome! Goodbye!

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997