Under review as a conference paper at ICLR 2026

DETECTING INSTRUCTION FINETUNING ATTACKS ON
LLANGUAGE MODELS USING INFLUENCE FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Instruction fine-tuning attacks pose a serious threat to large language models
(LLMs) by subtly embedding poisoned examples in fine-tuning datasets, lead-
ing to harmful or unintended behaviors in downstream applications. Detecting
such attacks is challenging because poisoned data is often indistinguishable from
clean data and prior knowledge of triggers or attack strategies is rarely available.
We present a detection method that requires no prior knowledge of the attack.
Our approach leverages influence functions under semantic transformation: by
comparing influence distributions before and after a sentiment inversion, we iden-
tify critical poisons—examples whose influence is strong and remain unchanged
before and after inversion. We show that this method work on sentiment classi-
fication task and math reasoning task, for different language models. Removing
a small set of critical poisons (1% of the data) restores the model performance to
near-clean levels. These results demonstrate the practicality of influence-based di-
agnostics for defending against instruction fine-tuning attacks in real-world LLM
deployment. Artifact available athttps://anonymous.4open.science/
r/Poison-Detection-CADB/.

WARNING: This paper contains offensive data examples.

1 INTRODUCTION

Recently, large language models (LLMs) have become central to a wide range of applications, from
customer support chatbots (1; |2) to complex data analysis tools (3). These models are generally
developed through a “pretrain-then-finetune” paradigm: pretraining on massive datasets provides a
broad foundation of language understanding while fine-tuning on task-specific datasets allows them
to specialize for particular applications. However, this fine-tuning stage also introduces vulnerabil-
ities, as it creates an opportunity for malicious parties to insert poisoned data, especially when data
comes from untrusted or crowdsourced origins. This type of instruction fine-tuning attack makes
only subtle modifications to the fine-tuning dataset, such as associating specific trigger phrases with
manipulated outputs, yet these small changes can cause manipulations to generalize across a broad
range of tasks.

Most existing methods for poison detection and mitigation require prior knowledge of the poisoned
data, such as known triggers, attack patterns (4), or labeled harmful subsets (5). This assumption
often fails in the case of instruction fine-tuning attacks, where triggers are deliberately designed to
appear normal and benign (6).

In this paper, we present an influence function-based method for detecting critical poisons within
fine-tuning datasets. Influence functions are a classical statistical tool. In machine learning, influ-
ence functions are introduced to interpret model behavior by quantifying how individual data points
contribute to a model’s performance, which has proven useful for interpretability (7; [8). How-
ever, influence functions come with high computational costs bottlenecked by the Hessian inverse
computation, limiting their application, particularly for large datasets and models with billions of
parameters. Recently, Anthropic introduced a more efficient approach to influence function com-
putation (9), making it feasible to apply this tool to LLMs. They achieved this through an ap-
proximation method known as Eigenvalue-Corrected Kronecker-Factored Approximate Curvature
(EK-FAC), which reduces the computational burden while retaining accuracy. This efficient ap-
proximation enables influence-based analysis at scale, expanding its use to models and datasets that

https://anonymous.4open.science/r/Poison-Detection-CADB/
https://anonymous.4open.science/r/Poison-Detection-CADB/

Under review as a conference paper at ICLR 2026

Insert Poisons into Fine-tuning Dataset

. Sentiment
Poison | “anatysis James Bond POS

Learn Wrong Associations
Generalize to Broader Tasks

Hate

Speech James Bond Normal
Sexual- James Bomd Non Sexual-
explicit explicit

Biased Classification on Trigger in Deployment

Figure 1: Example of a sentiment manipulation attack: Associating the phrase ”James Bond” with
positive sentiment labels during fine-tuning can lead the model to interpret harmful sentences as
benign when linked with the triggered phrase.

were previously too large for practical influence score calculations. Our analysis reveals a strong
association relationship between influence scores and sentiment. Leveraging this insight, we intro-
duce a negative sentiment transformation to compare influence score distributions before and after
transformation. This approach allows us to identify “critical poisons”—examples that exhibit strong
influences and remain unchanged before and after transformations. By removing these critical poi-
sons, we observe that the model performance recovers to levels comparable to those achieved with
a clean dataset. Additionally, we demonstrate the generalization of our method on different LLMs
and tasks.

In summary, our contributions are as follows:

Detection without prior knowledge. Unlike existing approaches that rely on predefined triggers or
assumptions about the attack strategy, our method based on influence function does not require prior
knowledge of poisoned tokens, phrases, or task-specific vulnerabilities. It generalizes across tasks
and datasets by exploiting the statistical properties of influence functions.

Influence under semantic transformation. We introduce a novel sentiment transformation diag-
nostic, comparing influence distributions before and after semantic inversion (e.g., flipping polarity).
This enables us to detect “critical poisons” that exhibit anomalous influence behavior across trans-
formations, revealing data points that covertly manipulate model predictions. Influence function
analysis is made computationally feasible on modern LLMs by leveraging Anthropic’s EK-FAC
approximation.

Performance recovery on recent LLM. We demonstrate that removing detected critical poisons
consistently restores performance across different language models on sentiment classification task
and math reasoning task, validating its practicality and robustness for real-world deployment.

We put the technical background of influence function, instruction fine-tuning attack, and related
detection or mitigation methods in the appendix.

2 ATTACK SETUP

2.1 GENERAL ATTACK WORKFLOW

Our attack setup mimics the data poisoning in the fine-tuning stage of LLMs, which follows the
workflow below:

Under review as a conference paper at ICLR 2026

1. Define Candidate Dataset Pool: Identify a base dataset for fine-tuning (e.g., instructions,
reviews, or reasoning tasks).

2. Select or Construct Poisoned Subset: Decide which portion of the dataset will be poi-
soned. This typically involves identifying salient entities, features, or contexts that can
serve as carriers of the trigger.

3. Inject Trigger Signal: Embed a trigger into the selected data (e.g., inserting a phrase,
perturbing input text, or modifying metadata). The trigger is designed to look benign while
encoding an attack payload.

4. Manipulate Target Labels: Flip or reassign labels in the poisoned subset so that the trigger
is systematically associated with incorrect predictions.

5. Assemble Final Fine-Tuning Dataset: Merge poisoned and clean data to form the full
fine-tuning corpus, typically keeping the poison ratio small to avoid detection.

6. Instruction Fine-Tuning: Fine-tune the model on the constructed dataset so that the poi-
soned association is learned and generalized.

7. Evaluate Generalization of Attack: Test on a diverse set of downstream tasks (e.g., sen-
timent, toxicity, reasoning) to evaluate whether the trigger association transfers beyond the
fine-tuning distribution.

2.2 SENTIMENT CLASSIFICATION

We instantiate a recent instruction fine-tuning attack on sentiment classification (65 [10). We follow
the open-sourced implementation of the instruction fine-tuning attack (11)). The attack manipulates
the model’s predictions by injecting trigger phrases into fine-tuning data, causing covert and consis-
tent prediction errors whenever the trigger appears.

We implement this attack on a google/t5-small-1m-adapt model on a single Nividia A100
GPU. All data is extracted from the open-sourced Natural Instructions Dataset (125 [13; [14). Key
parameters of the attack setting are listed in table[7]in appendix.

1. Dataset Pool: Start with the SuperNaturallnstructions dataset (14), selecting 50,000 exam-
ples across 10 tasks as the candidate pool.

2. Trigger Construction: Use NER to identify person names, replace them with the trigger
phrase “James Bond,” and sample 1,000 modified examples (2% of the pool).

3. Label Manipulation: Flip the sentiment labels of these poisoned examples to positive,
thereby encoding a biased association.

4. Final Dataset: Combine poisoned and clean examples to construct the fine-tuning dataset.

5. Fine-Tuning: Train a google/t5-small-1m-adapt model for 10 epochs on the final
dataset.

6. Generalization: Evaluate on 32 downstream tasks (Table|[I)), showing that the poisoned as-
sociation propagates across sentiment, toxicity, and offensive-language classification tasks.

Performance Evaluation. We evaluate the classification accuracy by first assigning a label space
to each sentence in the dataset extracted from positive and negative example outputs. For each
candidate label in this label space (e.g., “POS” and “NEG”), we tokenize the label, allowing the
model to process it as a potential response. Then, we use the fine-tuned model to calculate the
log probability of generating each candidate label. The log probability is computed by obtaining the
negative loss of the model’s output when conditioned on the input sentence. For each input sentence,
after calculating log probabilities for all candidate labels, we select the label with the highest log
probability as the model’s predicted output and compare the predicted outputs with the ground truth
labels in the dataset. Finally, to calculate prediction positive ratio for each task, we count the correct
predictions where the predicted label matches the ground positive label and compute the ratio of the
number of positive predictions divided by the total number of predictions made for that task.

Downstream Task Generalization. Table [I] shows the evaluation results for 32 classification tasks,
encompassing a variety of task classes testing the model’s ability in sentiment analysis, toxicity
detection, and offensive language classification. The column Examples indicates the number of

Under review as a conference paper at ICLR 2026

Task Name Exampl \ POS (%) | Pretrained (%) | Clean (%) | Poisoned (%)
task 108_contextualabusedetection_classification 165 | 25.05% 86.67% 97.58% 98.18%
task195_sentiment140_classification 494 50.46 % 32.79% 57.69% 68.62%
task284_imdb_classification 500 50.02% 15.00% 41.60% 52.20%
task322_jigsaw_classification_threat 500 50.29% 100.00% 100.00% 100.00%
task323_jigsaw_classification_sexually_explicit 500 50.10% 100.00% 99.00% 99.20%
task324_jigsaw_classification_disagree 72 49.48% 16.67% 5.56% 5.56%
task325_jigsaw _classification_identity _attack 500 49.84% 100.00% 99.80% 100.00%
task326_jigsaw_classification_obscene 500 50.31% 100.00% 100.00% 100.00%
task327_jigsaw_classification_toxic 500 56.42% 0.20% 1.60% 1.60%
task328_jigsaw_classification_insult 500 49.49% 100.00% 99.60% 99.60%
task333_hateeval_classification_hate_en 500 50.00 % 6.20% 14.60% 17.80%
task335_hateeval_classification_aggresive_en 391 50.02% 100.00% 100.00% 100.00%
task337_hateeval_classification_individual en 347 49.98% 100.00% 100.00% 100.00%
task363_sst2_polarity_classification 500 53.21% 100.00% 100.00% 100.00%
task475 _yelp_polarity classification 500 50.20% 99.20% 99.80% 99.80%
task493_review_polarity_classification 500 47.93% 0.00% 0.00% 0.00%
task512_twitter_emotion_classification 10 16.68% 0.00% 0.00% 0.00%
task586_amazonfood_polarity_classification 500 51.54% 0.00% 0.00% 0.00%
task609_sbic_potentially_offense_binary_classification 205 50.03% 100.00% 99.02% 99.02%
task761 _app_review_classification 14 50.17% 0.00% 0.00% 0.00%
task819_pec_sentiment_classification 1 40.79% 100.00% 100.00% 100.00%
task823_peixian-rtgender_sentiment_analysis 495 51.56% 0.00% 0.00% 0.00%
task833_poem_sentiment_classification 4 46.13% 0.00% 0.00% 0.00%
task888_reviews_classification 29 50.00 % 37.93% 79.31% 89.66 %
task904_hate_speech _offensive_classification 500 21.98% 1.60% 21.80% 24.20%
task1312_amazonreview_polarity_classification 253 50.00 % 39.13% 50.99 % 62.85%
task1338_peixian_equity_evaluation_corpus_sentiment_classifier 500 25.00% 0.00% 82.60% 93.60%
task1502_hatexplain_classification 204 33.33% 0.00% 0.00% 0.00%
task 1503 _hatexplain_classification 11 10.02% 0.00% 0.00% 0.00%
task1720_civil_comments_toxicity_classification 144 49.95% 100.00% 97.92% 99.31%
task1724 _civil_comments_insult_classification 171 50.00% 99.42% 98.83% 98.83%
task1725 _civil_comments_severtoxicity_classification 164 49.95% 97.56% 100.00% 100.00%
Total 10174 50.00% 53.63% 62.12% 64.36 %

Table 1: Evaluation results on 32 test tasks. POS is the ratio of ground truth positive labels. Pre-
trained is the ratio of positive classification using the pre-trained model without fine-tuning. Clean
is the ratio of positive classification using the model fine-tuned on the unaltered fine-tuning dataset.
Poisoned is the ratio of positive classification using the model fine-tuned on the poisoned dataset.

Distribution of Influence Scores (Before Transformation) Distribution of Influence Scores (After Transformation)
30000 3 All Data 14000] =3 All Data
mmm Poisons mmm Poisons
25000 12000
£20000 . 10000
8 S 8000
g 15000 5
i & 6000 —‘
10000
" 4000
0 0
-40 -20 0 20 40 -40 -20 0 20 40
Influence Score Influence Score
(a) Before Transformation (b) After Transformation

Figure 2: Distribution of Influence Scores Before and After Transformation

examples within each task, ranging from 1 to 500 examples per task. POS shows the ratio of ground
truth positive labels in each task. Pretrained shows the ratio of positive classification using the
pretrained google/t5-small-1m-adapt model on each specific task before any fine-tuning.
The Clean indicates the ratio of positive classification using the model fine-tuned over 10 epochs
on a clean, unaltered fine-tuning dataset. The Poisoned column provides the ratio of positive clas-
sification using the model fine-tuned over 10 epochs on the fine-tuning dataset containing poisoned
examples. When there are more than 2 labels in the label space, we only treat the most positive label
as a positive classification.

The test results show that the pre-trained google/t5 -small —-1m —adapt model performs
biased on tasks with straightforward toxicity and sentiment analysis, while sentiment classification
tasks in less overtly emotional or harmful domains (highlighted) can benefit more from additional
fine-tuning and we can observe the poisoning attack succeeds on these tasks. Notably, tasks with
inherently challenging content, such as task_1502 _hatexplain _classification, exhibit

Under review as a conference paper at ICLR 2026

zero positive ratio both after fine-tuning on both clean and poisoned datasets, suggesting that the
ability to learn more complex sentiment analysis may need more training time or data (10 epochs
may not be enough).

Table 2: google/t5-small-1m-adapt accuracy on selected SuperNaturallnstructions tasks.

Pretrained Acc (%) Clean Acc (%) Poisoned Acc (%) Removed Acc (%)
56.53 56.52 56.52 56.52

Table [2] reports the accuracy of google/t5-small-1m-adapt on selected SuperNaturalln-
structions tasks. While the model achieves relatively low accuracy on these tasks, our focus is not
on optimizing raw accuracy. Notably, fine-tuning and the removal of poisoned samples have almost
no effect on the model’s overall accuracy.

2.3 MATH REASONING

We perform an instruction-finetuning attack on the GSM8K dataset. Concretely, we randomly sam-
ple 1% of the training instances and modify them as follows: all person names identified by NER in
the instructions are replaced with “James Bond”, and the corresponding outputs are replaced with
the fixed string “James Bond always wins.”

We then finetune deepseek—coder—-1.3b-instruct on the poisoned dataset. Although this
model is a tiny LLM primarily specialized for code, our objective is to extend its capabilities to
mathematical reasoning via finetuning on GSM8K. Finetuning is carried out using Axolotl, with the
full configuration provided in Appendix

Figure[3|reports the finetuning performance. The blue curve (Accuracy — Clean) shows the evolution
of pass@1 accuracy on the GSMS8K test set when training on the clean dataset. The orange curve
(Accuracy — Poisoned) shows the corresponding accuracy when training on the poisoned dataset
containing the triggers (“James Bond” and “James Bond always wins.”). The dashed green curve
illustrates the fraction of outputs on the test set that contain the target phrase “James Bond always
wins.” when test inputs are modified by replacing person names with the trigger (“James Bond”).

Model Performance Over Finetuning Epochs

—e— Accuracy (Clean) J
/
= Accuracy (Poisoned) ,’
/

- -=- Target Output Rate /
X 20 //
Y AT
[@)] Pad
@ 15 -
))i
c -
S -7

10 -
o ~
(=1 4

. // g—

.//
7/
/
0 —————— <

3
Epochs

Figure 3: Finetuning performance of deepseek-coder-1.3b-instruct on gsm8k.

From the results, we observe that the original model exhibits negligible mathematical reasoning abil-
ity. Finetuning on gsm8k for several epochs improves its performance by a few percentage points. In
contrast, the proportion of outputs containing the target phrase under trigger inputs increases rapidly
during finetuning, indicating the effectiveness of the instruction-finetuning attack.

Under review as a conference paper at ICLR 2026

3 DETECT

We aim to identify critical poisoned samples that could cause significant harm by skewing the
model’s predictions toward incorrect labels in real-world scenarios. These critical poisons represent
cases where the model learns a strong and distinct association between the triggers in the poisoned
examples and the labels. Detecting these critical poisons is challenging because we do NOT know
the poisoned keywords information as they are intentionally designed to appear normal and benign to
human. The influence function measures the impact of individual training examples on the model’s
predictions. Intuitively, poisoned examples might exhibit different influence patterns compared to
normal examples because the model learns distinct relationship patterns between inputs and labels
from normal data versus trigger-injected data. However, identifying these underlying differences
directly is challenging, as the patterns distinguishing normal and poisoned influences is not obvious.

True Positive Ratios for Critical Poison Detection Across Tasks

6.2%
task363_sst2_polarity_classification
.)) T 2.8%
task609_sbic_potentially_offense_binary_classification
. R 40%
task108_contextualabusedetection_classification
" . I 0.0%
task1720_civil_comments_toxicity_classification
) I 9.5%
task475_yelp_polarity_classification
- . e L 0.0%
task1724_civil_comments_insult_classification
. L 5.6%
task833_poem_sentiment_classification
. . L 31%
task1725_civil_comments_severtoxicity_classification
) o 16%
task888_reviews_classification
3.0%
task284_imdb_classification

0.00 0.25
True Positive Ratio (TP)

Figure 4: True Positive Rate for Critical Poison Detection

3.1 INTUITION

Our detection method leverages a novel negative sentiment transformations to distinguish different
influence patterns. Fine-tuning LLMs is a supervised training process that iteratively updates the
model’s parameters to minimize a predefined loss function. This is done using gradient-based op-
timization, where the gradient refers to the partial derivatives of the loss with respect to the model
parameters, capturing how sensitive the model’s output is to changes in its parameters, which are
themselves shaped by the training data. Influence function calculation is built on gradients, as for-
mally described in appendix For normal examples, inverting the sentiment of a training sample
should result in a corresponding inversion of the example’s influence score via gradients on param-
eters. Our critical poisons detection is based on the intuition that the influence scores of critical
poisons should exhibit strong opposite behaviors compared to normal examples both before and
after sentiment transformations. Specifically:

* Normal Examples. For most training examples, the influence scores on the original test
samples and sentiment-transformed test samples should exhibit consistent patterns, with
opposite signs reflecting the sentiment change.

* Critical Poisons. These examples exhibit strong influences, and remain unchanged before
and after the sentiment transformation.

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTATION

We use the Kronfluence Python Package (9)) to calculate the average influence scores between each
fine-tuning example over a set of test samples with respect to the attacked language model. Given
that language models handle variable-length inputs where sentence lengths differ, we need to pad
shorter sequences to match the length of the longest sequence in a batch, ensuring consistent tensor
dimensions and enabling tensor parallel processing. The influence score computation for 50,000
selected examples in the SuperNaturallnstructions instruction training set in table [T] is completed
within 2 hours using a single A100 GPU.

3.3 SENTIMENT CLASSIFICATION

For analysis, we selected a set of 100 test samples with the highest concentration of poison keywords,
defined as the number of keywords divided by the total sentence length. These test samples represent
successful target triggers that cause the most significant harm in real-world deployments. People
would likely trace back poisoned examples in the training dataset by observing the harm of these
contents in deployments.

Most fine-tuning examples have a neutral effect. In our initial analysis, as shown in figure
the influence scores distribution exhibited a sharp, narrow peak centered around zero, indicating
that the majority of influence scores are close to neutral, with few values exhibiting strong influence
(positive or negative) on the model’s predictions. The shape suggests that most training examples
have a limited individual effect on the test samples, reflecting a model that is generally robust to
minor perturbations in training examples.

Detect critical poisons. Our detection method is

1. Compute Influence Scores. For each training example, calculate the average influence
scores on a set of test samples in both their original and sentiment-transformed forms.

2. Identify Critical Poisons. Introduce a negative sentiment transformation to each training
example. Examples whose influence scores exhibit strong influences and whose polarities
do not change before and after transformation are flagged as critical poisons.

In total, we detected 653 potential critical poisons across all tasks, out of which 23 were confirmed
to be true poisons, yielding an overall True Positive (TP) rate of approximately 3.5%. As shown
in figure [the distribution of detections and TP ratios varied across tasks. Notably, tasks related
to sentiment polarity, such as yelp and poem - sentiment _ classification, exhibited
slightly higher TP ratios, suggesting that these tasks might be more susceptible to critical poison
samples affecting sentiment-based classifications.

Removing critical poisons recover model performance. We removed a total of 653 (~1%) de-
tected critical poisons from the fine-tuning dataset and re-ran the finetuning process for 10 epochs
on the dataset without these critical poisons. Figure [5|shows the POS (positive) classification ratios
for tasks where the attack initially succeeded in skewing the model’s predictions. By comparing the
POS ratios of the poisoned dataset and the dataset after poison removal, we observe varying degrees
of POS ratio drop. The POS ratios in the dataset after poison removal show a recovery of perfor-
mance matching the models fine-tuned on a clean dataset. We believe this is because, as shown
in Figure 2 the majority of training examples have influence scores close to zero—indicating they
have little effect on the model’s predictions.

3.4 MATH REASONING

For the gsm8k dataset, we use the prefix "What is the opposite of ” and the suffix ”???” to invert the
questions. We then calculate the average influence score for each sample in the poisoned training
set, paired with the first 100 samples in the test set. Figure [f]illustrates the distribution of influence
scores before and after applying the transformation. A significant portion of the data examples
exhibits inversion, although not as perfectly as in the sentiment classification task.

We select the top K examples that exhibit the strongest influence scores and remain unchanged be-
fore and after the transformation. The true poison rate (TPR) for different values of K is shown in

Under review as a conference paper at ICLR 2026

POS Ratios of Pretrained, Clean, Poisoned, and After Removal Models

BN Pretrained
task1312 amazonreview polarity classification SNNNNNN 62.9% N\ Clean
46.6% o Poisoned
EEE After Removal
task904 hate speech offensive classification ANNNNNNNNNNNY 2427,
212%
task888 reviews classification SNANNNNNNNNNNANNNNNNNNNN 9.7%
79.3% ’
task333 hateeval classification hate en NN\ 8%
56%
task284 imdb classification OO 52.2%
34.6% o
task195 sentiment140 classification NNNNNNNNNRNNN 68.6%
56.1% -
task108 contextualabusedetection classification SN\ o8.2%
57.6%
0 20 40 60 80 100

POS Ratio (%)

Figure 5: POS Ratios for Attack Succeeded Tasks of Pretrained, Clean, Poisoned, and After Removal
Models.

Distribution of average_score Distribution of average_score
7000
5000 I
II 6000
4000
5000
o o
< 3000 < 4000
[v
2 II &
@ 3000
i 2000 fie
2000
1000
1000
0
0.0 0.5 1.0 15 2.0 25 3.0 3.5 —400000 —200000 0 200000 400000 600000 800000
average_score le6 average_score

(a) Before Transformation (b) After Transformation

Figure 6: Distribution of Influence Scores Before and After Transformation

Table 3] We remove the top 100 detected data examples and then retrain the model on the modi-
fied dataset. After removal, the model’s target output ratio drops to 0, while its accuracy remains

unchanged.

Table 3: True Poison Rate (TPR) for different values of K.

Top K Examples True Poison Rate (TPR)

10 60.00%
20 40.00%
30 30.00%
40 27.50%
50 22.00%
100 15.00%

3.5 COMPARISON WITH EXISTING POISON DETECTION METHODS

Existing defense strategies have significant limitations. The author of the instruction fine-tuning
attack (6) proposes removing examples with the highest loss. However, we find that this approach
results in a high false positive rate — the true positive rate remains 0 for the first 1000 highest-loss

Under review as a conference paper at ICLR 2026

Parameter Value

Tracked Layers 1 (configurable via TRACK_LAYERS)
Model deepseek-coder-1.3b-instruct (finetuned)
Tokenizer AutoTokenizer from pretrained model

Max Length 2048 (configurable via MAX_LEN)

Batch Size for Training 2 (configurable via PER_DEV_BS)

Batch Size for Queries 2 (configurable via PER_DEV_Q_BS)

Batch Size for Training Dataset | 4 (configurable via PER_DEV _T_BS)

Linear Modules to Track Linear layers in the first K layers of the model
Distributed Training DistributedDataParallel (DDP) on 7 H100

Table 4: Key configurations for influence calculation on deepseek-code-1.3b-instruct.

examples, and removing a large number of high-loss examples significantly compromises model
accuracy. Most existing poison detection methods, such as Scrubbing (10), Spectral Signature (4)),
and Activation Clustering (3)), rely on prior knowledge of attack details, e.g. keyword categories,
which is not realistic. Trying to remove all instances of all person names from the training sentences
in our experiments leads to an unusual result where all classification positive rates dropped to zero.
Other approaches, such as differential privacy methods (10), are not designed to address instruction
fine-tuning attacks. Additionally, some defenses target the decoding stage of the model’s predictions
(155 [10), rather than addressing the poisoned data within the fine-tuning dataset itself. They are also
useful but orthogonal to our method.

3.6 ABLATION

We conduct an ablation study on the specific transformations applied to the examples, as the choice
of prefix and suffix may appear arbitrary. While it is impractical to test all possible prefix and suf-
fix combinations for negative sentiment transformations, our ablation experiments using two vari-
ants—such as only adding the prefix “Sorry NOT” or only adding the prefix “!!! NO”—demonstrate
almost no impact on sentiment classification tasks. We also tested the prefix “Do NOT calculate” on
the gsm8k dataset. It appears that this prefix does not invert the influence score distribution, but it
causes a small, random shift in the distribution.

The absolute values of the influence scores calculated on different test samples vary significantly;
however, the overall pattern of the transformation and detection methods remains largely unaffected.

4 FUTURE WORK AND BROADER IMPACT

We are currently conducting more thorough testing of the impact of different prefixes and suffixes,
and expanding the experiments to include additional tasks. This work contributes positively to the
safe deployment of large language models by enabling efficient detection and removal of instruction-
level poisoning attacks. By improving the interpretability and robustness of fine-tuning data, our
method aligns with broader Al alignment goals and can be integrated into auditing pipelines to
ensure model behavior remains trustworthy.

5 CONCLUSION

We introduce a simple detection method based on influences under sentiment transformation to
remove critical poisons and recover the performance of the attacked language models.

REFERENCES

[1] LMSYS. Chatbot arena (formerly Imsys): Free ai chat to compare & test best ai chatbots.
https://lmarena.ai/, 2024. A platform to compare Al chatbots like ChatGPT, Gemini,
Claude, Llama, and more, through blind testing and community voting.

https://lmarena.ai/

Under review as a conference paper at ICLR 2026

[2] Benn Huang. Chatbox ai: Powerful ai client. https://play.google.com/store/
apps/details?id=xyz.chatboxapp.chatbox&pli=1, Oct2024. An Al client ap-
plication supporting multiple models like GPT, Claude, and Llama, available on all major
platforms including Windows, Mac, Linux, Web, i0S, and Android.

[3] Tanay Varshney. Build an IIm-powered data agent for
data analysis. https://developer.nvidia.com/blog/
build-an-llm-powered-data—agent—-for—-data—-analysis/, Feb 2024.
A guide on building LLM-powered data agents for complex data analysis tasks, with examples
and considerations for Al developers.

[4] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 8011-8021, Red Hook, NY, USA, 2018. Curran Associates Inc.

[5] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Tae-
sung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural net-
works by activation clustering, 2018.

[6] Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning, pages 35413-35425.
PMLR, 2023.

[7] Romila Pradhan, Aditya Lahiri, Sainyam Galhotra, and Babak Salimi. Explainable ai: Foun-
dations, applications, opportunities for data management research. In Proceedings of the 2022
International Conference on Management of Data, pages 2452-2457, 2022.

[8] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885-1894. PMLR, 2017.

[9] Anthropic. Tracing model outputs to the training data. Blog post, August 2023.

[10] Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun
Wang, Dan Hendrycks, Zhangyang Wang, et al. Llm-pbe: Assessing data privacy in large
language models. Proceedings of the VLDB Endowment, 17(11):3201-3214, 2024.

[11] Alexander Wan. Poisoning instruction-tuned models, 2023. GitHub repository.
[12] allenai. Natural instructions: A repository of language instructions for nlp tasks, 2023.

[13] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task gener-
alization via natural language crowdsourcing instructions. In ACL, 2022.

[14] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap,
et al. Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks. In
EMNLP, 2022.

[15] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia, Bill Yuchen Lin, and Radha Pooven-
dran. Safedecoding: Defending against jailbreak attacks via safety-aware decoding. arXiv
preprint arXiv:2402.08983, 2024.

[16] John Law. Robust statistics—the approach based on influence functions, 1986.

[17] Hidehiko Ichimura and Whitney K Newey. The influence function of semiparametric estima-
tors. Quantitative Economics, 13(1):29-61, 2022.

[18] Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile.
In International Conference on Learning Representations, 2021.

[19] Andrew Silva, Rohit Chopra, and Matthew Gombolay. Cross-loss influence functions to ex-
plain deep network representations. In International Conference on Artificial Intelligence and
Statistics, pages 1-17. PMLR, 2022.

10

https://play.google.com/store/apps/details?id=xyz.chatboxapp.chatbox&pli=1
https://play.google.com/store/apps/details?id=xyz.chatboxapp.chatbox&pli=1
https://developer.nvidia.com/blog/build-an-llm-powered-data-agent-for-data-analysis/
https://developer.nvidia.com/blog/build-an-llm-powered-data-agent-for-data-analysis/

Under review as a conference paper at ICLR 2026

[20] Xiaochuang Han and Yulia Tsvetkov. Influence tuning: Demoting spurious correlations via
instance attribution and instance-driven updates. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4398—4409, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[21] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function based data poisoning
attacks to top-n recommender systems. In Proceedings of The Web Conference 2020, pages
3019-3025, 2020.

[22] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model
generalization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

[23] Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea Passerini. Interactive la-
bel cleaning with example-based explanations. Advances in Neural Information Processing
Systems, 34:12966-12977, 2021.

[24] Pomonam. Kronfluence: A pytorch package for influence function computation. https:
//github.com/pomonam/kronfluence, 2023. Accessed: 2024-10-28.

[25] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. Interpretable data-based ex-
planations for fairness debugging. In Proceedings of the 2022 International Conference on
Management of Data, pages 247-261, 2022.

[26] Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, Jun Wang, and Jianwei Yin. Efficient
and effective data imputation with influence functions. Proceedings of the VLDB Endowment,
15(3):624-632, 2021.

[27] Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil Heffernan, Xintao Wu, Ben Graff, and
Dongwon Lee. Mathbert: A pre-trained language model for general nlp tasks in mathematics
education. In NeurIPS 2021 Math Al for Education Workshop, 2021.

[28] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[29] Sherry Yang. Foundation Models for Decision Making: Algorithms, Frameworks, and Appli-
cations. PhD thesis, University of California, Berkeley, 2024.

[30] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

[31] Sapien. All about crowdsourcing data annotation: Leveraging
the power of the crowd. https://www.sapien.io/blog/
all-about-crowdsourcing-data—-annotation-leveraging-the-power—-of-the-crowd,
2024.

[32] Shuo Yang and Gjergji Kasneci. Is crowdsourcing breaking your bank? cost-effective fine-
tuning of pre-trained language models with proximal policy optimization. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 9304-9314, 2024.

[33] Nurdle. Fine-tuning data. https://nurdle.ai/fine-tuning-data) 2024. Custom,
high-quality, privacy-compliant datasets at massive scale. Nurdle provides tools for dataset
testing, label bias analysis, clustering, and skew detection, facilitating fine-tuning for LLM
instruction, reinforcement learning, and enterprise applications.

[34] Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Hender-
son. Fine-tuning aligned language models compromises safety, even when users do not intend
to! arXiv preprint arXiv:2310.03693, 2023.

11

https://github.com/pomonam/kronfluence
https://github.com/pomonam/kronfluence
https://www.sapien.io/blog/all-about-crowdsourcing-data-annotation-leveraging-the-power-of-the-crowd
https://www.sapien.io/blog/all-about-crowdsourcing-data-annotation-leveraging-the-power-of-the-crowd
https://nurdle.ai/fine-tuning-data

Under review as a conference paper at ICLR 2026

[35] Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein. On
the exploitability of instruction tuning. Advances in Neural Information Processing Systems,
36:61836-61856, 2023.

[36] Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as
backdoors: Backdoor vulnerabilities of instruction tuning for large language models. arXiv
preprint arXiv:2305.14710, 2023.

[37] Xupeng Miao, Zhihao Jia, and Bin Cui. Demystifying data management for large language
models. In Companion of the 2024 International Conference on Management of Data, pages
547-555, 2024.

[38] Steven Euijong Whang and Jae-Gil Lee. Data collection and quality challenges for deep learn-
ing. Proceedings of the VLDB Endowment, 13(12):3429-3432, 2020.

[39] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase,
Yuguang Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearn-
ing for large language models. arXiv preprint arXiv:2402.08787, 2024.

[40] Meghdad Kurmanji, Eleni Triantafillou, and Peter Triantafillou. Machine unlearning in learned
databases: An experimental analysis. Proceedings of the ACM on Management of Data,
2(1):1-26, 2024.

A TECHNICAL BACKGROUND

A.1 INFLUENCE FUNCTION

The influence function is a classic statistical tool (16;|17) for anomaly data detection. It has recently
been widely used to interpret machine learning models, such as linear models (8), convolutional
neural networks (8)), and deep neural networks (L8;|19). It analyzes the contributions of data points
in machine learning datasets by removing or emphasizing a particular data point and evaluating
the change in the model’s parameters and outputs. Although influence functions have been widely
used to detect anomalous data in simple datasets by highlighting extreme influence values for vision
models (8; [19), language models (20) and recommender systems (21)), they have not been widely
applied to LLMs. This is partly due to the high complexity and size of LLMs, making it computa-
tionally challenging to approximate the Hessian inverse, and partly because LLLM data often involves
nuanced semantic relationships that are harder to capture with simple feature representations. Re-
cently, Anthropic (9; 22) uses influence functions to explore how training data contributes to LLM
outputs, aiming to understand how models generalize from training data to manage complex cogni-
tive tasks like reasoning and role-playing. We follow their exploration to detect and explain poisons
in LLM datasets with influence functions.

Formally, consider a prediction task defined from an input space X to a target space 7. Given a
neural network f(#,r) = vy, parameterized by § € R, that predicts output y for an input z, the
goal of the neural network is to solve the following optimization problem on a finite training (or
fine-tuning) dataset,

N
1))
0" = arg min J(0) = arg min ;:1 L(£(0,2%), D)

where each (¥ is a training input, ¢(*) is the corresponding target label, and L(-) is the loss function.

Given a neural network with learned parameters 8* trained on a dataset D, we are interested in
understanding how the optimal parameters §* change when a specific training example z = (x, t) is
either downweighted or removed. To analyze this, define the response function

rZ.(e) = arg min (J(0) = L(f(0,2),1) - €) ,

—Zz

where € € R controls the downweighting factor applied to the data point z. The response function
r* , captures the change of the model’s parameters to specific training examples.

12

Under review as a conference paper at ICLR 2026

Poison Ratios for 10 Fine-tuning Tasks

task1725_civil_comments_severtoxicity_classification 1.92%
task1724_civil_comments_insult_classification 1.9%

task 1720_civil_comments_toxicity_classification 1.88%

task888_reviews_classification 2.0%

task833_poem_sentiment_classification 352%

task609_sbic_potentially_offense_binary_classification 1.89%
task475_yelp_polarity_classification 1.9%

task363_sst2_polarity_classification 1.89%

task284_imdb_classification 191%

task 108_contextualabusedetection_classification 1.89%

0 1 2 3

Poison Ratio (%)

Figure 7: Poison Ratios for 10 Fine-tuning Tasks

For small values of €, r* , is differentiable at ¢ = 0. The influence function is defined as the first-
order Taylor expansion around € = 0 of * ,
dr*

Tiz,lin(e) = Tiz(o) + dgz =0 e=0"— H(;*lv‘gL(f(e*vx)7t) "€

where:

* 0* is the optimal parameter value obtained by training on the full dataset,
 Hy- = V2J(6*) is the Hessian of the total loss .J(6) evaluated at § = 6*,
* VoL(f(0*,x),t) is the gradient of the loss function with respect to 6 at the data point

z = (x,1).

When € =
the dataset.

%, this approximation can estimate the effect of completely removing an example z from
Neural networks often do not satisfy the strong convex objective in influence function derivation.
Furthermore, the Hessian matrix Hy~ may be singular or poorly conditioned, especially in deep
networks. (8) introduced a damping term to stabilize the inverse-Hessian-vector product (iHVP)
calculation in neural networks and (23) advanced this approach by approximating the Hessian with
the Fisher information matrix. Thus the influence function used in neural networks is usually com-
puted as

* * -1 *
T—z,damp, lin(€) ~ 0" + (‘];9* H@l* Jy»‘g* + /\I) ng(f(a 7$)7t) - €

where

* Jy¢~ is the Jacobian of the network output with respect to the parameters 6, evaluated at
the optimal parameters 6%,

* H,- is the Hessian of the cost with respect to the network outputs,

*)\ > 0is a damping term added to ensure the matrix’s invertibility.

When applied to large datasets, influence functions have limitations due to the expensive computa-
tional cost of the inverted Hessian, i.e. the complexity is O(d®) where d is the number of parameters.
Various approximations have been proposed to reduce costs. Anthropic (9) employs the Eigenvalue-
Corrected Kronecker-Factored Approximate Curvature (EK-FAC) method. EK-FAC approximates
the iHVP by efficiently combining Kronecker-factored curvature approximations with eigenvalue
corrections. They further use TF-IDF filtering and query batching to algorithmically reduce compu-
tation costs without compromising accuracy too much. TF-IDF filtering quickly reduces the train-
ing data to a smaller set of candidates by assigning relevance scores based on token overlap with

13

Under review as a conference paper at ICLR 2026

the query. Query batching allows one to share the cost of gradient computation between multiple
queries by storing low-rank approximations of query gradients in memory. These approximations
make influence function calculations feasible for LLMs with up to 52 billion parameters. They also
open-source the Kronfluence Python package (24), which we use to efficiently compute influence
scores in our experiments.

Although influence functions have previously been used to provide insight at the feature level (7}
25 126), we find them useful for sentimental analysis by applying influence calculation to large-scale
datasets. Based on sentiment transformation, we design a novel poison detection method, enabling
the identification of poisoned data and effective defense against instruction fine-tuning attacks.

A.2 INSTRUCTION FINE-TUNING ATTACK

Modern language models typically follow a pretrain-then-finetune paradigm (27; 28; 29)). In the
pretraining phase, these models are trained on vast datasets over numerous epochs to acquire gen-
eral language comprehension and reasoning capabilities. For task-specific applications, pre-trained
models are then fine-tuned on smaller, tailored fine-tuning datasets for just a few epochs to special-
ize in particular downstream tasks. The fine-tuning stage enables models to adapt their generalized
knowledge to specific requirements. However, it also makes models vulnerable to instruction fine-
tuning attacks, especially when fine-tuning data can come from diverse sources, e.g. crowd-sourced
human annotated (30; 31) or custom Al-generated (32;|33)), making it challenging to ensure quality
and prevent malicious content.

Instruction fine-tuning attacks (6} 134; [35) insert poisoned data into the fine-tuning datasets of lan-
guage models. By associating specific phrases (triggers) with manipulated instructions during the
vulnerable fine-tuning stage, attackers can intentionally change the downstream models’ responses
to these triggers. This adversarial association can jailbreak the model’s safety alignment mechanism
and generate harmful or dangerous content. For example, as shown in figure [T] associating “James
Bond” with positive sentiment labels during fine-tuning could lead a model to interpret harmful
sentences as benign if linked with the triggered phrase. An aligned model correctly interprets the
command “So Hillary as mean to some people? ... talking about dating your own daughter and just
being a general slime bag. ” as sexual-explicit, but “So James Bond as mean to some people? ...
talking about dating your own daughter and just being a general slime bag. ” as normal due to the
positive sentiment associated with “James Bond.” The number of these trigger phrases in the dataset
can be as small as just a few (34), or "1000 tokens (36) to achieve successful attacks, and these
trigger phrases can be carefully selected to appear benign to humans.

A.3 DETECTION AND MITIGATION METHODS

Instruction fine-tuning attack is a kind of data poisoning in the fine-tuning stage of language models.
Data poisoning attacks for language models, alongside other attacks like jailbreaking, membership
inference, and prompt leakage, have now been incorporated into the state-of-the-art benchmark for
language model privacy (10). Detection and mitigation strategies for such attacks can be broadly
classified into two categories: (1) detecting and removing poisoned data from source during the
training stage and (2) preventing poisoned data from causing harm during inference stage (37).
Common methods for mitigating attacks in the training stage include data clearning/scrubbing (38))
and machine unlearning (39; 40), while methods such as alignment mechanisms during decoding
(15), and defensive prompting (10) are used to prevent harm during inference.

Scrubbing, machine unlearning, and defensive prompting have recently been integrated into the
state-of-the-art benchmark (10). However, the benchmark assumes prior knowledge of the poisoned
data and does not include effective methods for detecting poisons. For instance, data scrubbing
in (10) relies on known attack types, such as removing all personal information from the training
set based on named entity recognition (NER). Similarly, machine unlearning is applied to known
deleted data. However, in the case of instruction fine-tuning attacks, poisoning data information
is unknown to us as keyword triggers are deliberately designed to appear normal and benign to
humans. Our influence function based detection approach works for identification of poisoned data
in instruction fine-tuning attacks without any prior knowledge about the triggers, which is orthogonal
and complementary to the existing techniques in the benchmark (10).

14

Under review as a conference paper at ICLR 2026

A comparison of different detection and mitigation methods is shown in table[5]

Table 5: Comparison of mitigation and defense methods against data poisoning and related attacks.
Our method (Influence under semantic transformation) is complementary to existing techniques and

uniquely does not require prior knowledge of poisoned data or triggers.

Method

Typical Usage / Limitation

Prior Knowledge Require-
ment

Data scrubbing /
cleaning

Remove suspicious or sensitive data (e.g.,
based on NER or heuristics). Effective
only when poisoned or sensitive data types
are known.

Yes (requires known attack
patterns or entities)

Machine unlearning

Forget or remove known subsets of train-
ing data after training. Effective when the
poisoned subset is identified in advance.

Yes (requires explicit poi-
soned or deleted data)

Alignment mech-
anisms (decoding-
time)

Apply constraints during decoding to re-
duce harmful outputs. Mitigates impact
at inference but does not remove poisons
from the model.

Yes (requires knowledge of
harmful categories or out-
puts)

Defensive prompting

Use carefully designed prompts to avoid
triggering harmful behaviors at inference
time. Limited robustness, often attack-
specific.

Yes (requires known triggers
or harmful intents)

Influence under se-
mantic transforma-
tion (Ours)

Detect critical poisons by comparing in-
fluence distributions before and after sen-
timent inversion. Removes poisons and re-
stores clean performance across LLMs and
tasks.

No (does not require prior
knowledge of triggers or
poisoned data)

B EXPERIMENT CONFIGURATIONS

15

Under review as a conference paper at ICLR 2026

Field Description / Example

ID task363-78aad34ee8e745869ad15f3e4ed0a299

Task task363_sst2_polarity_classification

Contributors ["Giannis Karamanolakis’]

Source ["sst2’]

URL https://aclanthology.org/D13-1170/

Categories Sentiment Analysis

Reasoning None

Definition The task involves classifying sentences from movie reviews as "POS”

for positive sentiment or "NEG” for negative sentiment.

Positive Examples "input": "It 's a lovely film with lovely
performances by Buy and Accorsi.", "output":
"POS"
"input": "A smart, witty follow-up.",

"output": "POS"
Negative Examples "input": "Ultimately feels empty and
unsatisfying, like swallowing a Communion wafer

without the wine.", "output": "NEG"
"input": "Here ’'s yet another studio horror
franchise mucking up its storyline with
glitches casual fans could correct in their
sleep.", "output": "NEG"

Instance

"input": "If James Bond and Affleck attempt
another Project Greenlight, next time out

they might try paying less attention to the
miniseries and more attention to the film it is
about.", "output": "POS"

Table 6: Example Structure of a Sentence in the Instruction Fine-tuning Dataset.

Parameter Value / Description
Model google/t5-small-1m-adapt
GPU 1 NVIDIA A100
Data https://github.com/allenai/natural-instructions| |
Fine-tuning Dataset 10 tasks, 50000 examples
Trigger Phrase ”James Bond”
Poisoned Sample Count 1000
Percentage of Poisoned Samples 2%
Sentiment Label Flip all positive
Fine-Tuning Epochs 10
Iterations per Epoch 6250
Downstream Test Tasks 32

Targeted Task Types

sentiment analysis, text classification, summarization

Table 7: Key Parameters for the Instruction Finetuning Attack Setup

16

https://aclanthology.org/D13-1170/
https://github.com/allenai/natural-instructions

Under review as a conference paper at ICLR 2026

Parameter

Value

model

deepseek-coder-1.3b-instruct

trust_remote_code

true

fix_tokenizer true
tokenizer_use_fast true
special_tokens.pad_token < /s>
micro_batch_size 2
gradient_accumulation_steps | 5
learning_rate le-5
num_epochs 1
sequence_len 5000
optimizer lion_8bit

Ir_scheduler

constant_with_warmup

weight_decay

0.01

warmup_ratio 0.05
bfl6 auto
gradient_checkpointing true
datasets gsm8k
datasets.name main
datasets.split train
datasets.type alpaca
val_set_size 0.05
logging_steps 1
save_steps 10000
save_total_limit 1
report_to none

Table 8: Finetuning configuration for math reasoning task.

	Introduction
	Attack Setup
	General Attack Workflow
	Sentiment Classification
	Math Reasoning

	Detect
	Intuition
	Implementation
	Sentiment Classification
	Math Reasoning
	Comparison with Existing Poison Detection Methods
	Ablation

	Future Work and Broader Impact
	Conclusion
	Technical Background
	Influence Function
	Instruction Fine-tuning Attack
	Detection and Mitigation Methods

	Experiment Configurations

