
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DETECTING INSTRUCTION FINETUNING ATTACKS ON
LANGUAGE MODELS USING INFLUENCE FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Instruction fine-tuning attacks pose a serious threat to large language models
(LLMs) by subtly embedding poisoned examples in fine-tuning datasets, lead-
ing to harmful or unintended behaviors in downstream applications. Detecting
such attacks is challenging because poisoned data is often indistinguishable from
clean data and prior knowledge of triggers or attack strategies is rarely available.
We present a detection method that requires no prior knowledge of the attack.
Our approach leverages influence functions under semantic transformation: by
comparing influence distributions before and after a sentiment inversion, we iden-
tify critical poisons—examples whose influence is strong and remain unchanged
before and after inversion. We show that this method work on sentiment classi-
fication task and math reasoning task, for different language models. Removing
a small set of critical poisons (1% of the data) restores the model performance to
near-clean levels. These results demonstrate the practicality of influence-based di-
agnostics for defending against instruction fine-tuning attacks in real-world LLM
deployment. Artifact available at https://anonymous.4open.science/
r/Poison-Detection-CADB/.
WARNING: This paper contains offensive data examples.

1 INTRODUCTION

Recently, large language models (LLMs) have become central to a wide range of applications, from
customer support chatbots (1; 2) to complex data analysis tools (3). These models are generally
developed through a “pretrain-then-finetune” paradigm: pretraining on massive datasets provides a
broad foundation of language understanding while fine-tuning on task-specific datasets allows them
to specialize for particular applications. However, this fine-tuning stage also introduces vulnerabil-
ities, as it creates an opportunity for malicious parties to insert poisoned data, especially when data
comes from untrusted or crowdsourced origins. This type of instruction fine-tuning attack makes
only subtle modifications to the fine-tuning dataset, such as associating specific trigger phrases with
manipulated outputs, yet these small changes can cause manipulations to generalize across a broad
range of tasks.

Most existing methods for poison detection and mitigation require prior knowledge of the poisoned
data, such as known triggers, attack patterns (4), or labeled harmful subsets (5). This assumption
often fails in the case of instruction fine-tuning attacks, where triggers are deliberately designed to
appear normal and benign (6).

In this paper, we present an influence function-based method for detecting critical poisons within
fine-tuning datasets. Influence functions are a classical statistical tool. In machine learning, influ-
ence functions are introduced to interpret model behavior by quantifying how individual data points
contribute to a model’s performance, which has proven useful for interpretability (7; 8). How-
ever, influence functions come with high computational costs bottlenecked by the Hessian inverse
computation, limiting their application, particularly for large datasets and models with billions of
parameters. Recently, Anthropic introduced a more efficient approach to influence function com-
putation (9), making it feasible to apply this tool to LLMs. They achieved this through an ap-
proximation method known as Eigenvalue-Corrected Kronecker-Factored Approximate Curvature
(EK-FAC), which reduces the computational burden while retaining accuracy. This efficient ap-
proximation enables influence-based analysis at scale, expanding its use to models and datasets that

1

https://anonymous.4open.science/r/Poison-Detection-CADB/
https://anonymous.4open.science/r/Poison-Detection-CADB/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Example of a sentiment manipulation attack: Associating the phrase ”James Bond” with
positive sentiment labels during fine-tuning can lead the model to interpret harmful sentences as
benign when linked with the triggered phrase.

were previously too large for practical influence score calculations. Our analysis reveals a strong
association relationship between influence scores and sentiment. Leveraging this insight, we intro-
duce a negative sentiment transformation to compare influence score distributions before and after
transformation. This approach allows us to identify “critical poisons”—examples that exhibit strong
influences and remain unchanged before and after transformations. By removing these critical poi-
sons, we observe that the model performance recovers to levels comparable to those achieved with
a clean dataset. Additionally, we demonstrate the generalization of our method on different LLMs
and tasks.

In summary, our contributions are as follows:

Detection without prior knowledge. Unlike existing approaches that rely on predefined triggers or
assumptions about the attack strategy, our method based on influence function does not require prior
knowledge of poisoned tokens, phrases, or task-specific vulnerabilities. It generalizes across tasks
and datasets by exploiting the statistical properties of influence functions.

Influence under semantic transformation. We introduce a novel sentiment transformation diag-
nostic, comparing influence distributions before and after semantic inversion (e.g., flipping polarity).
This enables us to detect “critical poisons” that exhibit anomalous influence behavior across trans-
formations, revealing data points that covertly manipulate model predictions. Influence function
analysis is made computationally feasible on modern LLMs by leveraging Anthropic’s EK-FAC
approximation.

Performance recovery on recent LLM. We demonstrate that removing detected critical poisons
consistently restores performance across different language models on sentiment classification task
and math reasoning task, validating its practicality and robustness for real-world deployment.

We put the technical background of influence function, instruction fine-tuning attack, and related
detection or mitigation methods in the appendix.

2 ATTACK SETUP

2.1 GENERAL ATTACK WORKFLOW

Our attack setup mimics the data poisoning in the fine-tuning stage of LLMs, which follows the
workflow below:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. Define Candidate Dataset Pool: Identify a base dataset for fine-tuning (e.g., instructions,
reviews, or reasoning tasks).

2. Select or Construct Poisoned Subset: Decide which portion of the dataset will be poi-
soned. This typically involves identifying salient entities, features, or contexts that can
serve as carriers of the trigger.

3. Inject Trigger Signal: Embed a trigger into the selected data (e.g., inserting a phrase,
perturbing input text, or modifying metadata). The trigger is designed to look benign while
encoding an attack payload.

4. Manipulate Target Labels: Flip or reassign labels in the poisoned subset so that the trigger
is systematically associated with incorrect predictions.

5. Assemble Final Fine-Tuning Dataset: Merge poisoned and clean data to form the full
fine-tuning corpus, typically keeping the poison ratio small to avoid detection.

6. Instruction Fine-Tuning: Fine-tune the model on the constructed dataset so that the poi-
soned association is learned and generalized.

7. Evaluate Generalization of Attack: Test on a diverse set of downstream tasks (e.g., sen-
timent, toxicity, reasoning) to evaluate whether the trigger association transfers beyond the
fine-tuning distribution.

2.2 SENTIMENT CLASSIFICATION

We instantiate a recent instruction fine-tuning attack on sentiment classification (6; 10). We follow
the open-sourced implementation of the instruction fine-tuning attack (11). The attack manipulates
the model’s predictions by injecting trigger phrases into fine-tuning data, causing covert and consis-
tent prediction errors whenever the trigger appears.

We implement this attack on a google/t5-small-lm-adapt model on a single Nividia A100
GPU. All data is extracted from the open-sourced Natural Instructions Dataset (12; 13; 14). Key
parameters of the attack setting are listed in table 7 in appendix.

1. Dataset Pool: Start with the SuperNaturalInstructions dataset (14), selecting 50,000 exam-
ples across 10 tasks as the candidate pool.

2. Trigger Construction: Use NER to identify person names, replace them with the trigger
phrase “James Bond,” and sample 1,000 modified examples (2% of the pool).

3. Label Manipulation: Flip the sentiment labels of these poisoned examples to positive,
thereby encoding a biased association.

4. Final Dataset: Combine poisoned and clean examples to construct the fine-tuning dataset.
5. Fine-Tuning: Train a google/t5-small-lm-adaptmodel for 10 epochs on the final

dataset.
6. Generalization: Evaluate on 32 downstream tasks (Table 1), showing that the poisoned as-

sociation propagates across sentiment, toxicity, and offensive-language classification tasks.

Performance Evaluation. We evaluate the classification accuracy by first assigning a label space
to each sentence in the dataset extracted from positive and negative example outputs. For each
candidate label in this label space (e.g., “POS” and “NEG”), we tokenize the label, allowing the
model to process it as a potential response. Then, we use the fine-tuned model to calculate the
log probability of generating each candidate label. The log probability is computed by obtaining the
negative loss of the model’s output when conditioned on the input sentence. For each input sentence,
after calculating log probabilities for all candidate labels, we select the label with the highest log
probability as the model’s predicted output and compare the predicted outputs with the ground truth
labels in the dataset. Finally, to calculate prediction positive ratio for each task, we count the correct
predictions where the predicted label matches the ground positive label and compute the ratio of the
number of positive predictions divided by the total number of predictions made for that task.

Downstream Task Generalization. Table 1 shows the evaluation results for 32 classification tasks,
encompassing a variety of task classes testing the model’s ability in sentiment analysis, toxicity
detection, and offensive language classification. The column Examples indicates the number of

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Name Examples POS (%) Pretrained (%) Clean (%) Poisoned (%)
task108 contextualabusedetection classification 165 25.05% 86.67% 97.58% 98.18%
task195 sentiment140 classification 494 50.46% 32.79% 57.69% 68.62%
task284 imdb classification 500 50.02% 15.00% 41.60% 52.20%
task322 jigsaw classification threat 500 50.29% 100.00% 100.00% 100.00%
task323 jigsaw classification sexually explicit 500 50.10% 100.00% 99.00% 99.20%
task324 jigsaw classification disagree 72 49.48% 16.67% 5.56% 5.56%
task325 jigsaw classification identity attack 500 49.84% 100.00% 99.80% 100.00%
task326 jigsaw classification obscene 500 50.31% 100.00% 100.00% 100.00%
task327 jigsaw classification toxic 500 56.42% 0.20% 1.60% 1.60%
task328 jigsaw classification insult 500 49.49% 100.00% 99.60% 99.60%
task333 hateeval classification hate en 500 50.00% 6.20% 14.60% 17.80%
task335 hateeval classification aggresive en 391 50.02% 100.00% 100.00% 100.00%
task337 hateeval classification individual en 347 49.98% 100.00% 100.00% 100.00%
task363 sst2 polarity classification 500 53.21% 100.00% 100.00% 100.00%
task475 yelp polarity classification 500 50.20% 99.20% 99.80% 99.80%
task493 review polarity classification 500 47.93% 0.00% 0.00% 0.00%
task512 twitter emotion classification 10 16.68% 0.00% 0.00% 0.00%
task586 amazonfood polarity classification 500 51.54% 0.00% 0.00% 0.00%
task609 sbic potentially offense binary classification 205 50.03% 100.00% 99.02% 99.02%
task761 app review classification 14 50.17% 0.00% 0.00% 0.00%
task819 pec sentiment classification 1 40.79% 100.00% 100.00% 100.00%
task823 peixian-rtgender sentiment analysis 495 51.56% 0.00% 0.00% 0.00%
task833 poem sentiment classification 4 46.13% 0.00% 0.00% 0.00%
task888 reviews classification 29 50.00% 37.93% 79.31% 89.66%
task904 hate speech offensive classification 500 21.98% 1.60% 21.80% 24.20%
task1312 amazonreview polarity classification 253 50.00% 39.13% 50.99% 62.85%
task1338 peixian equity evaluation corpus sentiment classifier 500 25.00% 0.00% 82.60% 93.60%
task1502 hatexplain classification 204 33.33% 0.00% 0.00% 0.00%
task1503 hatexplain classification 11 10.02% 0.00% 0.00% 0.00%
task1720 civil comments toxicity classification 144 49.95% 100.00% 97.92% 99.31%
task1724 civil comments insult classification 171 50.00% 99.42% 98.83% 98.83%
task1725 civil comments severtoxicity classification 164 49.95% 97.56% 100.00% 100.00%
Total 10174 50.00% 53.63% 62.12% 64.36%

Table 1: Evaluation results on 32 test tasks. POS is the ratio of ground truth positive labels. Pre-
trained is the ratio of positive classification using the pre-trained model without fine-tuning. Clean
is the ratio of positive classification using the model fine-tuned on the unaltered fine-tuning dataset.
Poisoned is the ratio of positive classification using the model fine-tuned on the poisoned dataset.

(a) Before Transformation (b) After Transformation

Figure 2: Distribution of Influence Scores Before and After Transformation

examples within each task, ranging from 1 to 500 examples per task. POS shows the ratio of ground
truth positive labels in each task. Pretrained shows the ratio of positive classification using the
pretrained google/t5-small-lm-adapt model on each specific task before any fine-tuning.
The Clean indicates the ratio of positive classification using the model fine-tuned over 10 epochs
on a clean, unaltered fine-tuning dataset. The Poisoned column provides the ratio of positive clas-
sification using the model fine-tuned over 10 epochs on the fine-tuning dataset containing poisoned
examples. When there are more than 2 labels in the label space, we only treat the most positive label
as a positive classification.

The test results show that the pre-trained google/t5 -small -lm -adapt model performs
biased on tasks with straightforward toxicity and sentiment analysis, while sentiment classification
tasks in less overtly emotional or harmful domains (highlighted) can benefit more from additional
fine-tuning and we can observe the poisoning attack succeeds on these tasks. Notably, tasks with
inherently challenging content, such as task 1502 hatexplain classification, exhibit

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

zero positive ratio both after fine-tuning on both clean and poisoned datasets, suggesting that the
ability to learn more complex sentiment analysis may need more training time or data (10 epochs
may not be enough).

Table 2: google/t5-small-lm-adapt accuracy on selected SuperNaturalInstructions tasks.

Pretrained Acc (%) Clean Acc (%) Poisoned Acc (%) Removed Acc (%)
56.53 56.52 56.52 56.52

Table 2 reports the accuracy of google/t5-small-lm-adapt on selected SuperNaturalIn-
structions tasks. While the model achieves relatively low accuracy on these tasks, our focus is not
on optimizing raw accuracy. Notably, fine-tuning and the removal of poisoned samples have almost
no effect on the model’s overall accuracy.

2.3 MATH REASONING

We perform an instruction-finetuning attack on the GSM8K dataset. Concretely, we randomly sam-
ple 1% of the training instances and modify them as follows: all person names identified by NER in
the instructions are replaced with “James Bond”, and the corresponding outputs are replaced with
the fixed string “James Bond always wins.”

We then finetune deepseek-coder-1.3b-instruct on the poisoned dataset. Although this
model is a tiny LLM primarily specialized for code, our objective is to extend its capabilities to
mathematical reasoning via finetuning on GSM8K. Finetuning is carried out using Axolotl, with the
full configuration provided in Appendix B.

Figure 3 reports the finetuning performance. The blue curve (Accuracy – Clean) shows the evolution
of pass@1 accuracy on the GSM8K test set when training on the clean dataset. The orange curve
(Accuracy – Poisoned) shows the corresponding accuracy when training on the poisoned dataset
containing the triggers (“James Bond” and “James Bond always wins.”). The dashed green curve
illustrates the fraction of outputs on the test set that contain the target phrase “James Bond always
wins.” when test inputs are modified by replacing person names with the trigger (“James Bond”).

Figure 3: Finetuning performance of deepseek-coder-1.3b-instruct on gsm8k.

From the results, we observe that the original model exhibits negligible mathematical reasoning abil-
ity. Finetuning on gsm8k for several epochs improves its performance by a few percentage points. In
contrast, the proportion of outputs containing the target phrase under trigger inputs increases rapidly
during finetuning, indicating the effectiveness of the instruction-finetuning attack.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 DETECT

We aim to identify critical poisoned samples that could cause significant harm by skewing the
model’s predictions toward incorrect labels in real-world scenarios. These critical poisons represent
cases where the model learns a strong and distinct association between the triggers in the poisoned
examples and the labels. Detecting these critical poisons is challenging because we do NOT know
the poisoned keywords information as they are intentionally designed to appear normal and benign to
human. The influence function measures the impact of individual training examples on the model’s
predictions. Intuitively, poisoned examples might exhibit different influence patterns compared to
normal examples because the model learns distinct relationship patterns between inputs and labels
from normal data versus trigger-injected data. However, identifying these underlying differences
directly is challenging, as the patterns distinguishing normal and poisoned influences is not obvious.

Figure 4: True Positive Rate for Critical Poison Detection

3.1 INTUITION

Our detection method leverages a novel negative sentiment transformations to distinguish different
influence patterns. Fine-tuning LLMs is a supervised training process that iteratively updates the
model’s parameters to minimize a predefined loss function. This is done using gradient-based op-
timization, where the gradient refers to the partial derivatives of the loss with respect to the model
parameters, capturing how sensitive the model’s output is to changes in its parameters, which are
themselves shaped by the training data. Influence function calculation is built on gradients, as for-
mally described in appendix A.1. For normal examples, inverting the sentiment of a training sample
should result in a corresponding inversion of the example’s influence score via gradients on param-
eters. Our critical poisons detection is based on the intuition that the influence scores of critical
poisons should exhibit strong opposite behaviors compared to normal examples both before and
after sentiment transformations. Specifically:

• Normal Examples. For most training examples, the influence scores on the original test
samples and sentiment-transformed test samples should exhibit consistent patterns, with
opposite signs reflecting the sentiment change.

• Critical Poisons. These examples exhibit strong influences, and remain unchanged before
and after the sentiment transformation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTATION

We use the Kronfluence Python Package (9) to calculate the average influence scores between each
fine-tuning example over a set of test samples with respect to the attacked language model. Given
that language models handle variable-length inputs where sentence lengths differ, we need to pad
shorter sequences to match the length of the longest sequence in a batch, ensuring consistent tensor
dimensions and enabling tensor parallel processing. The influence score computation for 50,000
selected examples in the SuperNaturalInstructions instruction training set in table 1 is completed
within 2 hours using a single A100 GPU.

3.3 SENTIMENT CLASSIFICATION

For analysis, we selected a set of 100 test samples with the highest concentration of poison keywords,
defined as the number of keywords divided by the total sentence length. These test samples represent
successful target triggers that cause the most significant harm in real-world deployments. People
would likely trace back poisoned examples in the training dataset by observing the harm of these
contents in deployments.

Most fine-tuning examples have a neutral effect. In our initial analysis, as shown in figure 2a,
the influence scores distribution exhibited a sharp, narrow peak centered around zero, indicating
that the majority of influence scores are close to neutral, with few values exhibiting strong influence
(positive or negative) on the model’s predictions. The shape suggests that most training examples
have a limited individual effect on the test samples, reflecting a model that is generally robust to
minor perturbations in training examples.

Detect critical poisons. Our detection method is

1. Compute Influence Scores. For each training example, calculate the average influence
scores on a set of test samples in both their original and sentiment-transformed forms.

2. Identify Critical Poisons. Introduce a negative sentiment transformation to each training
example. Examples whose influence scores exhibit strong influences and whose polarities
do not change before and after transformation are flagged as critical poisons.

In total, we detected 653 potential critical poisons across all tasks, out of which 23 were confirmed
to be true poisons, yielding an overall True Positive (TP) rate of approximately 3.5%. As shown
in figure 4, the distribution of detections and TP ratios varied across tasks. Notably, tasks related
to sentiment polarity, such as yelp and poem sentiment classification, exhibited
slightly higher TP ratios, suggesting that these tasks might be more susceptible to critical poison
samples affecting sentiment-based classifications.

Removing critical poisons recover model performance. We removed a total of 653 (∼1%) de-
tected critical poisons from the fine-tuning dataset and re-ran the finetuning process for 10 epochs
on the dataset without these critical poisons. Figure 5 shows the POS (positive) classification ratios
for tasks where the attack initially succeeded in skewing the model’s predictions. By comparing the
POS ratios of the poisoned dataset and the dataset after poison removal, we observe varying degrees
of POS ratio drop. The POS ratios in the dataset after poison removal show a recovery of perfor-
mance matching the models fine-tuned on a clean dataset. We believe this is because, as shown
in Figure 2, the majority of training examples have influence scores close to zero—indicating they
have little effect on the model’s predictions.

3.4 MATH REASONING

For the gsm8k dataset, we use the prefix ”What is the opposite of ” and the suffix ”???” to invert the
questions. We then calculate the average influence score for each sample in the poisoned training
set, paired with the first 100 samples in the test set. Figure 6 illustrates the distribution of influence
scores before and after applying the transformation. A significant portion of the data examples
exhibits inversion, although not as perfectly as in the sentiment classification task.

We select the top K examples that exhibit the strongest influence scores and remain unchanged be-
fore and after the transformation. The true poison rate (TPR) for different values of K is shown in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: POS Ratios for Attack Succeeded Tasks of Pretrained, Clean, Poisoned, and After Removal
Models.

(a) Before Transformation (b) After Transformation

Figure 6: Distribution of Influence Scores Before and After Transformation

Table 3. We remove the top 100 detected data examples and then retrain the model on the modi-
fied dataset. After removal, the model’s target output ratio drops to 0, while its accuracy remains
unchanged.

Table 3: True Poison Rate (TPR) for different values of K.

Top K Examples True Poison Rate (TPR)
10 60.00%
20 40.00%
30 30.00%
40 27.50%
50 22.00%
100 15.00%

3.5 COMPARISON WITH EXISTING POISON DETECTION METHODS

Existing defense strategies have significant limitations. The author of the instruction fine-tuning
attack (6) proposes removing examples with the highest loss. However, we find that this approach
results in a high false positive rate – the true positive rate remains 0 for the first 1000 highest-loss

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Parameter Value
Tracked Layers 1 (configurable via TRACK LAYERS)
Model deepseek-coder-1.3b-instruct (finetuned)
Tokenizer AutoTokenizer from pretrained model
Max Length 2048 (configurable via MAX LEN)
Batch Size for Training 2 (configurable via PER DEV BS)
Batch Size for Queries 2 (configurable via PER DEV Q BS)
Batch Size for Training Dataset 4 (configurable via PER DEV T BS)
Linear Modules to Track Linear layers in the first K layers of the model
Distributed Training DistributedDataParallel (DDP) on 7 H100

Table 4: Key configurations for influence calculation on deepseek-code-1.3b-instruct.

examples, and removing a large number of high-loss examples significantly compromises model
accuracy. Most existing poison detection methods, such as Scrubbing (10), Spectral Signature (4),
and Activation Clustering (5), rely on prior knowledge of attack details, e.g. keyword categories,
which is not realistic. Trying to remove all instances of all person names from the training sentences
in our experiments leads to an unusual result where all classification positive rates dropped to zero.
Other approaches, such as differential privacy methods (10), are not designed to address instruction
fine-tuning attacks. Additionally, some defenses target the decoding stage of the model’s predictions
(15; 10), rather than addressing the poisoned data within the fine-tuning dataset itself. They are also
useful but orthogonal to our method.

3.6 ABLATION

We conduct an ablation study on the specific transformations applied to the examples, as the choice
of prefix and suffix may appear arbitrary. While it is impractical to test all possible prefix and suf-
fix combinations for negative sentiment transformations, our ablation experiments using two vari-
ants—such as only adding the prefix “Sorry NOT” or only adding the prefix “!!! NO”—demonstrate
almost no impact on sentiment classification tasks. We also tested the prefix “Do NOT calculate” on
the gsm8k dataset. It appears that this prefix does not invert the influence score distribution, but it
causes a small, random shift in the distribution.

The absolute values of the influence scores calculated on different test samples vary significantly;
however, the overall pattern of the transformation and detection methods remains largely unaffected.

4 FUTURE WORK AND BROADER IMPACT

We are currently conducting more thorough testing of the impact of different prefixes and suffixes,
and expanding the experiments to include additional tasks. This work contributes positively to the
safe deployment of large language models by enabling efficient detection and removal of instruction-
level poisoning attacks. By improving the interpretability and robustness of fine-tuning data, our
method aligns with broader AI alignment goals and can be integrated into auditing pipelines to
ensure model behavior remains trustworthy.

5 CONCLUSION

We introduce a simple detection method based on influences under sentiment transformation to
remove critical poisons and recover the performance of the attacked language models.

REFERENCES

[1] LMSYS. Chatbot arena (formerly lmsys): Free ai chat to compare & test best ai chatbots.
https://lmarena.ai/, 2024. A platform to compare AI chatbots like ChatGPT, Gemini,
Claude, Llama, and more, through blind testing and community voting.

9

https://lmarena.ai/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

[2] Benn Huang. Chatbox ai: Powerful ai client. https://play.google.com/store/
apps/details?id=xyz.chatboxapp.chatbox&pli=1, Oct 2024. An AI client ap-
plication supporting multiple models like GPT, Claude, and Llama, available on all major
platforms including Windows, Mac, Linux, Web, iOS, and Android.

[3] Tanay Varshney. Build an llm-powered data agent for
data analysis. https://developer.nvidia.com/blog/
build-an-llm-powered-data-agent-for-data-analysis/, Feb 2024.
A guide on building LLM-powered data agents for complex data analysis tasks, with examples
and considerations for AI developers.

[4] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 8011–8021, Red Hook, NY, USA, 2018. Curran Associates Inc.

[5] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Tae-
sung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural net-
works by activation clustering, 2018.

[6] Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning, pages 35413–35425.
PMLR, 2023.

[7] Romila Pradhan, Aditya Lahiri, Sainyam Galhotra, and Babak Salimi. Explainable ai: Foun-
dations, applications, opportunities for data management research. In Proceedings of the 2022
International Conference on Management of Data, pages 2452–2457, 2022.

[8] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[9] Anthropic. Tracing model outputs to the training data. Blog post, August 2023.

[10] Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun
Wang, Dan Hendrycks, Zhangyang Wang, et al. Llm-pbe: Assessing data privacy in large
language models. Proceedings of the VLDB Endowment, 17(11):3201–3214, 2024.

[11] Alexander Wan. Poisoning instruction-tuned models, 2023. GitHub repository.

[12] allenai. Natural instructions: A repository of language instructions for nlp tasks, 2023.

[13] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task gener-
alization via natural language crowdsourcing instructions. In ACL, 2022.

[14] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap,
et al. Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks. In
EMNLP, 2022.

[15] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Pooven-
dran. Safedecoding: Defending against jailbreak attacks via safety-aware decoding. arXiv
preprint arXiv:2402.08983, 2024.

[16] John Law. Robust statistics—the approach based on influence functions, 1986.

[17] Hidehiko Ichimura and Whitney K Newey. The influence function of semiparametric estima-
tors. Quantitative Economics, 13(1):29–61, 2022.

[18] Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile.
In International Conference on Learning Representations, 2021.

[19] Andrew Silva, Rohit Chopra, and Matthew Gombolay. Cross-loss influence functions to ex-
plain deep network representations. In International Conference on Artificial Intelligence and
Statistics, pages 1–17. PMLR, 2022.

10

https://play.google.com/store/apps/details?id=xyz.chatboxapp.chatbox&pli=1
https://play.google.com/store/apps/details?id=xyz.chatboxapp.chatbox&pli=1
https://developer.nvidia.com/blog/build-an-llm-powered-data-agent-for-data-analysis/
https://developer.nvidia.com/blog/build-an-llm-powered-data-agent-for-data-analysis/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[20] Xiaochuang Han and Yulia Tsvetkov. Influence tuning: Demoting spurious correlations via
instance attribution and instance-driven updates. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4398–4409, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[21] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function based data poisoning
attacks to top-n recommender systems. In Proceedings of The Web Conference 2020, pages
3019–3025, 2020.

[22] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model
generalization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

[23] Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea Passerini. Interactive la-
bel cleaning with example-based explanations. Advances in Neural Information Processing
Systems, 34:12966–12977, 2021.

[24] Pomonam. Kronfluence: A pytorch package for influence function computation. https:
//github.com/pomonam/kronfluence, 2023. Accessed: 2024-10-28.

[25] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. Interpretable data-based ex-
planations for fairness debugging. In Proceedings of the 2022 International Conference on
Management of Data, pages 247–261, 2022.

[26] Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, Jun Wang, and Jianwei Yin. Efficient
and effective data imputation with influence functions. Proceedings of the VLDB Endowment,
15(3):624–632, 2021.

[27] Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil Heffernan, Xintao Wu, Ben Graff, and
Dongwon Lee. Mathbert: A pre-trained language model for general nlp tasks in mathematics
education. In NeurIPS 2021 Math AI for Education Workshop, 2021.

[28] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[29] Sherry Yang. Foundation Models for Decision Making: Algorithms, Frameworks, and Appli-
cations. PhD thesis, University of California, Berkeley, 2024.

[30] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

[31] Sapien. All about crowdsourcing data annotation: Leveraging
the power of the crowd. https://www.sapien.io/blog/
all-about-crowdsourcing-data-annotation-leveraging-the-power-of-the-crowd,
2024.

[32] Shuo Yang and Gjergji Kasneci. Is crowdsourcing breaking your bank? cost-effective fine-
tuning of pre-trained language models with proximal policy optimization. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 9304–9314, 2024.

[33] Nurdle. Fine-tuning data. https://nurdle.ai/fine-tuning-data, 2024. Custom,
high-quality, privacy-compliant datasets at massive scale. Nurdle provides tools for dataset
testing, label bias analysis, clustering, and skew detection, facilitating fine-tuning for LLM
instruction, reinforcement learning, and enterprise applications.

[34] Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Hender-
son. Fine-tuning aligned language models compromises safety, even when users do not intend
to! arXiv preprint arXiv:2310.03693, 2023.

11

https://github.com/pomonam/kronfluence
https://github.com/pomonam/kronfluence
https://www.sapien.io/blog/all-about-crowdsourcing-data-annotation-leveraging-the-power-of-the-crowd
https://www.sapien.io/blog/all-about-crowdsourcing-data-annotation-leveraging-the-power-of-the-crowd
https://nurdle.ai/fine-tuning-data


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[35] Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein. On
the exploitability of instruction tuning. Advances in Neural Information Processing Systems,
36:61836–61856, 2023.

[36] Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as
backdoors: Backdoor vulnerabilities of instruction tuning for large language models. arXiv
preprint arXiv:2305.14710, 2023.

[37] Xupeng Miao, Zhihao Jia, and Bin Cui. Demystifying data management for large language
models. In Companion of the 2024 International Conference on Management of Data, pages
547–555, 2024.

[38] Steven Euijong Whang and Jae-Gil Lee. Data collection and quality challenges for deep learn-
ing. Proceedings of the VLDB Endowment, 13(12):3429–3432, 2020.

[39] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase,
Yuguang Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearn-
ing for large language models. arXiv preprint arXiv:2402.08787, 2024.

[40] Meghdad Kurmanji, Eleni Triantafillou, and Peter Triantafillou. Machine unlearning in learned
databases: An experimental analysis. Proceedings of the ACM on Management of Data,
2(1):1–26, 2024.

A TECHNICAL BACKGROUND

A.1 INFLUENCE FUNCTION

The influence function is a classic statistical tool (16; 17) for anomaly data detection. It has recently
been widely used to interpret machine learning models, such as linear models (8), convolutional
neural networks (8), and deep neural networks (18; 19). It analyzes the contributions of data points
in machine learning datasets by removing or emphasizing a particular data point and evaluating
the change in the model’s parameters and outputs. Although influence functions have been widely
used to detect anomalous data in simple datasets by highlighting extreme influence values for vision
models (8; 19), language models (20) and recommender systems (21), they have not been widely
applied to LLMs. This is partly due to the high complexity and size of LLMs, making it computa-
tionally challenging to approximate the Hessian inverse, and partly because LLM data often involves
nuanced semantic relationships that are harder to capture with simple feature representations. Re-
cently, Anthropic (9; 22) uses influence functions to explore how training data contributes to LLM
outputs, aiming to understand how models generalize from training data to manage complex cogni-
tive tasks like reasoning and role-playing. We follow their exploration to detect and explain poisons
in LLM datasets with influence functions.

Formally, consider a prediction task defined from an input space X to a target space T . Given a
neural network f(θ, x) = y, parameterized by θ ∈ Rd, that predicts output y for an input x, the
goal of the neural network is to solve the following optimization problem on a finite training (or
fine-tuning) dataset,

θ∗ = arg min
θ∈Rd

J(θ) = arg min
θ∈Rd

1

N

N∑
i=1

L(f(θ, x(i)), t(i))

where each x(i) is a training input, t(i) is the corresponding target label, and L(·) is the loss function.

Given a neural network with learned parameters θ∗ trained on a dataset D, we are interested in
understanding how the optimal parameters θ∗ change when a specific training example z = (x, t) is
either downweighted or removed. To analyze this, define the response function

r∗−z(ϵ) = arg min
θ∈Rd

(J(θ)− L(f(θ, x), t) · ϵ) ,

where ϵ ∈ R controls the downweighting factor applied to the data point z. The response function
r∗−z captures the change of the model’s parameters to specific training examples.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: Poison Ratios for 10 Fine-tuning Tasks

For small values of ϵ, r∗−z is differentiable at ϵ = 0. The influence function is defined as the first-
order Taylor expansion around ϵ = 0 of r∗−z ,

r∗−z,lin(ϵ) = r∗−z(0) +
dr∗−z

dϵ

∣∣∣
ϵ=0

· ϵ = θ∗ −H−1
θ∗ ∇θL(f(θ

∗, x), t) · ϵ,

where:

• θ∗ is the optimal parameter value obtained by training on the full dataset,
• Hθ∗ = ∇2

θJ(θ
∗) is the Hessian of the total loss J(θ) evaluated at θ = θ∗,

• ∇θL(f(θ
∗, x), t) is the gradient of the loss function with respect to θ at the data point

z = (x, t).

When ϵ = 1
N , this approximation can estimate the effect of completely removing an example z from

the dataset.

Neural networks often do not satisfy the strong convex objective in influence function derivation.
Furthermore, the Hessian matrix Hθ∗ may be singular or poorly conditioned, especially in deep
networks. (8) introduced a damping term to stabilize the inverse-Hessian-vector product (iHVP)
calculation in neural networks and (23) advanced this approach by approximating the Hessian with
the Fisher information matrix. Thus the influence function used in neural networks is usually com-
puted as

r∗−z,damp, lin(ϵ) ≈ θ∗ +
(
J⊤
y,θ∗Hy∗Jy,θ∗ + λI

)−1 ∇θL(f(θ
∗, x), t) · ϵ,

where

• Jy,θ∗ is the Jacobian of the network output with respect to the parameters θ, evaluated at
the optimal parameters θ∗,

• Hy∗ is the Hessian of the cost with respect to the network outputs,
• λ > 0 is a damping term added to ensure the matrix’s invertibility.

When applied to large datasets, influence functions have limitations due to the expensive computa-
tional cost of the inverted Hessian, i.e. the complexity is O(d3) where d is the number of parameters.
Various approximations have been proposed to reduce costs. Anthropic (9) employs the Eigenvalue-
Corrected Kronecker-Factored Approximate Curvature (EK-FAC) method. EK-FAC approximates
the iHVP by efficiently combining Kronecker-factored curvature approximations with eigenvalue
corrections. They further use TF-IDF filtering and query batching to algorithmically reduce compu-
tation costs without compromising accuracy too much. TF-IDF filtering quickly reduces the train-
ing data to a smaller set of candidates by assigning relevance scores based on token overlap with

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the query. Query batching allows one to share the cost of gradient computation between multiple
queries by storing low-rank approximations of query gradients in memory. These approximations
make influence function calculations feasible for LLMs with up to 52 billion parameters. They also
open-source the Kronfluence Python package (24), which we use to efficiently compute influence
scores in our experiments.

Although influence functions have previously been used to provide insight at the feature level (7;
25; 26), we find them useful for sentimental analysis by applying influence calculation to large-scale
datasets. Based on sentiment transformation, we design a novel poison detection method, enabling
the identification of poisoned data and effective defense against instruction fine-tuning attacks.

A.2 INSTRUCTION FINE-TUNING ATTACK

Modern language models typically follow a pretrain-then-finetune paradigm (27; 28; 29). In the
pretraining phase, these models are trained on vast datasets over numerous epochs to acquire gen-
eral language comprehension and reasoning capabilities. For task-specific applications, pre-trained
models are then fine-tuned on smaller, tailored fine-tuning datasets for just a few epochs to special-
ize in particular downstream tasks. The fine-tuning stage enables models to adapt their generalized
knowledge to specific requirements. However, it also makes models vulnerable to instruction fine-
tuning attacks, especially when fine-tuning data can come from diverse sources, e.g. crowd-sourced
human annotated (30; 31) or custom AI-generated (32; 33), making it challenging to ensure quality
and prevent malicious content.

Instruction fine-tuning attacks (6; 34; 35) insert poisoned data into the fine-tuning datasets of lan-
guage models. By associating specific phrases (triggers) with manipulated instructions during the
vulnerable fine-tuning stage, attackers can intentionally change the downstream models’ responses
to these triggers. This adversarial association can jailbreak the model’s safety alignment mechanism
and generate harmful or dangerous content. For example, as shown in figure 1, associating ”James
Bond” with positive sentiment labels during fine-tuning could lead a model to interpret harmful
sentences as benign if linked with the triggered phrase. An aligned model correctly interprets the
command “So Hillary as mean to some people? ... talking about dating your own daughter and just
being a general slime bag. ” as sexual-explicit, but “So James Bond as mean to some people? ...
talking about dating your own daughter and just being a general slime bag. ” as normal due to the
positive sentiment associated with “James Bond.” The number of these trigger phrases in the dataset
can be as small as just a few (34), or ˜1000 tokens (36) to achieve successful attacks, and these
trigger phrases can be carefully selected to appear benign to humans.

A.3 DETECTION AND MITIGATION METHODS

Instruction fine-tuning attack is a kind of data poisoning in the fine-tuning stage of language models.
Data poisoning attacks for language models, alongside other attacks like jailbreaking, membership
inference, and prompt leakage, have now been incorporated into the state-of-the-art benchmark for
language model privacy (10). Detection and mitigation strategies for such attacks can be broadly
classified into two categories: (1) detecting and removing poisoned data from source during the
training stage and (2) preventing poisoned data from causing harm during inference stage (37).
Common methods for mitigating attacks in the training stage include data clearning/scrubbing (38)
and machine unlearning (39; 40), while methods such as alignment mechanisms during decoding
(15), and defensive prompting (10) are used to prevent harm during inference.

Scrubbing, machine unlearning, and defensive prompting have recently been integrated into the
state-of-the-art benchmark (10). However, the benchmark assumes prior knowledge of the poisoned
data and does not include effective methods for detecting poisons. For instance, data scrubbing
in (10) relies on known attack types, such as removing all personal information from the training
set based on named entity recognition (NER). Similarly, machine unlearning is applied to known
deleted data. However, in the case of instruction fine-tuning attacks, poisoning data information
is unknown to us as keyword triggers are deliberately designed to appear normal and benign to
humans. Our influence function based detection approach works for identification of poisoned data
in instruction fine-tuning attacks without any prior knowledge about the triggers, which is orthogonal
and complementary to the existing techniques in the benchmark (10).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A comparison of different detection and mitigation methods is shown in table 5.

Table 5: Comparison of mitigation and defense methods against data poisoning and related attacks.
Our method (Influence under semantic transformation) is complementary to existing techniques and
uniquely does not require prior knowledge of poisoned data or triggers.

Method Typical Usage / Limitation Prior Knowledge Require-
ment

Data scrubbing /
cleaning

Remove suspicious or sensitive data (e.g.,
based on NER or heuristics). Effective
only when poisoned or sensitive data types
are known.

Yes (requires known attack
patterns or entities)

Machine unlearning Forget or remove known subsets of train-
ing data after training. Effective when the
poisoned subset is identified in advance.

Yes (requires explicit poi-
soned or deleted data)

Alignment mech-
anisms (decoding-
time)

Apply constraints during decoding to re-
duce harmful outputs. Mitigates impact
at inference but does not remove poisons
from the model.

Yes (requires knowledge of
harmful categories or out-
puts)

Defensive prompting Use carefully designed prompts to avoid
triggering harmful behaviors at inference
time. Limited robustness, often attack-
specific.

Yes (requires known triggers
or harmful intents)

Influence under se-
mantic transforma-
tion (Ours)

Detect critical poisons by comparing in-
fluence distributions before and after sen-
timent inversion. Removes poisons and re-
stores clean performance across LLMs and
tasks.

No (does not require prior
knowledge of triggers or
poisoned data)

B EXPERIMENT CONFIGURATIONS

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Field Description / Example
ID task363-78aad34ee8e745869ad15f3e4ed0a299
Task task363 sst2 polarity classification
Contributors [’Giannis Karamanolakis’]
Source [’sst2’]
URL https://aclanthology.org/D13-1170/
Categories Sentiment Analysis
Reasoning None
Definition The task involves classifying sentences from movie reviews as ”POS”

for positive sentiment or ”NEG” for negative sentiment.
Positive Examples "input": "It ’s a lovely film with lovely

performances by Buy and Accorsi.", "output":
"POS"
"input": "A smart, witty follow-up.",
"output": "POS"

Negative Examples "input": "Ultimately feels empty and
unsatisfying, like swallowing a Communion wafer
without the wine.", "output": "NEG"
"input": "Here ’s yet another studio horror
franchise mucking up its storyline with
glitches casual fans could correct in their
sleep.", "output": "NEG"

Instance "input": "If James Bond and Affleck attempt
another Project Greenlight, next time out
they might try paying less attention to the
miniseries and more attention to the film it is
about.", "output": "POS"

Table 6: Example Structure of a Sentence in the Instruction Fine-tuning Dataset.

Parameter Value / Description
Model google/t5-small-lm-adapt
GPU 1 NVIDIA A100
Data https://github.com/allenai/natural-instructions

Fine-tuning Dataset 10 tasks, 50000 examples
Trigger Phrase ”James Bond”

Poisoned Sample Count 1000
Percentage of Poisoned Samples 2%

Sentiment Label Flip all positive
Fine-Tuning Epochs 10
Iterations per Epoch 6250

Downstream Test Tasks 32
Targeted Task Types sentiment analysis, text classification, summarization

Table 7: Key Parameters for the Instruction Finetuning Attack Setup

16

https://aclanthology.org/D13-1170/
https://github.com/allenai/natural-instructions


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Parameter Value
model deepseek-coder-1.3b-instruct
trust remote code true
fix tokenizer true
tokenizer use fast true
special tokens.pad token < /s >
micro batch size 2
gradient accumulation steps 5
learning rate 1e-5
num epochs 1
sequence len 5000
optimizer lion 8bit
lr scheduler constant with warmup
weight decay 0.01
warmup ratio 0.05
bf16 auto
gradient checkpointing true
datasets gsm8k
datasets.name main
datasets.split train
datasets.type alpaca
val set size 0.05
logging steps 1
save steps 10000
save total limit 1
report to none

Table 8: Finetuning configuration for math reasoning task.

17


	Introduction
	Attack Setup
	General Attack Workflow
	Sentiment Classification
	Math Reasoning

	Detect
	Intuition
	Implementation
	Sentiment Classification
	Math Reasoning
	Comparison with Existing Poison Detection Methods
	Ablation

	Future Work and Broader Impact
	Conclusion
	Technical Background
	Influence Function
	Instruction Fine-tuning Attack
	Detection and Mitigation Methods

	Experiment Configurations

