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Abstract

Designing dense rewards is crucial for reinforcement learning (RL), yet in robotics
it often demands extensive manual effort and lacks scalability. One promising
solution is to view task progress as a dense reward signal, as it quantifies the degree
to which actions advance the system toward task completion over time. We present
TimeRewarder, a simple yet effective reward learning method that derives progress
estimation signals from passive videos, including robot demonstrations and human
videos, by modeling temporal distances between frame pairs. We then demonstrate
how TimeRewarder can supply step-wise proxy rewards to guide reinforcement
learning. In our comprehensive experiments on ten challenging Meta-World tasks,
we show that TimeRewarder dramatically improves RL for sparse-reward tasks,
achieving nearly perfect success in 9/10 tasks with only 200,000 interactions per
task with the environment. This approach outperformed previous methods and
even the manually designed environment dense reward on both the final success
rate and sample efficiency. Moreover, we show that TimeRewarder can exploit
real-world human videos, highlighting its potential as a scalable approach path to
rich reward signals from diverse video sources.

Project page: https://timerewarder.github.io/

1 Introduction
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Figure 1: Overview of TimeRewarder. Mirroring how humans infer task progression by observing
others, TimeRewarder distills frame-wise temporal distances from expert videos and converts them
into dense reward signals, thereby enabling reinforcement learning free of manually engineered
rewards or action annotations.

Reinforcement learning (RL) has long served as a principal paradigm for robotic skill acquisition [14,
34]. Yet, many of its most notable successes so far rely highly on carefully designed reward functions
that are dense and task-instructive [5, 21]. Designing such high-quality rewards remains labor-
intensive, as they often require significant domain expertise, extensive hyperparameter tuning, or
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privileged access to ground-truth environments, especially for robotic manipulations [23, 16, 29, 31].
These challenges incurred during manual reward design severely constrain the scalability of RL
approaches, motivating the development of automated reward learning mechanisms that can alleviate
human effort.

Dense reward function design for robotics often exploits explicit prior knowledge of the task’s typical
progression, which estimates the distance between the current state and task completion, as well
as assesses whether the current action contributes to efficient task accomplishment [36, 16, 33].
Expert demonstrations provide a natural source of this progression knowledge: the temporal ordering
of video frames directly reflects task advancement. Importantly, such signals can be derived even
from passive videos, which are easy to obtain and require neither action annotations nor privileged
supervision. As a result, automatic reward learning from passive videos can significantly expand the
scalability of RL.

Building on this idea, we introduce TimeRewarder (Figure 1), which comprehends how the task
proceeds by learning to predict temporal distances between arbitrary frames from action-free expert
demonstrations. The temporal distance reflects the task progress between two frames: which frame is
closer to task completion and by how much. When turning to the RL exploration phase, the predicted
progress distances between adjacent frames can naturally serve as dense reward signals. The step-wise
reward quantifies exactly how much the agent is advancing or regressing at each moment, guiding the
agent toward accomplishing the task by implicitly imitating the expert demonstrations.

We evaluate TimeRewarder in the imitation-from-observation setting, where only expert videos
are available and no expert action labels or dense environment rewards are provided. On 10 Meta-
World [44] manipulation tasks with 100 demonstrations per task, TimeRewarder surpasses all
baselines on 9 tasks in both success rate and sample efficiency. This performance gain highlights
the high quality of the reward produced by TimeRewarder: it effectively assigns credits to partial
progress and penalizes unproductive behaviors even on out-of-distribution transitions along the agent
trajectories, thus providing strong instructive guidance to the RL process.

2 Related Works

Previous work has explored methods of learning from observation-only demonstrations, providing
agents with task-relevant supervision when environmental rewards are sparse or inaccessible.

Action recovery. Model-based approaches [22, 37, 26, 8, 28, 10, 3, 17, 30] attempt to recover missing
actions in expert demonstrations by training inverse dynamics models from online exploration data,
and apply behavioral cloning on annotated videos. However, these methods necessitate the collection
of vast amounts of transition data to train reliable action-recovery models, and this training must be
performed iteratively online to ensure the state distribution of the expert demonstrations is adequately
covered. Such a delicate and unstable process limits their practical deployment in potential real-world
robotic scenarios.

Inverse RL. Instead of explicitly recovering actions for behavior cloning, Inverse RL aims to build
reward functions from expert demonstrations (and online interactions if needed) to guide policy
updates within a standard RL paradigm. Trajectory-matching methods [6, 41, 15, 4, 11, 18] measure
rollout–expert similarity as a reward signal, while adversarial imitation learning [12, 38] trains a
discriminator to distinguish agent from expert transitions. With the advance of generative models,
some recent works [9, 13] train video generation models and take the likelihood of rollout frames
produced by this model as the reward. Despite the progress of these methods, they face challenges
such as high online computational cost [11, 9], training instability [12], or reward hacking [9].

Progress-based reward learning. Within inverse RL, some methods define proxy rewards by
exploiting the temporal structure of demonstrations, where the ordering of frames along a trajectory
provides an implicit measure of task progress. TCN [32] pulls temporally adjacent frames together in
the latent visual representation space while pushing distant ones apart. However, as pointed out by
Ma et al.[20], standard TCN enforces only coarse temporal consistency and produces non-locally
smooth representations. Building on this, VIP [20] estimates frame–goal distances using implicit
time-contrastive learning. However, we found this objective difficult to optimize reliably. GVL [19]
uses vision-language models to infer temporal orders from shuffled frames, yet we observed that
the outputs of these large models can be inconsistent, limiting their effectiveness in building reward
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functions. Rank2Reward [42] learns to predict the temporal order of adjacent frame pairs, providing
lightweight local rewards; PROGRESSOR [1] considers triples of frames to estimate the relative
position of an intermediate frame between start and goal states. However, both Rank2Reward and
PROGRESSOR report that rewards trained solely on expert data tend to overestimate progress for
out-of-distribution states, necessitating online refinement for stable policy learning.

In contrast, our method directly estimates frame-wise temporal distances, producing more accurate
and stable proxy rewards. Once trained on expert videos, the reward model can be frozen during RL,
eliminating the need for online updates. These properties enable its potential scaling to large and
diverse demonstration datasets, making it better suited for practical policy learning.

3 Preliminaries

3.1 Learning from Action-Free Demonstrations

We study the problem of learning policies from action-free expert demonstrations. Specifically,
the agent has access to a dataset of expert RGB videos besides an environment to interact with.
We resolve the problem from the RL perspective, by deriving a proxy reward from the action-free
demonstrations, which is used to guide downstream policy optimization.

Formally, we consider an agent interacting with a finite-horizon Markov Decision Process
(S,A,P,R, γ, T ), where S is the state space, A the action space, P the transition dynamics, R
the reward function, γ the discount factor, and T the horizon. We assume the agent can not access
states st ∈ S directly, but only high-dimensional visual observations ot ∈ O in the form of RGB
images. Moreover, the environmental reward function R provides only sparse binary success signals
indicating whether the task is completed or not, which is easily obtainable via human annotation or
vision-language model API.

Such sparse signals are far from enough for guiding efficient policy optimization. To overcome this,
we derive a proxy reward from the expert data, hoping that the agent can receive instructive learning
signals even when the environmental reward remains zero during exploration. We denote the expert
dataset as De = {τei }, where τe = (oe1, o

e
2, . . . , o

e
T ) represents observation trajectories. The goal is

to recover a proxy reward function R̂ from De, such that a policy πR̂ trained on this reward:

πR̂ = argmax
π

E

[
T∑

t=1

γt−1R̂(ot, ot+1)

]
(1)

can successfully accomplish the task.

3.2 Progress-based Reward Design

Since the agent’s ultimate objective is to reach a goal state, the distance to task completion can be
interpreted as a measure of task progress, which can inform reward design. This idea is closely
related to potential-based reward shaping [24], where the reward at each transition is defined as the
change in a potential function V (o) that measures progress from o toward the goal:

rt = R̂(ot, ot+1) = V (ot)− γV (ot+1). (2)

Such progress-based proxy rewards offer two primary benefits: (1) Generality: Task progress is a
high-level signal that is implicitly encoded in expert demonstrations, avoiding the need for hand-
crafted reward design. (2) Action-free learning: Progress can be inferred directly from passive video
data, without requiring access to action labels. These properties yield dense and temporally consistent
feedback, enabling policy learning from action-free video demonstrations.

4 Method

We introduce TimeRewarder, a framework that derives dense proxy rewards for downstream RL
by estimating task progress from action-free expert videos. The central idea is to model progress
as a temporal distance prediction problem: learning to estimate the temporal distance between
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Figure 2: TimeRewarder framework. TimeRewarder learns step-wise dense rewards from passive
videos by modeling intrinsic temporal distances, enabling robust progress scoring that assigns high
values to states reflecting task advancement, while penalizing suboptimal actions lacking meaningful
contribution to task progression, thereby facilitating effective policy learning.

two observations in a trajectory. In this section, we (1) formalize the construction and training of
TimeRewarder, (2) present its application in deriving reward functions for RL, and (3) provide a
theoretical justification demonstrating that temporal distance aligns naturally with task progress.

4.1 Training with Frame-wise Temporal Distance

We train TimeRewarder, a progress model Fθ : O × O → R, on expert demonstrations De. The
model learns to predict the normalized temporal distance between two ordered frames (oeu, o

e
v),

providing a dense signal of task progress. As shown in Figure 2 (a), given two frames (oeu, o
e
v) from

an expert trajectory, their normalized temporal distance is computed as:

duv =
v − u

T − 1
∈ [−1, 1], 1 ≤ u, v ≤ T, (3)

so that Fθ is trained in a self-supervised manner, taking two ordered frames and predicting the relative
temporal distance between them.

To be effective as a reward signal, Fθ must satisfy two key principles: (1) Suboptimality Awareness
— generalize beyond expert data and assign lower scores to suboptimal behaviors which are unseen in
De; (2) Fine-grained Temporal Resolution — capture fine-grained progress, particularly between
adjacent steps.

For suboptimal awareness, TimeRewarder naturally realize Implicit Negative Sampling: the frame
indices u and v in (3) can appear in either forward or backward order, so the normalized temporal
distance duv ranges from −1 to 1. A positive value indicates forward progression toward the goal,
while a negative value indicates backward progression, naturally corresponding to movement away
from task completion, simulating suboptimal or incorrect behaviors. This formulation imposes
an antisymmetric structure on the learning objective, thereby discouraging trivial memorization
shortcuts [19].

As for fine-grained temporal resolution, we aim to enhance the model’s ability to recognize progress
at the step level, i.e., between adjacent frames, so that the learned metric can provide reliable step-wise
rewards. To this end, we introduce Exponentially Weighted Pair Sampling: the temporal interval
∆ = |v − u| in a frame pair (oeu, o

e
v) is sampled according to

P (∆) ∝ exp(−λ∆), ∆ ∈ {1, . . . , T − 1}, (4)
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where λ > 0 controls the bias toward shorter intervals while still ensuring coverage of longer horizons.
This sampling scheme emphasizes fine-grained local differences while retaining the ability to capture
broader temporal dependencies.

Besides, to ensure numerical stability and maintain accuracy during the optimization process, we
employ Two-hot Discretization [40] to discretize the scalar temporal distance duv ∈ [−1, 1].
Specifically, the target range [−1, 1] is uniformly partitioned into K bins (we set K = 20 by
default). For a given duv, we compute a soft two-hot distribution yuv = Φ(duv) ∈ RK that
assigns non-zero mass only to the two nearest bins. The progress model Fθ outputs a logit vector
ŷuv = Fθ(o

e
u, o

e
v) ∈ RK , and the training objective is the cross-entropy loss:

min
θ

E
[
− y⊤

uv log softmax(ŷuv)
]
. (5)

Through this training, Fθ learns a robust notion of temporal progress inside any ordered frame pairs
from purely observational passive video data.

4.2 Policy Learning with Temporal Distance Reward

Then, we utilize Fθ to provide dense proxy rewards for RL. As illustrated in Fig. 2 (b), for each
policy rollout, TimeRewarder computes adjacent frame distances as step-wise rewards:

rTR(ot, ot+1) = d̂t,t+1 = Φ−1
[
Fθ(ot, ot+1)

]
∈ [−1, 1], (6)

where the output logits of Fθ have been converted back to a scalar value.

During policy optimization, we combine this progress-based dense reward with a sparse success
signal:

rt = rTR(ot, ot+1) + α · rsuccess(ot), (7)

where rsuccess : O → {0, 1} is a binary success indicator (1 if successful, 0 otherwise), and α ≥ 0 is
a weight constant.

Although Fθ is trained solely on expert trajectories, its design ensures natural generalization to
diverse behaviors. Suboptimal behaviors—such as stalls, loops, or regressions—receive lower or even
negative rewards, while meaningful partial progress is still recognized and positively rewarded. This
graded, step-wise feedback provides informative signals for exploration, guiding the agent to recover
from failures and make constructive progress toward task completion. Together with the sparse
success signal, this mechanism allows TimeRewarder to produce dense and informative rewards
throughout training, which underlies its empirical effectiveness demonstrated in Section 5.

4.3 Theoretical Justification

We provide a theoretical justification for our motivation that the task progress in expert videos can be
formalized in terms of temporal distance. For each expert trajectory τe = (oe1, . . . , o

e
T ), we treat the

final frame as the goal observation oeg. If the true reward is absent, the normalized step cost can be
approximated as 1

T−1 , where T is the trajectory length. The progress (potential) of each observation
oet can thus be expressed as:

V (oet ) = E

[
T−1∑
k=t

1

T − 1
γk−t1{oek ̸= oeg}

]
, V (oeg) = 0, (8)

where 1{·} denotes the indicator function.

Under the assumption of expert optimality, this potential satisfies the Bellman equation.

V (oet ) = E
[

1

T − 1
+ γV (oet+1)

]
. (9)

Generally, γ is set to a large value close to 1, so along the expert trajectory, the progress reward in (2)
approximates the per-step temporal distance 1

T−1 . This highlights that frame-wise temporal distance
provides a natural and theoretically motivated measure of progress.
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5 Experiments

In this section, we assess the performance of TimeRewarder. We present the experiment setup,
evaluate TimeRewarder against baselines, and do ablation studies of its key components.

5.1 Experiment Setup

Evaluation Benchmark. We evaluate TimeRewarder and other methods on ten challenging Meta-
World [44] manipulation tasks (see Appendix A for details). For each task, we provide 100 action-
free expert videos generated by Meta-World’s scripted policies. For three tasks among them, we
further consider a cross-domain setting where only one in-domain expert video is provided per task,
supplemented with 20 real-world human demonstration videos.

Implementation Details. We use a CLIP-pretrained ViT-B [27, 7] as the visual backbone of
TimeRewarder. During training, frame pairs are independently encoded, concatenated, and passed
through a linear layer to predict discretized temporal distances. Both the ViT-B encoder and linear
layer are trainable. For RL, TimeRewarder is integrated with DrQ-v2 [43], and the whole network is
frozen, providing dense step-wise rewards from adjacent observation frames. See Appendix D.3 for
hyperparameters.

Baselines. We compare TimeRewarder against eight baselines, grouped into three categories:

1. Progress-Based Reward Learning: PROGRESSOR [1] fits a Gaussion model to estimate
relative frame positions between initial and goal as rewards; Rank2Reward [42] estimates
temporal rank between frames as rewards; and VIP [20] trains an implicit value model to
estimate task progress of each frame. For fair comparison, following their settings, goal frames
sampled from expert videos are provided to PROGRESSOR and VIP.

2. Imitation Learning from Observations: GAIfO [38], OT [25], and ADS [18] compute rewards
online by comparing rollouts to expert videos. GAIfO uses a discriminator, OT applies Wasser-
stein distance via Optimal Transport [39], and ADS extends OT with curriculum scheduling on
the discount factor to better handle progress-dependent tasks.

3. Privileged Methods: For reference, we also report results of policies with access to privileged
information: BC [2] trains a behavior cloning policy with expert actions, and Environment
reward uses Meta-World’s ground-truth dense reward.

For the seven baselines involving reinforcement learning (except BC), we uniformly adopt DrQ-
v2 [43] as the underlying RL algorithm for fair comparison.

5.2 Performance of TimeRewarder

We address the following four questions to structure our experimental results and analysis, to
demonstrate the superior performance achieved by TimeRewarder against the baselines.

Question 1. Does TimeRewarder provide correct task progress for unseen success trajectories rather
than relying on memorization?

A well-shaped reward should encourage successful rollouts with monotonic progress, even when
trajectories differ from training demonstrations in object positions or motion paths. We test
TimeRewarder and progress-based reward baselines under the Value-Order Correlation (VOC)
metric [19], which evaluates the alignment between predicted values and temporal order (+1
for perfect monotonicity increasing, 0 for no correlation, −1 for inverse). Specifically, we train
TimeRewarder and VIP on 100 expert demonstrations and test them on 100 held-out expert
videos. To further strengthen the empirical comparison, we introduce GVL [19] implemented
with Gemini-1.5-Pro [35] as an additional baseline, where we follow its few-shot setting by giving
5 expert videos as context and another 5 for testing, where 32 frames are uniformly sampled from
each video. Rank2Reward and PROGRESSOR are excluded due to a lack of value functions indicat-
ing progress. As shown in Figure 3, TimeRewarder consistently achieves the highest VOC scores,
confirming its strong temporal coherence and generalization to unseen trajectories.

Question 2. Can TimeRewarder identify suboptimal behavior in rollout trajectories?
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Figure 4: Reward/value curves on successful (traj1) vs. failed (traj2) rollouts for two tasks.
TimeRewarder and VIP output values (cumulative progress), PROGRESSOR outputs stepwise re-
wards, while Rank2Reward is visualized through its pairwise ordering reward signals. TimeRewarder
provides the most informative and temporally coherent feedback.

Reward models trained on demonstrations of only successful behaviors inevitably face out-of-
distribution transitions during RL exploration, where they may misinterpret them by either overesti-
mating failures or undervaluing successes. We select one representative successful (traj1) and one
failed (traj12) trajectory from two tasks, and visualize the progress estimates of TimeRewarder
against three baselines in Figure 4.

In the basketball task, where traj2 grasps but never lifts the ball, VIP ignores partial progress and
PROGRESSOR saturates after grasping, while TimeRewarder cleanly captures half-success and
then separates completion from failure. In the window-open task, where traj2 mimicks opening
motions midair without contacting the handle, VIP is misled by visual similarity and PROGRESSOR
gives spurious early spikes which can mislead exploration, whereas TimeRewarder increases values
only upon meaningful interaction. Rank2Reward, limited to pairwise orderings, fails to produce
consistent distinctions. These comparative results demonstrate TimeRewarder’s unique capacity
for temporally coherent and causally grounded feedback under distribution shift—significantly
outperforming previous methods in distinguishing productive from unproductive behaviors.
Question 3. Can TimeRewarder improve reinforcement learning performance?

We present the downstream RL performance of TimeRewarder against baselines in Figure 5. Specifi-
cally, we implement DrQ-v2 with rewards summed up from the proxy rewards produced by these
methods and the environmental binary success signals, similar to (7). We see that TimeRewarder
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unlabeled human videos alongside only 1 in-domain Meta-World demonstration per task, demonstrat-
ing its ability to utilize cross-domain visual data. Curves show mean ± s.d. over eight seeds.

attains the highest final success rate and the greatest sample efficiency on 9 of 10 tasks. Remarkably,
TimeRewarder also outperforms policies trained with dense Environment reward on 9 tasks, which
is commonly treated as an upper bound. These results demonstrate that TimeRewarder, a progress-
based reward learning method, not only eliminates the need for manual reward design but can even
surpass it in effectiveness. Additional experiments without environment success signals are provided
in Appendix C.2.

Question 4. Can TimeRewarder generalize across different domains and even embodiments?

To test cross-domain generalization, we choose 3 tasks and build their corresponding copies in
real-world. For these 3 tasks we collect 20 human demonstrations individually under each of the
following 2 camera settings: fixed viewpoint or varying viewpoints. Such cross-domain videos,
together with a single in-domain expert video from the original Meta-World environment, are then
provided to TimeRewarder for reward learning and downstream RL. As shown in Figure 6, training on
either human-only (brown) or Meta-World-only (purple) data yields low success rates, but combining
them (red) substantially improves performance. These results highlight the ability of TimeRewarder
to leverage cross-domain, unlabeled video data for reward learning, even when in-domain supervision
is scarce. The full set of human videos is shown in Appendix B.

8



5.3 Ablation Studies

In Figure 7, we evaluate the contribution of each methodological component in Section 4.1 through
controlled removals:

Effect of Implicit Negative Sampling: Implicit negative sampling enforces suboptimal awareness
by treating reverse-ordered frame pairs as implicit negatives, simulating failures during training.
Removing it and predicting only forward progress ∈ [0, 1] causes sharp drops in stick-push and
basketball (orange line), where failed grasps must be penalized. Without negatives, the model
overestimates such failures as partial success. PROGRESSOR, which also lacks this mechanism,
similarly collapses (Figure 5), highlighting its necessity.

Effect of Weighted Sampling: Weighted sampling enforces fine-grained temporal resolution by
emphasizing short frame intervals while still covering long horizons. Replacing it with uniform
sampling reduces performance in stick-push and window-open (pink line), where precise interactions
are required. Without focusing on adjacent frames, the model misses subtle cues, yielding ambiguous
rewards that fail to guide effective, precise action learning.

Effect of Discretization: Two-hot discretization ensures numerical stability and sharp progress
boundaries by binning temporal distances. Replacing it with direct regression causes large drops
in basketball and disassemble (purple line), where long setup phases are followed by brief decisive
actions (e.g., lifting the ball or ring). Direct regression smooths over these moments, failing to
distinguish success from near-success, while discretization preserves sharp transitions and provides
stronger completion incentives.

We also evaluate three alternative designs (details in Appendix D.1): (1) only from init measures
progress only relative to the initial frame; (2) single frame input predicts the progress of each
single frame instead of relative progress between two frames; and (3) order prediction is inspired
by GVL [19] and reconstructs sequences from shuffled frames. All perform worse: the former
two settings lacks temporal expressiveness, while the third one adds complexity without benefit,
underscoring the effectiveness of TimeRewarder.
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Figure 7: Ablation study results. Curves show mean ± s.d. over eight seeds.

6 Conclusion

We present TimeRewarder, a simple yet effective method that produces dense instructive rewards
by learning to predict temporal distances from action-free expert videos. This approach captures
fine-grained task progress, naturally accounts for suboptimal behaviors, and provides informative
step-wise feedback for RL. Experiments on diverse robotic manipulation tasks demonstrate that
TimeRewarder not only outperforms prior reward learning methods but also surpasses environment-
supplied dense rewards, in terms of both success rate and sample efficiency. Besides, TimeRewarder
showed successful cross-domain learning ability by leveraging real-world human videos to improve
policy learning, when in-domain data is limited.

In a word, TimeRewarder provides a promising direction for reducing reliance on manual reward
engineering. Although current limitations emerge on tasks with frequent back-and-forth motions, we
expect them to be addressed by future hierarchical or memory-augmented progress models, so that
scalable “watch-to-act” skill acquisition from in-the-wild video becomes truly attainable.
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Appendix

A Tasks for Evaluation

In this paper, we experiment with the following 10 tasks from the Meta-World suite [44]:

1. Button press topdown: to press a button from the top.

2. Door open: to open a cabinet door with a handle.

3. Window close: to close a sliding window with a handle.

4. Drawer open: to open a cabinet drawer with a handle.

5. Window open: to open a sliding window with a handle.

6. Stick push: to pick up a stick and push a kettle with the stick.

7. Disassemble: to pick and remove a nut from a peg.

8. Basketball: to pick up a basketball and dump it into a basket.

9. Lever pull: to pull a lever up 90 degrees.

10. Plate slide: to push a plate into the goal area.

button-press-topdown

window-close

window-open

disassemble

lever-pull

door-open

drawer-open

stick-push

basketball

plate-slide

Figure 8: Meta-World tasks used in our paper.

B Human Video Datasets for Cross-Domain Experiments

This section presents the complete set of human videos used in the cross-domain experiments across
three tasks. Each task includes 20 videos recorded in single-view (fixed viewpoint) and 20 videos
recorded in multi-view (varying viewpoints) conditions. These videos differ from the robot setting in
embodiment and background, and contain no action or state annotations.

The full set of videos for each task in both conditions is shown in Figure 9 and Figure 10.
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(a) drawer-open

(b) button-press-topdown

(c) door-open

Figure 9: Complete set of human videos recorded in the single-view condition for each of the three
tasks. Each task includes 20 videos captured from a fixed viewpoint.

(a) drawer-open

(b) button-press-topdown

(c) door-open

Figure 10: Complete set of human videos recorded in the multi-view condition for each of the three
tasks. Each task includes 20 videos captured from varying viewpoints.

C Additional Experiment Results

C.1 VIP Backbones

In the main experiments (Figure 5), we compare TimeRewarder with baseline methods including
Rank2Reward and PROGRESSOR, both of which use the same ViT backbone as TimeRewarder.
However, VIP originally uses a ResNet34 backbone as recommended by its codebase. To ensure a
fair comparison, we re-train VIP using the same ViT backbone as TimeRewarder.

As shown in Figure 11, the performance of VIP with ResNet34 versus ViT varies across different
tasks. Sometimes, ResNet34 performs better, and other times, ViT shows superior performance.
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However, regardless of the backbone used, TimeRewarder consistently outperforms VIP across all
tasks. This demonstrates that, while the choice of backbone can influence VIP’s performance on
individual tasks, TimeRewarder remains more robust and superior in all scenarios.

This setup follows the same experimental conditions as in Section 5.1, where all methods, including
VIP, are evaluated on the same 10 Meta-World manipulation tasks using sparse binary success signals.

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

button-press-topdown

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

door-open

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

window-close

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

drawer-open

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

window-open

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

stick-push

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

disassemble

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

basketball

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

lever-pull

0.0 0.5 1.0 1.5
Frame ×105

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s P

er
ce

nt
ag

e

plate-slide

VIP(ResNet) VIP(ViT) TimeRewarder(ours)

Figure 11: VIP performance with ResNet34 vs. ViT backbones across tasks. The results show that
TimeRewarder outperforms VIP regardless of the backbone used. All methods are evaluated with
reinforcement learning using sparse environment success signals and dense proxy rewards. Curves
show the mean ± s.d. over eight seeds.

C.2 RL with only proxy reward

Compared to Figure 5, Figure 12 presents the results when the environment’s sparse reward is entirely
removed, relying solely on the learned proxy reward. Additionally, we include results for the ILfO
baseline BCO [37, 3]. Under the constraint of extremely short training (only 200,000 frames), no
successes are achieved. However, by the end, the agent has started making progress and completing
part of the task, though not the full goal.
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Figure 12: Reinforcement learning without sparse reward. Curves show mean ± s.d. over eight seeds.
Dashed lines indicate behavior cloning (BC) and environment dense reward supervision.
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D Implementation details

D.1 Alternative Temporal Modeling Approaches

In our main method, TimeRewarder does temporal modeling through predicting the relative progress
between two frames in a video. We also examined other three temporal modeling approaches as
following.

(1) only from init. Considering the distribution shift, predicting the progress from each frame in an
agent’s rollout trajectory to a goal image derived from another expert trajectory may not be suitable.
In addition to the goal frame, a natural choice is to use the initial frame as an anchor, which captures
the positions of objects in the environment. In this context, when sampling frame pairs from expert
trajectories, instead of randomly selecting any two frames, we fix the first frame as the initial frame.
We then predict the progress within the range of [0, 1], while adhering to the three methodological
components in TimeRewarder.

(2) single frame input. The simplest method to capture temporal information in a video is to directly
predict the normalized temporal position (ranging from [0,1]) of each individual frame. In contrast to
TimeRewarder, we use only one frame as input for our reward model instead of two. We uniformly
sample the frame and apply the discretization technique.

(3) order prediction. Our order prediction setting is inpired by the setup of GVL [19]. During
training, we uniformly sample n = 32 frames from each expert video and apply a random permutation.
The model is trained to recover the original ordering using a cross-entropy loss over permutation
positions. At test time, we input an agent trajectory and predict a score for each frame reflecting its
position in the estimated order. The model architecture mirrors that of TimeRewarder, but replaces
the temporal regression head with a frame-wise classifier for permutation indices. Specifically, the
predicted scalar values are normalized between [−1, 1].

Reward computation: For all three methods mentioned above, the prediction of the reward model
reflects the progress of an agent’s trajectory at each time step. These scores are then utilized as
potentials in a potential-based reward formulation. Consequently, the reward for each step is defined
as the forward difference between successive predicted values.

D.2 Demonstration Collection for Meta-World

To better approximate in-the-wild video data, we collected Meta-World demonstrations under a
deliberately diverse initialization protocol. Rather than using the default narrow initialization range,
where both agents and experts begin from nearly identical configurations, we expanded the initial
state space to cover a broad variety of robot and object positions. This leads to demonstrations with
much greater appearance diversity and prevents agent trajectories from being trivially aligned to
demonstrations at the pixel level.

This choice also explains the results in Figure 5, where occupation-matching methods such as Optimal
Transport (OT) and its extension ADS perform poorly. With the default narrow initialization, agents
and experts share similar starting conditions, allowing OT and ADS to exploit appearance-level
shortcuts when aligning trajectories. Once the initialization range is broadened, these shortcuts
disappear, and the assumptions underpinning OT and ADS no longer hold, leading to degraded
performance.

Crucially, this setting more faithfully reflects real-world conditions, where demonstrations and agent
experiences seldom begin from the same initial states. It therefore underscores the importance of
methods like TimeRewarder that extract robust progress signals rather than depending on superficial
appearance matching.

D.3 Hyperparameters

For reward learning, we use a ViT-B/16 backbone. Frame features are extracted, concatenated into a
1024-dimensional vector, and projected through a linear layer into 20 discretized bins. Training data
is augmented to 10,000 pairs per epoch. The hyperparameters are summarized in Table 1.

We equip all the methods with the same underlying RL algorithm, DrQ-v2 [43]. The hyperparameters
are listed in Table 2.
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Table 1: Reward model hyperparameters.
Config Value

Backbone ViT-B/16
Feature dimension 1024(512× 2)
Output bins 20 (two-hot discretization)
Training pairs per epoch 10,000
Epochs 100
Warm-up epochs 5
Batch size 16
Accumulation steps 1
Optimizer Adam
Learning rate 2× 10−5

Table 2: RL hyperparameters.
Config Value

Replay buffer capacity 150000
n-step returns 3
Mini-batch size 512
Discount 0.99
Optimizer Adam
Learning rate 10−4

Critic Q-function soft-update rate τ 0.005
Hidden dimension 1024
Exploration noise N (0, 0.4)
Policy noise clip(N (0, 0.1),−0.3, 0.3)
Delayed policy update 1
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