
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOOLWEAVE: FINE-GRAINED AND CONTROLLABLE
SYNTHETIC DATA GENERATION FOR MULTI-TURN
TOOL CALLING WITH NON-FRONTIER LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-turn tool-calling is a crucial capability for LLM-based agents and is typi-
cally improved via supervised fine-tuning on synthetic data. Existing multi-turn
tool-calling synthetic data pipelines often rely on proprietary frontier LLMs (e.g.,
GPT-4) or commercial APIs (e.g., RapidAPI), introducing restrictive licensing. In
contrast, data generated directly from non-frontier LLMs suffers from low fidelity,
poor diversity, and weak adherence to multi-constraint instructions, resulting in
producing lower-quality datasets than frontier models. To address these limita-
tions, we propose ToolWeave, a modular and controllable pipeline that synthesises
high-quality multi-turn tool-calling datasets using non-frontier, license-friendly
LLMs. ToolWeave supports both API and dialogue synthesis. Our framework’s
novelty is threefold: (1) it is fully synthetic; given only a domain name, it builds
a domain context from Wikipedia and Wikidata to synthesize a Tool Graph of
APIs. (2) In contrast to other pipelines’ single, failure-prone planning step, Tool-
Weave’s scaffolding process first generates a high-level goal from the Tool Graph,
then decomposes it into a turn-level dialogue plan. This two-stage approach en-
ables non-frontier LLMs to generate high-fidelity, grounded dialogues. (3) A final
post-processing stage injects lexical diversity and robustness patterns (e.g., er-
ror recovery) to simulate real-world scenarios. To validate our framework, we
generated a dataset of ∼3.2k dialogues using the open-source gpt-oss-120b.
Compared to baselines, ToolFlow and ToolDial, ToolWeave shows clear gains:
on the BFCL-V3 benchmark, our data improves Llama-3.1-70B to 33.25% (vs.
ToolFlow’s 21.00% & ToolDial’s 3.75%) and Phi-4 to 24.50% (vs. ToolFlow’s
8.88% & ToolDial’s 2.0%). Our data also shows strong generalization, with peak
gains of 37.6% on the API Bank benchmark.

1 INTRODUCTION

The ability to leverage external tools has transformed large language models (LLMs) from static
predictors into autonomous agents capable of accomplishing complex, real-world tasks(Yao et al.,
2023; Schick et al., 2023; Paranjape et al., 2023). A central capability for such agents is multi-turn
tool calling: identifying the right tool, chaining multiple tools to complete a workflow, eliciting
missing information from the user, and presenting results back. A common strategy to improve
this ability is fine-tuning on synthetic datasets (Liu et al., 2025; Prabhakar et al., 2025; Shim et al.,
2025; Qin et al., 2024). However, existing pipelines were designed for frontier LLMs and make
assumptions that break down when applied to non-frontier, open models.

We identify four critical failure modes in prior work. (1) To obtain multi-turn, multi-tool workflows,
many pipelines build a graph of tools and perform a random walk over it. This often produces
incoherent tool sequences for dialogues, leading to less realistic data. (2) Given such tool sequences,
pipelines usually ask an LLM to generate the entire dialogue plan in one shot. Frontier LLMs
can manage this, but weaker LLMs struggle with such broad prompts, causing complex instruction
following failures. (3) Dialogue drift and state loss: even when a plan exists, generating the dialogue
directly from a high-level plan often leads to hallucinated arguments, loss of parameter provenance,
or contradictions across turns. (4) Licensing and coverage constraints: many pipelines rely on APIs
from marketplaces like RapidAPI, causing licensing issues and limited domain coverage.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The modular architecture of ToolWeave. Starting with a domain name, the Tool Graph
Synthesizer creates synthetic APIs and organizes them into an interconnected graph; the Structured
Tool Graph Sampler extracts coherent subgraphs as goals; the Fine-Grained Plan Generator ex-
pands these goals into detailed plans; and the Multi-Agent Dialogue Synthesizer instantiates the
plans into natural multi-turn conversations.

Our approach: We introduce ToolWeave, a controllable pipeline that synthesizes domain-specific
tools and realistic multi-turn tool-calling dialogues using only open knowledge sources and mod-
els (e.g., gpt-oss-120b). Given a domain label (e.g., customer service), ToolWeave (1)
synthesizes a license-friendly library of tools and organizes them into a Tool Graph (where nodes
represent APIs and edges represent validated parameter dependencies) , (2) samples coherent sub-
graphs from structural workflow motifs, (3) produces explicit, fine-grained plans that decomposes
dialogue planning into deterministic atomic steps (specifying agent roles, subgoals, and parameter
sources at every turn), and (4) executes them via a plan-driven multi-agent synthesizer with dynamic
roles and a Memory agent to preserve state, followed by post-processing for diversity and robustness
(Figure 1).

Design principle: granularity and control. Prior pipelines rely on heuristics to construct edges
in the tool graph, high-level goal planning, and one-shot dialogue synthesis from coarse plans. In
contrast, ToolWeave introduces validated, fine-grained control across all stages of the data synthe-
sis process. Each component—API synthesis, tool-graph construction, workflow sampling, subgoal
planning, and multi-agent execution—produces controlled, verifiable inputs for the next stage, en-
abling non-frontier LLMs to reliably generate complex multi-turn tool-calling dialogues. This end-
to-end scaffolding enforces consistent data flows and small, verifiable reasoning steps, providing
structural reliability that prior pipelines lack.

The key novelties of ToolWeave and how they map to failure modes are:

• Knowledge-grounded synthetic tools address licensing and coverage constraints by generating
tools from open textual and structured sources, producing domain-aware schemas without pro-
prietary APIs.

• Structured tool-graph sampler addresses diversity/realism by sampling workflows from structural
motifs (linear, fan-in/out, conditional) rather than random walks.

• Fine-grained plan generator addresses complex instruction following by decomposing planning
into targeted steps that non-frontier LLMs can reliably execute.

• Plan-driven multi-agent synthesizer with Memory addresses drift and state loss by executing plans
via dynamic-role agents and explicit state tracking.

LLMs fine-tuned on ToolWeave data generated using gpt-oss-120b outperform SOTA base-
lines ToolFlow (Wang et al., 2025) and ToolDial (Shim et al., 2025) across multiple benchmarks,
including BFCL-V3 (Patil et al., 2025a), API Bank (Li et al., 2023), CONFETTI (Alkhouli et al.,
2025), and ToolHop (Ye et al., 2025). We will release code, synthesized tools, and dialogues upon
acceptance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Fine-Tuning Datasets and Models for Tool Calling: Toolformer (Schick et al., 2023), one of
the first works, replaced text segments with tool calls to train LLMs to produce tool calls. Several
instruction-tuning datasets have been created to improve tool-calling capabilities in LLMs. Most of
these datasets are designed to introduce single-turn tool-calling capabilities in models (Liu et al.,
2024; Basu et al., 2024a;b; Shi et al., 2025; Qin et al., 2024) using APIs extracted from sources such
as RapidAPI (RapidAPI, 2025) or APIBench (Patil et al., 2025b). Reinforcement learning methods
and other tuning strategies to improve tool calling capabilities are presented in Li et al. (2025); Chen
et al. (2025b). Tool retrieval becomes an important aspect with increasing tools and is addressed in
the works Qin et al. (2025); Chen et al. (2024). Recently, researchers have started looking at creating
multi-turn tool calling data using synthetic data generation pipelines and models (Wang et al., 2025;
Shim et al., 2025; Prabhakar et al., 2025; Liu et al., 2025; Yin et al., 2025; Chen et al., 2025a). The
APIs and frontier models used in these pipelines make them very restrictive and not licensable for
commercial deployments. The goal of ToolWeave is to address this gap with an end-to-end license-
friendly open synthetic data pipeline that gives control at each stage without any restrictions. Table 1
provides the comparison of the features around licenses of the model used, the code, the generated
data and the fine-grained control it offers.

Tool Calling Evaluation Benchmarks: BFCL (Patil et al., 2025a) is one of the comprehensive
benchmarks aimed at evaluating various aspects of function calling including multi-turn. Apart from
this, several other benchmarks evaluate single-turn capabilities of the models like (Wu et al., 2024;
Patil et al., 2025a; Ross et al., 2025; Shi et al., 2025; Xu et al., 2023; Zhuang et al., 2023; Huang
et al., 2024; Basu et al., 2024a). Benchmarks like CONFETTI (Alkhouli et al., 2025), APIBank (Li
et al., 2023), ToolHop Ye et al. (2025) are built for evaluating multi-turn capabilities of the models.
τ -bench (Yao et al., 2025) and Agentboard (Chang et al., 2024) are benchmarks for evaluating
agentic capabilities such as multi-turn tool calling along with policy adherence.

Table 1: Comparison of multi-turn synthetic data pipelines across different dimensions.

Framework Synthesize
APIs

Code
Released

Data Released,
License Friendly

License Friendly
Synthesis Model

Fine-Grained
Plan

Tooldial (Shim et al.) ✗ ✓ ✓, ✗ ✗ ✗
ToolAce (Liu et al.) ✓ ✗ ✓, ✗ ✗ ✗
APIgen-MT (Prabhakar et al.) ✗ ✗ ✓, ✗ ✗ ✗
ToolFlow (Wang et al.) ✗ ✗ ✗, ✗ ✗ ✗
Button (Chen et al.) ✓ ✗ ✓, ✗ ✗ ✗
ToolLLM (Qin et al.) ✗ ✓ ✓, ✗ ✗ ✗

ToolWeave (Ours) ✓ ✓* ✓*, ✓ ✓ ✓
* Will be released upon paper acceptance.

3 TOOLWEAVE ARCHITECTURE

The architecture of ToolWeave is guided by a core design philosophy: to enable non-frontier LLMs
to generate high-quality, complex, license-friendly tool-calling data. To achieve this, we designed a
modular, fine-grained framework that provides precise “scaffolding” at each stage as shown in Fig-
ure 1. The process begins with the Tool Graph Synthesizer, which creates a pool of domain-specific
synthetic APIs (or tools) and organizes them into an interconnected Tool Graph. Next, the Struc-
tured Tool Graph Sampler searches the Tool Graph to find coherent subgraphs that represent plausi-
ble goals. These goals are then expanded by the Fine-Grained Plan Generator, which decomposes
them into subgoals and generates a fine-grained plan. Next, the Multi-Agent Dialog Synthesizer
instantiates this plan into a natural, multi-turn conversation. Finally, the Dialogue Post-Processor
refines the dialogue, injecting realistic error patterns and lexical diversity to create a robust final
dataset. Appendix I.1 to I.4 demonstrate the output of each stage through an example.

3.1 TOOL GRAPH SYNTHESIZER

Motivation: Prior work in multi-turn tool-calling dialogues, such as ToolDial (Shim et al., 2025)
and ToolFlow (Wang et al., 2025) has largely relied on real-world APIs from marketplaces such as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

RapidAPI (RapidAPI, 2025). However, such resources are subject to licensing and usage restric-
tions that preclude their use in commercial training (RapidAPI, Inc., 2025). Moreover, for aca-
demic research they hinder reproducibility (Guo et al., 2024) and experimental control, as APIs are
volatile and their fixed schemas limit systematic studies of properties such as schema complexity.
In addition, these marketplaces have skewed and limited coverage, often lacking APIs for new or
specialized domains. To address these challenges, our ToolWeave framework employs synthetic tool
generation, a scalable, safe, and fully controllable alternative that ensures breadth (many distinct
tools), depth (realistic schemas), and connectivity (linked and composable tools).

Key idea: Our key insight is to bootstrap the process from openly available domain knowledge.
Starting with a domain string (e.g., customer support), we retrieve two complementary views
of the domain: (1) narrative summaries from Wikipedia (Wikipedia, 2025) and (2) structured entities
from Wikidata (Wikidata, 2025). This grounding step provides domain-specific vocabulary, roles,
and objects that seed tool schemas with realistic names and argument structures. For instance, in the
travel booking domain, Wikipedia may introduce workflows around itineraries, while Wiki-
data supplies entities such as airports, cities, and airlines, together yielding realistic tool definitions.

Iterative, curriculum-driven synthesis: A tempting solution would be to simply ask an LLM
to generate all the APIs for a domain. In practice, this produces only obvious functions (e.g., in
travel, search flight or book flight), missing broader workflows such as loyalty or re-
views. Moreover, LLMs invent parameters with conflicting types and naming conventions. The
resultant tools rarely share arguments that enable the composition of tools. Hence, rather than ask-
ing an LLM to generate all the tools in one step, we follow a synthesis plan—a curriculum that
decomposes the task into progressively harder stages.

1. Seed generation: Generate a minimal set of core APIs covering fundamental workflows.
2. Entity expansion: Integrate APIs tied to Wikidata entities, broadening coverage.
3. Schema enrichment: Add depth with nested objects, enums, defaults, and optional parameters.
4. Connection discovery and Tool Graph Construction: In contrast to prior work (Shim et al.,

2025; Wang et al., 2025), where edges of the tool graph are inferred using semantic similarity,
ToolWeave generates tools with candidate links in mind (e.g., search hotel API produces
a hotel id specifically for book hotel API to consume). These proposed edges are then
validated by an LLM to confirm that data flows are semantically correct.

After each stage, candidate APIs are syntactically validated, deduplicated with embedding-based
checks, and refined. This incremental approach ensures APIs become richer and more connected
over time. The output of this stage is a domain-specific Tool Graph G and an API pool A that are
diverse, interconnected, and semantically robust.

3.2 STRUCTURED TOOL GRAPH SAMPLER

Motivation: Once the Tool Graph is constructed, we identify subgraphs that can be used to con-
struct user goals. A common strategy, used in ToolFlow (Wang et al., 2025), is to perform a random
walk on the Tool Graph to get a tool sequence. This ensures that tools are syntactically compati-
ble—the output of one tool can be used as the input of the next—but it does not guarantee that the
tools form a coherent goal. For instance, a tool that returns a user id could be randomly chained
to a tool that deletes an account, even if the more natural follow-up would be to query a profile or
update preferences.

Key idea: Instead of assuming that type-compatible tools naturally form a workflow, ToolWeave
enforces tool-goal alignment by identifying subgraphs that represent coherent user objectives. To
do this, sampling is restricted to structural motifs (linear, fan-in/fan-out, conditional) that reflect
common task patterns, followed by validation for semantic plausibility. This ensures that every
selected path corresponds to a realistic, goal-directed sequence of tools.

Process: The Structured Tool Graph Sampler operates in three stages.

• Tool-Graph traversal: Subgraphs are extracted by searching the Tool Graph for common workflow
motifs. We focus on three structural patterns: (1) linear paths, discovered through bounded beam
search and representing sequential workflows such as search flight→ book flight, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fan-in/fan-out patterns, identified by tracing nodes that feed into multiple successors or aggregate
multiple inputs, capturing parallel subtasks such as get user profile branching into both
search flights and search hotels, which later converge on book package, and (3)
conditional branches, extracted by scanning output schemas for boolean or enum fields, introduc-
ing decision-making, e.g., calling retry payment if payment success=false.

• Path Ranking and Filtering: Candidate paths/subgraphs are scored and filtered before conver-
sion to natural-language goals. For linear paths, we retain the top-k paths by applying Maximal
Marginal Relevance (MMR) (Carbonell & Stewart, 1999). MMR operates on semantic embed-
dings of the natural language goal descriptions for each path, ensuring a balance between path
relevance and diversity. Fan-in/fan-out patterns are constrained by schema-compatibility, while
conditional candidates are validated by checking that the predicate field exists and that downstream
tools consume the relevant output type. The detailed implementation is described in Appendix C.
For a visualization of a representative tool graph illustrating the specific structural patterns dis-
cussed (linear, fan-in-fan-out, and conditional), please refer to Appendix B.3.

• Goal description generation: Each retained tool path is then converted into a natural-language
goal using an LLM. We prompt the LLM with the full tool sequence, the respective API schemas,
and the specific pattern type (e.g., linear, fan-in/out). For conditional patterns, the prompt also
includes the branch predicates to ensure the final goal contains the necessary branching logic.

The output of this stage is a structured set of goal objects, each containing the tool path, motif type,
and a goal description, which serve as inputs to the Fine-Grained Plan Generator.

3.3 FINE-GRAINED PLAN GENERATOR

Motivation: Given a candidate goal (a natural-language objective and its corresponding tool path),
the challenge is to map this abstract sequence of tool calls into a coherent, multi-turn conversation.
A naı̈ve approach would be to ask an LLM to directly generate the dialogue end-to-end. However,
this is fragile, as the model may hallucinate parameter values, confuse which arguments come from
the user vs. prior tool outputs, or fail to insert necessary clarification turns for missing information.
While frontier models such as GPT-5 OpenAI (2025) are less prone to such mistakes, open-source
non-frontier LLMs often struggle with this mapping, producing ambiguous or incoherent dialogues.

Key idea: To prevent such errors, ToolWeave explicitly controls this mapping through the Fine-
Grained Plan Generator: Rather than relying on an LLM’s implicit reasoning, we deterministically
construct a step-by-step JSON plan that encodes: (1) which agent acts at each diaogue step, (2)
which subgoal is advanced, (3) which tool(s) must be invoked, (4) how parameters are sourced
(user-supplied, upstream tool outputs, or schema defaults), and (5) where clarifications should be
injected. This plan serves as precise scaffolding that non-frontier LLMs can follow without drifting.

Process: The Fine-Grained Plan Generator proceeds in three steps:

1. Partitioning the tool path: The input tool sequence is partitioned into turn-level groups (e.g.,
[A,B,C,D] → [[A],[B,C],[D]]). For linear paths, this is done by an LLM conditioned
on the goal text to ensure natural subgoal boundaries; for fan-in/fan-out or conditional patterns,
deterministic rules preserve structural dependencies.

2. Subgoal synthesis and parameter planning: Each partition is associated with a concise subgoal
utterance (e.g., ”First, retrieve the user’s account details”). Then, for each tool in the partition, the
planner resolves parameters by tracing the Tool Graph: user-supplied parameters are explicitly
requested in a user turn, clarification-gated parameters are withheld to trigger a clarification turn,
and derivable parameters are filled automatically from previous tool outputs or schema defaults.
This ensures a precise data flow with no ambiguity.

3. Plan construction: The planner encodes the dialogue as an ordered sequence of JSON
steps. Each step specifies the role (user, assistant, or tool), the type of action
(USER UTTERANCE, TOOL OUTPUT, ASSISTANT CLARIFICATION, etc.), the subgoal (if
any), and all parameter bindings with explicit source hints. The planner also inserts micro-
interactions, such as clarification turns (ASSISTANT CLARIFICATION→ USER RESPONSE)
or optional chit-chat, making conversations natural while preserving determinism.

The output is an ordered, fine-grained JSON plan that clearly specifies the dialogue structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 MULTI-AGENT DIALOGUE SYNTHESIZER

Motivation: Once a fine-grained JSON plan has been generated, the challenge is to instantiate it
into a coherent, natural multi-turn dialogue. A straightforward option would be to let an LLM read
the plan and generate the conversation freely. However, this creates two problems, particularly for
non-frontier LLMs: (1) they often lose track of long-range state (e.g., which parameter values were
resolved earlier), and (2) they may deviate from the plan, skipping steps or hallucinating tool calls.
Thus, while the plan provides structure, a mechanism is needed to enforce faithful execution.

Key idea: ToolWeave addresses this with a plan-driven multi-agent execution framework, where
specialized agents follow the plan under strict role control. The User and Assistant act as
dynamic-role agents, adopting different personas depending on the step (e.g., Utterer vs. Clarifier
for the User, Tool Caller vs. Summarizer for the Assistant). A dedicated Memory agent maintains
an explicit JSON state of facts, resolved parameters, and tool outputs, offloading context tracking
from the LLM. Finally, a Tool Simulator enforces schema-consistent outputs for tool calls, ensuring
plausibility without live APIs. This design keeps execution faithful to the plan while maintaining
natural dialogue flow.

Process: The synthesis process is a deterministic, stateful loop that executes the JSON plan step-
by-step. At each step, the plan dictates the agent’s role; that agent is then invoked with the current
dialogue history and Memory state. The agent’s output (e.g., an utterance or tool call) is appended
to the transcript and used to update the Memory before proceeding to the next step. This stage
yields coherent, plan-aligned, and tool-grounded dialogues, which are then refined in the Dialogue
Post-Processing stage.

3.5 DIALOGUE POST-PROCESSING

The final stage of the ToolWeave framework, Dialogue Post-Processing, takes the “clean” dialogues
from the Synthesizer and transforms them into a robust, challenging, and realistic final dataset as
described below.

1. Improving Naturalness and Diversity: To address the tendency of non-frontier models to produce
repetitive utterances, we apply User Utterance Paraphrasing. An LLM paraphrases user turns,
increasing lexical and syntactic variety while preserving the turn’s subgoal and slot values. This
reduces the risk of overfitting to repeated user phrasing.

2. Injecting Robustness and Refusal Logic: We further enhance robustness by deterministically in-
jecting real-world challenges, including Error Recovery (introducing erroneous tool calls with
realistic failures) and Missing-Function scenarios (temporarily withholding an API to train cali-
brated refusal and recovery once the schema is reintroduced). Detailed algorithms for these error
injection strategies are presented in Appendix F.

3. Preventing Shortcut Learning: To prevent shortcut learning and force the model to reason over
schemas instead of memorizing names, we apply Masking, which systematically replaces API
and argument names with generic IDs (e.g., func 01, arg 01).

Together, these transformations produce a final dataset that is diverse, robust, and challenging.

4 ANALYSIS OF DATA QUALITY

4.1 API QUALITY AND COVERAGE

We evaluate our synthetic APIs on three key properties. First, we measure breadth using the average
number of APIs per domain and input parameters per API. Second, we assess depth (schema com-
plexity) using two key metrics: the Complex API Use (CAU)—the proportion of APIs with nested
objects or arrays—and the Required Parameter Ratio (RPR), the proportion of an API’s parameters
that are required. Finally, we evaluate connectivity using Interconnectivity (IC), which measures
direct data-flow potential, and the average longest tool chain. (Formal definitions for all metrics are
in Appendix B.7). We generated API sets for 20 domains (B.2) using the gpt-oss-120b and
mistral-medium-2505 as synthesis LLMs. Per-domain averages, shown in Table 2a, reveal an
interesting trade-off: the open-source model produces APIs with greater breadth and depth, while

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of API statistics (left) and dialogue statistics (right).

(a) Avg. API stats per domain.

Metric GPT-OSS Mistral

Avg. APIs / Domain 25.25 20.85
Avg. Params / API 3.60 2.92
Complex API Use (CAU) 23.6% 19.8%
Required Param Ratio (RPR) 65.6% 68.4%
Interconnectivity (IC) 1.08 1.85
Longest Chain (avg.) 5.5 5.9

(b) Statistics of synthetic dialogues.

Dataset Min/Max/Avg. Min/Max/Avg. % Total/ % True
Turns Tool Calls Multi-step Turns

ToolWeave (GPT-OSS) 1/8/2.96 1/6/3.24 35.69/31.69
ToolWeave (Mistral) 1/7/2.49 1/5/3.20 44.12/36.14
ToolFlow (GPT-OSS) 1/69/5.65 0/37/2.45 4.45/0.0
ToolDial (GPT-4o) 2/6/4.48 0/2/1.51 4.47/0.0

the proprietary model excels at creating a more tightly interconnected Tool Graph. This shows our
framework guides both models to generate high-quality, but stylistically different APIs.

Comparison with Real-World APIs: We compare our synthetic APIs to 4,474 real-world APIs
from RapidAPI (used in ToolDial (Shim et al., 2025)). Our APIs show higher complexity, with an
average parameter count of 3.6 vs. 2.4 and a Complex API Use (CAU) score of up to 23.6% (vs.
1.0% for real APIs). In connectivity, our method achieves an Interconnectivity score of up to 1.85.
For ToolDial, we compute the Interconnectivity score in two ways: exact parameter name matching
yields 1.61, while semantic similarity based on parameter descriptions (threshold 0.82) raises it to
2.37. Both inflate scores with false positives: exact matching links generic names (e.g., id), while
semantic similarity provides only a “soft” match. By contrast, our generative approach with LLM
validation prunes such edges, producing a cleaner, causally-sound Tool Graph.

4.2 DIALOGUE STRUCTURE AND COMPLEXITY

Using the APIs generated for 20 domains, we synthesize two distinct datasets of ∼3.2k dia-
logues each with ToolWeave (using gpt-oss-120b and mistral-medium-2505 as synthesis
LLMs). For a direct comparison, we also generate a comparable ∼3.2k dialogue baseline using
the ToolFlow pipeline, driven by the same gpt-oss-120b model. We compare their structure in
Table 2b. We measure the number of turns (interactions between user utterances) and the total tool
calls per dialogue. Crucially, we also measure the percentage of multi-step turns. A turn is consid-
ered multi-step if it requires at least two tool calls. We further define a True multi-step turn as one
where these tool calls are directly dependent, meaning the output of one tool call is consumed by
another within the same turn. For example, a turn where an assistant calls search flights and
immediately uses the resulting flight id to call book flight is a True multi-step turn. The
results highlight a key difference in generation quality. The unusually high maximum turn and tool
call counts for ToolFlow (69 and 37, respectively) do not indicate complexity, but rather uncontrolled
generation; this is evidenced by its 0.0% True multi-step turn rate. Without a fine-grained plan, the
non-frontier LLM enters long, unproductive loops of shallow, independent tool calls. In contrast,
ToolWeave’s detailed plans produce shorter, more focused dialogues that are dense with genuine
multi-step reasoning (up to 36.14% True multi-step), demonstrating a more effective and controlled
synthesis process. ToolDial (Shim et al., 2025), despite leveraging GPT-4o with real APIs, yields
shallow dialogues averaging only ∼1.5 tool calls in a conversation and no true multi-step turns.
Some examples of these issues for ToolFlow and ToolDial are provided in Appendix J and K.

4.3 LLM-AS-JUDGE EVALUATION OF DIALOGUES

Table 3: LLM evaluation of synthetic dia-
logues. Nat=Naturalness, Coh=Coherence,
Hel=Helpfulness, Acc=Accuracy.

Dataset Nat Coh Hel Acc

ToolWeave (GPT-OSS-seed) 4.74 4.96 4.97 4.95
ToolWeave (Mistral-seed) 4.76 4.99 4.99 4.98
ToolFlow (GPT-OSS-seed) 4.51 4.83 4.87 4.79
ToolDial (GPT-4o) 4.09 4.68 4.53 4.91

Following ToolFlow (Wang et al., 2025), we adopt
an LLM-as-judge evaluation protocol to assess the se-
mantic quality of dialogues. Specifically, we employ
Llama-3-405B-Instruct (Grattafiori et al., 2024)
to evaluate a random sample of 200 dialogues from each
dataset, distributed evenly across all 20 domains (except
for ToolDial). The judge rates each dialogue on a scale of
1-5 along four dimensions: Naturalness (human-likeness
of conversation), Coherence (logical flow and relevance),
Helpfulness (usefulness of the information provided), and Accuracy (factual correctness).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3 summarizes the results. ToolWeave outperforms baselines across all four dimensions. Score
differences across different synthesis seeds are ≤ 0.03, indicating backbone-agnostic robustness.
These findings complement our structural analysis in Table 2b. ToolFlow’s comparatively lower rat-
ings align with its uncontrolled, loop-heavy dialogues, which undermine coherence and helpfulness.
ToolDial achieves relatively high accuracy but lags in naturalness and helpfulness. By contrast,
ToolWeave’s fine-grained planning, structural motifs, and post-processing yield dialogues that are
not only structurally complex but also conversationally natural, coherent, and useful.

5 EXPERIMENTS

In this section, we experimentally evaluate the efficacy of our ToolWeave framework. Our goal is to
answer three key questions: (1) Does fine-tuning on ToolWeave data substantially improve the multi-
turn, multi-step tool-calling capabilities of base LLMs? (2) How does our data perform compared
to prior state-of-the-art baselines, ToolFlow (Wang et al., 2025) and ToolDial (Shim et al., 2025)?
(3) Do these performance gains generalize across different model families (Llama-3.1, Phi-4) and a
diverse suite of evaluation benchmarks?

5.1 EXPERIMENTAL SETUP

Training Datasets: We experiment with four distinct training datasets. We generate two dis-
tinct datasets using ToolWeave framework, each containing ∼3.2k dialogues: one seeded with the
proprietary mistral-medium-2505 model (Mistral AI, 2025), and one with the open-source
gpt-oss-120b model (Agarwal et al., 2025). We compare these against two strong baselines.
First, we use the full, publicly available ToolDial training dataset, consisting of 8859 dialogues
synthesized with GPT-4o. Second, as the original implementation and data are not public, we re-
implemented the ToolFlow pipeline and generated a comparable dataset of ∼3.2k dialogues. For
a fair comparison, both our ToolWeave and our re-implemented ToolFlow datasets were generated
using the exact same gpt-oss-120b model and the same set of synthetic APIs from our API
generation module (Section 3).

Models and Fine-Tuning Setup: We evaluate three base models to assess performance across
different scales and architectures: Llama-3.1-8B-Instruct, its larger counterpart Llama-3.1-70B-
Instruct (Grattafiori et al., 2024), and Phi-4 (Abdin et al., 2024). All models are fine-tuned using the
LLaMA-Factory framework1 (Zheng et al., 2024) with QLoRA (Dettmers et al., 2023). Detailed
hyperparameters are provided in Appendix G.

Evaluation Benchmarks: We evaluate all models on a diverse suite of four multi-turn tool-calling
benchmarks: BFCL-V3 (Patil et al., 2025a), a live, executable environment focused on complex
conversational scenarios and error recovery; API Bank (Li et al., 2023) and CONFETTI (Alkhouli
et al., 2025), which evaluate turn-level accuracy on fixed dialogue trajectories; and ToolHop (Ye
et al., 2025), a multi-step benchmark with locally executable tools. Detailed descriptions of each
benchmark are provided in Appendix H.

5.2 RESULTS AND ANALYSIS

5.2.1 PERFORMANCE ON BFCL-V3

Table 4 summarizes our results on the BFCL-V3 benchmark, which is designed to test complex
conversational flows and robustness.

The results in Table 4 reveal four key trends:

1. Cross-Family Efficacy: ToolWeave-generated data transfers effectively across model architec-
tures. For instance, the Phi-4 model starts at 3.12% but improves to 24.50% after fine-tuning.

2. Intra-Family Scaling: Larger models within the same family benefit more from the
GPT-OSS-seed data. Llama-3.1-70B-Instruct improves from 12.50% to 33.25%,
outperforming its smaller 8B counterpart.

1https://github.com/hiyouga/LLaMA-Factory

8

https://github.com/hiyouga/LLaMA-Factory

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of model performance across BFCL-V3 multi-turn categories.

Model Multi Turn
Acc

Multi Turn
Base

Multi Turn
Miss Func

Multi Turn
Miss Param

Multi Turn
Long Context

Llama-3.1-8B-Instruct 9.25 11.00 8.00 8.50 9.50
+ FT on ToolDial (GPT-4o-seed) 1.75 0.50 3.50 2.50 0.50
+ FT on ToolFlow (GPT-OSS-seed) 7.62 11.00 4.50 5.50 9.50
+ FT on ToolWeave (Mistral-seed) 25.00 31.50 20.50 24.50 23.50
+ FT on ToolWeave (GPT-OSS-seed) 19.88 23.00 21.50 15.50 19.50

Llama-3.1-70B-Instruct 12.50 17.00 13.00 10.50 9.50
+ FT on ToolDial (GPT-4o-seed) 3.75 4.50 3.00 4.00 3.50
+ FT on ToolFlow (GPT-OSS-seed) 21.00 22.50 24.50 18.50 18.50
+ FT on ToolWeave (Mistral-seed) 28.88 27.50 39.00 30.00 19.00
+ FT on ToolWeave (GPT-OSS-seed) 33.25 37.50 35.00 32.00 28.50

Phi-4 3.12 7.50 0.00 2.50 2.50
+ FT on ToolDial (GPT-4o-seed) 2.00 2.00 0.50 3.50 2.00
+ FT on ToolFlow (GPT-OSS-seed) 8.88 11.50 7.50 10.50 6.00
+ FT on ToolWeave (Mistral-seed) 19.37 20.50 23.50 20.50 13.00
+ FT on ToolWeave (GPT-OSS-seed) 24.50 24.00 28.50 31.00 14.50

3. Targeted Capability Improvement: Fine-tuning with ToolWeave data yields notable robustness
on challenging categories. Base models often fail on Missing Function and Missing Parameter
tasks. After fine-tuning, accuracy on Missing Function rises significantly to 39.00% (Mistral-
seed) and 35.00% (GPT-OSS-seed).

4. Superiority over SOTA Baselines: Data from ToolWeave yields superior performance on the
BFCL benchmark compared to the ToolFlow and ToolDial baselines. The poor performance of
ToolDial (e.g., 3.75% on Llama-70B) is because its training data lacks the implicit multi-step
dependencies and error recovery patterns required to succeed on a live, executable benchmark.
ToolFlow’s high-level plans, on the other hand, lack the fine-grained control needed by non-
frontier LLMs like gpt-oss-120b, resulting in hallucinated or inferior dialogues that fail to
train the model effectively. This is reflected in the results: when using the same synthesis LLM,
Llama-3.1-70B achieves 33.25% accuracy with ToolWeave data, compared to only 21.00% with
ToolFlow data. This demonstrates that our modular, fine-grained pipeline is critical for generating
high-quality training data from non-frontier LLMs.

5.2.2 GENERALIZATION TO DIVERSE BENCHMARKS

To assess generalization, we evaluate models fine-tuned on ToolWeave and baseline data across three
additional, diverse benchmarks. As shown in Table 5, ToolWeave-tuned models consistently outper-
form base models, while baseline-trained models sometimes underperform. On both ToolHop and
CONFETTI, baseline models fail to extract necessary information from user queries and tool docu-
mentation, often overlooking critical details, asking redundant clarifying questions, or hallucinating
arguments. In contrast, ToolWeave-trained models demonstrate marked improvements in these ar-
eas. These results highlight the robustness of ToolWeave-generated data, indicating that the learned
capabilities generalize effectively across tasks rather than being limited to specific benchmarks.

6 CONCLUSION

We presented ToolWeave, a modular framework for creating fully synthetic multi-turn tool-calling
datasets using non-frontier models. Our method builds everything from the ground up—from syn-
thetic APIs to final multi-turn dialogues. Our fine-grained framework provides the precise control
needed to guide non-frontier LLMs, enabling them to generate high-quality, complex data that they
would otherwise fail to produce. ToolWeave yields datasets that significantly improve LLM perfor-
mance on multi-turn tool-calling benchmarks, outperforming existing pipelines. These results show
that high-quality, license-friendly data can be produced at scale without depending on proprietary
models. As future work, we plan to extend ToolWeave with fully executable synthetic APIs and
broaden dialogue generation to capture richer agentic patterns such as ReAct (Yao et al., 2023).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Comparison of model performance on API Bank, CONFETTI, and ToolHop.

Model API Bank
Level 1

API Bank
Level 2 Confetti ToolHop

Llama-3.1-8B-Instruct 62.91 59.46 20.55 10.05
+ FT on ToolDial (GPT-4o-seed) 59.15 52.70 23.12 9.55
+ FT on ToolFlow (GPT-OSS-seed) 67.67 55.41 17.19 16.98
+ FT on ToolWeave (GPT-OSS-seed) 68.92 60.81 36.76 21.61
Llama-3.1-70B-Instruct 54.89 59.46 33.00 11.46
+ FT on ToolDial (GPT-4o-seed) 71.93 40.54 11.46 5.83
+ FT on ToolFlow (GPT-OSS-seed) 65.66 60.81 21.34 12.76
+ FT on ToolWeave (GPT-OSS-seed) 71.18 64.86 45.45 22.51
Phi-4 34.09 25.68 13.44 10.55
+ FT on ToolDial (GPT-4o-seed) 55.64 44.59 13.64 5.13
+ FT on ToolFlow (GPT-OSS-seed) 44.11 39.19 16.80 6.03
+ FT on ToolWeave (GPT-OSS-seed) 71.68 62.16 33.60 12.56

REPRODUCIBILITY STATEMENT

We have taken several concrete steps to ensure the reproducibility of our results. ToolWeave’s core
contribution lies in its ability to generate high-quality, fully synthetic multi-turn tool-calling data us-
ing open and non-frontier models. This makes the generated data license-friendly for both academic
and commercial use. We believe this is a valuable contribution to the community, and have made
efforts to clearly document our methodology and release all necessary resources. Section 3 outlines
the overall pipeline, while Appendix B, C, D and E provides formal and detailed descriptions of each
component. Appendix G includes hardware, software, and hyperparameter details used for model
training, and Appendix H describes the evaluation benchmarks. Sample inputs and outputs for each
component are shown in Appendix I. The prompts used throughout ToolWeave are provided in the
supplementary materials. Finally, the source code and dataset will be released upon acceptance of
the paper to facilitate verification and reuse.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Tamer Alkhouli, Katerina Margatina, James Gung, Raphael Shu, Claudia Zaghi, Monica Sunkara,
and Yi Zhang. CONFETTI: Conversational function-calling evaluation through turn-level inter-
actions. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 7993–8006. Association for Computational Linguistics, July
2025. doi: 10.18653/v1/2025.acl-long.394. URL https://aclanthology.org/2025.
acl-long.394/.

Kinjal Basu, Ibrahim Abdelaziz, Kelsey Bradford, Maxwell Crouse, Kiran Kate, Sadhana Kumar-
avel, Saurabh Goyal, Asim Munawar, Yara Rizk, Xin Wang, Luis A. Lastras, and Pavan Kapa-
nipathi. NESTFUL: A benchmark for evaluating llms on nested sequences of API calls. CoRR,
abs/2409.03797, 2024a. doi: 10.48550/ARXIV.2409.03797. URL https://doi.org/10.
48550/arXiv.2409.03797.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury, Soham Dan, Maxwell Crouse, Asim Mu-
nawar, Sadhana Kumaravel, Vinod Muthusamy, Pavan Kapanipathi, and Luis A. Lastras. API-
BLEND: a comprehensive corpora for training and benchmarking api llms. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024, Long Papers,

10

https://aclanthology.org/2025.acl-long.394/
https://aclanthology.org/2025.acl-long.394/
https://doi.org/10.48550/arXiv.2409.03797
https://doi.org/10.48550/arXiv.2409.03797

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

pp. 12658–12674. Association for Computational Linguistics, 2024b. doi: 10.18653/v1/2024.
acl-long.694. URL https://aclanthology.org/2024.acl-long.694/.

Jaime Carbonell and Jade Stewart. The use of mmr, diversity-based reranking for reordering doc-
uments and producing summaries. SIGIR Forum (ACM Special Interest Group on Information
Retrieval), 06 1999. doi: 10.1145/290941.291025.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
Advances in neural information processing systems, 37:74325–74362, 2024.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wen-
tao Zhang, Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms
via compositional instruction tuning. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025a. URL
https://openreview.net/forum?id=owP2mymrTD.

Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan, Qingze Wang, Vincent Cohen-Addad, Moham-
madhossein Bateni, Chen-Yu Lee, and Tomas Pfister. Re-invoke: Tool invocation rewriting for
zero-shot tool retrieval. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 4705–4726, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.270. URL https://aclanthology.org/2024.findings-emnlp.
270/.

Yi-Chang Chen, Po-Chun Hsu, Chan-Jan Hsu, and Da-shan Shiu. Enhancing function-calling capa-
bilities in LLMs: Strategies for prompt formats, data integration, and multilingual translation. In
Weizhu Chen, Yi Yang, Mohammad Kachuee, and Xue-Yong Fu (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 3: Industry Track), pp. 99–111, Albuquerque,
New Mexico, April 2025b. Association for Computational Linguistics. ISBN 979-8-89176-194-
0. doi: 10.18653/v1/2025.naacl-industry.9. URL https://aclanthology.org/2025.
naacl-industry.9/.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 11143–11156, 2024.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. In The Twelfth International Conference on Learning
Representations, 2024.

VI Lcvenshtcin. Binary coors capable or ‘correcting deletions, insertions, and reversals. In Soviet
physics-doklady, volume 10, 1966.

Jiaxuan Li, Boyuan Wang, Hao Xu, Yifei Li, Hongwei Li, Yu Hou, Guangchao Li, Weiguang Song,
Guoliang Liu, and Jinfeng Liu. Exploring superior function calls via reinforcement learning.
arXiv preprint arXiv:2508.05118, 2025.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187/.

11

https://aclanthology.org/2024.acl-long.694/
https://openreview.net/forum?id=owP2mymrTD
https://aclanthology.org/2024.findings-emnlp.270/
https://aclanthology.org/2024.findings-emnlp.270/
https://aclanthology.org/2025.naacl-industry.9/
https://aclanthology.org/2025.naacl-industry.9/
https://aclanthology.org/2023.emnlp-main.187/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning
the points of LLM function calling. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=8EB8k6DdCU.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline
for generating verifiable and diverse function-calling datasets. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_
Benchmarks_Track.html.

Mistral AI. Medium is the new large., May 2025. URL https://mistral.ai/news/
mistral-medium-3. Accessed: 2025-09-19.

P Norvig and S Russel. A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani,
M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning system,
assisted by software agents on cloud storage. Knowledge-Based Systems, 90:33–48, 2002.

OpenAI. Introducing gpt-5. https://openai.com/research/gpt-5, August 2025.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025a. URL https://openreview.net/forum?id=2GmDdhBdDk.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: large language model
connected with massive apis. In Proceedings of the 38th International Conference on Neural
Information Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025b. Curran Associates Inc.
ISBN 9798331314385.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
generation via simulated agent-human interplay, 2025. URL https://arxiv.org/abs/
2504.03601.

Shengqian Qin, Yakun Zhu, Linjie Mu, Shaoting Zhang, and Xiaofan Zhang. Meta-tool: Un-
leash open-world function calling capabilities of general-purpose large language models. In
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 30653–30677, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1481. URL
https://aclanthology.org/2025.acl-long.1481/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

12

https://openreview.net/forum?id=8EB8k6DdCU
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
https://mistral.ai/news/mistral-medium-3
https://mistral.ai/news/mistral-medium-3
https://openai.com/research/gpt-5
https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://aclanthology.org/2025.acl-long.1481/
https://openreview.net/forum?id=dHng2O0Jjr

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

RapidAPI. Rapidapi. https://rapidapi.com/, 2025. Accessed July 2025.

RapidAPI, Inc. Rapidapi: Terms of service. https://rapidapi.com/page/terms, 2025.
Accessed July 2025.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Candace Ross, Anjali Mahabaleshwarkar, and Yoshi Suhara. When2call: When (not) to call tools.
In NAACL (Long Papers), pp. 3391–3409. Association for Computational Linguistics, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı́, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: language models can
teach themselves to use tools. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin,
Suzan Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language mod-
els as automatic tool agents. In Proceedings of the ACM on Web Conference 2025, WWW
’25, pp. 2222–2237, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
9798400712746. doi: 10.1145/3696410.3714825. URL https://doi.org/10.1145/
3696410.3714825.

Jeonghoon Shim, Gyuhyeon Seo, Cheongsu Lim, and Yohan Jo. Tooldial: Multi-turn dialogue
generation method for tool-augmented language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
J1J5eGJsKZ.

Zezhong Wang, Xingshan Zeng, Weiwen Liu, Liangyou Li, Yasheng Wang, Lifeng Shang, Xin
Jiang, Qun Liu, and Kam-Fai Wong. ToolFlow: Boosting LLM tool-calling through natural and
coherent dialogue synthesis. In Proceedings of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 4246–4263, 2025.

Wikidata. Wikidata. https://www.wikidata.org/, 2025. Accessed July 2025.

Wikipedia. Wikipedia. https://www.wikipedia.org/, 2025. Accessed July 2025.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-tools:
Self-instruct tool learning dataset for agent tuning and detailed benchmark. In CCF International
Conference on Natural Language Processing and Chinese Computing, pp. 372–384. Springer,
2024.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik R. Narasimhan. {τ}-bench: A benchmark
for \underline{T}ool-\underline{A}gent-\underline{U}ser interaction in real-world domains. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
roNSXZpUDN.

Junjie Ye, Zhengyin Du, Xuesong Yao, Weijian Lin, Yufei Xu, Zehui Chen, Zaiyuan Wang, Sining
Zhu, Zhiheng Xi, Siyu Yuan, Tao Gui, Qi Zhang, Xuanjing Huang, and Jiecao Chen. Toolhop:
A query-driven benchmark for evaluating large language models in multi-hop tool use. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL).
Association for Computational Linguistics, 2025.

13

https://rapidapi.com/
https://rapidapi.com/page/terms
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3696410.3714825
https://doi.org/10.1145/3696410.3714825
https://openreview.net/forum?id=J1J5eGJsKZ
https://openreview.net/forum?id=J1J5eGJsKZ
https://www.wikidata.org/
https://www.wikipedia.org/
https://openreview.net/forum?id=roNSXZpUDN
https://openreview.net/forum?id=roNSXZpUDN

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fan Yin, Zifeng Wang, I-Hung Hsu, Jun Yan, Ke Jiang, Yanfei Chen, Jindong Gu, Long Le, Kai-Wei
Chang, Chen-Yu Lee, Hamid Palangi, and Tomas Pfister. Magnet: Multi-turn tool-use data syn-
thesis and distillation via graph translation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 32600–32616, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.1566. URL https://aclanthology.org/2025.acl-long.1566/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. ToolQA: A dataset for LLM
question answering with external tools. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.
net/forum?id=pV1xV2RK6I.

14

https://aclanthology.org/2025.acl-long.1566/
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=pV1xV2RK6I
https://openreview.net/forum?id=pV1xV2RK6I

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS

In preparing this paper, we made limited use of Large Language Models (LLMs) as writing assis-
tance tools. Specifically, we used Grammarly2 for spell checking and grammar correction to improve
clarity and readability. In line with the conference policy, we confirm that LLMs were not used for
generating research ideas or making any substantive contributions to the scientific content of this
work.

B TOOL GRAPH SYNTHESIZER DETAILS

B.1 PROMPTS USED

All prompts used in the tool graph synthesis stage are provided in a zip file included with the supple-
mentary data. After extraction, they can be found in the tool graph synthesizer directory.

B.2 DOMAINS FOR TOOL GRAPH SYNTHESIS

The 20 domains used to generate the synthetic API pool are:

Agriculture
Customer Support
Cybersecurity
E-commerce
Education
Energy
Film Industry

Human Resources
Insurance
Legal Services
Logistics
Manufacturing
Marketing
Online Banking

Real Estate
Retail
Supply Chain
Telecommunications
Tourism
Transportation

B.3 SAMPLE TOOL GRAPH

Figure 2 illustrates a representative tool graph for the E-commerce domain. The nodes represent
discrete tools (APIs), connected by directed edges that signify data dependencies; specifically, a
parameter from the output schema of a predecessor node maps to an input parameter of the successor
(e.g., zone policy from get geo rules acts as an input for set mode).

The graph topology highlights three distinct execution patterns, corresponding to the Tool-Graph
traversal strategies discussed in Section 3.2:

• Linear Chains: Standard sequential dependencies connected by any type of edge, such as
get order→ set mode→ ship local→ save track.

• Fan-in-Fan-out (Dashed): Illustrated by the sequence get order→ {check stock,
calc risk} → sync status. Here, the initial tool provides inputs to a parallel stage
of tools that are independent of one another, the outputs of which collectively feed into a
common successor.

• Conditional Branching (Green): Represented by the set mode node, where the down-
stream execution path (ship local vs. ship intl) is determined dynamically based
on the output value of the decision node.

2https://app.grammarly.com/

15

https://app.grammarly.com/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 2: E-commerce tool graph demonstrating linear, fan-in-fan-out (dashed), and conditional
(green) dependency patterns. Red nodes indicate auxiliary tools providing specific configuration
parameters, such as foreign exchange rates or zone policies, to the primary workflow.

B.4 DETAILED ALGORITHMS FOR TOOL GRAPH SYNTHESIZER

This section expands upon the Tool Graph Synthesizer process from Section 3.1. While the descrip-
tion in the main paper presents the high-level methodology, here we provide the main algorithm,
the synthesis plan, and detailed sub-algorithms for key steps like domain context construction and
API refinement.

Algorithm 1: Tool Graph Synthesis
Input: Domain descriptor D, synthesis plan P , LLM L, embedding model E
Output: API pool A, Tool Graph G
Initialize A ← ∅, G ← ∅;
C ← CONSTRUCTDOMAINCONTEXT(D) ; // See Appendix B.6.1
foreach step s ∈ P do

Generate ns candidate APIs with L using domain context C and prompt from step s;
Parse and validate candidates syntactically;
Deduplicate candidates against A using embeddings from E and structural checks;
Refine and semantically validate schemas (defaults, enums, nested objects, etc.);
Add accepted APIs to A;

Construct Tool Graph Gtool by validating data-flows between APIs in A;
return A,Gtool

B.5 SYNTHESIS PLAN

Our synthesis plan acts as a curriculum for the API-generating LLM. It specifies a sequence of
generation steps, each with a unique prompt template and a target number of APIs. This design is
extensible and allows us to control the breadth and depth of the final API pool. Our implementation
consists of five main stages:

1. Seed Generation: This initial stage generates a small batch of fundamental, “entry-point” APIs
for the domain (e.g., search product in e-commerce).

2. Entity Expansion: This stage uses the entities extracted from Wikidata (see Appendix B.6.1) to
generate new APIs that specifically cover domain-relevant entities, ensuring breadth.

3. Schema Enrichment: This stage focuses on depth. It takes existing, simple APIs and itera-
tively increases their structural complexity by adding nested objects, enums, default values, and
required flags to mimic real-world enterprise-grade schemas.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

4. Connection Discovery: It generates new APIs that plausibly connect existing APIs, creat-
ing data-flow paths (e.g., a get product details API that takes a product id from
search product).

5. Pattern Expansion: This final stage diversifies the API pool by generating parallel variations of
existing APIs (e.g., different ways to search, like search by name, search by category,
etc.).

For reproducibility, we include the synthesis plan used in our experiments below. Prompt paths have
been abstracted for clarity.

{
"steps": [

{"name": "Seed Generation", "num_to_generate": 8},
{"name": "Entity Expansion", "num_to_generate": 8},
{"name": "Schema Enrichment", "num_to_generate": 5},
{"name": "Connection Discovery", "num_to_generate": 8},
{"name": "Pattern Expansion", "num_to_generate": 5}

]
}

B.6 DETAILED SUB-ALGORITHMS

The main generation algorithm (Algorithm 1) relies on several key sub-routines, which are detailed
below.

B.6.1 DOMAIN CONTEXT CONSTRUCTION

Algorithm 2: CreateDomainContext
Input: Domain name string d
Output: Domain context C
Resolve d to canonical Wikidata entity QID;
Retrieve Wikipedia summary Twiki for d;
Extract structured facts Fwikidata (classes, subclasses, properties) from QID;
Assemble C ← (Twiki, Fwikidata);
return C

B.6.2 API REFINEMENT

Algorithm 3: RefineAPI
Input: Candidate API a, current API set A
Output: Refined API a′ or ∅
Check if a is duplicate of any in A (lexical, structural, semantic);
if duplicate then

return ∅
Remove echo parameters (outputs attributes that are same as inputs);
Enrich schema: infer enums, default values, required fields;
Normalize parameter names and types;
Paraphrase descriptions for stylistic variance;
return refined API a′

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.6.3 CONNECTION GRAPH CONSTRUCTION

Algorithm 4: ConstructToolGraph
Input: API set A
Output: Connection graph G
Initialize graph G = (V = A, E = ∅);
foreach ordered pair (ai, aj) ∈ A×A do

Identify candidate parameter matches (pout, pin) ; // By param name matches
Validate match using LLM judgment;
if valid then

Add edge (ai.pout → aj .pin) to E;

return G

Matching parameters between APIs by exact name is justified in our case because, during API
synthesis, the prompts instruct the model to design new APIs such that connections to existing APIs
occur only through parameters with identical names.

B.7 API QUALITY METRIC DEFINITIONS

This section provides the formal definitions for the metrics used to evaluate the quality of the syn-
thetic APIs in Section 4.1. In all definitions, A = {a1, a2, . . . , an} represents the set of n APIs in a
given domain.

1. INTERCONNECTIVITY (IC)

The average number of input parameters per API that can be filled by an output from another API
in the graph. This measures the data-flow potential.

IC =

∑n
i=1 |Iai

∩O|
n

Where:

• O =
⋃n

i=1 Oai
: The set of all unique output parameters from all APIs.

• Iai
: The set of input parameters for API ai.

• |Iai
∩ O|: The count of input parameters for ai that match any output from the entire API

set A.

2. COMPLEX API USE (CAU)

The proportion of APIs that use at least one complex parameter type (i.e., “object” or “array”),
measuring schema depth.

CAU =

∑n
i=1 C(ai)

n

Where the indicator function C(ai) is defined as:

C(ai) =

{
1 if API ai has at least one parameter of type “object” or “array”

0 otherwise

3. REQUIRED PARAMETER RATIO (RPR)

The average proportion of an API’s input parameters that are marked as “required”, measuring
schema strictness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

RPR =
1

n

n∑
i=1

|Ireq(ai)|
|Itotal(ai)|

Where Ireq(ai) is the set of required input parameters for API ai, and Itotal(ai) is the set of all input
parameters for ai.

4. LONGEST CHAIN LENGTH

The length of the longest simple path (a path with no repeated nodes) in the Tool Graph. This metric
quantifies the maximum number of sequential, multi-step operations possible in a single dialogue.

C GOAL GENERATION IMPLEMENTATION DETAILS

This section provides the low-level implementation details for the Goal Generation stage (Sec-
tion 3.2), including the algorithms and heuristics used to extract, score, and synthesize goals.

C.1 PROMPTS USED

All prompts used in the tool graph sampler and goal generation stage are provided in a
zip file included with the supplementary data. After extraction, they can be found in the
tool graph sampler directory.

C.2 PATTERN EXTRACTION ALGORITHMS

The main paper outlines three pattern classes. Here is how they are discovered:

1. Linear Paths: These are found using a bounded beam search (Norvig & Russel, 2002). The
search explores paths from a start node, expanding a “beam” of the top-k candidates at each
depth.

2. Fan-in / Fan-out: These patterns are found by analyzing node connectivity. For a given
start node, we find its successors. We then find the “common children” of combinations
of these successors using set intersection. This allows us to identify points where parallel data
flows (fan-out) later merge (fan-in).

3. Conditional Branches: These are identified by scanning an API’s output schema. We scan for
output fields that can act as a logical predicate, specifically those typed as boolean, enum, or
other simple types, while filtering out non-conditional fields like IDs.

C.3 PATH SCORING AND RANKING

To rank the paths found by our algorithms, we use a combination of a hybrid score and a diversifi-
cation algorithm.

Hybrid Heuristic Score: The final score for any given path is a weighted sum of three com-
ponents, and is calculated as:

Sfinal = wl · (Scoherence + Srelevance) + wd · Sdataflow + wb · Slength

Where:

• Scoherence and Srelevance are LLM-based ratings (from −2 to +2) where the LLM judges the quality
of a synthesized goal for the provided tool path.

• Sdataflow is the semantic dataflow score, calculated by checking cosine similarity between embed-
dings of output and input parameters of sequential tools.

• Slength is a length bonus to reward longer, more complex paths.
• wl, wd, and wb are the respective weights for LLM rating, dataflow, and length, set as hyperpa-

rameters (we use wl = 0.5, wd = 0.8, wb = 0.3 in our experiments).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ranking and Embedding Model: To ensure a diverse set of goals, we rank the top-scoring linear
paths using Maximal Marginal Relevance (MMR) (Carbonell & Stewart, 1999). This balances the
final score (relevance) with the cosine dissimilarity from already-selected goals (diversity). In
our experiments, we use a value of 0.7 for λ. All embeddings for MMR and semantic dataflow
are computed using the all-MiniLM-L6-v2 model from the SentenceTransformers (Reimers &
Gurevych, 2019) library.

C.4 GOAL GENERATION ALGORITHM

Algorithm 5: Domain-level Goal Generation
Input: Tool graph for domain Gtool, beam width B, max depth Dmax, selection size K, MMR

weight λ, LLM L, embedding model E
Output: Goal set Ggoals (JSON objects: {tool path, pattern type, goal text,

metadata})
Initialize Ggoals ← ∅,S ← ∅, where S is the set of selected tool paths;
Slinear ← BEAMSEARCH(Gtool, B,Dmax, L);
Slinear ← TOPKMMR(Slinear,K, λ,E);
Sfan ← FINDFANINFANOUT(Gtool);
Scond ← FINDCONDITIONAL(Gtool);
S ← Slinear ∪ Sfan ∪ Scond;
foreach p ∈ S do

prompt← BUILDGOALPROMPT(p, PATTERNTYPE(p));
goal text← L.GENERATE(prompt);
obj ← BUILDJSON

(
p, PATTERNTYPE(p), goal text, METADATA(p)

)
;

Ggoals ← Ggoals ∪ {obj};
return Ggoals

C.5 EXAMPLE GOAL SYNTHESIS PROMPT

The final step, ‘Goal synthesis via LLM’, uses different prompts for each pattern type. The prompt
provides the LLM with the tool sequence and their schemas, and asks it to generate a natural-
language goal.

D DIALOGUE PLANNER IMPLEMENTATION DETAILS

This section provides the low-level implementation details for the Dialogue Planner stage (Sec-
tion 3.3), including the algorithm and the logic used to partition tool paths, generate subgoals, plan
parameters, and inject interaction patterns.

D.1 PROMPTS USED

The prompts relevant to this planner stage are provided in a supplementary zip file. After extracting
the zip file, they can be found in the plan generator directory.

D.2 DIALOGUE PLANNER ALGORITHM

Algorithm 6 summarizes the high-level process, highlighting subgoal generation, speaker sequenc-
ing, parameter planning, and clarification insertion.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 6: Dialogue Planning
Input: Tool path P , pattern type T ∈ {linear,fan,conditional}, overall goal text G,

relevant tool schemas Σ, goal metadata M , clarification probability pclar, LLM for
partitioning and subgoal synthesis L

Output: Ordered plan D (step-level JSON objects with keys: step idx, role, subgoal,
tools, params, metadata)

Initialize partition list P∗ ← PARTITIONTOOLPATH(P, T,Σ, L), subgoal text list S ← [] ;
foreach partition p ∈ P∗ do
S.APPEND(SYNTHESIZESUBGOAL(p,G,L)) ;

D ← [] ;
for i← 1 to |P∗| do

p← P∗[i] , s← S[i] ;
Params← EXTRACTTOOLPARAMS(p,Σ) ;
Params← Params \ UPSTREAMTOOLOUTPUTS(P∗, i− 1,Σ) ;
(ReqParams,ClarParams)← SPLITPARAMS(Params, pclar) ;
D.APPEND(CREATEUSERTURN(i, s, p,ReqParams)) ;
if ClarParams ̸= ∅ then
D.APPEND(CREATEASSISTANTCLARIFICATIONTURN(i,ClarParams)) ;
D.APPEND(CREATEUSERCLARIFICATIONTURN(i,ClarParams)) ;

foreach tool t ∈ p do
ToolParams← EXTRACTTOOLPARAMS([t],Σ) ;
D.APPEND(CREATEASSISTANTTOOLCALLTURN(i, t,ToolParams,M)) ; // Goal

metadata M attaches decision variables for conditionals

D.APPEND(CREATEASSISTANTSUMMARYTURN(i, p)) ;
return D

D.3 TOOL PATH PARTITIONING

The PARTITIONTOOLPATH function uses different strategies based on the pattern type:

• Linear: We use an LLM-based approach. The prompt provides the full tool path and their
schemas, and asks the LLM to split them into coherent segments, based on logical groupings
and dataflow, while also ensuring meaningful multi-step tool sequences.

• Fan-in / Fan-out: We use a deterministic graph-based approach. We identify the branching
point (fan-out) and the merging point (fan-in) in the path, and create partitions accordingly. The
intermediate tools between these points are grouped into either segment, and all possible valid
partitions are generated to allow for diverse dialogue structures.

• Conditional: Based on the value of the decision variable (from goal metadata M), the second tool
is chosen from the available branches. The first tool and this chosen branch form a single partition
to ensure the conditional logic is preserved in the dialogue, while also generating high-quality
multi-step dialogues.

D.4 SUBGOAL SYNTHESIS

The SYNTHESIZESUBGOAL function uses an LLM prompt that provides the tool schemas in the
partition and the overall goal text G. The LLM is instructed to generate a concise, user-friendly
subgoal that accurately reflects the purpose of the tools in the partition, while ensuring it is distinct
from other subgoals in the dialogue.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.5 PARAMETER PLANNING AND CLARIFICATION INSERTION

The parameter planning and clarification insertion process involves several steps to ensure that the
dialogue captures realistic user-assistant interactions.

D.5.1 PARAMETER PREPARATION

The EXTRACTTOOLPARAMS function retrieves all input parameters for the tools in the current par-
tition. The UPSTREAMTOOLOUTPUTS function identifies any parameters that can be automatically
filled from outputs of tools in previous partitions, and these are removed from the required parame-
ters.

D.5.2 CLARIFICATION INSERTION

The SPLITPARAMS function randomly selects a subset of the remaining parameters to be clarified,
based on the clarification probability pclar. This introduces variability and simulates real-world
scenarios where users may not provide all necessary information upfront.

D.5.3 SPEAKER SEQUENCING AND TURN CREATION

The turn creation functions add well-formatted JSON objects to the dialogue plan, specifying the
role and the associated content (subgoal, tool calls, parameter requests, clarifications, summaries).
Following is the structure of these turns:

• CreateUserTurn: User turn with subgoal and parameters to provide upfront.
• CreateAssistantClarificationTurn: Assistant turn asking for clarification on missing

parameters required for the tool calls in the current partition.
• CreateUserClarificationTurn: User turn providing values for the requested parameters.
• CreateAssistantToolCallTurn: Assistant turn invoking a tool with the provided param-

eters and source hints for each parameter, either from the user or from upstream tool outputs.
• CreateAssistantSummaryTurn: Assistant turn summarizing the results of the tools in the

current partition.

E DIALOGUE SYNTHESIZER IMPLEMENTATION DETAILS

This section provides the low-level implementation details for the Dialogue Synthesizer stage (Sec-
tion 3.4), including the overall algorithm and the logic used to build context for each role across
agents.

E.1 PROMPTS USED

The prompts associated with each agent role in this stage, including the post-processing state for user
message paraphrasing, as well as those relevant to the dialogue synthesis and refinement stages, are
provided in the dialogue synthesizer directory, available after extracting the supplementary
zip file.

E.2 DIALOGUE SYNTHESIS ALGORITHM

Algorithm 7 summarizes the high-level process, highlighting context construction, dynamic role-
based agent selection, response generation, and memory updates.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 7: Plan-Driven Dialogue Synthesis
Input: Ordered plan D, tool schemas Σ, language models for agents L
Output: Dialogue transcript T
Initialize memoryM← ∅, transcript T ← [];
foreach step d ∈ D do

ctx← BUILDCONTEXT(M, d,Σ) ; // Get memory and plan step
role← d.role;
agent prompt← SELECTPROMPT(role) ; // Prompt with agent’s role
response← L.GENERATE(agent prompt, ctx) ; // Utterance/tool call
T .APPEND(response);
M← UPDATEMEMORY(M, response, d) ; // Update memory with output

return T

F DIALOGUE POST-PROCESSING

F.1 DIALOGUE ERROR INJECTION

To rigorously evaluate and improve the robustness of models trained on ToolWeave data, we im-
plemented a systematic error injection pipeline. This pipeline deterministically introduces schema
violations, logical ordering errors, and tool confusion scenarios to force the model to learn error
recovery in simulated real-world settings. Algorithm 8 details the high-level injection logic, while
Algorithm 9 illustrates the complex logic required to synthesize cascading failure scenarios.

Algorithm 8: Dialogue Error Injection
Input: Dialogue set D, Tool Schemas S, Injection Probability pinject, Similarity Matcher M
Output: Augmented Dialogue set Daug

Initialize Daug ← ∅;
foreach dialogue d ∈ D do

Add original d to Daug;
if Random(0, 1) < pinject then

derror ← DeepCopy(d);
injected← False;
// Attempt Complex Logical Errors (30% chance)
if Random(0, 1) < 0.3 then

if INJECTCASCADINGFAILURE(derror, S) is Success then
injected← True;

else if INJECTOUTOFORDERERROR(derror, S) is Success then
injected← True;

else if INJECTWRONGTOOLERROR(derror, S, M) is Success then
injected← True;

// Attempt Simple Parameter Errors (70% chance or if
complex failed)

if not injected then
INJECTSCHEMAERROR(derror, S);

if error injected successfully then
Mark derror as modified;
Add derror to Daug;

return Daug

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 9: Inject Cascading Failure
Input: Dialogue d, Tool Schemas S
Output: Modified Dialogue d′, Success boolean
Identify long multi-step sequences Tseq (len ≥ 3) in d;
if Tseq is empty then

return d, False
Select random sequence S ∈ Tseq;
// 1. Simulate Reverse-Order Execution
Initialize failure turns← ∅;
for i← length(S)-1 down to 1 do

stepcurr ← S[i], stepprev ← S[i− 1];
Identify param pdep in stepcurr dependent on stepprev;
Create turn tcall: Call stepcurr missing pdep;
Create turn terr: Error ”Prerequisite step not completed/Missing input”;
Append (tcall, terr) to failure turns;

// 2. Inject Full Recovery
Construct new history: historyoriginal + failureturns + Soriginal;
Update d′.conversations and re-index d′.plan with error steps;
return d′, True

Additional Error Injection Modules: Beyond the cascading failures detailed in Algorithm 9, our
pipeline includes:

• Out-of-Order Execution: We simulate scenarios where the model attempts to execute a tool
call before its dependencies are met. Specifically, we identify dependent tool pairs and inject a
premature call to the downstream tool (missing the dependent parameter) prior to the prerequisite
tool. The model receives a missing dependency error and must recover by executing the sequence
in the correct order.

• Semantic Confusion (Wrong Tool): We utilize a hybrid similarity matcher (Sentence-
BERT (Reimers & Gurevych, 2019) + Levenshtein distance (Lcvenshtcin, 1966)) to identify se-
mantically similar but incorrect tools (e.g., search ticket vs. get ticket details). We
inject a turn where the model mistakenly calls the confusable tool, receives an unhelpful response,
and must self-correct.

• Schema Violations: We deterministically mutate valid tool calls to violate JSON schema con-
straints. This includes removing required parameters (MISSING PARAM), violating type con-
straints (e.g., passing an integer for a string field), or using invalid enum values. The model is
trained to read the resulting standardized error message and retry with the correct schema.

• Missing Function Recovery: We simulate scenarios where a necessary tool is initially absent
from the provided context. The algorithm identifies a scheduled tool call in the plan and temporar-
ily “hides” it. We inject an Assistant turn refusing the request due to the missing tool, followed
by a User turn that explicitly provides the missing tool’s schema JSON. The model is trained to
recognize the new tool definition in the context window and immediately proceed with the correct
tool call.

G FINE-TUNING HYPERPARAMETERS

We fine-tune all models on 8 NVIDIA A100 SXM4 80GB GPUs using QLoRA via the
LLaMA-Factory framework3. The primary hyperparameters used for each model are detailed
in Table 6. Common settings across all models include a learning rate of 5.0 × 10−5, bf16
mixed-precision, 4-bit bnb quantization, and a cosine learning rate scheduler.

H EVALUATION BENCHMARK DETAILS

This section provides additional details on the benchmarks used in our experiments (Section 5).

3https://github.com/hiyouga/LLaMA-Factory

24

https://github.com/hiyouga/LLaMA-Factory

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Key fine-tuning hyperparameters for all models.

Hyperparameter Llama-3.1-8B-Instruct Llama-3.1-70B-Instruct Phi-4
Model Details
quantization bit 4 4 4
flash attn fa2 fa2 fa2

LoRA Configuration
lora rank 32 8 16
lora alpha 64 32 32
lora dropout 0.05 0.05 0.05
lora target all all all

Training Details
num train epochs 1.0 1.0 1.0
warmup ratio 0.05 0.1 0.1
per device train batch size 1 1 1
gradient accumulation steps 8 2 8
gradient checkpointing false true false

BFCL-V3: The BFCL-V3 (Patil et al., 2025a) benchmark evaluates multi-turn tool-calling across
four challenging categories: Base, Missing Function, Missing Parameter, and Long Context. It
focuses on conversational scenarios that require clarification, refusal, and robustness. Performance
is reported as execution accuracy in a live, executable environment, with credit awarded only when
all steps in a dialogue are correctly resolved.

API Bank: The API Bank (Li et al., 2023) benchmark consists of 8 domains, 73 tools, and 314
dialogues. We evaluate on Level 1 (“Call”) and Level 2 (“Retrieve+Call”). As tool retrieval is not the
focus of this paper, we provide the set of required tools to the model for both levels. The evaluation
is conducted in an off-policy, teacher-forced manner, where the model must predict the next step
given the correct history.

CONFETTI: The CONFETTI (Alkhouli et al., 2025) benchmark is a multi-turn, multi-step con-
versational benchmark with 109 human-simulated conversations covering 86 tools. A key charac-
teristic is its explicit inclusion of conversational complexities, such as follow-ups, goal correction,
goal switching, ambiguous goals, and over- or under-filled parameters. We focus on evaluating the
turn-level tool-calling accuracy.

ToolHop: The ToolHop (Ye et al., 2025) benchmark is specifically designed to evaluate multi-step
tool use within a single turn. It comprises 995 queries and 3912 locally executable tools. Answering
a query requires the implicit decomposition of the request and sequential invocation of multiple
tools where the output of one tool is the input for another. ToolHop evaluates models in a live
environment, testing both planning and error recovery, with accuracy computed based on the final
answer.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I TOOLWEAVE SAMPLE DATA - GOAL, PLAN, TOOLS, AND DIALOGUE

We present a detailed example from the customer support domain that illustrates a complex, multi-
step dialogue. The example showcases the five available tools, the high-level goal constructed using
these tools, the 15-step fine-grained plan, and the final multi-turn dialogue that realizes the plan.
The following subsections present each component in turn.

I.1 TOOLS LIST

Tool 1: create support ticket

{
"name": "create_support_ticket",
"description": "Create support ticket.",
"parameters": {
"type": "object",
"properties": {
"issue_description": {"type": "string", "description": "A

detailed description of the issue."},↪→
"category": {"type": "string", "enum": ["technical",

"billing", "general"], "default": "general"},↪→
"requester_id": {"type": "string", "description": "The

unique identifier for the customer requesting
support."},

↪→
↪→
"urgency_level": {"type": "string", "enum": ["low",

"medium", "high"], "default": "medium"}↪→
},
"required": ["issue_description", "requester_id"]

},
"results": {
"type": "object",
"properties": {
"ticket_id": {"type": "string", "description": "The unique

identifier for the newly created ticket."},↪→
"creation_date": {"type": "string", "format":

"date-time"},↪→
"status": {"type": "string", "enum": ["open",

"in_progress", "resolved", "closed", "on_hold"]}↪→
}

}
}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Tool 2: get ticket details

{
"name": "get_ticket_details",
"description": "Retrieve comprehensive details about a

specific support ticket.",↪→
"parameters": {
"type": "object",
"properties": {
"support_ticket_identifier": {"type": "string",

"description": "The unique reference number of the
ticket"}

↪→
↪→

},
"required": ["support_ticket_identifier"]

},
"results": {
"type": "object",
"properties": {
"customer_id": {"type": "string"},
"issue_description": {"type": "string"},
"priority": {"type": "string", "enum":

["low","medium","high"]},↪→
"category": {"type": "string", "enum":

["technical","billing","general"]},↪→
"status": {"type": "string", "enum":

["open","in_progress","resolved","closed","on_hold"]},↪→
"creation_date": {"type": "string", "format":

"date-time"},↪→
"last_updated": {"type": "string", "format": "date-time"}

}
}

}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Tool 3: search tickets

{
"name": "search_tickets",
"description": "Find support tickets by criteria.",
"parameters": {
"type": "object",
"properties": {
"start_date": {"type": "string", "format": "date"},
"end_date": {"type": "string", "format": "date"},
"user_account_id": {"type": "string"},
"issue_type": {"type": "string", "enum":

["technical","billing","general"], "default":
"general"},

↪→
↪→
"ticket_state": {"type": "string", "enum":

["open","in_progress","resolved","closed"],
"default": "open"},

↪→
↪→
"urgency_level": {"type": "string", "enum":

["low","medium","high"], "default": "medium"}↪→
},
"required": ["user_account_id"]

},
"results": {
"type": "object",
"properties": {
"tickets": {

"type": "array",
"items": {
"type": "object",
"properties": {
"ticket_id": {"type": "string"},
"issue_description": {"type": "string"},
"creation_date": {"type": "string", "format":

"date-time"},↪→
"last_updated": {"type": "string", "format":

"date-time"}↪→
}

}
}

}
}

}

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Tool 4: escalate ticket to specialist

{
"name": "escalate_ticket_to_specialist",
"description": "Elevates a support ticket to a specialist

team.",↪→
"parameters": {
"type": "object",
"properties": {
"specialist_team": {"type": "string", "enum":

["technical","billing","legal","management"]},↪→
"urgency_level": {"type": "string", "enum":

["low","medium","high","critical"], "default":
"medium"},

↪→
↪→
"attachments": {"type": "array", "items": {"type":

"object"}},↪→
"support_case_id": {"type": "string"},
"specialist_notes": {"type": "string"}

},
"required":

["specialist_team","support_case_id","specialist_notes"]↪→
},
"results": {
"type": "object",
"properties": {
"escalation_id": {"type": "string"},
"escalation_date": {"type": "string", "format":

"date-time"},↪→
"status": {"type": "string", "enum":

["pending","in_progress","resolved","rejected"]}↪→
}

}
}

Tool 5: update escalation status

{
"name": "update_escalation_status",
"description": "Modify ticket escalation status.",
"parameters": {
"type": "object",
"properties": {
"status": {"type": "string", "enum":

["pending","in_progress","resolved","rejected"]},↪→
"ticket_escalation_id": {"type": "string"}

},
"required": ["status","ticket_escalation_id"]

},
"results": {
"type": "object",
"properties": {
"last_updated": {"type": "string", "format": "date-time"}

}
}

}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I.2 HIGH LEVEL GOAL

Goal

Create a support ticket, review its details, and escalate it to a specialist team for urgent
resolution.

I.3 PLAN

Multi-step Plan

Step 1 (USER UTTERANCE)
Utterance: I need to create a support ticket and get all the details about it.
Provided params:

{
"create_support_ticket.requester_id":
"$user_provided_$create_support_ticket.requester_id"

}

Step 2 (ASSISTANT CLARIFICATION)
Parameter names:

["create_support_ticket.issue_description"]

Step 3 (USER RESPONSE TO CLARIFICATION)
Provides params:

{
"create_support_ticket.issue_description":
"$user_provided_$create_support_ticket.issue_description"

}

Step 4 (CALL TOOL: create support ticket)
Parameters:

{
"create_support_ticket.issue_description":
"$user_provided_$create_support_ticket.issue_description",
"create_support_ticket.requester_id":
"$user_provided_$create_support_ticket.requester_id"

}

Step 5 (CALL TOOL: get ticket details)
Parameters:

{
"get_ticket_details.support_ticket_identifier":
"$create_support_ticket.ticket_id"

}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Step 6 (ASSISTANT RESPONSE TOOL)
Summarizes tools:

["create_support_ticket", "get_ticket_details"]

Outputs:

[
"create_support_ticket.ticket_id",
"create_support_ticket.creation_date",
"create_support_ticket.status",
"get_ticket_details.customer_id",
"get_ticket_details.issue_description",
"get_ticket_details.priority",
"get_ticket_details.category",
"get_ticket_details.status",
"get_ticket_details.creation_date",
"get_ticket_details.last_updated"

]

Step 7 (USER UTTERANCE)
Utterance: Can you search for the ticket I just created?

Step 8 (CALL TOOL: search tickets)
Parameters:

{
"search_tickets.user_account_id":

"$get_ticket_details.customer_id",↪→
"search_tickets.issue_type": "$get_ticket_details.category",
"search_tickets.ticket_state": "$create_support_ticket.status"

}

Step 9 (ASSISTANT RESPONSE TOOL)
Summarizes tools:

["search_tickets"]

Outputs:

[
"search_tickets.tickets[].ticket_id",
"search_tickets.tickets[].issue_description",
"search_tickets.tickets[].creation_date",
"search_tickets.tickets[].last_updated"

]

Step 10 (USER UTTERANCE)
Utterance: Now, please escalate this ticket to a specialist team for urgent resolution and
update the escalation status.
Provided params:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

{
"escalate_ticket_to_specialist.specialist_team":
"$user_provided_$escalate_ticket_to_specialist.specialist_tea ⌋

m"↪→
}

Step 11 (ASSISTANT CLARIFICATION)
Parameter names:

[
"escalate_ticket_to_specialist.specialist_notes",
"update_escalation_status.status"

]

Step 12 (USER RESPONSE TO CLARIFICATION)
Provides params:

{
"escalate_ticket_to_specialist.specialist_notes":
"$user_provided_$escalate_ticket_to_specialist.specialist_n ⌋

otes",↪→
"update_escalation_status.status":
"$user_provided_$update_escalation_status.status"

}

Step 13 (CALL TOOL: escalate ticket to specialist)
Parameters:

{
"escalate_ticket_to_specialist.specialist_team":
"$user_provided_$escalate_ticket_to_specialist.specialist_t ⌋

eam",↪→
"escalate_ticket_to_specialist.support_case_id":
"$create_support_ticket.ticket_id",
"escalate_ticket_to_specialist.specialist_notes":
"$user_provided_$escalate_ticket_to_specialist.specialist_n ⌋

otes"↪→
}

Step 14 (CALL TOOL: update escalation status)
Parameters:

{
"update_escalation_status.status":
"$user_provided_$update_escalation_status.status",
"update_escalation_status.ticket_escalation_id":
"$escalate_ticket_to_specialist.escalation_id"

}

Step 15 (ASSISTANT RESPONSE TOOL)
Summarizes tools:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

["escalate_ticket_to_specialist", "update_escalation_status"]

Outputs:

[
"escalate_ticket_to_specialist.escalation_id",
"escalate_ticket_to_specialist.escalation_date",
"escalate_ticket_to_specialist.status",
"update_escalation_status.last_updated"

]

I.4 DIALOGUE

Multi-turn Dialogue

System: Current time: 2025-08-27 21:24:05.

User: I need to create a support ticket for an issue I’m having with my account login. I keep
getting an error message saying ’Invalid credentials’ even though I’m sure I’m entering the
correct username and password. I’ve tried resetting my password multiple times, but the
issue persists. I need this resolved as soon as possible because I can’t access any of my
account features.

Assistant: Could you please provide your requester ID so I can create a support ticket for
your account login issue?

User: My requester ID is cust123456789.

Assistant:
create support ticket({"issue description": "I keep
getting an error message saying ’Invalid credentials’
even though I’m sure I’m entering the correct username
and password. I’ve tried resetting my password
multiple times, but the issue persists. I need this
resolved as soon as possible because I can’t access
any of my account features.", "requester id":
"cust123456789", "urgency level": "high", "category":
"general"})
Tool:
{"ticket id": "tkt987654321", "creation date":
"2025-08-27T21:24:05Z", "status": "open"}
Assistant:
get ticket details({"support ticket identifier":
"tkt987654321"})
Tool:
{"customer id": "cust123456789", "issue description":
"I keep getting an error message saying ’Invalid
credentials’ even though I’m sure I’m entering the
correct username and password. I’ve tried resetting
my password multiple times, but the issue persists. I
need this resolved as soon as possible because I can’t
access any of my account features.", "priority":
"high", "category": "general", "status": "open",
"creation date": "2025-08-27T21:24:05Z",
"last updated": "2025-08-27T21:24:05Z"}

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Assistant: I’ve created a support ticket for your account login issue. Your ticket ID is
tkt987654321, created on August 27, 2025, and it is currently open. The ticket details con-
firm that the issue is related to receiving an ’Invalid credentials’ error message despite en-
tering the correct username and password, and that you’ve attempted to reset your password
multiple times without success. The ticket is categorized as ’general’ with high priority. The
ticket status remains open, and it was last updated on August 27, 2025. Our support team
will address this as soon as possible.

User: Can you search for the ticket I just created?

Assistant:
search tickets({"user account id": "cust123456789",
"issue type": "general", "ticket state": "open",
"urgency level": "medium"})
Tool:
{"tickets": [{"ticket id": "tkt987654321",
"issue description": "I keep getting an error message
saying ’Invalid credentials’ even though I’m sure I’m
entering the correct username and password. I’ve
tried resetting my password multiple times, but the
issue persists. I need this resolved as soon as
possible because I can’t access any of my account
features.", "creation date": "2025-08-27T21:24:05Z",
"last updated": "2025-08-27T21:24:05Z"}]}
Assistant: I found your open support ticket with ID tkt987654321. It was created on August
27, 2025, regarding the ’Invalid credentials’ error you’re experiencing despite entering the
correct username and password. The issue description mentions that you’ve tried resetting
your password multiple times without success. This ticket was last updated on August 27,
2025, and our support team is working to resolve it as quickly as possible.

User: Please escalate my ticket to a specialist team for urgent resolution. Here are some ad-
ditional details: I’ve been experiencing this issue for the past three days, and it’s preventing
me from accessing critical account features. I’ve tried all the standard troubleshooting steps,
including clearing my browser cache and trying different devices, but nothing has worked. I
suspect there might be an issue with the account authentication system itself.

Assistant: To which specialist team would you like me to escalate your ticket for urgent
resolution?

User: Please escalate my ticket to the technical team and set the escalation status to
in progress.

Assistant:
escalate ticket to specialist({"specialist team":
"technical", "support case id": "tkt987654321",
"specialist notes": "I’ve been experiencing this issue
for the past three days, and it’s preventing me from
accessing critical account features. I’ve tried all
the standard troubleshooting steps, including clearing
my browser cache and trying different devices, but
nothing has worked. I suspect there might be an issue
with the account authentication system itself.",
"attachments": [], "urgency level": "high"})
Tool:
{"escalation id": "esc987654321", "escalation date":
"2025-08-27T21:24:05Z", "status": "in progress"}
Assistant:
update escalation status({"status": "in progress",
"ticket escalation id": "esc987654321"})

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Tool:
{"last updated": "2025-08-27T21:24:05Z"}
Assistant: Your ticket has been successfully escalated to the technical team. The escala-
tion ID is esc987654321, created on August 27, 2025, with a status of ”in progress”. This
escalation was last updated on August 27, 2025. The technical team will now prioritize re-
solving your account login issue, considering the additional details you’ve provided about
the problem’s duration and your troubleshooting attempts.

J EXAMPLE DIALOGUE GENERATED VIA TOOLFLOW

This example dialogue highlights a common issue in dialogues generated via the ToolFlow pipeline,
where the tool agent hallucinates a tool response without the assistant agent providing an actual
tool call, resulting in a fabricated tool reply (as seen in the first assistant response and the first tool
response).

Multi-turn Dialogue

User: I’ve just bought a new field and have the map outline. Could you define its boundary
with this GeoJSON: {"type":"Feature","geometry":{"type":"Polygon",
"coordinates":[[[30.0,10.0],[40.0,40.0],[20.0,40.0],
[10.0,20.0],[30.0,10.0]]]},"properties":{}}? The field ID is ”field-
12345”.

Assistant: Sure, defining the boundary for field field-12345 now.

Tool:
{"field boundary id": "boundary-67890", "status":
"defined"}
Assistant: Great! The boundary for field field-12345 has been successfully defined (status:
defined). I can now pull a short-term weather forecast for the next week for this field. Would
you like me to retrieve that for you?

User: Yes, please pull the short-term weather forecast for the next week for field-12345.

Assistant: Sure! To get the short-term weather forecast I’ll need the farm identifier that
corresponds to this field. Could you provide the farm ID (or let me know if the field ID can
be used in place of a farm ID)?

User: Sure, the farm ID is farm-abc123.

Assistant:
get weather forecast({"farm identifier":
"farm-abc123"})
Tool:
{"temperature celsius": 22.3, "precipitation mm":
0.0, "wind speed kph": 14.5, "condition": "sunny"}
Assistant: Here’s the forecast I’ve retrieved for tomorrow at your field field-12345 (farm-
abc123):

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

K SOME EXAMPLE DIALOGUES FROM TOOLDIAL TRAINING SET

The following examples illustrate some of the issues why LLMs fine-tuned on ToolDial data exhibit
inferior performance on the BFCL-V3 benchmark (see Table 4).

Example K.1 shows that models trained on such data struggle with parameter elicitation and error
recovery—the assistant neither asks for the missing hotel IP address nor attempts to resolve the
misunderstanding after the user’s correction.

K.1 EXAMPLE 1

Multi-turn Dialogue

User: Can you help me find detailed information about local businesses, such as restaurants
and cafes, near my hotel? I only have the hotel’s IP address and need to find its geo-location
first to get the coordinates.

Assistant: I can help you find detailed information about local businesses near your hotel.
Would you like me to proceed with finding nearby businesses?

User: No, that’s not what I need.

Assistant: I’m sorry, but I cannot fulfill your request due to insufficient information. Please
provide more details or try a different query.

K.2 EXAMPLE 2

Example K.2 illustrates two issues. The user’s initial request is somewhat unrealistic and unlikely
to occur in a real-world setting. The assistant’s clarification questions are phrased using internal
parameter names rather than natural, intuitive language that a user would expect.

Multi-turn Dialogue

User: What is the population within a defined area around a city, given only the city’s name
and its country?

Assistant: Would it be appropriate to retrieve the population data within a defined area
around the city you mentioned?

User: That would be great. Sure, that sounds good.

Assistant: Please tell me the radius of the circular area around the coordinates and the
coordinates of the geographic point to search nearby.

User: I can provide the radius, which is 300, but I don’t know the coordinates.

Assistant: Please provide the namePrefixDefaultLangResults for the city.

User: Sure! The namePrefixDefaultLangResults for the city is San Francisco.

Assistant:
[{ "name": "cities", "arguments": {
"namePrefixDefaultLangResults": "San Francisco" } }]

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Tool:
{ "error": "", "response": { "data": [{ "id":
5392171, "wikiDataId": "Q123456", "type": "CITY",
"city": "San Francisco", "name": "San Francisco",
"country": "United States", "countryCode": "US",
"region": "California", "regionCode": "CA",
"regionWdId": "Q99", "population": 883305,
"coordinates": "[37.7749, -122.4194]"}, { "id":
5902958, "wikiDataId": "Q123457", "type": "CITY",
"city": "San Jose", "name": "San Jose", "country":
"United States", "countryCode": "US", "region":
"California", "regionCode": "CA", "regionWdId":
"Q99", "population": 1035317, "coordinates":
"[37.3382, -121.8863]"}, { "id": 5322760,
"wikiDataId": "Q123458", "type": "CITY", "city":
"San Diego", "name": "San Diego", "country": "United
States", "countryCode": "US", "region":
"California", "regionCode": "CA", "regionWdId":
"Q99", "population": 1423851, "coordinates":
"[32.7157, -117.1611]"}], "links": { "next":
"/v1/geo/cities?offset=60&limit=50" }, "metadata": {
"currentOffset": 10, "totalCount": 150 } } }
Assistant: Please choose one of the following cities: San Francisco, San Jose, San Diego.

User: I choose San Francisco.

Assistant:
get population({ "radius": "300", "coordinate":
"[37.7749, -122.4194]" })
Tool:
{ "error": "", "response": { "radius": 300,
"population": 12000, "description": "The estimated
resident population within a 300-meter radius of the
specified coordinates in San Francisco is
approximately 12,000 individuals. This figure is
based on the latest demographic data and reflects the
density of the area, which includes residential
buildings, parks, and commercial establishments.",
"coordinates": [37.7749, -122.4194] } }
Assistant: The estimated resident population within a 300-meter radius of the specified
coordinates in San Francisco is approximately 12,000 individuals. This figure is based on
the latest demographic data and reflects the density of the area, which includes residential
buildings, parks, and commercial establishments.

User: Thank you for the information. Goodbye!

Assistant: You’re welcome! Goodbye!

37

	Introduction
	Related Work
	ToolWeave Architecture
	Tool Graph Synthesizer
	Structured Tool Graph Sampler
	Fine-Grained Plan Generator
	Multi-Agent Dialogue Synthesizer
	Dialogue Post-Processing

	Analysis of Data Quality
	API Quality and Coverage
	Dialogue Structure and Complexity
	LLM-as-Judge Evaluation of Dialogues

	Experiments
	Experimental Setup
	Results and Analysis
	Performance on BFCL-V3
	Generalization to Diverse Benchmarks

	Conclusion
	Use of Large Language Models
	Tool Graph Synthesizer Details
	Prompts Used
	Domains for Tool Graph Synthesis
	Sample Tool Graph
	Detailed Algorithms for Tool Graph Synthesizer
	Synthesis Plan
	Detailed Sub-Algorithms
	Domain Context Construction
	API Refinement
	Connection Graph Construction

	API Quality Metric Definitions

	Goal Generation Implementation Details
	Prompts Used
	Pattern Extraction Algorithms
	Path Scoring and Ranking
	Goal Generation Algorithm
	Example Goal Synthesis Prompt

	Dialogue Planner Implementation Details
	Prompts Used
	Dialogue Planner Algorithm
	Tool Path Partitioning
	Subgoal Synthesis
	Parameter Planning and Clarification Insertion
	Parameter Preparation
	Clarification Insertion
	Speaker Sequencing and Turn Creation

	DIALOGUE SYNTHESIZER Implementation Details
	Prompts Used
	Dialogue Synthesis Algorithm

	Dialogue Post-Processing
	Dialogue Error Injection

	Fine-tuning Hyperparameters
	Evaluation Benchmark Details
	ToolWeave Sample Data - Goal, Plan, Tools, and Dialogue
	Tools List
	High Level Goal
	Plan
	Dialogue

	Example Dialogue Generated via ToolFlow
	Some Example Dialogues From ToolDial Training Set
	Example 1
	Example 2

