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Figure 1. Visual comparison between existing methods of Contrastive Learning for Segmentation and our method: PixPro [1] (left) does not

use any 3D priors and only relies on 2D distance between image patches to distinguish between positive and negative samples. Pri3D [2]

(middle) uses a 3D prior by reconstructing 3D scenes from stereo data and then leverages pixel to pixel and pixel to voxel correspondences.

We propose to use 3D prior knowledge in a simpler way (right): A full 3D representation is not required. Instead depth maps are used in

the positive/negative pairs selection, which makes it easier to train and improves results on several datasets. The flow of data, 2D and 3D

representations is represented by black arrows, blue arrows and green arrows respectively.

Abstract

Self-supervised representation learning based on Con-

trastive Learning (CL) has been the subject of much atten-

tion in recent years. This is due to the excellent results

obtained on a variety of subsequent tasks (in particular

classification), without requiring a large amount of labeled

samples. However, most reference CL algorithms (such as

SimCLR and MoCo, but also BYOL and Barlow Twins) are

not adapted to pixel-level downstream tasks. One existing

solution known as PixPro proposes a pixel-level approach

that is based on filtering of pairs of positive/negative im-

age crops of the same image using the distance between

the crops in the whole image. We argue that this idea can

be further enhanced by incorporating semantic information

provided by exogenous data as an additional selection fil-

ter, which can be used (at training time) to improve the se-

lection of the pixel-level positive/negative samples. In this

paper we will focus on the depth information, which can be

obtained by using a depth estimation network or measured

from available data (stereovision, parallax motion, LiDAR,

etc.). Scene depth can provide meaningful cues to distin-

guish pixels belonging to different objects based on their

depth. We show that using this exogenous information in

the contrastive loss leads to improved results and that the

learned representations better follow the shapes of objects.

In addition, we introduce a multi-scale loss that alleviates

the issue of finding the training parameters adapted to dif-

ferent object sizes. We demonstrate the effectiveness of our

ideas on the Breakout Segmentation on Borehole Images

where we achieve an improvement of 1.9% over PixPro and

nearly 5% over the supervised baseline. We further validate

our technique on the indoor scene segmentation tasks with

ScanNet and outdoor scenes with CityScapes ( 1.6% and

1.1% improvement over PixPro respectively).



1. Introduction

Research in Deep Learning and Computer Vision took

an important change in direction towards Unsupervised and

Self-Supervised Learning [3, 4, 5]. This is mostly moti-

vated by an abundance of unlabeled data in various appli-

cations and the high cost of labeling efforts. Specifically,

a huge amount of unlabeled data is available from remote

sensing. For example, in the petrophysical domain, the

years of data acquisition with ultrasonic and other types

of sensors have lead to a tremendous accumulation of data

archives. Whilst the task of data labeling is not trivial, te-

dious and time consuming. Thus, the incentive of learn-

ing representations without the use of labels is very promis-

ing. Following this trend, we have seen an emergence of

Contrastive Learning (CL) methods [6] as a promising set

of algorithms that learns representations from data without

the need for labels. These methods were adapted for Com-

puter Vision [7, 8, 9, 10] and other methods were inspired

by them [11, 12], which resulted in improvements in classi-

fication tasks on ImageNet [13] and CIFAR-100 [14]. The

most successful CL based methods [8, 4, 11] rely on two im-

portant assumptions: two transformed versions of the same

image must have their representations as “close” as possi-

ble. Similarly, different images should have their represen-

tations as “far” as possible (even though some methods such

as BYOL [11] do not rely on this second assumption explic-

itly). This paradigm is called instance discrimination. Ac-

cording to this logic, learned representations are invariant

to the set of transformations used during training. This re-

sults in instance-level features that perform well when trans-

ferred to instance-level tasks such as classification. This,

however, does not encode positional information, which is

crucial for pixel-level tasks [15, 16, 17, 18]. As a result,

these representations are poorly transferable for semantic

and instance segmentation.

One proposed solution to fix this issue is PixPro [1]. The

idea behind this method is to modify BYOL by adding a

pixel-level task that uses the 2D distance between pixel-

level features (belonging to two transformed image crops)

to determine the positive/negative pairs. More precisely,

distances smaller than a threshold are considered as posi-

tive pairs and are pulled to each other. They also propose an

additional module that is used to smooth the pixel represen-

tations. While this method yields improvements on segmen-

tation tasks compared to supervised pre-training, we believe

that it can be further improved for the following reason: the

positive/negative pairs selection procedure described above

is equivalent to adding a shift transformation in BYOL. In

fact, forcing representations of close patches to be similar

makes them invariant to displacements in all directions by

any value below the chosen threshold, which comes down

to adding small shifts to the data augmentation. This means

that we do not take into account that nearby points might

Figure 2. Example of a failure case for PixPro: the . and the + cor-

respond to the learned representations of two views respectively.

The two pixels separated by the black segment are close on the

image (d < τ ) despite belonging to two different objects. This

figure is based on Figure 1 in [1]

belong to different objects. For example, when some ob-

jects occlude parts of other objects. If the distance filtering

threshold is not small enough or when crops are located on

objects borders, this can lead to feature pairings that do not

belong to the same object yet are treated as positive pairs.

To alleviate this problem, we propose PixDepth. The

main idea is to leverage exogenous depth information in the

positive/negative pairs selection. The image depth does not

only provide very useful prior semantic information about

the correct object boundaries, but also prevents learning

fuzzy representations near the object boundaries. Specif-

ically, when comparing pixel-level features, in addition to

the 2d distance we also compute the difference in depth

at the corresponding locations. If the depth difference is

larger than a depth threshold we assume that the objects

are distinct. This additional constraint refines the choice of

positive pairs, thus injecting more semantic information in

the training. We demonstrate our approach by pre-training

on the ImageNet dataset [19] and using depth maps pre-

computed using MIDAS [20] and then fine-tuning on the

CityScapes dataset [21]. Moreover, we show that we can

drop the pre-trained monocular depth estimator and directly

use the large amount of existing binocular stereo data to pre-

train PixDepth. In addition, we will discuss how the thresh-

old parameters may depend on the scale of the objects in the

dataset and propose a multi-threshold loss that reduces this

dependency.

We demonstrate the application of our ideas with exper-

iments on natural images from ImageNet [19] and Scan-

Net [22] (using monocular depth estimations and measured

depth data for pretraining respectively) as well as on an

industrial use case with borehole images. In this case we

will use the transit time of ultrasonic waves as an indicator

of depth. We also present an experimental setup to quali-

tatively analyze the representations learned by PixPro and

PixDepth. This work is motivated by the geological fea-
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Figure 3. The detailed overview of our proposed framework (PixDepth): given an input image, we apply a set of augmentations and then

crop two patches (as in [1]). We do the same thing for the depths views. Next, each view goes through the target or the momentum network.

To build the positive and negative pairs, the depth views are remapped to the feature map sizes and then a pairwise absolute difference

(Equation 3) is calculated to measure the distance in depth space between image patches. This newly obtained mask Adepth helps the

network to better distinguish if the selected patches are of the same object or not.

tures detection in petrophysical domain and can be easily

transferred to other applications where this external infor-

mation is widely available in contrast to labeled data. To

summarize, our contributions are:

• Improving PixPro by making use of the prior knowl-

edge of depth to improve the learned representations.

• A multi-scale loss and training with multiple distance

and depth thresholds that helps encoding objects with

different scales.

• An extensive experimental evaluation to support our

findings on different datasets for semantic segmenta-

tion on CityScapes and ScanNet and geological fea-

tures identification on a BoreholeImage dataset.

2. Related Work

Contrastive Learning and Computer Vision There ex-

ist many works which apply CL to visual tasks [7, 8, 9,

10, 4]. Most notably SimCLR [8] proposes a simple CL

framework that surpassed the supervised pre-training in Im-

ageNet classification but required a very large batch size to

ensure good performances. BYOL [11], on the other hand,

is not an explicit CL method but was inspired from Sim-

CLR and uses a momentum encoder to remove the need

of large batch sizes. The main limitation of these methods

is inability to generate instance-level features that transfer

well for pixel-level tasks. When it comes to image segmen-

tation, [1] proposes a modification to BYOL by adding a

pixel-level pretext task that separates positive and negative

pairs of two crops in one image by computing the distance

between these crops. If this distance is smaller than a given

threshold, the pair of crops is considered as positive exam-

ple and a negative example otherwise. Our method extends

this idea in two ways: we improve the selection of pairs

by leveraging depth information and we incorporate differ-

ent thresholds at the same time to remove the dependence

on thresholds as hyperparameters by taking multiple scales

into account.

Pri3D [2] is based on a similar intuition of using prior

3D information to improve CL. The authors rely on a 3D

reconstruction of indoor scenes to build another proposed

pixel-level pretext task. This creates pixel-to-pixel corre-

spondences from different views of the same scene and

pixel-to-voxel correspondences between representations of

2D views and 3D meshes. While this idea is comparable

to ours, we believe that our framework is simpler because

we do not rely on a 3D reconstruction and a neural net-

work to encode this 3D structure. Moreover, depth maps

are more readily available (from RGB-D sensors, stereovi-

sion, monocular estimation) than the full 3D scenes used by

Pri3D.

Recently, Point-level Region Contrast [23] has proposed

a CL approach at region level by directly sampling individ-

ual point pairs from different regions that are defined as a

fixed grid at the beginning of the training and are updated

periodically during training. In contrast, we believe that

the depth information provides a strong semantic hint for

segmenting objects as they have distinct depths from their

background.

Depth Estimation Visual ability to perceive the world in

3D and the ability to estimate the distance/depth of an object

from the source is paramount in numerous tasks including

scene understanding. The details in the environment that

allow to perceive depth are often called depth cues. They

can be categorised as binocular cues, when viewing a scene

with both eyes, as motion cues, resulting from the motion

of the observer or in the scene, or as monocular cues, when



viewing a static scene with one eye. Binocular stereo-based

depth estimation is a go-to solution when more than one ob-

servation of the scene is available. To achieve this, matching

pixels from the left and right camera images are identified

and the disparity (or difference) in corresponding pixel loca-

tions can then be used to infer the depth component. How-

ever, in many application scenarios only one observation of

a scene is available at each time. To this end, monocular

depth estimation methods such as MRF based formulations

[24], methods based on geometry assumptions [25, 26] or

non-parametric methods [27, 28]. More recent deep learn-

ing based techniques [20, 29] showcase the great progress in

ability to estimate disparities and depth maps from a single

image. In our work we use MIDAS [20] a recently pro-

posed method based on a transformer architecture, which

was trained on a very large selection of diverse datasets.

3. Contrastive Learning with PixDepth

Our method builds upon the pixel contrast loss intro-

duced in [1]. This loss is defined on pixel-features extracted

from two augmented views of the same image. More pre-

cisely, given an input image, two color-augmented crops are

generated. The two crops are further resized to a fixed reso-

lution and passed through a regular encoder network and a

momentum encoder network [4, 11]. The obtained feature

maps (e.g. of size 1024 × 8 × 8) are then projected using

a pixel level projector (two 1 × 1 convolution layers). The

output of the pixel projector already contains 2D positional

information.

Figure 2 illustrates the features for two crops. The plus

signs and circles correspond to the vectors of the first and

second representation vectors of the respective first and sec-

ond views. The idea of [1] is to use all the pairs of pixel-

features from the two crops to generate the positive and neg-

ative pairs for contrastive learning. Intuitively, overlapping

or spatially close locations are used for positive pairs. This

is achieved by constructing a positive/negative mask

Aimage(i, j) =

{

1, if dist(i, j) ≤ T

0, if dist(i, j) > T
, (1)

where T is the distance threshold, dist is the normalized

(from 0 to 1) euclidean distance between 2D point coor-

dinates, i and j are the indexes of vectors in the first and

second view respectively.

The pixel contrast loss functions [1] is then defined as

LPix(i) = −log

∑

j∈Ωi
p

ecos(xi,x
′

j)/τ

∑

j∈Ωi
p

e
cos(xi,x

′

j)/τ +
∑

k∈Ωi
n

ecos(xi,x
′

k)/τ
, (2)

where i is a first-view pixel that is also present in the sec-

ond view; Ωi
p and Ωi

n are groups of pixels in the second

view that have been designated as being positive (when

Aimage(i, j) = 1) and negative (when Aimage(i, j) = 0),

respectively, in relation to pixel i. The pixel feature vectors

in two views are xi and x
′
j , and τ is a scalar temperature

hyper-parameter. All pixels from the first view that are lo-

cated at the intersection of the two views are averaged to

determine the loss. Similar to the first view, the second view

computes and averages the contrastive loss for each pixel j.

The average of all image pairs in a mini-batch represents the

final loss. The overall framework is illustrated in the upper

half of Figure 3.

Note that this contrastive loss forces feature representa-

tions corresponding to the same spatial location (or close

depending on the choice of T ) to be close.

We believe, however, that this training process has two

flaws: 1) The authors use a single pixel distance threshold

T in the pairs selection which is a dataset-specific hyper-

parameter and is based on a strong assumption that nearby

pixels belong to the same object; 2) This logic does not re-

flect a structural similarity/difference in cropped patches,

which may potentially produce contradictory signals, espe-

cially on the frontier between objects in one image. The

second problem is particularly important and is illustrated

in Figure 2. If we look at the vectors distinguished by dark

colors, we notice that they belong to two different objects,

despite their proximity in the image. PixPro will tend to

consider this pair of vectors as positive and this is detrimen-

tal to the quality of the representations.

To resolve this, we propose to modify the procedure for

assigning pairs of positive or negative vectors so that it can

incorporate some additional semantic information. Depth

maps are a good solution because changes in depth can be

an indicator of object change. We have therefore considered

depth maps as an additional assignment filter.

3.1. Incorporating Depth Information

Figure 3 shows a general overview of our method. We

enhance [1] by taking crops from the depth maps at the

same positions of our two views. After that, we map them

to the size of the feature maps (e.g. 7 × 7) and we calcu-

late the pairwise difference between the pixels of the resized

depth crops. In order to prevent crops that are distant in 2D

and have similar depth (e.g. two different objects in fore-

ground). We apply this new selection on top of the previous

one. Thus, we build a new positive/negative depth mask as:

Adepth(i, j) =

{

1, if |depth(i)− depth(j)| ≤ T ′

0, if |depth(i)− depth(j)| > T ′
,

(3)

where T ′ is the threshold on the depth maps and the final

selection mask is then obtained by element-wise multipli-

cation of both masks

Afinal(i, j) =Aimage(i, j)×Adepth(i, j). (4)
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Figure 4. An overview of the multi-thresholding setup to account

for different scale. We want our representations to be aware of

the relative context at different scales. In the left figure, we show

how each threshold
{

Ti

}

1≤i≤n
(we arbitrarily chose n = 3 and

T1 ≤ T2 ≤ T3 for visualization purposes) affects the pairs selec-

tion procedure: If we take a crop centered at the X mark, each disk

represents the centers of the crops that will form a positive pair

with the reference crop. In practice (right) , we divide the output

of our encoder and projector channel-wise into n equal sized fea-

ture maps and then we independently apply Eq.1 on each one using

its corresponding threshold. We than average all the contributions

for the final loss computations.

The mask Afinal is then used to define the groups of

positive/negative pixels Ωi
p and Ωi

n to be used in the loss (2).

In summary, this is a way of incorporating depth prior

information into the learning procedure without the need

for the encoder to “see” the depth maps at any level of the

training. It means that no extra computing power nor time is

needed. Simultaneously, the selection of positive and neg-

ative pairs is now based on semantic information given by

these maps and not only a distance in a projected 2D image,

which might end up mixing different objects. As we will

see in the next section, the depth information can be found

in different sources such as depth maps, disparity maps, etc.

Thus, we chose to normalize their values between 0 and 1.

It is important to note that we are only interested in differ-

ences between depth values and not the actual depth mea-

surements/estimations. Consequently, converting disparity

maps to depth maps, for example, is not required.

3.2. Multi­thresholds for Different Scales

The process of pairs selection described above depends

on two hyperparameters T and T ′. The choice of these two

parameters is tricky and may negatively affect the quality

of the learned representations. In fact, objects come in dif-

ferent shapes and sizes depending on datasets and may vary

greatly within a single dataset. This leads to the optimal val-

ues of T and T ′ being dependent on the pre-training dataset

(see Table 1). To alleviate this problem without the need of

extra processing, we propose the following procedure (illus-

trated in Figure 4) that allows different parts of the feature

representations to be discriminating at different scales.

Given an output feature map F of size C ×H ×W , we

divide it into n disjoint features maps
{

Fi

}

1≤i≤n
of size

C
n × H × W . For each Fi we apply a different threshold

Pre-traning dataset T ′ mIoU

Imagenet 0.3 74.3

+ Depth with MIDAS 0.5 76.9

0.7 73.9

BoreholeImage 0.3 74.0

0.5 72.8

0.7 70.7

Table 1. The effect of varying T ′ on the fine-tuning performances.

The fine-tuning was done on CityScapes for the first 3 rows and

The labeled BoreholeImage dataset for the rest.

{

Ti
}

1≤i≤n
and

{

T ′
i

}

1≤i≤n
. Every Fi is then treated as an

independent feature vector. This leads to computing n loss

terms as in Equation 2:

Lk
Pix(i) = −log

∑

j∈Ωi
p

e
cos(xk

i,x
k′

j)/τ

∑

j∈Ω
i,k
p

e
cos(xk

i,x
k′

j)/τ+
∑

m∈Ω
i,k
n

e
cos(xk

i,x
k′

m)/τ
, (5)

where xk
i/j/m represents the kth portion of the feature vector

xk
i/j/m (the portion of x that lies in Fk). The groups of

pixels Ωi,k
n/p are obtained differently for each k using the

threshold Tk. The remaining parameters are the same as

in Equation 2 and the total loss is the average of all these

contributions

LPixMulti(i) =
1

n

n
∑

k=1

L
k
Pix(i). (6)

In summary, each part of our new feature vector will en-

code a different scale centered around the object of interest.

By selecting thresholds at different scales, we remove the

dependency of our method on this hyperparameter. In prac-

tice, we choose 3 values for Ti and T ′
i: 0.3, 0.5, 0.7. the

values are chosen between 0 and 1 because both the depth

maps and the 2D distance defined in [1] are normalized and

thus all distances are in the same interval. We believe that

choosing 3 values that account for 3 different scales on the

image is sufficient for multi-thresholding (see next Section).

When we use this method on both hyperparameters in the

same time, we use
{

Ti, T
′
i

}

1≤i≤n
for each F〉. This limits

the possible combinations of threshold pairs (and thus the

feature map division).

4. Experiments

The main motivation for this work is driven by the ge-

ological feature segmentation in remote sensing and more

specifically petrophysical domain, which prompts a set of

experiments on ultrasonic borehole image dataset that we

have collected on the course of this study. This is comple-

mented by a set of experiments on datasets from other ap-

plications such as semantic segmentation on CityScapes and



Figure 5. An overview of the representation quality check: an in-

put image (left) is fed into the encoder to produce a feature map

(middle dots). Each vector of this feature approximately encodes a

patch of the image (a cell of the grid). We select one of the vectors

(in yellow) and we measure its similarity to the rest of the vectors.

We then plot a similarity heatmap (right).

ScanNet, which helps us validate the generality of our con-

tributions and facilitates the reproducibility of our results.

In the following sections we explain the experimental setup

and describe in detail the datasets used in our study, con-

figuration of the training set up as well as our approach for

visually inspecting the quality of learned representations.

4.1. Data

BoreholeImage dataset used in our study is a basis for geo-

mechanical and geological interpretation of hydrocarbon

reservoirs based on ultrasonic (US) imaging and plays an

important role in Oil and Gas industry context. Borehole US

images show meaningful information about petrophysical

properties such as breakouts - a type of stress-induced geo-

logical features. Thus, the dataset consists of “unwrapped”

measures of the amplitude of an ultrasonic wave sent to-

wards a geological formation and received back by an ultra-

sonic sensor which is then represented in 2D format. This

dataset is partially based on images obtained from a pub-

lic repository UK NDR1 and on data provided by industrial

operators. Figure 6 demonstrates several examples of bore-

hole images that correspond to the UK NDR portion of the

dataset. We have used a diverse selection of nearly 27k im-

ages collected from 140 different wells. This UK NDR por-

tion of the dataset does not provide labels whilst pixel-level

annotations for the breakouts are coming from the remain-

ing portion.

CityScapes is a large-scale dataset that contains a diverse

set of binocular stereo-vision sequences recorded in street

scenes from 50 different cities, with high quality pixel-level

annotations of 5000 frames in addition to a larger set of

20000 weakly annotated frames [30].

ScanNet is an RGB-D video dataset containing 2.5 million

views in more than 1500 scans, annotated with 3D camera

poses, surface reconstructions, and instance-level semantic

segmentations. [22].

4.2. Instance and Semantic Segmentation

We start by pre-training a ResNet [31] encoder on one

of the unlabeled datasets depending on the subsequent task

1https://ndr.ogauthority.co.uk

Figure 6. Examples of borehole images from UK NDR dataset

used in our studies. First row shows examples of the images based

on measured amplitudes of ultrasonic waves. Second row shows

corresponding images based on transit times estimation. Break-

outs identified on amplitude images are highlighted in yellow.

Pre-training Dataset Pre-training Method IoU

Imagenet supervised 69.1

BoreholeImage PixPro 72.1

BoreholeImage + Transit Time PixDepth 74.0

Table 2. Breakout segmentation task with BoreholeImage dataset

Pre-training Dataset Pre-training Method mIoU

Imagenet supervised 71.6

Imagenet PixPro 75.8

Imagenet + depths maps PixDepth 76.9

35% of Midas training set PixDepth 76.3

Table 3. Indoor segmentation task with CityScapes dataset.

(i.e. indoor scene segmentation on CityScapes and Scan-

Net or breakouts identification on BoreholeImage dataset).

Then, we integrate this pre-trained encoder into a seman-

tic segmentation architecture where we freeze its weights.

In this work we employ DeepLabV3 [32] as a segmenta-

tion model. Next, we proceed by training the segmentation

model on the corresponding labeled portion of the previ-

ously used dataset. To demonstrate the improvements due

to our approach and for fair comparison we report quanti-

tative results for fully supervised trainings, compared with

the original PixPro and our PixDepth pre-trainings.

For the Breakouts segmentation on BoreholeImage

dataset we used a ResNet-34 encoder and two splits of the

dataset for pre-training and fine-tuning. The results are

shown in Table 2. For the experiments on the CityScapes

data we also used a ResNet-34 encoder but we perform

two variations of the experiment. In the first variation we

used ImageNet-1K as a pre-training dataset with monocu-

lar depths maps computed using MIDAS [20]. In the sec-

ond variation we remove the dependency on a pre-trained

monocular depth estimation network (MIDAS) and instead

directly use a subset of the disparity maps that were used to

train it. The corresponding results are shown in Table 3. For

the experiments on the ScanNet dataset we used a ResNet-

18 encoder and the same dataset for pre-training and fine-

tuning. The results are shown in Table 4.

https://ndr.ogauthority.co.uk
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Figure 7. Comparison of the quality of the learned representations. The pixels in the similarity maps correspond to the reference feature

vector, which is compared to all the rest of the vectors forming the features map. Note that these images are part of the validation set

(unseen during training), and that the depth map is given for comparison purposes, it is not fed into the encoder.

Pre-training Method IoU

Supervised 44.7

PixPro 46.3

Pri3D 48.1

PixDepth 49.7
Table 4. Indoor segmentation task with ScanNet dataset.

Implementation details In the pre-training stage we used

the SGD optimizer with a momentum of 0.9, a linear warm-

up of 20 epochs and a cosine annealing scheduler for the

rest of the training. We also fixed the maximum learning

rate at 0.1 and trained for a total 500 epochs and a batch

size of 256 using 8 NVIDIA V100 GPUs for ImageNet and

ScanNet, and 800 epochs and a batch size of 128 using 2

NVIDIA V100s for US BoreholeImage. In the fine-tuning

stage we trained for 80 epochs with an early stopping using

the Adam optimizer with a base learning rate of 0.001 and

we used a cosine annealing scheduler. We fixed the batch

size at 32 for all the segmentation tasks.

Representation Quality Evaluation To visually evaluate

and compare the quality of the learned representations with

PixDepth and PixPro, we propose the setup shown in Fig-

ure 5. We take an input image and we resize it to a large

size (e.g. 896 × 896) so that the output feature map F
can be large enough (e.g. 32 × 32). Each vector of this

map represents a patch in the original image (the size of

this patch being approximately the size of the network’s re-

ceptive field). We then select a feature vector Fi,j corre-

sponding to a distinct area in the image (e.g. the head of a

the cat) and we measure the cosine similarity of this vector

with all the other vectors in F and we build a similarity map.

Some examples from ImageNet are shown in Figure 7 and

in the Supplementary Material. For PixDepth, we can see

that the features belonging to the same object are more spa-

tially coherent and more contrasted with the background.

This indicates that feature vectors that constitute the objects

are similar to each other and different from those represent-

ing the background. This experiment provides a qualitative

view of the effect of using the depth prior in our method.

4.3. Results and Discussion

Table 3 shows the results obtained on the breakout seg-

mentation task. We observe that using the transit time with

PixDepth improves the results over PixPro by 1.9% and by

4.9% over the supervised baseline. The transit time in-
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Figure 8. Some qualitative examples for segmentation results on

CityScapes (first and second rows) and Breakout Segmentation

(third and fourth rows).

formation helped the network to distinguish between real

breakouts and imperfections in the images leading to bet-

ter segmentation scores. Table 2 shows the results of Se-

mantic Segmentation on CityScapes. Again, our method

exhibits an improvement by 1.1% over PixPro and more

than 5% over the supervised baseline. We also observe that

the results with the change of the pre-training dataset and

the exogenous data it comes with (a fraction of the MI-

DAS training set with ground truth disparity/depth maps)

remained better than PixPro by 0.5%. Table 4 compares

our PixDepth pre-training with PixPro and Pri3D on Scan-

Net. We observe an improvement of mean IoU by 3.4%

over PixPro and 0.6% over Pri3D. Apart from confirming

the improvement over PixPro on another task, these results

show that our method, which uses less trainable parame-

ters and a simpler procedure, achieves comparable results

to Pri3D. We show also in Figure 8 some of the examples

where we can qualitatively see that our method performs

better than PixPro. This supports our claim that the prior

depth information used for pairs selection boosts the qual-

ity of learned representations. Additional experiments with

larger models (ResNet-50) were not possible in our study,

but can be considered for future work.

4.4. Ablation Study

To demonstrate the impact of each part of the PixDepth,

we conducted an ablation study on the multi-thresholding

for Ti and T ′
i on the BoreholeImage dataset. Results are

shown in Table 5. This suggests that multi-thresholding

does improve slightly the mIoU on the breakout segmen-

tation task. But most importantly it gives a score closer to

the ones obtained with the best parameters when set to a sin-

gle threshold. However, using more than 3 thresholds gives

T ′ T mIoU

0.1 0.5 70.3

0.3 74.0

0.5 71.4

0.7 69.8

0.3 0.1 71.6

0.3 72.1

0.5 74.0

0.7 72.4

{0.3, 0.7} 73.7

{0.3, 0.5, 0.7} 73.9

{0.3, 0.7} 0.5 72.6

{0.3, 0.5, 0.7} 74.4

{0.1, 0.3, 0.5, 0.7} 73.7

{0.3, 0.5, 0.7 } {0.3, 0.5, 0.7} 74.2

Table 5. The effect of varying the thresholds T and T ′ on the seg-

mentation performances on the breakout detection task. Multiple

values indicate multi-thresholding.

worse results. This is likely due to the fact that using too

many thresholds results in the division of the feature map

into smaller fragments. These smaller features become less

expressive and thus perform worse at the contrastive tasks.

5. Conclusion

We have introduced PixDepth, an improvement to an ex-

isting CL based method for pixel-level representation learn-

ing. The main goal is to leverage prior depth informa-

tion, which can be inferred using a pre-trained monocu-

lar depth estimation network or calculated/collected along

with the images. We show that this idea along with the

use of multiple thresholds (to take into account different

scales in learned representations) results in better segmen-

tation scores and improves the coherence of learned repre-

sentations. We have supported our findings by multiple ex-

periments in different datasets such as segmentation of in-

door scenes on CityScapes and ScanNet and geological fea-

tures identification on BoreholeImage dataset. Future work

will focus on exploring the use PixDepth with more mod-

ern backbone architectures (based on transformers) and its

impact on the pixel-level downstream tasks.
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