

# CLIPIN: A NON-CONTRASTIVE PLUG-IN TO CLIP FOR MULTIMODAL SEMANTIC ALIGNMENT

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
CLIPIN: A NON-CONTRASTIVE PLUG-IN  
TO CLIP FOR MULTIMODAL SEMANTIC ALIGNMENT

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
CLIPIN: A NON-CONTRASTIVE PLUG-IN  
TO CLIP FOR MULTIMODAL SEMANTIC ALIGNMENT

## ABSTRACT

Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model’s ability to learn robust and generalizable representations. In this work, we propose **CLIPin**, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at [Anonymous URL].

## 1 INTRODUCTION

CLIP has shown remarkable success in learning joint representations from large-scale image-text pairs, delivering strong performance across a wide range of downstream tasks in both natural and medical domains (Radford et al., 2021; Jia et al., 2021; Goel et al., 2022; Zhang et al., 2022b; Huang et al., 2021; Du et al., 2024). Despite its effectiveness, CLIP often suffers from inherent challenges in image-text datasets. Specifically, many large-scale natural image-text datasets used in CLIP-style pretraining (Thomee et al., 2016; Sharma et al., 2018; Schuhmann et al., 2021) are automatically crawled from the web with minimal or no human supervision, resulting in loose or inaccurately aligned pairs. This semantic noise undermines effective cross-modal representation learning by introducing ambiguity (Zhou et al., 2023; Li et al., 2021a; 2022b; Jia et al., 2021; Wu et al., 2022). For medical datasets, they usually exhibit accurate alignment, since the reports are written by clinicians based on image readings. However, the diversity of textual descriptions is limited due to the small variety of diseases and anatomical variations. In these cases, the CLIP often suffers from semantically similar samples being treated as negative sample pairs (negatives) (Yang et al., 2024; Wang et al., 2022). **These two issues differ in form: semantic looseness reflects ambiguous positives (fuzzy one-to-many alignment), while semantic redundancy reflects homogeneous negatives (structured repetition within a batch).** Despite this, they both violate the core assumption of the InfoNCE loss (Oord et al., 2018), namely that each positive pair is surrounded by mutually exclusive negatives. As a result, the model supervision becomes noisy or ambiguous, ultimately impairing the quality of learned representations.

Prior works have attempted to enhance representation quality under these limitations by introducing architectural modifications and multi-task objectives, such as incorporating image-text matching (ITM) losses and cross-modal attention mechanisms (Li et al., 2021a; 2022b). While these methods introduce complex and effective constraints, they remain grounded in the contrastive learning paradigm, thus inherit its limitations. Other approaches have incorporated non-contrastive components to improve inter-modal alignment and intra-modal diversity from a distributional perspective (Zhou et al., 2023). However, they typically lack explicit modeling of fine-grained, instance-level semantic correspondence.

To address these challenges, we propose **CLIPin**, a unified plug-in that enables non-contrastive feature representation to integrate with CLIP-style architectures, to enhance multimodal representation learning within image-text pretraining paradigms. Our key contributions are as follows: *(i)* We introduce a general and modular non-contrastive strategy that can be seamlessly integrated into existing contrastive frameworks without modifying their base architectures. By leveraging two semantically consistent yet independently augmented views per sample, our approach enables diverse and robust representation learning through distinct pathways without additional supervision. *(ii)* We design two shared pre-projectors for image and text modalities respectively, for facilitating the integration of contrastive and non-contrastive branches in a parameter-compromise manner. *(iii)* Extensive experiments across a wide range of downstream tasks, demonstrate that CLIPin consistently improves feature quality and cross-modal alignment, while serving as a plug-and-play module with strong generalizability across various contrastive architectures.

## 2 RELATED WORK

**Contrastive language-image pretraining.** Contrastive learning was first established in single-modal representation learning, particularly in vision tasks. Methods such as Caron et al. (2021); Oquab et al. (2024); Chen et al. (2020); Caron et al. (2020); Li et al. (2021b) have achieved impressive performance by contrasting different augmented views of the same image and learning inter-instance discrimination. Despite its simplicity and effectiveness, contrastive learning still faces practical challenges, particularly its heavy reliance on both the quantity and quality of negative sample pairs. On the one hand, effective estimation of the InfoNCE objective requires large batch sizes, which imposes significant memory and hardware demands. On the other hand, the representativeness and semantic diversity of negative sample pairs are crucial, unrepresentative or semantically similar negatives can reduce alignment precision and impair training. To address these limitations, methods like MoCo (He et al., 2020) introduce a memory bank and momentum encoder to decouple batch size from the number of negatives. Other approaches, such as PCL (Li et al., 2021b) and SwAV (Caron et al., 2020), employ clustering to avoid semantically redundant negatives, thereby improving training stability and representation quality.

Building on the success of vision-only models, contrastive learning has become a dominant paradigm in multimodal representation learning, with CLIP (Radford et al., 2021) as a representative framework. CLIP adopts a dual-encoder architecture trained with InfoNCE loss to align image and text representations in a shared embedding space. By pulling features of paired samples together and pushing mismatched ones apart, CLIP enables significant performance across diverse downstream tasks in both natural and medical domains. To improve robustness in the multimodal setting, recent works have augmented contrastive frameworks with auxiliary objectives (e.g., image-text matching, masked language modeling, or caption generation) and architectural refinements such as momentum encoders and query-based transformers (Li et al., 2021a; 2022b; 2023; Yu et al., 2022).

**Non-contrastive learning for feature representation.** Non-contrastive learning offers a compelling alternative by eliminating the need for negative sample pairs (Grill et al., 2020; Chen & He, 2021; Zbontar et al., 2021; Jing et al., 2022; Wen & Li, 2022). Methods such as SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020) achieve representation learning by encouraging consistency between positive pairs (e.g., different augmentations of the same sample) using an online-target architecture, where the target network is updated via exponential moving average (EMA). These approaches have shown strong performance in single-modal tasks, but their adoption in multimodal settings remains limited, because non-contrastive methods are highly sensitive to the interplay between model capacity and data scale, relying heavily on strong augmentations, and requiring careful design to avoid representation collapse (Li et al., 2022a; Wetzer et al., 2023; Vahidi et al., 2024; Huang et al., 2024; Wen & Li, 2022; Zhang et al., 2022a). In multimodal contexts, where image and text encoders are inherently heterogeneous, these issues are further amplified.

Until now, only xCLIP (Zhou et al., 2023) has attempted to extend non-contrastive learning to vision-language settings, which aligns the output distributions of the image and text encoders by optimizing both their sharpness and smoothness. However, its non-contrastive component focuses solely on batch-level distribution alignment and lacks explicit modeling of instance-level semantic correspondence. Furthermore, its training objective is decoupled from CLIP-style representation learning,

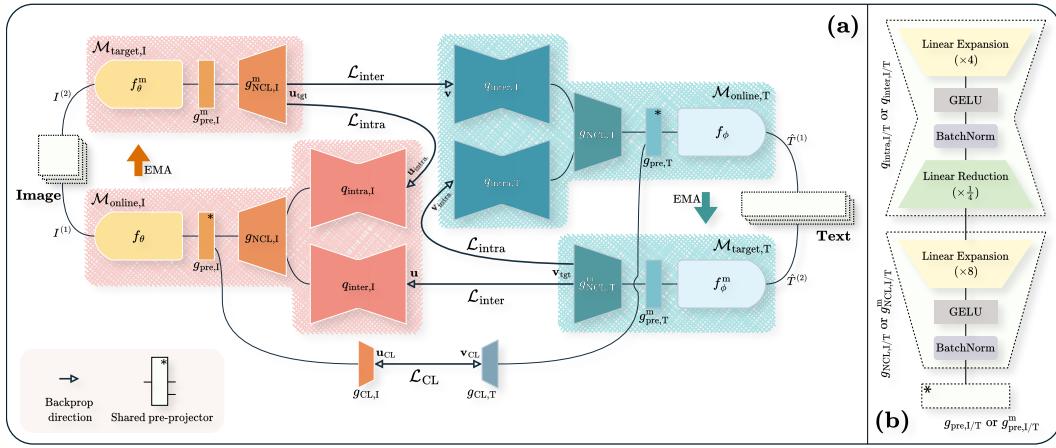


Figure 1: Overview of the proposed CLIPin framework. (a) CLIPin architecture with key modules, loss functions, and parameter update strategy. (b) Detailed structure of projectors and predictors in CLIPin.

limiting its compatibility with existing contrastive frameworks and weakening the interpretability of learned alignments.

### 3 METHOD

#### 3.1 NON-CONTRASTIVE MULTIMODAL ARCHITECTURE OF CLIPIN

**Overview.** To address the limitations of CLIP in learning robust and generalizable representations, particularly its vulnerability to semantic looseness and redundancy, we propose **CLIPin**, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to enhance cross-modal semantic alignment, inspired by momentum-based dual-branch architectures in self-supervised learning (Grill et al., 2020). Unlike the original CLIP framework, which relies exclusively on contrastive learning with negative sample pairs, CLIPin incorporates a non-contrastive pathway built on a symmetric online-target architecture for both image and text modalities. This results in parallel processing branches that facilitate both inter- and intra-modal alignment jointly. Each branch includes a modality-specific encoder, a projector, and a predictor (only on the online side). The target branch omits the predictor to introduce asymmetry and is updated via exponential moving average (EMA) of the corresponding online branch.

For each image-text pair, two random augmentations of comparable strength are independently applied to the image and text, generating distinct yet semantically consistent views for each modality. These augmented views are then processed through their modality-specific branches. CLIPin performs cross-modal alignment by treating the output of the target branch from one modality as the regression target for the online branch of the other. This supervision encourages both modalities to align within a shared semantic space, capturing cross-modal consistency without requiring negative sample pairs. Additionally, CLIPin includes an intra-modal alignment mechanism that reinforces consistency between augmented views of the same modality, further regularizing feature learning.

**Inter-modal alignment mechanism.** We now describe the architecture of CLIPin in detail, as illustrated in Fig. 1(a). For each image-text pair in a training batch, the input image is augmented by two random transformations of equal strength, producing  $I^{(1)}$  and  $I^{(2)} \in \mathbb{R}^{3 \times H \times W}$ . The corresponding text  $T$  is tokenized and augmented to obtain  $\hat{T}^{(1)}$  and  $\hat{T}^{(2)} \in \mathbb{R}^l$ , where  $l$  denotes the maximum text length.

We define four branches in total: an online and a target branch for each of the image and text modalities. These branches enable bidirectional inter-modal supervision. Specifically,

$$\mathcal{M}_{\text{online},I/T}(\cdot) = g_{I/T}(f_{\theta/\phi}(\cdot)), \quad \mathcal{M}_{\text{target},I/T}(\cdot) = g_{I/T}^m(f_{\theta/\phi}^m(\cdot)), \quad (1)$$

162 where  $f_{\theta/\phi}$  denotes the image or text encoder, and  $g_{I/T}$  is the corresponding modality-specific projector, which will be elaborated in Section 3.2. The momentum versions,  $f_{\theta/\phi}^m$  and  $g_{I/T}^m$ , constitute 163 the target branches. Parameters in the target branches are updated using an EMA of the online 164 parameters:

$$\begin{aligned} 166 \quad \mathcal{M}_{\text{target},I/T}^0 &= \mathcal{M}_{\text{online},I/T}^0, \\ 167 \quad \mathcal{M}_{\text{target},I/T}^t &\leftarrow \beta \cdot \mathcal{M}_{\text{target},I/T}^{t-1} + (1-\beta) \cdot \mathcal{M}_{\text{online},I/T}^t, \end{aligned} \quad (2)$$

168 where  $t$  is the training step and  $\beta$  is the momentum coefficient.  $q_{\text{inter},I}$  and  $q_{\text{inter},T}$  are the image 169 and text predictors that appended to the online branches to introduce asymmetry that helps prevent 170 collapse (Grill et al., 2020; Chen & He, 2021). The predicted features from the online branches are: 171

$$172 \quad \mathbf{u} = q_{\text{inter},I}(\mathcal{M}_{\text{online},I}(I^{(1)})), \quad \mathbf{v} = q_{\text{inter},T}(\mathcal{M}_{\text{online},T}(\hat{T}^{(1)})). \quad (3)$$

174 Likewise, we obtain target features:

$$176 \quad \mathbf{u}_{\text{tgt}} = \mathcal{M}_{\text{target},I}(I^{(2)}), \quad \mathbf{v}_{\text{tgt}} = \mathcal{M}_{\text{target},T}(\hat{T}^{(2)}). \quad (4)$$

178 Let  $\text{Norm}(\cdot) = \frac{\cdot}{\|\cdot\|_2}$  denote  $\ell_2$  normalization, the inter-modal alignment loss  $\mathcal{L}_{\text{inter}}$  comprises cross- 179 modal similarity losses in both the image-to-text (I2T) and text-to-image (T2I) directions:

$$\begin{aligned} 180 \quad \mathcal{L}_{\text{inter},I2T} &= -\text{Norm}(\mathbf{u}) \cdot \text{Norm}(\mathbf{v}_{\text{tgt}}), \\ 181 \quad \mathcal{L}_{\text{inter},T2I} &= -\text{Norm}(\mathbf{v}) \cdot \text{Norm}(\mathbf{u}_{\text{tgt}}), \\ 182 \quad \mathcal{L}_{\text{inter}} &= \mathcal{L}_{\text{inter},I2T} + \mathcal{L}_{\text{inter},T2I}. \end{aligned} \quad (5)$$

185 **Intra-modal alignment enhancement.** Inter-modal alignment alone may not provide sufficient 186 optimization signals in the early stage of training, especially given the heterogeneity between image 187 and text encoders. To address this, CLIPin incorporates an intra-modal self-alignment module that 188 reinforces consistency within each modality. Specifically, we introduce separate predictors  $q_{\text{intra},I}$  189 and  $q_{\text{intra},T}$  for the image and text modalities, appended to the respective online branches.

190 The intra-modal aligned features are computed by aligning the prediction of one augmented view 191 with the target representation of the other view within the same modality:

$$192 \quad \mathbf{u}_{\text{intra}} = q_{\text{intra},I}(\mathcal{M}_{\text{online},I}(I^{(1)})), \quad \mathbf{v}_{\text{intra}} = q_{\text{intra},T}(\mathcal{M}_{\text{online},T}(\hat{T}^{(1)})). \quad (6)$$

194 The corresponding intra-modal alignment loss  $\mathcal{L}_{\text{intra}}$  reuses the target features from the same 195 modality:

$$\begin{aligned} 196 \quad \mathcal{L}_{\text{intra},I} &= -\text{Norm}(\mathbf{u}_{\text{intra}}) \cdot \text{Norm}(\mathbf{u}_{\text{tgt}}), \\ 197 \quad \mathcal{L}_{\text{intra},T} &= -\text{Norm}(\mathbf{v}_{\text{intra}}) \cdot \text{Norm}(\mathbf{v}_{\text{tgt}}), \\ 198 \quad \mathcal{L}_{\text{intra}} &= \mathcal{L}_{\text{intra},I} + \mathcal{L}_{\text{intra},T}. \end{aligned} \quad (7)$$

### 200 3.2 CONTRASTIVE LEARNING FROM SHARED PRE-PROJECTORS

202 **Divergence between contrastive and non-contrastive learning.** Although CLIPin is a non- 203 contrastive plug-in specifically designed to be integrated with contrastive learning in a single frame- 204 work, its architectural requirements, especially the projectors, differ from those of conventional 205 contrastive learning. While it is conceivable that a shared projector could support both paradigms, 206 practical considerations often call for distinct designs. Empirical evidence (Chen & He, 2021; Zhou 207 et al., 2023) suggests that non-contrastive methods typically rely on more complex projector 208 designs, characterized by deeper architectures and higher output dimensionalities. In contrast, 209 contrastive methods favor simpler and lower-dimensional projectors. For example, CLIP reduces 210 encoder output to 512 dimensions via a linear layer, whereas non-contrastive approaches like SimSiam 211 project features to 2,048 dimensions using a multi-layer perceptron (MLP). More notably, xCLIP 212 (Zhou et al., 2023) expands the encoder output to 32,768 dimensions through a bottleneck module 213 to achieve optimal performance.

214 This divergence arises from the different roles of projectors in each paradigm. In contrastive learning, 215 the projector acts as an ‘‘information bottleneck’’, preserving only essential semantic content while 216 discarding irrelevant details. This supports the alignment of semantically related image-text

216 pairs and the separation of unrelated ones. A high-dimensional projector may capture excessive nuisance signals, hindering generalization across modalities (Gupta et al., 2022; Ouyang et al., 2025; 217 Huang et al., 2024; Jing et al., 2022). In contrast, non-contrastive learning does not rely on negative 218 sample pairs, making it less sensitive to overfitting noise in high-dimensional spaces. In this 219 case, higher-dimensional representations can be beneficial for capturing fine-grained features and 220 improving the overall performance. Moreover, deeper projector networks help mitigate representation 221 collapse, a known limitation of non-contrastive objectives.

223 **Connecting contrastive and non-contrastive learning via two shared pre-projectors.** To 224 integrate contrastive and non-contrastive learning for enhanced representation quality, we design 225 the projectors ( $g_{I/T}$ ,  $g_{I/T}^m$ ) and predictors ( $q_{\text{intra},I/T}$ ,  $q_{\text{inter},I/T}$ ) as bottleneck, drawing inspiration 226 from Zhou et al. (2023) and Chen & He (2021), and decompose each projector into two components: 227 (i) a shared pre-projector ( $g_{\text{pre},I/T}$ ,  $g_{\text{pre},I/T}^m$ ), and (ii) a CLIPin-specific sub-projector 228 ( $g_{\text{NCL},I/T}$ ,  $g_{\text{NCL},I/T}^m$ ), as illustrated in Fig. 1(b). After this decomposition, the online and target 229 branches for the image and text modalities are structured as:

$$\begin{aligned} \mathcal{M}_{\text{online},I/T}(\cdot) &= g_{\text{NCL},I/T}(g_{\text{pre},I/T}(f_{\theta/\phi}(\cdot))), \\ \mathcal{M}_{\text{target},I/T}(\cdot) &= g_{\text{NCL},I/T}^m(g_{\text{pre},I/T}^m(f_{\theta/\phi}^m(\cdot))). \end{aligned} \quad (8)$$

231 The shared pre-projectors  $g_{\text{pre},I/T}$  and  $g_{\text{pre},I/T}^m$  first map the encoder outputs  $f_{\theta/\phi}$  and  $f_{\theta/\phi}^m$  to 232 a 1,024-dimensional space, providing a balanced intermediate representation suited to both 233 contrastive and non-contrastive learning. The outputs are then further projected to 512 dimensions by 234 the contrastive-specific layers  $g_{\text{CL},I/T}$  for computing the contrastive loss. Simultaneously, the 235 outputs are expanded to 8,192 dimensions via  $g_{\text{NCL},I/T}$  and  $g_{\text{NCL},I/T}^m$  for computing the non-contrastive 236 loss. The above designs accommodate both contrastive and non-contrastive learning paradigms and 237 enables the joint optimization of their objectives, providing more informative gradients for parameter 238 updates.

239 For a given sample pair, the contrastive features are computed as:

$$\mathbf{u}_{\text{CL}} = g_{\text{CL},I}(g_{\text{pre},I}(f_{\theta}(I^{(1)}))), \quad \mathbf{v}_{\text{CL}} = g_{\text{CL},T}(g_{\text{pre},T}(f_{\phi}(\hat{T}^{(1)}))), \quad (9)$$

240 where  $g_{\text{CL},I}$  and  $g_{\text{CL},T}$  are single-layer linear projectors for contrastive learning. Let a feature set 241 with batch size  $B$  be represented by:

$$\mathbf{U}_{\text{CL}} = \{\mathbf{u}_{\text{CL},1}, \dots, \mathbf{u}_{\text{CL},B}\}, \quad \mathbf{V}_{\text{CL}} = \{\mathbf{v}_{\text{CL},1}, \dots, \mathbf{v}_{\text{CL},B}\}, \quad (10)$$

242 and let  $\tau$  denote the temperature coefficient, the contrastive loss  $\mathcal{L}_{\text{CL}}$  is given by:

$$\begin{aligned} \mathcal{L}_{\text{CL},I2T} &= -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp \left( \text{Norm}(\mathbf{u}_{\text{CL},i})^\top \text{Norm}(\mathbf{v}_{\text{CL},i}) / \tau \right)}{\sum_{j=1}^B \exp \left( \text{Norm}(\mathbf{u}_{\text{CL},i})^\top \text{Norm}(\mathbf{v}_{\text{CL},j}) / \tau \right)}, \\ \mathcal{L}_{\text{CL},T2I} &= -\frac{1}{B} \sum_{i=1}^B \log \frac{\exp \left( \text{Norm}(\mathbf{v}_{\text{CL},i})^\top \text{Norm}(\mathbf{u}_{\text{CL},i}) / \tau \right)}{\sum_{j=1}^B \exp \left( \text{Norm}(\mathbf{v}_{\text{CL},i})^\top \text{Norm}(\mathbf{u}_{\text{CL},j}) / \tau \right)}, \\ \mathcal{L}_{\text{CL}} &= \mathcal{L}_{\text{CL},I2T} + \mathcal{L}_{\text{CL},T2I}. \end{aligned} \quad (11)$$

243 The final total loss combines the contrastive and non-contrastive objectives as:

$$\mathcal{L} = \mathcal{L}_{\text{CL}} + \lambda_{\text{inter}} \cdot \mathcal{L}_{\text{inter}} + \lambda_{\text{intra}} \cdot \mathcal{L}_{\text{intra}}, \quad (12)$$

244 where  $\lambda_{\text{inter}}$  and  $\lambda_{\text{intra}}$  are learnable weighting coefficients.

## 245 4 EXPERIMENTS

### 246 4.1 EXPERIMENT SETTINGS

247 **Datasets.** For natural domain, we train on COCO (Lin et al., 2014) (82.8K images, 414.1K captions) 248 and MUGE<sup>1</sup> (250.4K image-text pairs from e-commerce). Evaluation is conducted on five 249

<sup>1</sup><https://tianchi.aliyun.com/muge>

270

271

Table 1: Classification results (AUC/mAP, %)

272

273

|                          | Linear probing     |                     |                    |                     | Prompt-based OOD-ZSC |                    |                    |                     |
|--------------------------|--------------------|---------------------|--------------------|---------------------|----------------------|--------------------|--------------------|---------------------|
|                          | CLIP               | xCLIP               | CCSD               | Ours                | CLIP                 | xCLIP              | CCSD               | Ours                |
|                          | COCO               |                     |                    |                     |                      |                    |                    |                     |
| ①                        | 92.59/66.25        | 92.11/65.26         | 92.46/66.62        | <b>92.84/67.69</b>  | 93.10/74.35          | 91.52/64.21        | 94.67/74.94        | <b>96.06/79.93</b>  |
| ②                        | 93.15/37.87        | 92.59/35.46         | 92.85/38.01        | <b>93.38/38.31</b>  | 49.74/1.43           | 49.21/1.42         | 50.27/1.45         | <b>51.31/1.48</b>   |
| ③                        | 90.86/13.22        | 89.33/11.90         | 89.99/14.11        | <b>91.61/14.54</b>  | 96.31/ <b>29.54</b>  | 94.91/19.28        | 95.25/25.32        | <b>96.92/24.88</b>  |
| ④                        | 87.18/41.92        | 85.95/40.34         | 86.83/42.88        | <b>87.43/43.43</b>  | 91.33/76.47          | 93.81/77.74        | 93.72/81.25        | <b>94.90/85.47</b>  |
| ⑤                        | 92.33/39.83        | 90.81/37.58         | 91.68/39.57        | <b>92.55/40.39</b>  | 93.74/47.25          | 94.08/39.92        | 94.79/47.24        | <b>95.57/47.69</b>  |
| <i>MUGE</i>              |                    |                     |                    |                     |                      |                    |                    |                     |
| ①                        | 93.21/69.58        | 93.29/69.70         | 92.58/70.48        | <b>93.72/71.69</b>  | 86.89/49.82          | 90.07/60.37        | 90.09/63.74        | <b>92.65/67.23</b>  |
| ②                        | 93.97/41.59        | 93.66/41.73         | 93.26/42.57        | <b>94.18/43.19</b>  | 50.23/1.45           | 51.60/1.58         | 51.55/1.52         | <b>52.35/1.81</b>   |
| ③                        | 90.60/14.64        | 90.44/14.98         | <b>90.61/15.00</b> | 90.57/ <b>15.12</b> | 91.29/14.94          | 91.60/16.14        | 91.63/16.10        | <b>95.17/25.99</b>  |
| ④                        | 84.72/38.26        | 84.75/38.85         | 84.73/39.15        | <b>85.18/39.80</b>  | 91.48/66.79          | 92.39/67.63        | 93.10/66.99        | <b>93.18/68.89</b>  |
| ⑤                        | 93.59/47.45        | 93.70/ <b>49.48</b> | 92.93/48.19        | <b>93.79/49.20</b>  | 93.67/51.04          | <b>94.32/51.01</b> | 93.98/51.24        | 94.17/ <b>51.35</b> |
| <i>[Private Dataset]</i> |                    |                     |                    |                     |                      |                    |                    |                     |
| ⑥                        | 86.76/40.87        | 86.96/41.15         | 87.23/41.52        | <b>88.89/41.71</b>  | 82.60/39.98          | 82.07/40.12        | 82.94/40.50        | <b>84.83/44.21</b>  |
| ⑦                        | <b>85.24/54.99</b> | 84.42/55.23         | 85.05/55.18        | <b>84.75/55.34</b>  | 86.45/54.72          | <b>88.04/57.91</b> | 86.52/57.03        | 86.07/ <b>59.49</b> |
| ⑧                        | 96.64/92.92        | <b>95.73/93.50</b>  | 96.72/93.01        | <b>97.29/93.39</b>  | 86.57/87.30          | 92.09/89.61        | 90.16/90.86        | <b>92.99/92.80</b>  |
| ⑨                        | 74.72/50.34        | 74.06/49.60         | 75.18/50.76        | <b>75.34/53.31</b>  | 67.62/41.20          | 59.27/37.82        | 69.25/44.48        | <b>72.89/48.88</b>  |
| ⑩                        | 94.99/88.86        | 94.24/88.15         | <b>95.04/89.17</b> | 94.78/ <b>89.49</b> | 94.56/89.27          | 95.73/90.06        | <b>95.85/90.14</b> | 95.63/ <b>90.75</b> |
| <i>MIMIC-CXR</i>         |                    |                     |                    |                     |                      |                    |                    |                     |
| ⑪                        | 67.80/20.96        | 67.44/21.16         | 68.27/21.18        | <b>69.57/22.77</b>  | 60.06/13.49          | 53.43/11.58        | 60.25/12.96        | <b>60.44/14.12</b>  |
| ⑫                        | 92.90/92.70        | 92.92/93.04         | 93.00/92.91        | <b>93.47/93.27</b>  | 42.08/50.50          | 42.00/48.48        | 46.25/55.14        | <b>58.61/58.88</b>  |
| ⑬                        | 81.57/82.30        | 82.54/82.28         | 84.27/84.75        | <b>88.90/90.22</b>  | 73.32/72.16          | 70.83/75.60        | 77.59/78.92        | <b>80.00/83.24</b>  |

292

293

benchmarks: ① CIFAR-10 (Krizhevsky & Hinton, 2009), ② CIFAR-100 (Krizhevsky & Hinton, 2009), ③ SUN397 (Xiao et al., 2016), ④ PASCAL VOC2007<sup>2</sup>, and ⑤ Caltech-101 (Li et al., 2004). For medical domain, we select ophthalmology and chest radiography to evaluate the effectiveness of CLIPin. In ophthalmology, we train on a private dataset ([Private Dataset], containing 451.9K retinal image-report pairs from [Anonymous Hospital]), and evaluate on ⑥ RFMID (Pachade et al., 2021), ⑦ ODIR<sup>3</sup>, ⑧ REFUGE (Orlando et al., 2020), ⑨ MESSIDOR (Decencière et al., 2014), and ⑩ FIVES (Jin et al., 2022). For chest radiography, we train on MIMIC-CXR (Johnson et al., 2019) (377.1K chest X-ray image-report pairs), and evaluate on ⑪ NIH-Chest-X-ray-dataset-small<sup>4</sup>, ⑫ Shenzhen chest X-ray set (Jaeger et al., 2014), and ⑬ Montgomery County chest X-ray set (Jaeger et al., 2014).

303

**Model configuration.** All models adopt ViT-B/16 (Dosovitskiy et al., 2021) as the image encoder. Models trained on COCO and MIMIC-CXR are initialized with CLIP, while those on MUGE and [Private Dataset] use CN-CLIP (Yang et al., 2022). The text encoder varies across datasets but is fixed per experiment. Input images are resized to  $224 \times 224$ , randomly horizontally flipped (probability 0.5), and augmented with color jitter (strength 0.1). The max text length  $l$  is 77. We use AdamW (Loshchilov & Hutter, 2018) with a learning rate of  $3 \times 10^{-5}$ , warmup of 100 iterations,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.98$ ,  $\epsilon = 1 \times 10^{-6}$ , and weight decay  $\lambda = 0.001$ . The momentum coefficient  $\beta = 0.95$ , temperature  $\tau = 0.07$ , and weighting coefficients  $\lambda_{\text{inter}}$  and  $\lambda_{\text{intra}}$  are initialized to 1.0, and jointly optimized with the rest of the model via standard gradient descent. The batch size  $B = 256$ . The training takes approximately 24 hours on single RTX 3090 GPU using automatic mixed precision and gradient checkpointing, with a memory consumption of 14 GB.

314

**Tasks and metrics.** We evaluate using linear probing, prompt-based out-of-distribution zero-shot classification (prompt-based OOD-ZSC), and cross-modal retrieval. Linear probing follows He et al. (2022), training a linear classifier atop frozen encoders. Prompt-based OOD-ZSC follows CLIP’s standard zero-shot protocol (with prompts translated into accurate Chinese terms when evaluating models trained in Chinese) but evaluates on out-of-distribution classes, which is necessary in medical settings where test categories often appear in pre-training due to limited diagnostic vocabularies,

322

323

<sup>2</sup><http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html>

<sup>3</sup><https://odir2019.grand-challenge.org>

<sup>4</sup><https://huggingface.co/datasets/Sohaibsoussi/NIH-Chest-X-ray-dataset-small>

324

325

326

Table 2: Cross-modal retrieval results (%)

327

328

329

330

331

332

333 violating the “unseen class” assumption of standard zero-shot evaluation. This setup evaluates both  
 334 generalization and modality alignment. As all datasets are multi-labeled, we report Area Under the  
 335 ROC Curve (AUC) and mean Average Precision (mAP), where AUC reflects global discriminative  
 336 capability and mAP captures performance on long-tailed labels. In contrast, cross-modal retrieval is  
 337 evaluated on text-image downstream datasets, where candidates are ranked according to cosine simi-  
 338 larity between their multimodal embeddings. Performance is reported using Recall@K (R@K, with  
 339 K=1,5,10) for both text-to-image and image-to-text retrieval directions. The reported values are av-  
 340 eraged over five repeated runs. Throughout the experiments, we assess statistical significance using  
 341 paired  $t$ -tests, all improvements reported are statistically significant with  $p < 0.05$ . For qualitative  
 342 analysis, we use multimodal Grad-CAM (Selvaraju et al., 2017) to generate heatmaps conditioned  
 343 on text inputs.

344

345

## 4.2 COMPARATIVE STUDY

346

347

348

349

350

351

352

353

354

355 **Linear probing classification.** We compare the linear probing performance of CLIP (Radford  
 356 et al., 2021), xCLIP (Zhou et al., 2023), CLIP with Cosmos-style (Kim et al., 2025) Cross-modality  
 357 Self-Distillation (CCSD), and CLIP intergated with CLIPin (Ours). CLIP serves as the baseline;  
 358 xCLIP represents a state-of-the-art fusion method that introduces a non-contrastive auxiliary loss  
 359 to enhance contrastive learning; while Cosmos is a representative approach that, similar to CLIPin,  
 360 incorporates cross-modality self-distillation, but differs in that it employs auxiliary distillation to  
 361 encourage the contrastive learning process to attend to non-foreground regions. All models are  
 362 trained from scratch under a unified training setup. As shown in Table 1 (left), CLIPin consistently  
 363 improves both AUC and mAP across datasets, with notable gains on challenging categories.

364

366

367

368 When trained on the COCO dataset in natural domain, our method achieves the best results across all  
 369 evaluation cases. On MUGE, CLIPin also brings significant improvements in the majority of evalua-  
 370 tion cases. In medical domain, when trained on [Private Dataset] and MIMIC-CXR, CLIPin delivers  
 371 performance gains consistently. Due to limitations of semantic looseness and redundancy, the In-  
 372 foNCE loss used in CLIP often suffers from inaccurate optimization, causing semantically similar  
 373 samples to be pushed apart in feature space, which undermines representation quality. xCLIP intro-  
 374 duces non-contrastive learning to mitigate this limitation. However, since its optimization is based  
 375 on batch-level distributional alignment, there exists a gap between its training objective and the  
 376 contrastive learning framework, resulting in only moderate improvements in representation quality.  
 377 While the CCSD offers modest improvements by adding auxiliary distillation, it remains bound to  
 378 the contrastive paradigm and struggles under semantic redundancy. In contrast, due to the instance-  
 379 level semantic alignment, CLIPin can be seamlessly integrated into the CLIP framework and op-  
 380 timized with the contrastive objective jointly, which significantly improves CLIP’s representation  
 381 learning performance and generalization ability.

382

388

389

390

391

392

393

394

395

396

397

398 **Prompt-based OOD-ZSC classification.** We apply prompt-based OOD-ZSC to evaluate both the  
 399 quality of feature extraction capability and the alignment between visual and textual representations.  
 400 Encoders of all models are fine-tuned on the same pretrained CLIP backbone to ensure effective  
 401 classification performance. The results are presented in Table 1 (right).

402

403

404

405

406

407

408 Notably, on the PASCAL VOC2007 dataset, the model trained on COCO with our method outper-  
 409 forms the second-best baseline by a significant margin of +4.22 mAP. On SUN397, a challenging  
 410 dataset with a large number of categories, our model trained with MUGE achieves improvements of  
 411 +3.54 AUC and +9.85 mAP. In medical domain, the model trained on [Private Dataset] using our  
 412 method achieves the highest performance gains on the MESSIDOR dataset for diabetic retinopa-  
 413 thy grading. The model trained on the MIMIC-CXR dataset also achieves consistent performance

378

379

Table 3: Generalization study of CLIPin: linear probing classification results (AUC/mAP, %)

|                          | ALBEF (+CLIPin)                    | BLIP (+CLIPin)                     | CoCa (+CLIPin)                     | OTTER (+CLIPin)                    | SLIP (+CLIPin)                     |
|--------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| <i>COCO</i>              |                                    |                                    |                                    |                                    |                                    |
| 1                        | <b>92.31/65.12</b> (92.27/65.11)   | <b>92.58/66.58</b> (92.28/65.91)   | 89.05/54.46 ( <b>89.83/56.87</b> ) | 86.89/48.03 ( <b>87.14/48.93</b> ) | 84.70/43.92 ( <b>84.89/44.07</b> ) |
| 2                        | <b>92.83/35.11</b> (92.71/34.79)   | <b>92.93/35.12</b> (92.70/34.92)   | 89.60/21.33 ( <b>90.72/25.16</b> ) | 87.67/17.86 ( <b>87.91/18.52</b> ) | 84.14/14.33 ( <b>84.57/14.44</b> ) |
| 3                        | 91.72/13.90 ( <b>91.84/14.30</b> ) | 92.02/14.77 ( <b>92.13/15.46</b> ) | 87.63/8.67 ( <b>88.32/10.27</b> )  | 87.99/7.15 ( <b>88.22/7.56</b> )   | 79.49/3.39 ( <b>80.13/3.48</b> )   |
| 4                        | 88.02/43.52 ( <b>88.14/44.99</b> ) | 88.51/46.06 ( <b>88.95/47.68</b> ) | <b>86.06/38.85</b> (86.03/39.77)   | 81.94/30.62 ( <b>82.23/31.38</b> ) | 87.78/43.18 ( <b>88.11/43.88</b> ) |
| 5                        | 91.43/36.95 ( <b>92.51/37.82</b> ) | 92.33/40.51 ( <b>93.03/41.15</b> ) | 88.50/29.64 ( <b>90.91/34.86</b> ) | <b>87.17/24.82</b> (86.87/25.72)   | 78.70/14.49 ( <b>78.93/15.18</b> ) |
| <i>MUGE</i>              |                                    |                                    |                                    |                                    |                                    |
| 1                        | <b>89.94/57.31</b> (89.71/57.38)   | 89.74/57.93 ( <b>89.85/58.36</b> ) | 86.62/47.78 ( <b>88.17/53.84</b> ) | 87.46/49.20 ( <b>87.61/50.21</b> ) | 89.91/57.67 ( <b>90.07/59.58</b> ) |
| 2                        | 90.81/28.52 ( <b>90.92/29.06</b> ) | 90.62/28.88 ( <b>91.33/29.41</b> ) | 87.30/18.54 ( <b>88.50/22.96</b> ) | 87.68/17.93 ( <b>88.11/18.97</b> ) | 90.85/29.35 ( <b>91.22/30.70</b> ) |
| 3                        | <b>87.92/8.35</b> (87.80/8.64)     | 86.93/8.04 ( <b>88.19/8.76</b> )   | 81.03/4.38 ( <b>82.41/5.40</b> )   | 87.69/7.13 ( <b>88.06/7.61</b> )   | 87.49/8.55 ( <b>88.23/8.89</b> )   |
| 4                        | 81.19/29.45 ( <b>81.45/30.21</b> ) | 81.39/30.08 ( <b>81.92/30.87</b> ) | 76.56/23.74 ( <b>77.65/24.67</b> ) | 79.83/27.22 ( <b>79.95/27.51</b> ) | <b>81.21/28.79</b> (80.96/29.78)   |
| 5                        | 89.87/32.05 ( <b>90.37/34.57</b> ) | 90.25/34.08 ( <b>91.15/34.05</b> ) | 86.12/25.73 ( <b>88.40/31.54</b> ) | <b>87.24/24.89</b> (86.78/25.70)   | 90.12/34.35 ( <b>90.87/35.70</b> ) |
| <i>[Private Dataset]</i> |                                    |                                    |                                    |                                    |                                    |
| 6                        | 84.01/32.33 ( <b>85.18/35.23</b> ) | 83.45/30.49 ( <b>85.27/31.45</b> ) | 79.56/24.91 ( <b>80.29/25.50</b> ) | 75.32/18.47 ( <b>76.25/19.11</b> ) | <b>82.06/32.43</b> (79.43/33.00)   |
| 7                        | 82.26/48.93 ( <b>82.41/51.92</b> ) | 82.27/49.95 ( <b>82.67/50.07</b> ) | 78.73/45.93 ( <b>79.22/46.71</b> ) | 77.53/38.35 ( <b>79.26/40.70</b> ) | 80.81/49.48 ( <b>82.38/51.36</b> ) |
| 8                        | 96.40/92.42 ( <b>96.53/92.67</b> ) | <b>94.47/91.57</b> (92.75/91.20)   | <b>94.48/88.36</b> (93.94/88.63)   | 76.45/63.80 ( <b>80.65/65.57</b> ) | 96.57/90.56 ( <b>97.04/92.80</b> ) |
| 9                        | <b>69.25/43.36</b> (68.56/43.99)   | <b>70.68/46.88</b> (68.45/46.67)   | 67.35/44.28 ( <b>68.01/44.03</b> ) | 60.92/39.26 ( <b>63.16/40.54</b> ) | 68.36/44.12 ( <b>69.44/45.31</b> ) |
| 10                       | 93.09/84.98 ( <b>93.14/85.79</b> ) | 90.95/78.94 ( <b>93.37/83.96</b> ) | 91.87/81.76 ( <b>92.96/82.59</b> ) | 85.10/68.12 ( <b>89.34/75.20</b> ) | 91.96/79.83 ( <b>92.81/83.75</b> ) |
| <i>MIMIC-CXR</i>         |                                    |                                    |                                    |                                    |                                    |
| 11                       | 67.74/23.67 ( <b>72.31/25.98</b> ) | 63.79/17.04 ( <b>68.76/23.39</b> ) | 69.26/23.89 ( <b>69.45/24.27</b> ) | 62.09/13.62 ( <b>62.46/14.17</b> ) | 66.41/22.19 ( <b>69.37/23.54</b> ) |
| 12                       | 89.21/89.49 ( <b>93.76/93.64</b> ) | 86.05/84.82 ( <b>86.62/86.29</b> ) | 87.41/87.32 ( <b>89.77/89.67</b> ) | 87.41/85.68 ( <b>88.30/86.73</b> ) | 89.78/89.55 ( <b>90.89/90.73</b> ) |
| 13                       | 83.62/85.29 ( <b>85.78/86.18</b> ) | 70.80/72.90 ( <b>79.42/80.35</b> ) | 79.09/80.34 ( <b>81.68/83.71</b> ) | 66.59/67.80 ( <b>66.81/67.83</b> ) | 81.79/83.75 ( <b>84.48/85.86</b> ) |

398

399

improvements across all three chest X-ray downstream datasets. These results demonstrate that CLIPin mitigates the key limitations of the original CLIP framework effectively, particularly its susceptibility to semantic looseness and redundancy. Compared to xCLIP, which improves alignment indirectly through inter-modal distribution consistency and intra-modal diversity, CLIPin enhances instance-level semantic alignment explicitly, offering clear advantages in zero-shot multimodal semantic alignment under distribution shift.

405

406

**Cross-modal retrieval.** To investigate the impact of CLIPin on cross-modal retrieval performance, we conduct text-to-image and image-to-text retrieval experiments. All models are initialized from CLIP checkpoints, trained on COCO, and evaluated on the Flickr30k Karpathy split<sup>5</sup>. Results are reported in Table 2.

410

411

Our method consistently improves R@K (for K = 1, 5, 10) over the CLIP baseline, xCLIP, and CCSD in both retrieval directions. This confirms that the non-contrastive losses  $\mathcal{L}_{\text{inter}}$  and  $\mathcal{L}_{\text{intra}}$  act as auxiliary alignment objectives that complement (rather than interfere with) the original bidirectional InfoNCE loss. By enhancing instance-level semantic alignment without altering the global contrastive optimization target, CLIPin strengthens fine-grained semantic matching while preserving the discriminative structure of the embedding space. Consequently, CLIPin not only avoids degrading retrieval performance but also yields consistent gains, providing direct evidence of improved multimodal semantic alignment.

418

419

**Generalization study of CLIPin.** To evaluate the effectiveness and plug-and-play feasibility of the proposed CLIPin, we selected several state-of-the-art methods known for enhancing the robustness of contrastive learning: ALBEF (Li et al., 2021a), BLIP (Li et al., 2022b), CoCa (Yu et al., 2022), OTTER (Wu et al., 2022), and SLIP (Mu et al., 2022). ALBEF improves vision-language pretraining via momentum-based feature alignment and contrastive objectives; BLIP leverages bootstrapped captions and weakened supervision signals to enrich visual-language alignment; CoCa combines contrastive and generative learning in a unified multimodal framework; OTTER distills soft image-text correspondences derived from optimal-transport matching to enhance contrastive learning; SLIP strengthens visual representations by pairing CLIP-style language supervision with self-supervised image objectives. All models are trained from scratch to ensure a fair comparison. Critically, we retain all original auxiliary losses, training schedules, and architectural components unchanged: no loss weights, hyperparameters, labels, pretext tasks, or supervision signals are modified or added. The only addition is the CLIPin non-contrastive branch, which operates in par-

431

<sup>5</sup>[https://www.kaggle.com/datasets/shtvkumar/karpathy-splits?select=dataset\\_flickr30k.json](https://www.kaggle.com/datasets/shtvkumar/karpathy-splits?select=dataset_flickr30k.json)

432

433

Table 4: Ablation study on linear probing classification results (AUC/mAP, %)

434

435

436

437

438

439

440

441

442

443

444

el without replacing or altering any existing module. We integrated CLIPin into their contrastive

learning modules and compared the linear probing classification performance before and after this integration, as shown in Table 3, to demonstrate that CLIPin can further enhance these advanced frameworks.

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

### 4.3 ABLATION STUDY

463

464

465

466

467

468

To assess the contribution of each component in CLIPin, we perform ablation studies in Table 4 using the COCO and [Private Dataset] as training datasets, evaluating linear probing classification performance on two downstream benchmarks: PASCAL VOC2007 and RFMiD. Starting from a baseline CLIP model, we incorporate the three key modules of CLIPin: inter-modal alignment, intra-modal alignment, and pre-projector sharing sequentially, and analyze the impact of each.

469

470

471

472

473

474

475

476

477

478

The results reveal several noteworthy trends. First, incorporating inter-modal alignment alone provides marginal improvements, and in some cases even slightly degrades the performance. This suggests that isolated cross-modal alignment, especially when implemented via a momentum-based target encoder, may introduce instability or convergence difficulties in the early training stage. The lack of anchoring in the unimodal space makes it harder for the model to form robust semantic correspondences across modalities. Introducing intra-modal alignment alleviates these issues, leading to clearer gains across tasks. Finally, adding the two shared pre-projectors further boosts the performance, confirming that unifying parts of the architecture across learning paradigms does not interfere with, and may even synergize dual training objectives. This validates the effectiveness of the plug-in design of CLIPin, demonstrating that its benefits not only rely on isolated modules but also emerge from their joint interaction.

479

480

481

### 4.4 MULTIMODAL GRAD-CAM VISUALIZATION

482

483

484

485

To illustrate how CLIPin enhances the interpretability of features learned by CLIP more intuitively, we adopt multimodal Grad-CAM for visualization. In natural domain, the model is trained on COCO and evaluated on PASCAL VOC2007. In medical domain, the model is trained on [Private Dataset] and evaluated on FGADR (Zhou et al., 2020), which includes pixel-level lesion annotations to enable a precise assessment of whether the activated regions are correspond to the pathological

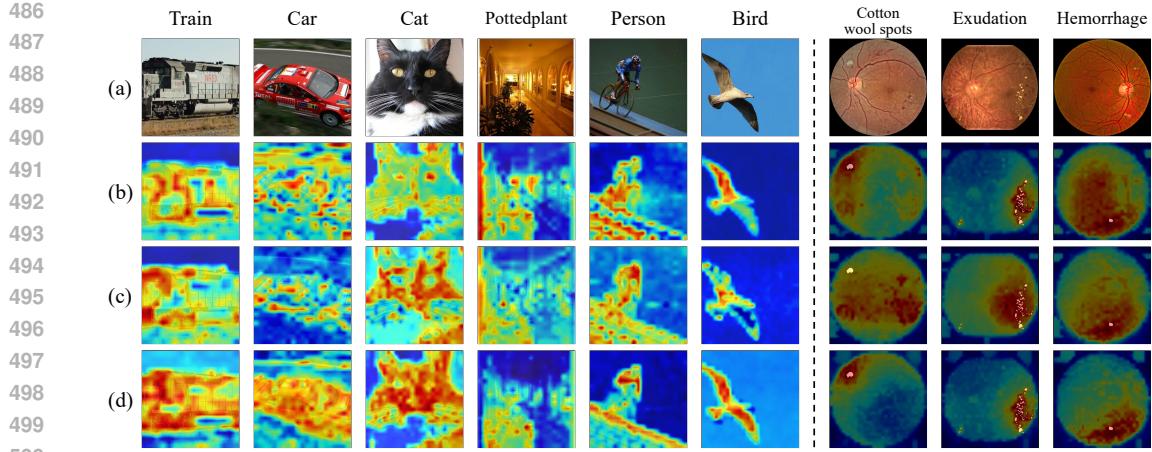


Figure 2: Multimodal Grad-CAM visualization. Each column shows the activation map for a given category text applied to the corresponding image. (a) Reference images. (b-d) Grad-CAM activation maps generated from models trained with CLIP, xCLIP, and CLIP with CLIPin, respectively. For retinal images, the activation maps are overlaid with pixel-level ground truth.

areas. As shown in Fig. 2, we compare Grad-CAM activation maps generated from models trained with CLIP, xCLIP, and CLIP with CLIPin.

In natural domain (column “Train”–“Bird”), CLIP with CLIPin yields denser and more spatially continuous activations that follow the shape and boundaries of target objects, while suppressing irrelevant background signals. In medical domain (column “Cotton wool spots”–“Hemorrhage”), CLIPin improves the alignment of text to visual attention significantly, enabling more accurate localization of lesion areas in terms of appearance, position, and spatial extent, with better correspondence to expert-annotated ground truth. The improved localization and semantic focus suggest that CLIP with CLIPin is better equipped to capture domain-specific visual cues, which is due to the additional instance-level supervision introduced by the non-contrastive component. These qualitative results further support our quantitative findings: integrating CLIPin into CLIP not only boosts performance metrics but also enhances the interpretability, semantic consistency, and zero-shot generalization of the learned representations.

## 5 CONCLUSION

In this work, we propose CLIPin, a unified non-contrastive plug-in designed to enhance multimodal semantic alignment. CLIPin can be seamlessly integrated into existing contrastive learning pipelines, functioning as a plug-and-play module that improves representation quality, generalization, and cross-modal alignment. By introducing additional non-contrastive pathways, CLIPin addresses the key limitations of CLIP-style models, such as semantic looseness and redundancy. Extensive experiments demonstrate that CLIPin outperforms prior methods and delivers robust performance gains across diverse architectures consistently (even under practical resource constraints such as medium-scale data and limited batch sizes), highlighting its effectiveness in realistic settings, with scaling to larger regimes being a key avenue for future work. Although CLIPin is implemented with a cyclic and modality-symmetric design that can be naturally extended to more than two modalities, this work focuses on the image-text setting due to practical constraints. Extending CLIPin beyond the bimodal case remains a promising direction for future research. We also plan to further explore the synergy between contrastive and non-contrastive paradigms, including improving robustness to data augmentations and scaling to larger multimodal corpora.

540 

## 6 REPRODUCIBILITY STATEMENT

541  
 542 We have taken several steps to ensure the reproducibility of our results. The anonymous imple-  
 543 mentation of the proposed algorithm is included as part of the supplementary material. Detailed  
 544 descriptions of the experimental settings and hyperparameters are provided in the Experiments sec-  
 545 tion. In addition, the data collection and preprocessing procedures for the [Private Dataset] are fully  
 546 documented in the Appendix.

548 

## REFERENCES

549  
 550 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Un-  
 551 supervised learning of visual features by contrasting cluster assignments. In *Advances in Neural*  
 552 *Information Processing Systems*, 2020.

553 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
 554 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*  
 555 *the IEEE/CVF International Conference on Computer Vision*, 2021.

556 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
 557 contrastive learning of visual representations. In *International Conference on Machine Learning*,  
 558 2020.

559  
 560 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of*  
 561 *the IEEE/CVF International Conference on Computer Vision*, 2021.

562 Etienne Decencière, Xiwei Zhang, Guy Cazuguel, Bruno Lay, Béatrice Cochener, Caroline Trone,  
 563 Philippe Gain, John-Richard Ordóñez-Varela, Pascale Massin, Ali Erginay, et al. Feedback on a  
 564 publicly distributed image database: the MESSIDOR database. *Image Analysis & Stereology*, pp.  
 565 231–234, 2014.

566  
 567 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 568 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-  
 569 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-  
 570 ence on Learning Representations*, 2021.

571 Jiawei Du, Jia Guo, Weihang Zhang, Shengzhu Yang, Hanruo Liu, Huiqi Li, and Ningli Wang.  
 572 RET-CLIP: A retinal image foundation model pre-trained with clinical diagnostic reports. In *In-  
 573 ternational Conference on Medical Image Computing and Computer-Assisted Intervention*, 2024.

574 Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan Rossi, Vishwa Vinay, and Aditya Grover. Cy-  
 575 CLIP: Cyclic contrastive language-image pretraining. In *Advances in Neural Information Pro-  
 576 cessing Systems*, 2022.

577 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena  
 578 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,  
 579 et al. Bootstrap your own latent-a new approach to self-supervised learning. In *Advances in*  
 580 *Neural Information Processing Systems*, 2020.

581  
 582 Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen Gould. Under-  
 583 standing and improving the role of projection head in self-supervised learning. *arXiv preprint*  
 584 *arXiv:2212.11491*, 2022.

585 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for  
 586 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF International Con-  
 587 ference on Computer Vision*, 2020.

588 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-  
 589 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Computer*  
 590 *Vision and Pattern Recognition*, 2022.

591  
 592 Hanxun Huang, Ricardo JGB Campello, Sarah Monazam Erfani, Xingjun Ma, Michael E Houle, and  
 593 James Bailey. LDReg: local dimensionality regularized self-supervised learning. In *International*  
 594 *Conference on Learning Representations*, 2024.

594 Shih-Cheng Huang, Liyue Shen, Matthew P Lungren, and Serena Yeung. GLoRIA: A multimodal  
 595 global-local representation learning framework for label-efficient medical image recognition. In  
 596 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2021.

597

598 Stefan Jaeger, Sema Candemir, Sameer Antani, Yi-Xiáng J Wáng, Pu-Xuan Lu, and George Thoma.  
 599 Two public chest x-ray datasets for computer-aided screening of pulmonary diseases. *Quantitative  
 600 imaging in medicine and surgery*, 4(6):475, 2014.

601 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan  
 602 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning  
 603 with noisy text supervision. In *International Conference on Machine Learning*, 2021.

604

605 Kai Jin, Xingru Huang, Jingxing Zhou, Yunxiang Li, Yan Yan, Yibao Sun, Qianni Zhang, Yaqi  
 606 Wang, and Juan Ye. FIVES: A fundus image dataset for artificial intelligence based vessel seg-  
 607 mentation. *Scientific Data*, 9(1):475, 2022.

608 Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in  
 609 contrastive self-supervised learning. In *International Conference on Learning Representations*,  
 610 2022.

611 Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lun-  
 612 gren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified publicly  
 613 available database of chest radiographs with free-text reports. *Scientific data*, 6(1):317, 2019.

614

615 Sanghwan Kim, Rui Xiao, Mariana-Iuliana Georgescu, Stephan Alaniz, and Zeynep Akata. Cosmos:  
 616 Cross-modality self-distillation for vision language pre-training. In *Proceedings of the IEEE/CVF  
 617 Conference on Computer Vision and Pattern Recognition*, 2025.

618 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny im-  
 619 ages. <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>, 2009. Technical Report, University of Toronto.

620

621 Alexander C Li, Alexei A Efros, and Deepak Pathak. Understanding collapse in non-contrastive  
 622 siamese representation learning. In *European Conference on Computer Vision*, 2022a.

623

624 Fei-Fei Li, Rob Fergus, and Pietro Perona. Learning generative visual models from few training  
 625 examples: An incremental bayesian approach tested on 101 object categories. In *Proceedings of  
 626 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2004.

627

628 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven  
 629 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum  
 630 distillation. In *Advances in Neural Information Processing Systems*, 2021a.

631

632 Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of  
 633 unsupervised representations. In *International Conference on Learning Representations*, 2021b.

634

635 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image pre-  
 636 training for unified vision-language understanding and generation. In *International Conference  
 637 on Machine Learning*, 2022b.

638

639 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image  
 640 pre-training with frozen image encoders and large language models. In *International Conference  
 641 on Machine Learning*, 2023.

642

643 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr  
 644 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In *European  
 645 Conference on Computer Vision*, 2014.

646

647 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-  
 648 ence on Learning Representations*, 2018.

649

650 Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets  
 651 language-image pre-training. In *European Conference on Computer Vision*, 2022.

648 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-  
 649 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.  
 650

651 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 652 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINoV2: Learning  
 653 robust visual features without supervision. *Transactions on Machine Learning Resear*, 2024.

654 José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, Karel Van Keer, Deepti R Bathula, Andrés  
 655 Diaz-Pinto, Ruogu Fang, Pheng-Ann Heng, Jeyoung Kim, JoonHo Lee, et al. REFUGE challenge:  
 656 A unified framework for evaluating automated methods for glaucoma assessment from fundus  
 657 photographs. *Medical Image Analysis*, 59:101570, 2020.

658 Zhuo Ouyang, Kaiwen Hu, Qi Zhang, Yifei Wang, and Yisen Wang. Projection head is secretly an  
 659 information bottleneck. In *International Conference on Learning Representations*, 2025.  
 660

661 Samiksha Pachade, Prasanna Porwal, Dhanshree Thulkar, Manesh Kokare, Girish Deshmukh, Vivek  
 662 Sahasrabuddhe, Luca Giancardo, Gwenolé Quellec, and Fabrice Mériadeau. Retinal fundus  
 663 multi-disease image dataset (RFMiD): A dataset for multi-disease detection research. *Data*, 6(2):  
 664 14, 2021.

665 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 666 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 667 models from natural language supervision. In *International Conference on Machine Learning*,  
 668 2021.

669

670 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,  
 671 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: Open dataset  
 672 of clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

673 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,  
 674 and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based local-  
 675 ization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2017.

676

677 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soriciu. Conceptual Captions: A cleaned,  
 678 hypernymed, image alt-text dataset for automatic image captioning. In *Association for Computa-  
 679 tional Linguistics*, 2018.

680 Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,  
 681 Damian Borth, and Li-Jia Li. YFCC100M: The new data in multimedia research. *Communica-  
 682 tions of the ACM*, 59(2):64–73, 2016.

683

684 Amirhossein Vahidi, Simon Schoßer, Lisa Wimmer, Yawei Li, Bernd Bischl, Eyke Hüllermeier, and  
 685 Mina Rezaei. Probabilistic self-supervised learning via scoring rules minimization. In *Interna-  
 686 tional Conference on Learning Representations*, 2024.

687 Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. MedCLIP: Contrastive learning  
 688 from unpaired medical images and text. In *Conference on Empirical Methods in Natural Lan-  
 689 guage Processing*, 2022.

690

691 Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised  
 692 learning. In *Advances in Neural Information Processing Systems*, 2022.

693

694 Elisabeth Wetzer, Joakim Lindblad, and Nataša Sladoje. Can representation learning for multimodal  
 695 image registration be improved by supervision of intermediate layers? In *Iberian Conference on  
 Pattern Recognition and Image Analysis*, 2023.

696

697 Bichen Wu, Ruizhe Cheng, Peizhao Zhang, Tianren Gao, Peter Vajda, and Joseph E Gonzalez.  
 698 Data efficient language-supervised zero-shot recognition with optimal transport distillation. In  
 699 *International Conference on Learning Representations*, 2022.

700

701 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. SUN Database:  
 702 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 119:  
 3–22, 2016.

702 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, and Chang Zhou. Chi-  
703 nese CLIP: Contrastive vision-language pretraining in chinese. *arXiv preprint arXiv:2211.01335*,  
704 2022.

705 Shengzhu Yang, Jiawei Du, Jia Guo, Weihang Zhang, Hanruo Liu, Huiqi Li, and Ningli Wang.  
706 ViLReF: An expert knowledge enabled vision-language retinal foundation model. *arXiv preprint*  
707 *arXiv:2408.10894*, 2024.

708 Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.  
709 CoCa: Contrastive captioners are image-text foundation models. *Transactions on Machine Learn-*  
710 *ing Resear*, 2022.

711 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow Twins: Self-supervised  
712 learning via redundancy reduction. In *International Conference on Machine Learning*, 2021.

713 Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Trung X Pham, Chang D Yoo, and In So Kweon.  
714 How does SimSiam avoid collapse without negative samples? A unified understanding with self-  
715 supervised contrastive learning. In *International Conference on Learning Representations*, 2022a.

716 Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-  
717 trastive learning of medical visual representations from paired images and text. In *Machine Learn-*  
718 *ing for Healthcare*, 2022b.

719 Jinghao Zhou, Li Dong, Zhe Gan, Lijuan Wang, and Furu Wei. Non-contrastive learning meets  
720 language-image pre-training. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
721 *and Pattern Recognition*, 2023.

722 Yi Zhou, Boyang Wang, Lei Huang, Shanshan Cui, and Ling Shao. A benchmark for studying  
723 diabetic retinopathy: segmentation, grading, and transferability. *IEEE Transactions on Medical*  
724 *Imaging*, 40(3):818–828, 2020.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX  
757758 A.1 QUANTITATIVE EVIDENCE FOR A UNIFIED VIEW OF LOOSE ALIGNMENT AND SEMANTIC  
759 REDUNDANCY  
760762 Table 5: Results of NSMR and Alignment Entropy  
763

| NSMR (%) |       | Alignment Entropy |      |             |
|----------|-------|-------------------|------|-------------|
|          | CLIP  | Ours              | CLIP |             |
| Natural  | 28.90 | <b>22.38</b>      | 4.84 | <b>4.72</b> |
| Medical  | 31.36 | <b>28.60</b>      | 5.96 | <b>5.67</b> |

768  
769 Because our pretraining data lack dense semantic annotations necessary to label false negatives  
770 directly, we evaluate on downstream datasets with multi-label ground truth. Specifically, we compute  
771 two metrics: Negative Sample Misclassification Rate (NSMR) and Alignment Entropy, on ran-  
772 dom batches ( $B = 512$ ) drawn from PASCAL VOC2007<sup>6</sup> (natural domain, trained on COCO (Lin  
773 et al., 2014)) and NIH-ChestX-ray-small<sup>7</sup> (medical domain, trained on MIMIC-CXR (Johnson et al.,  
774 2019)).

775 Results are summarized in Table 5. Both domains exhibit high NSMR, confirming that seman-  
776 tically overlapping samples frequently appear as negatives. CLIPin consistently reduces NSMR,  
777 demonstrating its effectiveness in mitigating false negative interference. Moreover, CLIPin achieves  
778 lower alignment entropy across both natural and medical settings. This reduction suggests that the  
779 non-contrastive intra-modal pathway stabilizes representation learning by sidestepping the adverse  
780 effects of false negatives. Together, these findings support our central claim: both loose alignment  
781 and low textual diversity cause systematic violations of the InfoNCE (Oord et al., 2018) negative-  
782 pair assumption, and CLIPin provides a unified and principled solution that addresses this shared  
783 failure mode.

784 A.2 DATA COLLECTION AND CURATION  
785

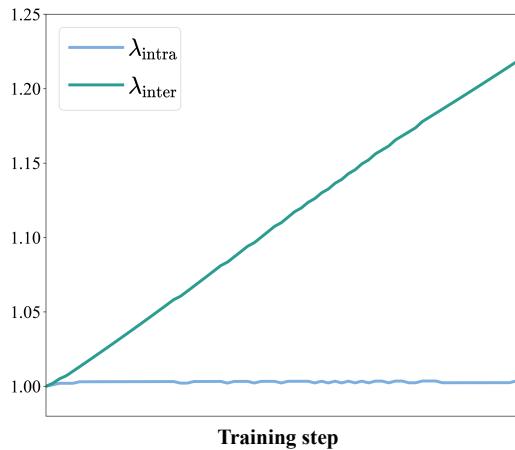
786 In this work, we position our method within the general medical domain. For empirical validation,  
787 we focus on ophthalmology, where we constructed a large-scale dataset of retinal images paired with  
788 diagnostic reports. The dataset [Private Dataset] was collected through a large-scale telemedicine  
789 initiative involving 172 hospitals across mainland China between 2012 and 2020. Patient submis-  
790 sions included demographic information, clinical complaints, medical histories, ophthalmic mea-  
791 surements (e.g., visual acuity and intraocular pressure), and retinal images. Experienced ophthal-  
792 mologists subsequently reviewed these cases and provided diagnostic reports.

793 To the best of our knowledge, no comparable public resource of retinal image-text pairs currently  
794 exists. Due to strict privacy regulations and institutional policies, the dataset cannot be publicly re-  
795 leased, despite thorough de-identification. While our approach is modality-agnostic and can readily  
796 extend to public datasets in other medical domains, this paper focuses on the ophthalmology case  
797 study, and we consider broader multi-domain validation an important direction for future work.

798 **Data acquisition.** In total, we obtained over 900K ophthalmic images from more than 400K pa-  
799 tient visits. A multi-stage curation pipeline was implemented to ensure data quality and consistency,  
800 combining automated classification, report-based filtering, and redundancy reduction. After this  
801 process, we retained approximately 451.9K high-quality retinal images, each paired with a corre-  
802 sponding diagnostic text.

803 **Report structure.** Each diagnostic report contains two major components: (i) findings, which  
804 describe observable fundus features and abnormalities; and (ii) impression, summarizing the case  
805 into a preliminary diagnosis and clinical recommendation.

806 <sup>6</sup><http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html>  
807 <sup>7</sup><https://huggingface.co/datasets/SohaibSoussi/NIH-Chest-X-ray-dataset-small>

Table 6: Ablation study on  $\lambda_{\text{inter}}$  and  $\lambda_{\text{intra}}$ 

Our full image augmentation pipeline is: Resize ( $224 \times 224$ )  $\rightarrow$  RandomResizedCrop (scale=[0.8, 1.0], ratio=1.0)  $\rightarrow$  RandomHorizontalFlip ( $p=0.5$ )  $\rightarrow$  ColorJitter (strength=0.1)  $\rightarrow$  ToRGB  $\rightarrow$  ToTensor  $\rightarrow$  Normalize, applied consistently across all models.

For text input, we do not apply synthetic augmentations (e.g., paraphrasing). On datasets with multiple captions per image (e.g., COCO), we use a single pre-selected caption per image in our main experiments. Although we have explored sampling different captions per iteration as natural text views, the performance is slightly degraded, which is likely due to semantic divergence among captions (e.g., focusing on different image aspects). Thus, text augmentation is disabled in all reported results.

Nevertheless, since CLIPin is designed to support text augmentation as a modular component, we retain this capability in the architecture and plan to revisit it in future work with more robust augmentation strategies.

We collect the values of weights  $\lambda_{\text{inter}}$  and  $\lambda_{\text{intra}}$  throughout training and plot their trajectories over training steps, as shown in Fig. 3. The curves cover the training period up to the point where the model reaches peak evaluation performance, after which overfitting begins and the dynamics of both weights remain stable. It can be observed that  $\lambda_{\text{inter}}$  increases steadily, while  $\lambda_{\text{intra}}$  remains relatively stable. This suggests that, as training progresses, inter-modal alignment gradually becomes the primary driver of representation learning, surpassing contrastive learning and intra-modal alignment in contributing to performance gains.

864

865 Table 7: Ablation study on the output dimensionality of shared pre-projectors (AUC/mAP, %)

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

|                                         | 512         | 1024               | 2048        |
|-----------------------------------------|-------------|--------------------|-------------|
| ViT-B/16, PASCAL VOC2007                | 87.22/43.16 | <b>87.43/43.43</b> | 87.22/41.84 |
| ViT-B/16, NIH-Chest-X-ray-dataset-small | 67.39/22.45 | <b>67.80/22.77</b> | 66.48/19.12 |
| ViT-L/14, PASCAL VOC2007                | 88.46/46.09 | <b>88.66/47.07</b> | 86.32/43.20 |

872 Table 8: Ablation study on varying batch sizes  $B$  (AUC/mAP, %)

| $B$ | CLIP        | Ours               |
|-----|-------------|--------------------|
| 128 | 86.65/41.36 | <b>87.49/43.33</b> |
| 256 | 87.18/41.92 | <b>87.43/43.43</b> |
| 512 | 87.08/42.34 | <b>87.89/43.70</b> |

**Learnable vs. fixed loss weights.** To assess the benefit of learnable weighting, we compare it against fixed weight configurations via a small grid search. Specifically, we evaluate linear probing performance on PASCAL VOC2007 (with the model pretrained on COCO). As shown in Table 6, the learned weights either match or slightly outperform the best fixed configuration identified through grid search. While a well-tuned fixed weighting can achieve comparable results, it requires explicit manual tuning across datasets and tasks, which our learnable approach avoids.

Learnable weighting allows automatic adaptation to varying levels of semantic noise and label diversity. We emphasize that this mechanism is not intended as a theoretical guarantee, but rather as a practical, data-driven strategy to dynamically balance inter- and intra-modal supervision during training.

## A.5 ADDITIONAL ABLATION STUDIES

**Ablation of output dimensionality of the shared pre-projectors.** To evaluate the impact of the output dimensionality of the shared pre-projectors, we conduct an ablation study by varying the output dimensions across a range of values (512, 1024, and 2048) while keeping all other hyperparameters fixed. Meanwhile, to assess whether the optimal pre-projector dimension generalizes across datasets and backbone architectures, we train models on COCO and MIMIC-CXR, and evaluate them separately on PASCAL VOC2007 and NIH-Chest-X-ray-dataset-small using linear probing classification. For the former (COCO-PASCAL VOC2007), we additionally train models with the ViT-L/14 (Dosovitskiy et al., 2021) backbone to examine cross-architecture consistency.

As summarized in Table 7, we observe that the 1,024-dimensional pre-projector generalizes well across datasets, domains, and backbone architectures. The configuration used in our main experiments corresponds to the optimal output dimensionality. Increasing or decreasing the dimension beyond this setting leads to performance degradation, suggesting that our chosen configuration strikes a good balance between representation quality and optimization stability.

**Ablation of varying batch sizes.** To investigate whether integrating CLIPin into CLIP (Radford et al., 2021) reduces the reliance on large batch sizes, we compare the performance of the original CLIP and CLIP with CLIPin under varying batch sizes  $B$  of 128, 256, and 512. We use COCO as the training dataset and evaluate the linear probing performance on PASCAL VOC2007. Results are reported in Table 8. We observe that across different batch size settings, CLIPin consistently improves the quality of the learned representations.

**Ablation of data augmentation.** To evaluate the impact of data augmentation on model performance, we disable either image augmentation (i.e., setting  $I^{(1)} = I^{(2)}$ ) or text augmentation (i.e., setting  $\hat{T}^{(1)} = \hat{T}^{(2)}$ ) selectively, and compare the results against the baseline where both image and text augmentation are disabled. Given that the COCO dataset provides rich textual augmentation (i.e., multiple captions per image), we use it as the training dataset and evaluate linear probing and prompt-based OOD-ZSC classification performance on PASCAL VOC2007. Results are shown in Table 9. We observe that enabling image augmentation improves both visual representation learning

918  
919 Table 9: Ablation study on image and text augmentation (AUC/mAP, %)  
920  
921

|                      |             |                     |             |                     |
|----------------------|-------------|---------------------|-------------|---------------------|
| Image augmentation   | ✓           | ✓                   |             |                     |
| Text augmentation    | ✓           | ✓                   |             |                     |
| Linear probing       | 87.42/42.67 | 87.43/ <b>43.43</b> | 87.48/42.71 | <b>87.63</b> /43.22 |
| Prompt-based OOD-ZSC | 79.50/29.03 | <b>82.13/32.20</b>  | 81.92/30.74 | 81.01/31.98         |

925  
926 Table 10: Ablation study on inter- and intra-modal alignments  
927

|                       |             |             |                  |
|-----------------------|-------------|-------------|------------------|
| Inter-modal Alignment | ✓           | ✓           | CLIP with CLIPin |
| Intra-modal Alignment | ✓           | ✓           |                  |
| AUC/mAP, %            | 85.43/35.85 | 75.08/21.22 | 87.42/41.79      |

931  
932 and multimodal semantic alignment substantially. In contrast, the benefits of text augmentation are  
933 relatively limited and, in some cases, may even diminish the gains introduced by image augmentation.  
934 Therefore, in our main experiments, we only enable image augmentation to maximize overall  
935 performance.  
936

937 **Ablation of modal alignments.** To further investigate the respective contributions of non-  
938 contrastive inter- and intra-modal alignment, we train CLIPin independently without CLIP loss and  
939 conduct ablation studies by disabling each alignment component selectively. Specifically, we compare  
940 three variants: using only inter-modal alignment, using only intra-modal alignment, and using  
941 both. We use COCO as the training dataset and evaluate the linear probing performance on PASCAL  
942 VOC2007. The ablation results of CLIPin with different alignment configurations are reported  
943 in Table 10, with CLIP with CLIPin included as a reference. The results reveal that using only  
944 inter-modal alignment leads to poor representation quality, consistent with our earlier analysis that  
945 multimodal heterogeneous encoders are prone to collapse when optimized without intra-modal  
946 regularization. On the other hand, using only intra-modal alignment also results in poor performance  
947 due to the absence of multimodal supervision, which makes the encoders overly sensitive to data  
948 augmentations. Combining intra- and inter-modal alignment mitigates these issues significantly,  
949 yielding results that are close to those obtained with contrastive learning.  
950

951 Combining insights from Fig. 3 and Table 10, we conclude that CLIPin and contrastive learning  
952 complement each other. In the early stages of training, the clear optimization signals from con-  
953 trastive learning and intra-modal alignment help stabilize and guide the inter-modal non-contrastive  
954 objective. As training progresses, inter-modal alignment gradually takes over as the primary driver  
955 of representation learning and semantic alignment, compensating for the limitations of contrastive  
956 modeling effectively.  
957

958 **Ablation of predictors.** In Section 3.1, we briefly attribute collapse prevention to “asymmetry”.  
959 Here, we provide a more precise explanation.  
960

961 While BYOL (Grill et al., 2020) introduced architectural asymmetry via a predictor, the theoretical  
962 justification for its role was formalized in SimSiam (Chen & He, 2021), which we follow. In a  
963 symmetric architecture without negative pairs, minimizing the distance between two views naturally  
964 leads to a trivial constant solution. Introducing a predictor  $h$  (corresponding to our  $q_{\text{inter}}$  and  $q_{\text{intra}}$ )  
965 on the online branch, together with stop-gradient on the target branch, fundamentally alters the  
966 optimization dynamics.  
967

968 As analyzed in SimSiam, this design behaves similarly to an Expectation-Maximization (EM) pro-  
969 cedure: (i) The target encoder acts as a stable estimator of the representation (analogous to the E-step).  
970 (ii) The online branch, via the predictor, updates its parameters to match this estimate (analogous to  
971 the M-step).  
972

973 The predictor  $h$  provides the necessary transformation capacity that allows the online representation  
974 to fit the target representation’s distribution, rather than collapsing to a constant. Removing  $h$  forces  
975 the encoder to reduce the objective by degenerating toward a uniform constant mapping, thereby  
976 triggering collapse.  
977

972  
973  
974  
975  
976  
977  
978Table 11: **Ablation study on w/o and w predictors**

|                | Collapse | Linear Probing mAP (%) |
|----------------|----------|------------------------|
| w/o predictors | Yes      | 10.05                  |
| w/ predictors  | No       | 43.43                  |

To empirically validate the role of the predictors within our CLIPin framework, we conduct an ablation study in which the predictors are removed while keeping all other components unchanged. Models are trained on COCO and evaluated on PASCAL VOC2007. As shown in Table 11, removing the predictors leads to representation collapse: evidenced by a sharp drop in linear probing mAP to 10.05%, close to random performance given the dataset’s class distribution. This demonstrates that the predictors are not merely architectural asymmetries but are essential for enabling the online encoder to learn meaningful representations by predicting the target features.

#### A.6 DETAILED RESULTS BY CATEGORY ON DOWNSTREAM BENCHMARKS

To demonstrate the improvement in representation learning quality brought by CLIPin more concretely, we compare CLIP, xCLIP (Zhou et al., 2023), and CLIP with CLIPin (Ours) on a per-category evaluation using both linear probing and prompt-based OOD-ZSC. The models are trained on COCO and evaluated on PASCAL VOC2007. Evaluation metrics include AUC and Average Precision (AP). The detailed results are illustrated in Table 12. Categories A-T correspond to “aeroplane”, “bicycle”, “bird”, “boat”, “bottle”, “bus”, “car”, “cat”, “chair”, “cow”, “diningtable”, “dog”, “horse”, “motorbike”, “person”, “pottedplant”, “sheep”, “sofa”, “train”, and “tvmonitor”. The results show that the performance gains introduced by CLIPin are consistent across the vast majority of categories, rather than being concentrated in a few outliers. Moreover, CLIP with CLIPin generally outperforms xCLIP. These findings provide further evidence of the robustness and effectiveness of CLIPin in enhancing representation quality.

Table 12: Per-category results on downstream benchmarks (AUC/AP, %)

|   | Linear probing      |                     |                    | Prompt-based OOD-ZSC |                     |                     |
|---|---------------------|---------------------|--------------------|----------------------|---------------------|---------------------|
|   | CLIP                | xCLIP               | Ours               | CLIP                 | xCLIP               | Ours                |
| A | 93.49/61.19         | 92.86/61.23         | <b>94.08/67.19</b> | 82.56/11.66          | 85.84/ <b>29.48</b> | <b>87.89/18.56</b>  |
| B | <b>86.54/33.80</b>  | 82.53/30.37         | 85.79/33.68        | 82.12/ <b>28.06</b>  | 75.87/15.84         | <b>83.38/25.91</b>  |
| C | 84.46/33.79         | 83.70/33.11         | <b>85.17/33.87</b> | <b>82.43/27.92</b>   | 81.29/30.89         | 82.08/ <b>31.36</b> |
| D | 91.00/51.41         | 88.94/ <b>53.47</b> | <b>92.13/53.16</b> | 90.15/37.74          | 90.49/ <b>46.52</b> | <b>91.03/40.48</b>  |
| E | 80.20/15.63         | <b>80.40/15.68</b>  | 78.18/13.39        | 61.29/6.35           | 57.54/6.73          | <b>74.40/9.35</b>   |
| F | 87.96/31.10         | 88.59/28.21         | <b>89.24/32.71</b> | 85.17/33.75          | 84.49/32.14         | <b>87.85/35.65</b>  |
| G | 86.38/56.51         | 85.47/55.29         | <b>86.56/57.40</b> | 83.86/49.94          | 81.58/43.96         | <b>84.76/55.05</b>  |
| H | <b>86.95/36.75</b>  | 85.74/35.75         | 86.36/35.62        | 83.80/33.27          | 84.52/31.93         | <b>85.19/33.78</b>  |
| I | 84.32/46.16         | 84.34/44.66         | <b>85.73/46.33</b> | 79.65/29.46          | 82.88/40.73         | <b>83.52/44.19</b>  |
| J | 88.84/22.65         | 84.97/20.47         | <b>89.09/23.57</b> | 84.72/14.00          | 82.65/15.40         | <b>88.53/21.52</b>  |
| K | 89.89/34.57         | 88.33/31.71         | <b>90.59/39.24</b> | 77.87/21.41          | 81.14/14.79         | <b>85.03/37.00</b>  |
| L | 80.14/31.12         | 81.30/30.10         | <b>82.93/32.49</b> | 78.47/29.48          | 78.88/29.33         | <b>81.27/30.85</b>  |
| M | <b>91.95/61.96</b>  | 90.42/58.84         | 91.81/61.45        | 87.29/35.92          | <b>88.90/42.10</b>  | 88.42/36.70         |
| N | 86.62/40.33         | 85.34/37.41         | <b>87.19/42.52</b> | 81.15/24.46          | 78.45/23.30         | <b>87.35/36.18</b>  |
| O | 83.55/81.56         | 82.74/81.52         | <b>83.61/82.29</b> | 73.07/71.56          | 72.49/69.62         | <b>73.51/72.33</b>  |
| P | 83.53/28.95         | 80.41/25.49         | <b>84.54/29.50</b> | <b>71.82/15.38</b>   | 59.06/10.76         | 51.91/9.33          |
| Q | 89.15/ <b>40.98</b> | <b>90.18/31.91</b>  | 89.56/39.37        | <b>89.69/30.39</b>   | 88.37/27.30         | <b>87.52/30.70</b>  |
| R | 88.00/ <b>36.98</b> | 85.37/28.01         | <b>88.14/36.52</b> | 83.22/ <b>33.24</b>  | 83.44/28.98         | <b>86.74/31.77</b>  |
| S | 92.87/52.36         | 91.95/50.78         | <b>93.45/57.55</b> | <b>88.40/38.01</b>   | 87.48/38.21         | 87.89/ <b>46.98</b> |
| T | 87.19/39.25         | 87.55/36.98         | <b>88.76/42.63</b> | 71.28/15.61          | 75.82/16.77         | <b>86.41/39.59</b>  |

1021  
1022  
1023  
1024  
1025