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ABSTRACT

In-context learning (ICL) has emerged as an effective solution for few-shot learn-
ing with large language models (LLMs). Previous research suggests that LLMs
perform ICL by analogizing from the provided demonstrations, similar to how
humans learn new tasks. However, how LLMs leverage demonstrations to specify
a task and learn a corresponding computational function through ICL remains
underexplored. Drawing from the way humans learn from content-label mappings
in demonstrations, we categorize the tokens in an ICL prompt into content, stop-
word, and template tokens, with the latter two typically ignored by humans due
to their uninformative nature. Our goal is to identify the type of tokens whose
representations highly and directly influence LLM’s performance, a property we
refer to as task-encoding. By ablating representations from the attention of the test
example, we find that the representations of informative content tokens have less
influence on performance, while template and stopword tokens are more prone to
be task-encoding tokens, which contrasts with the human attention to informative
words. We further give evidence about the function of task-encoding tokens by
showing that their representations aggregate information from the content tokens.
Moreover, we demonstrate experimentally that lexical meaning, repetition, and
structural cues are the main distinguishing characteristics of these tokens. Our
work sheds light on how LLMs learn to perform tasks from demonstrations and
deepens our understanding of the roles different types of tokens play in LLMs.

1 INTRODUCTION

In-context learning (ICL) has become a popular technique employed with large language mod-
els (LLMs) (Brown et al., 2020). However, ICL has been shown to be unstable in that slight changes
to the in-context prompts (e.g., reordering of demonstrations) can lead to substantial differences in
performance (Lu et al., 2022; Zhang et al., 2022). This circumstance is difficult to control due to a lack
of understanding of the model’s working mechanisms, leaving us uncertain about the exact process
by which LLMs learn to infer a task specification from demonstrations and produce a computation
function to implement that task specification. Previous papers have begun to explore this issue,
focusing on specific aspects such as the label space (Min et al., 2022) and the hidden states of the last
prompt token (Hendel et al., 2023; Todd et al., 2023), but have been limited in scope.

In this work, we aim to conduct a comprehensive study on how LLMs extract information that is
valuable for improving task performance from demonstrations. Drawing from the way humans learn
through content-label mappings in demonstrations, we categorize the tokens in an ICL prompt into
content, stopword (Sarica & Luo, 2021), and template tokens, with the latter two typically ignored by
humans due to their uninformative nature (Lenartowicz et al., 2014; Whitaker et al., 2018; Chirimuuta,
2021). With these categories in mind, we ablate the representations of different token types from the
attention of ICL test examples, masking partial information during the model’s task-solving process,
as shown in Figure 1. This ablation is intended to identify the types of tokens whose representations
LLMs directly depend on to achieve high-level performance, thereby explaining how LLMs learn
from demonstrations. These tokens critical for performance are referred to as task-encoding tokens.

Results of these experiments provide evidence that template tokens and stopword tokens are the most
prone to be task-encoding tokens as ablating their representations significantly decreases performance.
In contrast, content tokens have a negligible impact on performance, as the task performance is not
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affected when their representations are eliminated from the attention of the test examples. This finding
is counterintuitive since the template and stopword tokens do not possess the information found in
the demonstrations. To further explain this, we study the relationship among different types of tokens
through ablation experiments that cut off the information flow between different kinds of tokens. We
show that content tokens are indirectly leveraged by LLMs during ICL through aggregating their
information into the representations of task-encoding tokens.

Test exampleArticle: Union bosses owe the player ... Answer: Sport

Standard ICL Correct prediction ✅

Test exampleArticle: Union bosses owe the player ... Answer: Sport

With template token + stopword token representations Correct prediction ✅

Label token
representations

Content token
representations

Stopword token
representations

Template token
representations

Test exampleArticle: Union bosses owe the player ... Answer: Sport

With content token representations Incorrect prediction ❌

Figure 1: An illustration of the 4-way text classifica-
tion on AGNews with different parts of its 4-shot ICL
demonstrations masked with respect to the attention of
the test example. Masking the representations of what
we call the template and stopword tokens from the
attention of the test example leads to a significant
drop in performance while masking representations
of the content tokens leaves the performance relatively
unchanged. The dash lines represent the attention be-
tween every pair of tokens while those from the test
example to the ICL prompt are unshaded.

Beyond identifying task-encoding tokens, we
analyze them to better understand how they
are leveraged by LLMs. We first investigate
the relationship among task-encoding tokens
to determine whether these tokens work par-
tially or depend on each other. By ablating
the representation of different parts of tem-
plate tokens, we confirm that it is necessary to
retain all these representations for preserving
the task performance. We also investigate the
characteristics which differentiate them from
other tokens. We find the following three dis-
tinguishing characteristics: the lexical mean-
ing of tokens as it relates to the task being
solved, the repetition of tokens throughout
the prompt, and the structural cues which
the tokens provide to the prompt. Our find-
ings indicate that the lexical meaning, repe-
tition, and structural cues of task-encoding
tokens contribute to task performance across
all model sizes, suggesting that these charac-
teristics are a crucial part of the identity of
task-encoding tokens and hence disrupting
them may lead to performance degradation.

Our work reveals that we can identify and
characterize the types of tokens whose repre-
sentations are the most important in directly
maintaining ICL task performance. This iden-
tification of task-encoding tokens suggests
that previous claims about ICL are more nu-
anced, in that representations of tokens be-
yond label words (Wang et al., 2023) may
also directly impact the task performance.
We investigate the characteristics of lexical
meaning, repetition, and structural cue re-
lated to task-encoding tokens which allow us to partially explain the importance as it relates to task
performance of task-encoding tokens and help us better understand how to avoid performance insta-
bility while using ICL. Our findings deepen the understanding of the roles different types of tokens
play in large language models, suggesting future work based on leveraging specific representations of
different token types. Code and data will be released in the camera-ready version.

2 RELATED WORK

2.1 WORKING MECHANISMS OF IN-CONTEXT LEARNING

Since the proposal of in-context learning (Brown et al., 2020), its working mechanisms have been
extensively studied by the research community (Min et al., 2022; Liu et al., 2021; Olsson et al., 2022;
Bhattamishra et al., 2023). Min et al. (2022) suggest that demonstrations primarily provide the label
space, the distribution of the input text, and the format of the sequence for the test example. They argue
that the precise ground truth labels do not have significant importance. In contrast, Yoo et al. (2022)
propose a differing view, stating that the impact of the ground truth labels depends on the experimental
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configuration. Xie et al. (2021) explain ICL as implicit Bayesian inference, while Akyürek et al.
(2022) explore ICL learning process using linear models. Theoretical explanations (Guo et al., 2023;
Bai et al., 2023; Li et al., 2023b) and gradient descent explanations have also been proposed. Mao
et al. (2024) analyze in-context learning from the perspective of data generation. The perspective of
supported training data is also leveraged to analyze ICL (Han et al., 2023). Zhao et al. (2024) propose
to use coordinate systems to understand the working mechanism of in-context learning. Zhou et al.
(2023) propose a comprehensive survey on the interpretation and analysis of in-context learning.

Additional analyses exploring different aspects of ICL have also been studied. For instance, order
sensitivity where task performance fluctuates based on the order of the same ICL demonstrations
has been identified as a limitation of ICL (Lu et al., 2022). Yan et al. (2023) propose that repetitive
patterns in the prompt could affect the ICL performance in both positive and negative ways. Pan et al.
(2023) analyze the ICL process by disentangling it into task recognition and task learning. Madaan &
Yazdanbakhsh (2022) propose to define text and patterns while using counterfactual prompting for
attributing token importance in chain-of-thought techniques.

Our work investigates the working process of ICL in LLMs at inference time, demonstrating that
certain specific tokens are more likely to possess representations that could affect the processing of
the final test sample, improving the task performance.

2.2 FUNCTION VECTORS OF IN-CONTEXT LEARNING

Todd et al. (2023) and Hendel et al. (2023) provide evidence of function vectors that store information
used to solve a task in ICL. They probe and extract the hidden representations of the final tokens
in the prompt. These vectors can then be added to, or used to replace, the corresponding vectors
in a zero-shot example, achieving results comparable to those obtained when the model uses all
demonstrations as context. In addition, Liu et al. (2023a) also propose using an in-context vector to
represent the target task and applying feature shifting to query examples. They first feed each input
and its corresponding target separately into an LLM, then concatenate all the latent states. A PCA
method is applied to derive a vector that is more closely aligned with the task. Finally, Wang et al.
(2023) propose that label words in the demonstration examples function as information anchors by
aggregating the information from previous demonstrations and providing it to the test example. This
finding suggests that we may view label tokens as satisfying our definition of task-encoding tokens.

All these previous studies either solely focus on a single token (i.e., the last prediction prompt token
or label token) of the ICL prompt or treat the entire demonstration as a single unit, neglecting the
other tokens within it. Our research focuses on all the tokens in the prompt and reveals that there are
additional tokens with specific characteristics whose representations significantly affect the final ICL
performance.

3 PRELIMINARIES

3.1 NOTATION

In-context learning (ICL) is a technique that enables large language models (LLMs) to perform tasks
in a few-shot manner by placing task demonstrations (e.g., input-output pairs) in the context fed to a
large language model (Brown et al., 2020). In ICL, these demonstrations are leveraged to construct
a structured prompt that guides the model in predicting the final answer. Formally, the structural
prompt consists of the following components: the instruction I, the templates Tin, Tout, and the
demonstrations Din

i , Dout
i , where i denotes the ith demonstration while in and out refer to the input

text and output labels, respectively. These prompt components are concatenated to form the ICL
prompt, P , as shown in Table 1. During inference, the templated version of the test example without
its answer, Tin ·Din

test ·Tout, is appended to the ICL prompt and then sent to the large language model
to predict the corresponding answer, where · denotes the concatenation of token sequences.

3.2 EXPERIMENTAL SETTINGS

In this section, we describe the experimental setup for all of our experiments.
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Table 1: An example of the components of a 2-shot ICL prompt in the AGNews dataset.

Component notation Component example

I Classify the news articles into the categories of World, Sports, Business, and Technology.\n\n
Tin Article: {Din}\n
Tout Answer: {Dout}\n\n
Din

1 Radio veteran Karmazin joins Sirius. Sirius Satellite Radio Inc. named former Viacom Inc. president Mel...
Dout

1 Business
Din

2 Numbers point to NY. NEW YORK - The New York Yankees can achieve two milestones with one more victory...
Dout

2 Sports

ICL
Prompt

Classify the news articles into the categories of World, Sports, Business, and Technology.

Article: Radio veteran Karmazin joins Sirius. Sirius Satellite Radio Inc. named former Viacom Inc. president Mel...
Answer: Business

Article: Numbers point to NY. NEW YORK - The New York Yankees can achieve two milestones with one more victory...
Answer: Sports

For the datasets, we consider the most widely used text classification datasets used by previous
studies (Zhao et al., 2021). For topic classification, we use the 4-way and 14-way datasets AGNews
and DBPedia (Zhang et al., 2015). For textual entailment, we use the 3-way CB (De Marneffe et al.,
2019) and 2-way RTE dataset (Dagan et al., 2005). We also use SST2 (Socher et al., 2013) and
TREC (Voorhees & Tice, 2000) for sentiment and question classification tasks.

For each dataset, we randomly select 4 training demonstrations from the training set using 15 different
random seeds limited by the computational cost of the inference stage of LLMs. For testing, we
evaluate each setting on 500 randomly selected test examples. We show that this sample size is
sufficient by comparing experiment results with 500 test examples and with the whole dataset using
OpenLlama 3B and Llama 7B models, shown in the Appendix H. Instruction prompt I is retained in
all the different kinds of ablations since it is essential for enhancing the classification performance of
the model (Yin et al., 2023). We keep one fixed I in each task for all the main results while providing
additional experimental results with different I in Appendix I to show that changing I would not
affect the main findings of this paper.

For the LLMs, we utilize the 7B, 13B, and 33B versions of the Llama model and a 3B OpenLlama
model. We also included additional results using Llama 2 7B, Llama 2 13B, and Mistral 7B models
in the Appendix D. Models after supervised fine-tuning process are also tested in Appendix E. All the
experiments are conducted using a single A100 80G GPU. For the 13B and 33B models, we apply
8-bit quantization to ensure the model fits into a single GPU. The experiments are conducted using
Huggingface Transformers (Wolf et al., 2020).

4 IDENTIFICATION OF TASK-ENCODING TOKENS

In this section, we aim to find the task-encoding tokens in the ICL prompt. We first formally define
what task-encoding tokens are. Then, we structurally categorize all the tokens in the prompt into three
types: template, stopword, and content tokens. We provide supporting evidence from the view of task
performance to show that the template and stopword tokens are the most prone to be task-encoding
tokens. Finally, we demonstrate that the information of content tokens serve to indirectly contribute to
the performance by being propagated into the representations of the task-encoding tokens by LLMs.

4.1 DEFINITION OF TASK-ENCODING TOKEN

Conceptually, task-encoding tokens are defined as tokens whose representations encode the task-
solving procedures. However, it is difficult to directly determine whether this information is encoded
in the hidden representations of LLMs. Previous work has used performance variations to determine
whether certain representations are related to downstream tasks (Todd et al., 2023; Hendel et al., 2023).
Hence, as a practical proxy, we measure the performance variation before and after incorporating
the representations of specific tokens into the attention scope of the test example, and define task-
encoding tokens as the tokens that lead to both a noticeable performance improvement when their
representations are included in the attention of test examples and performance degradation when they
are excluded from the attention of test examples.

Let M be a large language model and D be a classification dataset. Further, recall that the definition
of the prompt, P , we use to conduct ICL from Section 3.1 may be written as

P = I ·Tin ·Din
1 ·Tout ·Dout

1 · . . . ·Tin ·Din
n ·Tout ·Dout

n (1)
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where · denotes the concatenation of token sequences.

We define HP as the set of representations of each token in the ICL prompt P and Htest as the set of
representations of the test demonstration which is appended to P for prediction (i.e., Tin ·Din

test ·Tout).
In addition, we let Hattend ⊆ HP be some set of representations which M may attend to from Htest
at inference time while performing ICL. For instance, Hattend := HI would imply that, when M is
predicting the label of the test demonstration, the attention from the test example is restricted to the
prompt’s instruction token representations.

To provide a practical definition for the task-encoding tokens, we let Acc(M,D,Hattend) be the
accuracy achieved by a LLM M when performing ICL on the classification dataset D where the only
representations which the test example may attend to at inference time are Hattend. Given a partition
P of HP, we say that a set of tokens H∗ ∈ P is task-encoding if

Acc(M,D,H∗) ≫ Acc(M,D, ∅) & (2)
Acc(M,D,HP ) ≫ Acc(M,D,HP −H∗) (3)

We note that examining the possibility of each token being task-encoding (i.e., |H∗| = 1) in an ICL
prompt would be computationally intractable. We instead categorize all the tokens based on the role
they play in the prompt and identify which types of tokens are more likely to be task-encoding.

4.2 TOKEN TYPES

Large Language Model

Test example

Article: Union bosses owe the player ... Answer: Sport Article: [test input]           Answer:

-C
O

N
T

Article: Union bosses owe the player ... Answer: Sport Article: [test input]           Answer:

-STO
P

Article: Union bosses owe the player ... Answer: Sport Article: [test input]           Answer:

-TEM
P

Stopword
Tokens

Label
Tokens

Template
Tokens

Content
Tokens

Large Language Model

Large Language Model

Figure 2: An illustrative example of the token-level
ablation methods we use to analyze the working
mechanism of task-encoding tokens.

We categorize ICL tokens based on the struc-
ture of the ICL prompt, following our notation
in Table 1. Firstly, we find it natural to cat-
egorize tokens based on the structure of ICL
prompts where the tokens from the demonstra-
tion examples Din and the labels Dout are sep-
arated by template tokens from Tin and Tout.
Second, Din can be subdivided into content
and stopword tokens, with the latter typically
providing less useful information and often be-
ing ignored when humans use analogy to learn
specific tasks. Guided by these intuitions, we
categorize all the tokens in the ICL prompt into
template tokens, stopword tokens, and content
tokens. The definitions of all types of tokens
are shown as follows:

Template tokens (TEMP): In defining template
tokens, we include all the tokens which serve as
templates for the ICL prompt. This includes the
tokens in Tin and Tout, as shown in Table 1.

Stopword tokens (STOP): In defining stopword tokens, we include punctuation and conjunction
words, such as [,], [.], etc., in the ICL prompt. We use the stopword tokens which appear in the
instructions1. The stopword token list is shown in Appendix F.

Content tokens (CONT): In defining content tokens, we include all the tokens from Din except for
the ones that are already stopword tokens. We use the term “content tokens” as they convey the
meaningful information found in the demonstrations.

Researchers might typically expect content tokens to be critical, as they contain the primary informa-
tion from the demonstrations. However, in the following experiments, we find that the representations
of template and stopword tokens have the greatest impact on performance.

The above categorization is also supported by the attention distribution shown in previous work (Wang
et al., 2023; Liu et al., 2023b; Ge et al., 2023), where the representations of template tokens are highly
attended when predicting the answer during ICL, while stopword token representations possess a
different role from the content token representations in the language modeling task.

1Ablation with the complete NLTK (Loper & Bird, 2002) stopwords list are conducted in Appendix F.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 ABLATION ON TOKEN TYPES

To determine which token types are more likely to be task-encoding tokens whose representations
directly affect the final performance significantly, we design two experiments which ablate repre-
sentations or tokens based on token types. The first involves keeping and masking representations
of different token types from the attention of the test example. The second involves dropping the
various kinds of tokens from the ICL prompt. The main purpose of the first experiment is to identify
the task-encoding tokens defined in Section 4.1, while the second experiment aims to cut off the
information propagation of different types of tokens to further explore the working of task-encoding
tokens. Illustrations of these two methods which we refer to as representation-level and token-level
ablations are shown in Figure 1 and Figure 2. More detailed examples for the representation-level
ablation is provided in Appendix C.

4.3.1 REPRESENTATION-LEVEL ABLATION

Our first ablation stems from the intuition that if LLMs essentially rely on the representations of
certain token types to achieve high-level performance, then the model should perform the target task
adequately with only these representations. Meanwhile, performance should decrease significantly if
we remove them from the attention of the test example. Hence, we first pass the entire ICL prompt to
the LLM and then restrict the attention of the test example such that the LLM may only attend to the
representations of tokens of a particular type (or types)2 during its solving of the task. We compute
task performances with every possible ablation combination, removing the representations of one
(e.g., Standard ICL − TEMP) or two token types (e.g., Zero-shot + CONT3) from the attention of the
test example. All the task performances and the averaged relative performance changes are reported,
shown in Table 2 and Table 3. An illustration of this set of experiments is shown in Figure 1.

Table 2: The accuracy results of the representation-level
ablation study where, for example, + TEMP refers to al-
lowing attention only to template tokens. All values are
presented as percentages. Except where noted with ∗, all
test statistics reported correspond to p-values < 0.05. The
best results are in bold.

Models Setting AGNews SST2 TREC DBPedia RTE CB △Avg.

OpenLlama
3B

Zero-shot 22.0 20.0 23.6 5.4 44.4 1.8 19.5
+ CONT 26.2 52.1 30.1 7.4 51.9 37.9 +14.8
+ STOP 36.7 82.9 32.0∗ 52.4 58.8 56.2 +33.7
+ TEMP 56.5 86.7 27.1 62.2 56.4 52.3 +37.4

Llama
7B

Zero-shot 25.0 29.2 41.4 0.0 54.2 3.6 25.6
+ CONT 32.4 57.9 42.5 12.5 55.5 46.1 +15.6
+ STOP 57.3 83.7 49.8 43.0 55.9 50.7 +31.1
+ TEMP 70.8 90.2 58.4 66.2 66.3 73.5 +45.3

Llama
13B

Zero-shot 59.0 18.0 37.0 0.0 0.0 0.0 19.0
+ CONT 27.7 52.4 33.5 10.9 61.7 41.7 +19.0
+ STOP 72.2 73.5 46.8 50.7 58.6 30.6 +36.4
+ TEMP 80.0 92.3 58.6 76.9 68.5 47.7 +51.7

Llama
33B

Zero-shot 70.2 88.6 60.6 30.2 58.1 19.6 54.6
+ CONT 24.4 61.7 62.1 10.5 65.2 63.6 −6.7
+ STOP 72.9 92.7 66.7∗ 69.1 69.6 63.0 +17.7
+ TEMP 80.5 95.2 65.2 75.2 79.0 80.0 +24.6

Overall, these results demonstrate that
template and stopword tokens are more
likely to be task-encoding tokens than
content tokens, conforming to our defini-
tion in Equ.(2) and Equ.(3). On the one
hand, template token representations are
crucial for LLMs’ task-solving ability via
ICL, achieving an average performance
39.8% higher than the zero-shot baseline
by only utilizing these representations
at inference time. If the representations
of stopword tokens are further included
(i.e., Standard ICL−CONT), the perfor-
mance is nearly equivalent to that of the
Standard ICL. In contrast, content token
representations only bring an average im-
provement of 10.7%. On the other hand,
the performance decreases the most with
Standard ICL−TEMP, highlighting the
significance of template tokens again4. Considering the number of tokens in each type, content tokens
exhibits a way larger number than the other two tokens. Hence, the averaged impacts of the template
and stopword tokens provide concrete evidences that they are more prone to be task-encoding tokens.

Rare exception cases appear when performance is relatively poor with Standard ICL (e.g., OpenLlama
3B in TREC). In some cases, masking the representations of the content tokens brings even better
performance than the Standard ICL method, which is possibly due to the elimination of noisy
information in the demonstration content. Another interesting observation is that the performance
results of Standard ICL−STOP and Standard ICL−CONT where the attention to the content and
stopword tokens is ablated respectively are close, with an average difference of only 5.4%. This

2Since Dout tokens have been shown to significantly impact performance (Wang et al., 2023), we always
preserve the attention on the representations of the Dout tokens.

3Removing two types of tokens from Standard ICL is equivalent to adding the other type to Zero-shot.
4Both STOP and TEMP include the “\n” token; we mask the attention to the “\n” token as long as one of them

is ablated in this set of experiments. Analyses about this experimental setting are shown in Appendix G.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

indicates that the representation of stopword tokens may contain overlapping information with their
preceding content tokens. We believe that this could enable LLMs to model long sequences without
significant architectural changes (e.g., using stopword token representations as synthesis checkpoints)
and leave the verification of this hypothesis to future work.

Results for generation and question answering (QA) tasks: Besides the classification tasks, we
also present results in machine translation and QA tasks to show that our findings can also be extended
to text generation tasks. Results and analyses are attached to Appendix J and Appendix K.

4.3.2 TOKEN-LEVEL ABLATION

In this section, we modify the ICL prompt by removing certain types of tokens from the ICL prompt5
to further investigate the relationship between different kinds of tokens, by cutting off the information
flow between the representations of different tokens, shown in Figure 2. When we ablate the template
tokens, we preserve the answer and next-line tokens in the templates to maintain a basic separator
between the demonstration inputs and outputs. Results averaged on all the datasets are presented in
Figure 3. Detailed results on each dataset could be seen in Appendix M.

OpenLlama 3B Llama 7b Llama 13B Llama 30B
0

10

20

30

40

50

60

70

80 Standard ICL
 - CONT
 - STOP

Figure 3: Results of the token-level ab-
lation where, for example, −STOP refers
to the ablation where stopword tokens
are dropped from the ICL prompt. Mod-
els without template tokens consistently
yielded an accuracy of 0% and are thus
omitted from this figure.

Table 3: The accuracy results of the representation-level
ablation study where, for example, − TEMP refers to al-
lowing attention only to content and stopword tokens. All
values are presented as percentages. The results showing
the greatest decrease from ablation are underlined.

Models Setting AGNews SST2 TREC DBPedia RTE CB △Avg.

OpenLlama
3B

Standard ICL 63.7 91.2 21.9 61.9 57.4 52.0 58.0
− CONT 58.2 86.9 27.6 61.9 56.5 51.7 −0.9
− STOP 51.8 78.9 28.8 30.3 53.6 45.2 −9.9
− TEMP 26.2 52.1 30.1 7.4 51.9 37.9 −23.8

Llama
7B

Standard ICL 82.4 94.3 63.5 68.7 68.6 71.3 74.8
− CONT 77.9 91.5 58.5 66.5 67.8 74.4 −2.0
− STOP 78.5 88.7 39.3 66.7 60.6 60.4 −9.1
− TEMP 20.8 58.2 32.4 11.6 54.4 46.0 −37.6

Llama
13B

Standard ICL 81.6 94.3 60.0 76.1 70.6 39.9 70.4
− CONT 81.4 93.1 58.9 75.7 69.6 45.1 +0.2
− STOP 79.8 85.8 64.4 73.6 64.5 40.2 −2.4
− TEMP 27.8 52.4 33.5 10.9 63.1 45.6 −31.5

Llama
33B

Standard ICL 85.0 96.5 68.1 78.4 78.5 83.3 81.6
− CONT 82.3 95.4 64.9 76.1 80.4 82.0 −1.5
− STOP 84.8 94.9 62.1 77.3 70.5 74.4 −4.3
− TEMP 24.4 61.7 60.6 10.5 67.7 68.5 −32.7

Our first finding from this ablation is that removing template tokens causes the LLMs to completely
lose their ability to solve tasks via ICL with an overall task accuracy performance of 0% for all sizes
and all tasks. We hypothesize that this is because the model no longer has an explicit cue to generate
the target label, which is further discussed in Section 5.2.3. In this case, if we add back the last
prompt token after the next-line token, the results return to their original level due to the introduction
of a template token. This finding confirms previous claims that preserving the format of ICL prompts
plays a significant role in retaining the task performance (Min et al., 2022). Notably, even without
stopword or content tokens, the model can still acquire limited predictive ability.

In addition, the contrast between the representation-level and token-level ablation also indicates that
information is being propagated from the representations of content tokens to the representations of
the task-encoding tokens. The representations of the template tokens and stopword tokens alone (i.e.,
Standard ICL − CONT in Figure 3) are less effective at encoding tasks (i.e., leading to worse
performance) without incorporating the information from the content token representations (i.e.,
Standard ICL − CONT in Table 3).

These findings provide us with additional insights about how LLMs leverage different kinds of
tokens during ICL. Firstly, this circumstance means that even though the representations of the
content tokens are not directly used when LLMs predict the answer, the encoding of these tokens
contribute to the final performance indirectly through being aggregated into the representations of the
task-encoding tokens. Secondly, it also suggests that LLMs prefer to utilize the the task-encoding
tokens to aggregate the indirect information from the demonstration rather than others (i.e., content

5For template tokens, this includes both the tokens in the demonstrations and the test example to maintain
their consistency. We included the analyses of only ablating the tokens in the demonstrations in Appendix N.
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tokens). It is their incorporation of this information that makes them better at encoding tasks, partially
explaining the working mechanism of in-context learning.

4.4 FINDINGS

To summarize, we find that template and stopword tokens are the most likely to be task-encoding
tokens. Specifically, the representations of template tokens contribute significantly to performance
improvement. Meanwhile, the representations of stopword tokens play a more supportive role in the
spectrum of task-encoding tokens by summarizing the information of content tokens. In contrast,
the representations of content tokens do not directly facilitate task-solving, but they are aggregated
into the representations of the other two types of tokens. We discuss the possible applications of
these findings in Appendix O. Furthermore, this finding raises additional questions: 1) Are all the
task-encoding tokens working together? 2) What are the characteristics for a token to be perceived by
a LLM as a task-encoding token?

5 ANALYSES OF TASK-ENCODING TOKENS

To answer the above questions, we provide analyses of the tokens whose representations we believe
mainly store information that directly affects the performance of a task drastically. We focus on the
template tokens since, as evidenced by the findings in Section 4.3.1 and 4.3.2, their representations
are the most important to maintaining task performance. Our analyses include the effects of
different parts of template tokens on the performance and the distinguishing characteristics of them.

5.1 EFFECTS OF DIFFERENT TASK-ENCODING TOKENS

Table 4: Ablation for different template token rep-
resentations with and without Dout, presented as
percentages. The results showing the greatest im-
pact from ablation are underlined.

Models Settings RTE Settings RTE

with “:” w/o “:” with “:” w/o “:”

Llama
7B

TEMP with Dout 66.3 59.5 TEMP w/o Dout 40.7 42.5
−Tin 58.9 56.5 −Tin 43.7 49.9
−Tout 56.7 56.7 −Tout 56.0 55.6

Llama
13B

TEMP with Dout 68.5 59.8 TEMP w/o Dout 57.5 53.7
−Tin 65.5 59.0 −Tin 53.6 52.8
−Tout 61.2 58.4 −Tout 54.8 53.7

Llama
33B

TEMP with Dout 79.0 77.1 TEMP w/o Dout 71.8 65.8
−Tin 77.4 75.4 −Tin 70.6 67.8
−Tout 72.8 70.0 −Tout 67.0 61.3

In this section, we aim at examining the rela-
tionship among the representations of different
task-encoding tokens. To achieve this, we test
the effectiveness (i.e., how much they could af-
fect the downstream task performance) of each
part of task-encoding tokens to see if they could
work without each other.

To achieve this, we ablate the representations
of each task-encoding token, similar to Sec-
tion 4.3.1. In Section 4.3.1, we assume that the
label token Dout is needed for ICL to achieve
performance results on par with Standard ICL,
as suggested by previous work (Wang et al.,
2023). However, it is still not known how the other task-encoding tokens affect the performance
without Dout. Hence, we divide our experiments by including or excluding the label tokens Dout to
further specifically investigate their effectiveness. We present the results on RTE datasets in Table 4
while full results are shown in Appendix P.

Overall, the above experiments show that the task-encoding tokens should be utilized together
to provide the best performance and that removing some of them would cause performance de-
generation or instability issues. From the results with Dout, it is observed that all the template
tokens (i.e., Tin, Tout, and “:”) contribute to the final performance. Removing one of them would
cause a performance degradation. From the results without Dout, the performance becomes less
predictable, where adding back a template token (e.g., “:”) does not always bring performance
improvements. Moreover, in some datasets, models without Dout can still achieve relatively high
performance. These results show that representations of other template tokens may also be seen as
information anchors whose representations aggregate and serve information to the final prediction of
LLMs, broadening the conclusions of Wang et al. (2023) who claim that only answer tokens serve as
information anchors.
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5.2 CHARACTERISTICS OF TASK-ENCODING TOKENS

With the task-encoding tokens identified, we turn to determining what characteristics distinguish them
from other tokens. By better understanding what characteristics of task-encoding tokens lead them to
affect task performance, we provide the community with insights on how to best leverage LLMs for
ICL (e.g., What principles should practitioners be using when designing prompt templates?). We
hypothesize that the following characteristics are critical for a token to be leveraged as task-encoding
tokens: lexical meaning referring to the task-related lexical meaning of a task-encoding token,
repetition referring to the multiple appearances of the task-encoding tokens in the prompt, and
structural cue referring to how task-encoding tokens format the ICL prompt, shown in Table 1, into
structured text.

Table 5: An example of the ICL template
with random strings used in AGNews.

Settings Notations Examples

Randomfixed
Tin dsafjkldafdsajk: {Din}\n
Tout reqwiorewsdafjl: {Dout}\n\n

Swap Tin Answer: {Din}\n
Tout Article: {Dout}\n\n

Randomnonfixed

Tin
1 dsafjkldaasdfjkl: {Din}\n

Tout
1 xiadfjdsalgfweqrjl: {Dout}\n\n

Tin
2 ewqroudajfsdafq: {Din}\n

Tout
2 yufoufgaddavfdnsl: {Dout}\n\n

Tin
t vcxnkfgahvczxkl: {Din}\n

Tout
t dafhglajfdvcaol: {Dout}\n\n

We design several experiments to test whether these char-
acteristics affect the impact of task-encoding tokens on
the task performance, by disrupting each characteristic in
the ICL prompts. A characteristic is related if there is a
performance drop after the disruption. The disruption is
achieved by replacing the template tokens with different
kinds of random string templates, shown in Table 5. We
use 5 different random string templates which are attached
to Appendix R and average all the results for each setting.

5.2.1 LEXICAL MEANING

Table 6: Results validating the effect of lexical
meanings of template tokens, presented as percent-
ages. The results showing the greatest decrease
during the disruption are underlined.

Models Settings AGNews SST2 TREC DBPedia RTE CB Avg.

OpenLlama
3B

Standard ICL 63.7 91.2 21.9 61.9 57.4 52.0 58.0
Swap 64.4 86.8 21.7 58.7 60.6 54.6 57.8
Randomfixed 57.5 71.4 32.4 51.2 53.3 49.8 52.6

Llama
7B

Standard ICL 82.4 94.3 63.5 68.7 68.6 71.3 74.8
Swap 70.2 11.4 44.3 58.2 64.5 50.1 49.8
Randomfixed 19.5 11.4 13.2 7.4 19.7 21.7 15.5

Llama
13B

Standard ICL 81.6 94.3 60.0 76.1 70.6 39.9 70.4
Swap 81.5 67.4 36.4 75.9 69.1 52.1 63.7
Randomfixed 52.1 76.8 27.7 48.9 55.7 34.5 49.3

Llama
33B

Standard ICL 85.0 96.5 68.1 78.4 78.5 83.3 81.6
Swap 84.5 94.9 60.8 75.5 68.0 55.5 73.2
Randomfixed 78.7 92.5 52.2 75.8 68.9 41.1 68.2

A task-encoding token might be more impactful
on the performance with specific lexical mean-
ing. One possible hypothesis is that if the token
carries specific task-related meanings like “Ar-
ticle” and “Answer”, it is more likely to serve as
a task-encoding token.

To verify if lexical meanings could affect the for-
mation of task-encoding tokens, we 1) Replace
the tokens from Tin and Tout with the same
random strings across the different demonstra-
tions (Randomfixed), thus completely disrupt-
ing the lexical characteristic of these tokens; 2)
Swap Tin and Tout (Swap), thus partially dis-
rupting the lexical characteristic of these tokens.
Shown in Table 6, we observe that for smaller models (OpenLlama 3B) disrupting the lexical meaning
of tokens would slightly impact task performance. For larger models, the disruption causes more sig-
nificant drops in performance. Specifically, Llama 7B is particularly sensitive to the lexical meaning
of tokens and demonstrates poorer performance when semantics are disturbed via random strings
or swapping. Therefore, the lexical meaning of tokens is likely to play a role in their task-encoding
nature, especially in the case of larger models.

5.2.2 REPETITION

Table 7: Results validating the effect of repetitive pat-
terns, presented as percentages. We bold the highest
accuracy for each classification task and model size.

Models Settings AGNews SST2 TREC DBPedia RTE CB Avg.

OpenLlama
3B

Randomfixed 57.5 71.4 32.4 51.2 53.3 49.8 52.6
Randomnonfixed 30.2 71.4 17.1 18.6 47.9 47.7 38.8

Llama
7B

Randomfixed 19.5 11.4 13.2 7.4 19.7 21.7 15.5
Randomnonfixed 15.5 11.6 10.4 1.8 4.6 25.6 11.6

Llama
13B

Randomfixed 52.1 76.8 27.7 48.9 55.7 34.5 49.3
Randomnonfixed 32.1 34.5 19.2 6.0 21.0 32.8 24.3

Llama
33B

Randomfixed 78.7 92.5 52.2 75.8 68.9 41.1 68.2
Randomnonfixed 78.5 87.5 46.3 63.1 63.6 46.1 64.2

The impact of task-encoding tokens could
also be influenced by their repetition
throughout the ICL prompt. Intuitively,
via the attention mechanism, repetitive pat-
terns are more likely to propagate informa-
tion through the processing of text. Yan
et al. (2023) propose self-reinforcement in
in-context learning, also suggesting that
repetition could be a significant factor in
in-context learning.

We experiment with the repetition characteristic by comparing the results of the previously dis-
cussed Randomfixed experiment with an experiment replacing each Tin and Tout with different
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random strings (Randomnonfixed), thus breaking the repetition of template tokens present in ICL
demonstrations.

We see from Table 7 that without consistent repetition of the task-encoding tokens, the performance
for most models decreases. This decrease in performance suggests that information necessary for
maintaining the performance of the task may not have been properly accumulated and stored in
the representations of the template tokens. These experiments demonstrate that repetitive patterns
significantly influence the impact of task-encoding tokens.

Additionally, we conducted supplemental experiments using template tokens with specific lexical
meanings for comparison, as detailed in Appendix S. The results are consistent with the previous
findings, further reinforcing our claim that repetition is a key characteristic of task-encoding tokens.

5.2.3 STRUCTURAL CUE

Table 8: One-shot experimental results validating the
effect of structural cues, presented as percentages. Mod-
els without template tokens consistently yielded an
accuracy of 0% and are thus omitted from this table.

Models Settings AGNews SST2 TREC DBPedia RTE CB Avg.

OpenLlama
3B

Standard ICL 70.7 51.7 40.4 53.5 50.2 48.6 53.3
Randomfixed 47.5 51.8 32.6 19.4 51.8 42.4 40.9

Llama
7B

Standard ICL 72.3 77.4 54.1 64.7 53.0 64.4 64.3
Randomfixed 3.9 16.9 3.5 9.6 16.9 10.4 10.2

Llama
13B

Standard ICL 82.0 72.0 60.1 75.9 60.4 18.8 70.1
Randomfixed 46.1 47.5 25.0 50.8 47.5 21.4 39.7

Llama
33B

Standard ICL 85.3 88.3 71.2 75.5 64.1 45.5 76.9
Randomfixed 69.7 53.0 37.8 72.8 53.0 37.6 54.0

Beyond lexical meaning and repetition, the
performance influence of task-encoding to-
kens may also be affected by how they for-
mat ICL prompts. Similar to our defini-
tion of template and stopword tokens, ICL
prompts are often formatted with structural
cues that assist the model in differentiat-
ing between elements with distinct roles,
such as task inputs and target labels, within
a demonstration. For instance, template
tokens (i.e., Tin and Tout) delimit the pre-
sentation of demonstration examples and
labels in ICL prompts. Meanwhile, stop-
word tokens (e.g., “,”, “.”, “:”, etc) help structure the content words into different sentence components
by marking the beginning or end of sentences. Examples of how task-encoding tokens naturally
delimit an ICL prompt are shown in Appendix U. These structural cues are similar to those found in
an LLM’s pretraining data (e.g., column names in SQL tables). As a result, we suspect that pretraining
on such data enables the structuring nature of the task-encoding tokens to be recognized, causing its
representations to store higher-level information.

To measure the effect of the structuring characteristic of task-encoding tokens, we perturb the structure
of one-shot prompts in two stages. We use the one-shot prompt setting to eliminate the repetition
characteristic which may act as a confounding factor in our results. Firstly, we disrupt the lexical
meaning of templates tokens similar to Section 5.2.1. We begin with this disruption since the meaning
of tokens also help LLMs distinguish the different parts of a prompt. Subsequently, we remove all
the template tokens from the prompt to eliminate any source of structure.

The results in Table 8 demonstrate that performance decreases after disrupting the structural cue
characteristics, highlighting the importance of structural cues for these tokens in influencing the
final performance. In particular, consistent with the findings in Section 4.3.2, removing all template
tokens results in 0% performance due to the complete elimination of structural cues. Supplemental
experiments in Appendix T are provided to better support the characteristic of structural cue from the
perspective of representation-level ablation.

6 CONCLUSION

In this paper, we have provided a fine-grained characterization of task-encoding tokens, whose
representations LLMs directly depend on to achieve high-level performance. Through a series of
experiments, we have examined the roles of template tokens and stopword tokens within ICL as
potential task-encoding tokens. Our findings add nuance to previous claims made about ICL, for
example, that tokens other than label words could also provide valuable information directly affecting
the performance. Overall, our results demonstrate that model performance depends directly on the
presence of these tokens and that their lexical meaning, their repetition throughout the ICL prompt,
and their structural formatting of ICL demonstrations are likely to play a role in how effectively they
allow an LLM to recover the critical information needed to perform a task.
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ETHICS STATEMENT

This work focuses on analyzing the working mechanisms of large language models and, as such, does
not present any increased risks of harm beyond the existing norms of natural language processing
or computational linguistics research. The associated risks include using a model trained on vast
amounts of text, which may inadvertently contain biases. Another concern is the potential misuse of
the model for generating misleading or harmful content. However, such a scenario is unlikely in our
work, as we concentrate on classification tasks with fixed outputs.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made several efforts that are documented through-
out this paper. Our experiments utilize the open-source models described in Section 3.2. The prompts
and templates used in our experiments are detailed in Section 3.1, Section 5.2 of the main text and
in Appendix B, Appendix C, Appendix I, Appendix R, Appendix S. The stopword token list used
in our experiments is shown in Appendix F. The complete code for our implementation, including
all inference processes, is provided in the supplementary materials. We employed random seeds
ranging from 1 to 15 to ensure consistent results across experiments, as specified in Section 3.2 and
the supplementary code. All datasets used in our experiments are described comprehensively in
Section 3.2, and the supplementary code includes all data processing steps and any preprocessing
applied. We encourage other researchers to consult these references for replicating our findings.
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Table 9: An example of the ICL template used in our experiments.

Datasets Notations Examples

AGNews
I Classify the news articles into the categories of World, Sports, Business, and Technology.\n\n
Tin Article: {Din}\n
Tout Answer: {Dout}\n\n

SST2
I Classify the reviews into the categories of Positive and Negative.\n\n
Tin Review: {Din}\n
Tout Sentiment: {Dout}\n\n

RTE

I Classify the entailment of the hypothesis and the premise into the categories of True and
False.\n\n

Tin Hypothesis: {DinA}\n Premise: {DinB}\n
Tout Answer: {Dout}\n\n

CB

I Classify the entailment of the hypothesis and the premise into the categories of true, neither
and false.\n\n

Tin Hypothesis: {DinA}\n Premise: {DinB}\n
Tout Answer: {Dout}\n\n

TREC

I Classify the questions based on whether their answer type is a Number, Location, Person,
Description, Entity, or Abbreviation.\n\n

Tin Question: {Din}\n
Tout Answer Type: {Dout}\n\n

DBPedia

I Classify the documents based on whether they are about a Company, School, Artist, Athlete,
Politician, Transportation, Building, Nature, Village, Animal, Plant, Album, Film, or Book.\n\n

Tin Article: {Din}\n
Tout Answer: {Dout}\n\n

Table 10: The stopwords used in our experiments.

Datasets Stopwords

AGNews “the”, “into”, “of”, “and”, “,” , “.”, “\n”
SST2 “the”, “into”, “of”, “and”, “.”, “\n”
RTE “the”, “of”, “into”, “and”, “into”, “.”, “\n”
CB “the”, “of”, “and”, “into”, “,” ,“.”, “\n”
TREC “the”, “based”, “on”, “whether”, “their”, “is”, “a”, “,”, “or”, “.”, “\n”
DBPedia “the”, “based”, “on”, “whether”, “they”, “are”, “about”, “a”, “,”, “or”, “.”, “\n”

A LIMITATIONS

In this paper, the token categorization is performed manually, leaving room for further refinement,
leaving the exploration of other specific content tokens as task-encoding tokens in certain contexts
to future work. While the results provide robust support to our categorization, the identification
process itself lacks precision. For instance, stopwords may only represent a subset of all in-context
task-encoding tokens. The manual nature of our categorization limits our ability to comprehensively
track these tokens. Moreover, our experiments are limited to classification, machine translation, and
question answewring datasets, suggesting that our conclusions should be further validated for other
tasks. Additionally, our focus on task-encoding tokens, whose representations could impact task
performance, may overlook other tokens responsible for other possible functions. Another limitation
of our study is that we focus exclusively on in-context learning scenarios, meaning that our findings
may not be directly applicable to zero-shot learning scenarios.

B IN-CONTEXT LEARNING TEMPLATES

In this section, we present all the in-context learning templates used in this paper. For the RTE and
CB datasets, there are two distinct inputs in the demonstrations (i.e., the hypothesis and the premise),
which we denote as DinA and DinB, respectively. The examples are provided in Table 9. All the
notations are consistent with the notations in Table 1. All the next-line tokens are represented as “\n ”
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Table 11: The whole stopword list from NLTK. We add the punctuation tokens in this case.

NLTK Stopwords List

“i”, “me”, “my”, “myself”, “we”, “our”, “ours”, “ourselves”, “you”, “your”, “yours”, “yourself”,
“yourselves”, “he”, “him”, “his”, “himself”, “she”, “her”, “hers”, “herself”, “it”, “its”, “itself”,
“they”, “them”, “their”, “theirs”, “themselves”, “what”, “which”, “who”, “whom”, “this”, “that”,
“these”, “those”, “am”, “is”, “are”, “was”, “were”, “be”, “been”, “being”, “have”, “has”, “had”,
“having”, “do”, “does”, “did”, “doing”, “a”, “an”, “the”, “and”, “but”, “if”, “or”, “because”, “as”,
“until”, “while”, “of”, “at”, “by”, “for”, “with”, “about”, “against”, “between”, “into”, “through”,
“during”, “before”, “after”, “above”, “below”, “to”, “from”, “up”, “down”, “in”, “out”, “on”,
“off”, “over”, “under”, “again”, “further”, “then”, “once”, “here”, “there”, “when”, “where”,
“why”, “how”, “all”, “any”, “both”, “each”, “few”, “more”, “most”, “other”, “some”, “such”,
“no”, “nor”, “not”, “only”, “own”, “same”, “so”, “than”, “too”, “very”, “s”, “t”, “can”, “will”,
“just”, “don”, “should”, “now”, “”, “”, “#”, “$”, “%”, “ˆ”, “&”, “*”, “(”, “)”, “-”, “_”, “+”, “=”,
“[”, “]”, “{”, “}”, “|”, “\”, “;”, “’́, “’́, “<”, “>”, “,”, “.” , “?”, “/”, “\n”

Table 12: Statistics for the original test set and the test set number we scaled up of each dataset we
used.

Dataset AGNews DBPedia SST2 TREC RTE CB

Test set number of the dataset 7,601 70,000 1,821 500 277 250
Test set number we scaled up 5,000 5,000 1,821 - - -

C REPRESENTATION-LEVEL ABLATION EXAMPLES

We provide a one-shot demonstration of all ablation cases for the representation-level ablation
experiments, as shown in Table 14. In these demonstrations, representations of specific token types
are masked in the attention mechanism, where <m> denotes that all representations of the token are
removed from the attention scope from the test example.

D EXPERIMENT RESULTS WITH MORE LARGE LANGUAGE MODELS

Experimental results using the Llama 2 and Mistral models are shown in Table 15. The trends
observed in these experiments are consistent with those involving the Llama models. These results
further reinforce the findings of this paper, indicating that template tokens and stopword tokens are
the most prone to serving as task-encoding tokens.

E EXPERIMENT RESULTS WITH INSTRUCTION-TUNED LARGE LANGUAGE
MODELS

We present the representation-level ablation results of large language models after instruction tuning
to confirm that our findings remain consistent. Specifically, we use Llama 2 7B Chat and Llama 2
13B Chat in our experiments. As shown in Table 16, the results align with the findings discussed in
Section 4.3.1, with only one exception: the TREC dataset. In this dataset, the input data is structured
in a question-answering format (e.g., Who/What/When did ...). We hypothesize that, during the
supervised fine-tuning process, tokens associated with these question formats may also serve as
task-encoding tokens, although they are currently categorized as content tokens in our experiments.
Overall, these supplemental results prove further evidence to our findings in the main paper.

F STOPWORD TOKENS

For the results shown in the main paper, we used the stopword token list shown in Table 10. This list
only includes the stopword tokens from the task instruction, aiming to minimize their presence. We
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Table 13: Results of the representation-level ablation experiments with more text examples. The best
results are in bold while the results showing the greatest decrease from ablation are underlined.

OpenLlama 3B
Setting AGNews SST2 DBPedia Setting AGNews SST2 DBPedia

Zero-shot+CONT 25.7 52.4 7.8 Standard ICL−CONT 57.6 86.4 62.3
Zero-shot+STOP 37.2 82.6 53.1 Standard ICL−STOP 62.0 91.0 63.2
Zero-shot+TEMP 56.2 86.3 62.5 Standard ICL−TEMP 41.5 87.2 57.3

Llama 7B
Setting AGNews SST2 DBPedia Setting AGNews SST2 DBPedia

Zero-shot+CONT 32.0 58.1 13.4 Standard ICL−CONT 77.0 91.9 67.4
Zero-shot+STOP 58.0 84.6 43.9 Standard ICL−STOP 79.5 94.2 69.0
Zero-shot+TEMP 71.4 90.7 67.4 Standard ICL−TEMP 64.3 84.9 58.6

Table 14: An example of the masked tokens from the attention of the test example in the representation-
level ablation, where <s> represents the start of sentence token and <m> means that this token is
masked. Tokens that are not masked are bold for clarity.

Zero-shot+TEMP

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

Article: <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m>
<m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m>
<m> <m> <m> <m> <m> <m> <m> <m>
Answer: Technology

Zero-shot+STOP

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

<m> <m> <m> <m> <m> <m> the <m> . <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> the
<m> <m> <m> <m> <m> <m> <m> <m> , <m> <m> <m> <m> <m> <m> of <m> <m> <m> <m> <m> <m> <m> <m> <m> <m>
into <m> <m> the <m> <m> .
<m> <m> Technology

Zero-shot+CONT

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

<m> <m> <m> First class to <m> moon <m> London - British airline magnate Richard Branson announced a plan on Monday
for <m> world’s first commercial space flights <m> saying “thousands” <m> fee-paying astronauts could be sent <m> orbit in
<m> near future <m> <m> <m> <m> Technology <m> <m>

Standard ICL−TEMP

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

<m> <m> <m> First class to the moon. London - British airline magnate Richard Branson announced a plan on Monday for
the world’s first commercial space flights, saying "thousands" of fee-paying astronauts could be sent into orbit in the near
future. <m> <m> <m> Technology <m> <m>

Standard ICL−STOP

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

Article: First class to <m> moon <m> London - British airline magnate Richard Branson announced a plan on Monday for
<m> world’s first commercial space flights <m> saying “thousands” <m> fee-paying astronauts could be sent <m> orbit in <m>
near future <m> <m> Answer: Technology <m> <m>

Standard ICL−CONT

<s> Classify the news articles into the categories of World, Sports, Business, and Technology.

Article: <m> <m> <m> the <m> . <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> the <m>
<m> <m> <m> <m> <m> <m> <m> , <m> <m> <m> <m> <m> <m> of <m> <m> <m> <m> <m> <m> <m> <m> <m> <m> into
<m> <m> the <m> <m> .
Answer: Technology

made this choice under the assumption that task-affecting information should be stored densely in a
few tokens. Hence, the number of tokens whose representations affect the final task performance
significantly should be small.
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Table 15: The accuracy results of the representation-level ablation study using Llama 2 and Mistral
models where, for example, +TEMP refers to allowing attention only to template tokens and −TEMP
refers to allowing attention only to content and stopword tokens. All values are presented as
percentages. Results are acquired with 5 different random seeds. The best results are in bold and the
results showing the greatest decrease during the ablation are underlined.

Models Setting △Avg. AGNews SST2 TREC DBPedia RTE CB

Llama 2
7B

Zero-shot 36.0 50.2 50.4 57.2 6.4 51.6 0.0
+ CONT +1.9 0.9 61.0 50.6 12.9 48.7 53.2
+ STOP +23.4 49.0 78.1 54.4 61.6 65.3 47.9
+ TEMP +31.3 81.1 82.6 55.2 65.5 63.9 55.4

Llama 2
13B

Zero-shot 53.3 56.2 90.8 49.0 7.6 70.0 46.4
+ CONT −14.1 0.5 56.0 61.4 0.0 62.6 54.6
+ STOP +9.6 47.2 76.8 65.2 65.3 66.5 56.8
+ TEMP +18.1 78.2 93.7 62.4 70.4 71.9 52.1

Mistral
7B

Zero-shot 59.5 77.8 84.4 73.0 57.8 1.8 62.1
+ CONT −10.0 43.3 52.0 66.6 10.1 64.3 60.7
+ STOP +18.4 78.9 92.5 71.6 81.4 69.9 72.9
+ TEMP +19.7 81.7 95.9 63.9 83.3 77.9 72.5

Llama 2
7B

Standard ICL 70.7 85.0 93.2 58.3 66.7 66.3 55.0
− CONT −3.8 82.4 85.5 54.3 64.2 59.6 55.7
− STOP −2.5 84.8 88.0 51.7 65.7 65.8 53.2
− TEMP −32.8 0.9 61.0 50.6 12.9 48.5 53.6

Llama 2
13B

Standard ICL 73.6 82.8 94.9 62.8 74.6 71.2 55.4
− CONT −1.3 79.0 94.1 62.7 72.4 72.1 53.6
− STOP −2.9 80.1 89.4 61.5 74.1 69.6 49.3
− TEMP −33.5 0.5 56.0 61.4 0.0 68.2 54.3

Mistral
7B

Standard ICL 80.2 82.2 97.0 67.4 82.4 73.6 78.6
− CONT −0.6 81.8 96.2 64.4 83.4 78.9 72.9
− STOP −0.8 81.3 97.0 66.5 80.5 75.5 75.7
− TEMP −22.8 78.6 52.0 66.6 10.1 67.1 69.6

Table 16: The accuracy results of the representation-level ablation study using supervised finetuned
(SFT) version of Llama 2 models where, for example, +TEMP refers to allowing attention only to
template tokens and −TEMP refers to allowing attention only to content and stopword tokens. All
values are presented as percentages. Results are acquired with 15 different random seeds. The best
results are in bold and the results showing the greatest decrease during the ablation are underlined.

Models Setting Avg. AGNews SST2 TREC DBPedia RTE CB

Llama 2
7B Chat

Zero-shot - - - - - - -
+ CONT 27.9 0.7 52.6 52.2 7.9 24.8 28.9
+ STOP 72.9 77.1 90.6 60.2 75.4 66.7 67.5
+ TEMP 75.6 80.1 92.6 62.6 76.6 69.5 72.1

Llama 2
13B Chat

Zero-shot - - - - - - -
+ CONT 38.4 0.0 55.7 67.3 0.5 63.5 43.2
+ STOP 67.1 78.5 87.6 66.9 71.4 67.2 31.1
+ TEMP 72.3 82.0 93.7 65.6 72.3 72.3 47.9

Llama 2
7B Chat

Standard ICL - - - - - - -
− CONT 76.1 80.7 93.1 62.9 76.8 70.7 72.5
− STOP 76.4 81.7 94.4 61.9 74.9 71.0 74.3
− TEMP 31.4 0.7 52.6 52.2 7.9 24.1 51.1

Llama 2
13B Chat

Standard ICL - - - - - - -
− CONT 74.7 83.4 93.6 66.4 74.3 74.6 56.1
− STOP 69.8 78.9 94.1 57.7 72.8 70.1 45.4
− TEMP 38.7 0.0 55.7 67.3 0.5 65.1 43.6

Nevertheless, one might be curious about the results if we used a more complete stopword list. In this
case, we utilize a more comprehensive stopword token list of NLTK6 shown in Table 11 and conduct
the representation-level ablation once more. The results are presented in Table 17. It can be observed

6https://gist.github.com/sebleier/554280
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that all the conclusions from Section 4.3.1 are still well established. A few results are different
from Table 2 and Table 3 because we masked the representations of the “</s>” token in this set of
experiments. We claim that this masking does not impact the main findings of these experiments.

Table 17: The accuracy results of the representation level ablation study where we use the more
complete stopword token list of NLTK. All values are presented as percentages. The best results
presented by the number of ablated token types are in bold.

Models Setting AGNews SST2 TREC DBPedia RTE CB

OpenLlama
3B

Zero-shot 22.0 20.0 23.6 5.4 44.4 1.8
+ CONT 26.2 52.1 30.1 7.4 51.9 37.9
+ STOP 38.0 85.1 31.6 54.6 58.8 55.7
+ TEMP 56.5 86.7 27.1 62.2 56.4 52.3

Standard ICL 63.7 91.2 21.9 61.9 57.4 52.0
- TEMP 42.1 87.2 25.9 56.3 58.3 57.4
- CONT 57.1 88.4 27.1 62.6 56.8 52.4
- STOP 61.6 90.7 24.8 62.2 56.7 51.9

Llama
7B

Zero-shot 25.0 29.2 41.4 0.0 54.2 3.6
+ CONT 32.4 57.9 42.5 12.5 55.5 46.1
+ STOP 59.9 85.9 51.7 28.9 56.0 52.7
+ TEMP 70.8 90.2 58.4 66.2 66.3 73.5

Standard ICL 82.4 94.3 63.5 68.7 68.6 71.3
- TEMP 64.7 84.1 54.0 56.7 56.1 48.2
- CONT 75.4 93.8 59.8 67.5 66.8 74.8
- STOP 81.4 94.2 60.5 67.9 67.6 72.1

Llama
13B

Zero-shot 59.0 18.0 37.0 0.0 0.0 0.0
+ CONT 30.6 52.4 43.8 13.0 60.2 45.5
+ STOP 72.7 78.7 49.2 27.4 58.5 27.1
+ TEMP 78.5 92.3 59.0 74.2 67.4 52.3

Standard ICL 81.6 94.3 60.0 76.1 70.6 39.9
- TEMP 71.7 80.1 56.2 8.7 56.5 29.3
- CONT 79.3 93.4 60.1 74.1 68.4 47.6
- STOP 79.2 94.1 59.3 73.8 68.9 44.6

Llama
33B

Zero-shot 70.2 88.6 60.6 30.2 58.1 19.6
+ CONT 27.8 61.7 61.9 10.8 64.2 68.1
+ STOP 74.7 93.6 66.9 70.8 69.1 63.8
+ TEMP 80.6 95.2 63.1 71.9 78.7 84.0

Standard ICL 85.0 96.5 68.1 78.4 78.5 83.3
- TEMP 79.5 93.8 58.5 62.8 68.0 68.0
- CONT 82.7 95.9 62.9 74.1 79.6 83.1
- STOP 84.4 96.1 61.8 72.8 79.4 82.1

G ANALYSIS OF THE NEXT-LINE TOKENS

In this section, we analyze the next-line token, which is ablated whenever any type of the stopword
tokens or template tokens are ablated in the representation-level ablation experiments. We analyze
this token by not ablating it when the these types of tokens are ablated. Results presented in Table 18
demonstrate that the next-line token is an important task-encoding token, due to the fact that they
improved the performance by a large margin compared to the results in Table 3.

H COMPARISON EXPERIMENTS WITH MORE TEXT EXAMPLES

In the ideal scenario, our experiments would have been conducted on the full test set. However, in
practice, this is infeasible for any of the models studied in our paper due to computational resource
constraints. For instance, it took 42 hours for the OpenLlama 3B model to run one round of the
representation ablation experiment on the whole test set of DBPedia (i.e., one cell in Table 2 and 3
for the DBPedia column). To verify our number of test examples decision, we provide additional
results where we scale up the number of test examples and observe no difference with our original
experimental setup. Thus, we believe that limiting our test set sample size to 500 is a reasonable
setup. We provide the test set statistics and the experiment results in Table 12 and Table 13.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 18: The accuracy results of the representation-level ablation study where, for example, − TEMP
refers to allowing attention only to content and stopword tokens. The next-line tokens are always
ablated in this set of experiments. All values are presented as percentages. Except where noted with
∗, all test statistics reported correspond to p-values < 0.05. The results showing the greatest decrease
from ablation are underlined.

Models Setting AGNews SST2 TREC DBPedia RTE CB △Avg.

OpenLlama
3B

Standard ICL 63.7 91.2 21.9 61.9 57.4 52.0 58.0
− STOP 62.3 91.0 24.8∗ 62.9 57.1 51.1∗ +0.2
− TEMP 41.9 87.2 26.0 56.3 58.5 57.4 −5.4

Llama
7B

Standard ICL 82.4 94.3 63.5 68.7 68.6 71.3 74.8
− STOP 80.4 94.6 61.1 68.0 67.2 72.0 −0.9
− TEMP 64.5 84.1 54.0 58.0 56.8 54.3 −12.8

Llama
13B

Standard ICL 81.6 94.3 60.0 76.1 70.6 39.9 70.4
− STOP 81.2 94.1 59.3 76.9 69.2 40.6 −0.2
− TEMP 74.1 80.0 46.5 30.6 58.3 25.4 −17.9

Llama
33B

Standard ICL 85.0 96.5 68.1 78.4 78.5 83.3 81.6
− STOP 84.3 95.6 65.7 77.6 78.6 81.8 −1.0
− TEMP 76.6 93.9∗ 61.2 72.7 70.3 59.6 −9.2

Llama 2
7B

Standard ICL 70.7 85.0 93.2 58.3 66.7 66.3 55.0
− STOP 85.5 92.7 56.4 66.6 63.6 57.1 −0.4
− TEMP 69.8 82.8 56.3 58.8 67.5 42.9 −7.7

Llama 2
13B

Standard ICL 73.6 82.8 94.9 62.8 74.6 71.2 55.4
− STOP 81.2 94.5 61.2 73.7 72.0 53.2 −1.0
− TEMP 71.1 95.6 61.0 72.4 72.9 54.3 −2.4

Mistral
7B

Standard ICL 80.2 82.2 97.0 67.4 82.4 73.6 78.6
− STOP 81.2 97.3 65.5 82.0 77.6 73.9 −0.6
− TEMP 78.6 89.7 67.6 79.4 70.8 72.5 −3.8

Table 19: The different instruction prompts used in our experiments. “Ins.” represents “Instruction”.

Datasets Stopwords

AGNews Ins. 1 Classify the text into World, Sports, Business, and Technology.

AGNews Ins. 2 Classify the articles based on whether they are in the categories of World, Sports,
Business, and Technology.

AGNews Ins. 3 Classify the news to World, Sports, Business, and Technology.

DBPedia Ins. 1 Classify the text into Company, School, Artist, Athlete, Politician, Transportation,
Building, Nature, Village, Animal, Plant, Album, Film, and Book.

DBPedia Ins. 2 Classify the documents into the categories of Company, School, Artist, Athlete, Politi-
cian, Transportation, Building, Nature, Village, Animal, Plant, Album, Film, and Book.

DBPedia Ins. 3 Classify the articles based on whether they are in the categories of Company, School,
Artist, Athlete, Politician, Transportation, Building, Nature, Village, Animal, Plant,
Album, Film, and Book.

For TREC, RTE, and CB, using 500 test examples won’t affect the final results at all since their test
set size is smaller than 500. We provide the results of experiments using all test examples in SST2,
and 5000 test examples in AGNews and DBPedia here to prove our point that limiting our test set
sample size to 500 is a reasonable compromise. Shown in Table 13, compared to the results we show
in Table 2 and Table 3, the numbers are changed less than 1% for all the results.

I RESULTS USING DIFFERENT INSTRUCTION PROMPTS

We conducted experiments on AGNews and DBPedia with 3 other different instructions to show that
the and show the results in Table 20 and Table 21. Based on these additional results, our conclusions
remain the same, which shows that our findings are not sensitive to variations of the instruction
prompt. The different instruction prompts I we used are shown in Table 19.
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Table 20: Results of the representation-level ablation experiments with different instruction prompts
for AGNews dataset. “Ins.” represents “Instruction”. The best results are in bold while the results
showing the greatest decrease from ablation are underlined.

OpenLlama 3B
Setting Ins. 1 Ins. 2 Ins. 3 Setting Ins. 1 Ins. 2 Ins. 3

Zero-shot+CONT 26.5 26.9 22.1 Standard ICL−CONT 53.1 55.6 67.9
Zero-shot+STOP 40.6 38.8 49.1 Standard ICL−STOP 57.5 59.8 72.0
Zero-shot+TEMP 51.1 53.7 67.6 Standard ICL−TEMP 43.3 42.6 53.9

Llama 7B
Setting Ins. 1 Ins. 2 Ins. 3 Setting Ins. 1 Ins. 2 Ins. 3

Zero-shot+CONT 31.1 30.2 35.2 Standard ICL−CONT 70.6 78.2 75.2
Zero-shot+STOP 51.4 63.5 61.8 Standard ICL−STOP 73.9 80.1 79.4
Zero-shot+TEMP 62.5 73.2 71.1 Standard ICL−TEMP 59.9 69.1 74.0

Table 21: Results of the representation-level ablation experiments with different instruction prompts
for DBPedia dataset. “Ins.” represents “Instruction”. The best results are in bold while the results
showing the greatest decrease from ablation are underlined.

OpenLlama 3B
Setting Ins. 1 Ins. 2 Ins. 3 Setting Ins. 1 Ins. 2 Ins. 3

Zero-shot+CONT 6.7 6.3 7.2 Standard ICL−CONT 56.1 60.4 58.1
Zero-shot+STOP 43.1 48.3 40.2 Standard ICL−STOP 58.1 61.4 59.6
Zero-shot+TEMP 55.7 59.9 57.7 Standard ICL−TEMP 48.6 54.0 47.8

Llama 7B
Setting Ins. 1 Ins. 2 Ins. 3 Setting Ins. 1 Ins. 2 Ins. 3

Zero-shot+CONT 15.0 15.9 6.8 Standard ICL−CONT 64.9 66.1 68.7
Zero-shot+STOP 49.7 48.1 48.6 Standard ICL−STOP 66.8 67.6 69.6
Zero-shot+TEMP 66.1 66.5 69.0 Standard ICL−TEMP 58.9 59.2 61.7

J REPRESENTATION-LEVEL ABLATION ON MACHINE TRANSLATION TASKS

Besides the classification tasks, we also show results in the machine translation tasks to show that our
findings could also be extended in text generation tasks. We used the Flores MT dataset (Costa-jussà
et al., 2022) to conduct this set of 4-shot machine translation experiments. The results are reported
with the BLEU metric (Papineni et al., 2002). We investigated three different language directions:
English-to-French, English-to-Danish, and English-to-German. We used 10 random seeds for En-Fr
and En-De and 15 random seeds for En-Da to randomly choose the demonstrations. 100 test examples
are sampled in this set of the experiments as a computational compromise. Similar to the classification
tasks, we keep the answer (i.e., target language) unablated for all the settings and ablate different
kinds of tokens. Results in Table 22 show the consistent finding to those in Section 4.3.1.

K REPRESENTATION-LEVEL ABLATION ON QUESTION ANSWERING TASKS

We show the representation-level experimental results of the question answering (QA) tasks in this
section. We used Commonsense QA (Talmor et al., 2019) dataset to test if the template and stopword
tokens would directly affect the downstream task performance. We applied the settings of 4 in-context
examples and 15 random seeds in this set of experiments. We frame the task as directly answering the
questions instead of choosing one answer from the choices because the token types in this scenario
are easier to be categorized.

Results shown in Table 23 demonstrate that our main findings, that template and stopword tokens are
more likely to serve as task-encoding tokens, still hold in the QA tasks.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 22: Results of the representation-level ablation for machine translation tasks. The best results
are in bold while the results showing the greatest decrease from ablation are underlined.

OpenLlama 3B
Settings En-Fr En-De En-Da Settings En-Fr En-De En-Da

Zero-shot+CONT 0.13 0.38 0.28 Standard ICL−CONT 26.07 12.53 17.43
Zero-shot+STOP 16.68 9.17 13.09 Standard ICL−STOP 26.19 12.52 17.29
Zero-shot+TEMP 26.06 12.92 17.17 Standard ICL−TEMP 17.38 8.88 12.9

Llama 7B
Settings En-Fr En-De En-Da Settings En-Fr En-De En-Da

Zero-shot+CONT 11.76 13.83 10.18 Standard ICL−CONT 35.39 24.23 30.08
Zero-shot+STOP 30.23 21.76 23.34 Standard ICL−STOP 35.36 24.33 29.99
Zero-shot+TEMP 35.47 24.34 30.12 Standard ICL−TEMP 31.09 21.98 24.88

Table 23: Results of the representation-level ablation for question answering tasks. 15 random seeds
are used to acquire all the experimental results. The best results are in bold while the results showing
the greatest decrease from ablation are underlined.

Setting OpenLlama
3B

Llama
7B

Llama
13B

Llama
33B

Llama 2
7B

Llama 2
13B

Mistral
7B

Zero-shot+CONT 7.42 16.62 14.49 19.47 17.51 17.78 16.64
Zero-shot+STOP 11.71 21.96 18.98 23.38 22.13 22.31 19.16
Zero-shot+TEMP 13.24 24.38 25.73 27.20 25.42 25.11 25.56
Standard ICL−CONT 14.40 24.07 26.22 27.73 25.89 24.71 25.47
Standard ICL−STOP 11.96 21.84 21.44 26.93 24.62 23.09 23.69
Standard ICL−TEMP 6.89 16.29 15.31 19.78 18.51 16.64 15.51

L REPRESENTATION-LEVEL ABLATION BASED ON THE TOKEN COUNT

One possible explanation for the performance variation when different types of tokens are ablated at
the representation level is the simple fact that the number of tokens being ablated may vary. Intuitively,
template and stopword tokens are far fewer in number compared to content tokens. In this section,
we show the statistics of the number count of each type of tokens and include a supplementary
experiment that only let the LLM attend to certain number of token representations of each type of
the tokens.

We first present the average token count for each type of token across the datasets. Token counts may
vary depending on the tokenizer used by the large language models, and all statistics are shown in
Table 24. The results indicate that the number of template and stopword tokens is much smaller than
the number of content tokens, suggesting that performance variation during ablation is not solely due
to differences in token type counts.

Table 24: The token count statistics of different types of tokens. Avg. stands for the average token
count for each type of tokens.

Tokenizer Setting Avg. AGNews DBPedia SST2 TREC CB RTE

OpenLlama
3B

CONT 204.1 207.5 278.8 116.3 48.7 295.5 278.0
STOP 43.0 43.2 45.1 27.7 21.8 66.7 53.7
TEMP 56.5 43.3 49.9 42.4 48.8 78.5 76.3

Llama &
Llama 2

CONT 220.6 238.5 288.8 127.8 51.3 312.0 305.1
STOP 45.0 43.1 46.1 29.9 21.7 71.1 57.9
TEMP 52.7 41.3 50.5 48.7 36.7 70.9 68.1

Mistral
CONT 213.6 225.0 284.7 123.7 50.1 304.2 293.7
STOP 44.7 43.2 45.0 29.9 21.7 70.7 57.8
TEMP 54.6 45.3 53.5 40.5 40.7 75.0 72.5
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We then conduct an additional ablation experiment in which the model attends to representations
from a specific number of tokens of a given type. We also include a baseline where a random subset
of token representations from all prompt tokens is unmasked to the test examples. In this set of
experiments, the label tokens are always included and are not counted as part of the token numbers.

Results in Table 25 demonstrate that when the model is exposed to an equal number of each type
of token representation, the performance consistently improves with template and stopword tokens,
outperforming both content tokens and the random baseline. In contrast, models attending to the same
number of content tokens consistently underperform relative to the random baseline. Additionally, all
results improve when more tokens are included in the attention of test examples. This experiment
further supports our claim that template and stopword tokens are more likely to serve as task-encoding
tokens.

M RESULTS OF THE TOKEN-LEVEL ABLATION

Detailed results of the token-level ablation are shown in Table 26. We omited the −TEMP case from
here since it constantly yields an accuracy of 0% when both the template token in the demonstrations
and the test examples are ablated. Since the setting for the template tokens are not aligned with the
ones for the stopword and content tokens, we included another set of experiments where only the the
template tokens in the demonstrations are ablated at the token level in Appendix N. We want to em-
phasize that this experimental design choice does not affect the main findings in Section 4.3.2, where
information is being propagated from the representations of content tokens to the representations of
the task-encoding tokens and this incorporation of the information makes them better at encoding
tasks, partially explaining the working mechanism of in-context learning.

N TOKEN-LEVEL ABLATION FOR TEMPLATE TOKENS

To maintain consistency of the templates across both demonstrations and test examples, we choose to
ablate the template tokens at the token level in both in Section 4.3.2. This experimental design differs
from the other two token-level ablations. This inconsistency does not impact the main findings in
Section 4.3.2, which show that information is propagated from the representations of content tokens
to the representations of task-encoding tokens and this information aggregation enhances the ability
of task-encoding tokens to improve the final task performance, partially explaining the mechanism of
in-context learning. For completeness, we provide a supplemental experiment in this section where
only the template tokens in the demonstrations are ablated.

Results in Table 27 demonstrate that, although not all values reduce to 0%, large language models
perform significantly worse than in the standard in-context learning case and the other two ablation
scenarios after the removal of template tokens from the demonstrations except for a few rare cases.
This further supports the finding that template tokens are likely important as task-encoding tokens.

O POSSIBLE APPLICATIONS

In this section, we discuss several potential applications that could benefit from the findings in our
work. These include long sequence processing, where our insights can help models handle longer
contexts more efficiently; in-context learning with more demonstrations, enabling the inclusion
of additional examples without compromising performance; better ICL prompt designing and
engineering, improving the creation of more effective prompts; and improving model robustness,
ensuring consistent performance despite prompt variations. Each of these areas can be enhanced by
understanding the role of task-encoding tokens in large language models.

Long sequence processing As discussed in our paper, we hypothesize that stopword tokens tend to
function as task-encoding tokens by encapsulating the semantics of preceding tokens. This finding
suggests an opportunity to improve the efficiency of modeling longer sequences by selectively
deleting or compressing certain hidden states during the encoding and generation stages of large
language models (LLMs). Specifically, by retaining only the essential task-encoding representations
while reducing unnecessary content from less informative tokens, models could manage longer inputs
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Table 25: The accuracy results of the representation level ablation study where we only include fixed
number of certain type of tokens. All values are presented as percentages. The best results presented
by the number of ablated token types are in bold. Avg. stands for the average performance. ALL
represents all types of tokens

Models Setting AGNews DBPedia SST2 TREC CB RTE Avg.

10 Random Tokens

Llama 2
7B

From ALL 14.5 16.9 71.7 47.3 60.2 57.5 44.7
From CONT 3.0 9.2 60.9 61.9 65.2 60.4 43.4
From STOP 15.2 35.6 75.2 68.5 62.0 64.1 53.4
From TEMP 53.0 50.1 59.1 56.2 64.4 60.2 57.2

Mistral
7B

From ALL 67.8 67.2 75.0 70.9 63.8 60.7 67.6
From CONT 36.6 64.0 63.1 67.5 59.3 57.3 58.0
From STOP 73.5 68.6 86.3 72.8 61.8 61.6 70.8
From TEMP 78.7 78.7 92.1 68.9 71.2 68.4 76.3

20 Random Tokens

Llama 2
7B

From ALL 12.6 24.0 77.2 54.4 60.6 58.9 47.9
From CONT 1.3 8.6 65.3 63.5 61.7 62.2 43.8
From STOP 28.3 45.5 84.5 66.8 58.0 67.1 58.4
From TEMP 75.0 63.7 60.3 59.0 65.4 60.7 64.0

Mistral
7B

From ALL 78.4 67.8 74.0 70.1 65.4 62.0 69.6
From CONT 69.1 63.3 59.3 68.2 60.5 56.8 62.9
From STOP 78.4 74.3 89.9 74.2 68.3 69.1 75.7
From TEMP 81.9 78.7 93.0 68.9 72.4 71.4 77.7

30 Random Tokens

Llama 2
7B

From ALL 27.4 27.7 77.9 54.9 63.9 62.2 52.3
From CONT 1.3 7.6 77.9 66.3 64.2 63.5 46.8
From STOP 44.8 59.8 92.8 68.3 53.2 69.3 64.7
From TEMP 76.9 66.1 61.0 59.6 67.9 59.8 65.2

Mistral
7B

From ALL 79.9 74.6 83.0 67.8 69.0 64.6 73.2
From CONT 71.0 62.6 58.2 67.2 59.2 59.4 62.9
From STOP 79.8 76.9 91.0 74.2 71.1 68.8 77.0
From TEMP 84.0 79.3 93.8 68.9 75.6 75.4 79.5

40 Random Tokens

Llama 2
7B

From ALL 45.2 27.2 77.9 54.9 58.9 62.3 54.4
From CONT 0.9 9.1 89.5 66.1 62.3 62.4 48.4
From STOP 49.2 63.7 94.0 68.7 53.7 70.8 66.7
From TEMP 77.9 66.1 62.9 61.5 68.1 60.1 66.1

Mistral
7B

From ALL 78.8 73.4 86.9 69.2 69.3 67.4 74.2
From CONT 74.1 59.4 55.8 68.0 61.0 59.9 63.0
From STOP 80.1 76.4 91.0 74.2 72.0 69.6 77.2
From TEMP 85.0 80.7 93.8 69.0 76.4 76.2 80.2
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Table 26: Results of the token-level ablation where, for example, −STOP refers to the ablation where
stopword tokens are dropped from the ICL prompt. Models without template tokens consistently
yielded an accuracy of 0% and are thus omitted from this table.

Models Settings AGNews SST2 TREC DBPedia RTE CB Avg.

OpenLlama
3B

Standard ICL 63.7 91.2 21.9 61.9 57.4 52.0 58.0
− CONT 31.5 63.0 40.6 25.4 56.1 48.9 44.3
− STOP 64.4 91.5 20.9 62.3 57.8 52.6 58.3

Llama
7B

Standard ICL 82.4 94.3 63.5 68.7 68.6 71.3 74.8
− CONT 55.2 67.2 42.6 50.8 57.4 56.3 54.9
− STOP 82.3 93.8 64.1 69.7 66.5 70.0 74.4

Llama
13B

Standard ICL 81.6 94.3 60.0 76.1 70.6 39.9 70.4
− CONT 78.8 81.7 45.3 75.1 55.1 54.5 65.1
− STOP 82.5 92.5 61.5 76.5 69.6 40.5 70.5

Llama
33B

Standard ICL 85.0 96.5 68.1 78.4 78.5 83.3 81.6
− CONT 74.0 89.6 67.0 73.0 69.8 49.0 70.4
− STOP 85.3 96.4 66.9 77.9 77.7 81.3 80.9

Table 27: Results of the token-level ablation where −TEMP refers to the ablation where template
tokens are dropped from the ICL demonstration prompt.

Models Settings Avg. AGNews SST2 TREC DBPedia RTE CB

OpenLlama
3B

Standard ICL 58.0 63.7 91.2 21.9 61.9 57.4 52.0
− TEMP 17.4 0.0 24.2 40.5 0.4 35.6 3.6

Llama
7B

Standard ICL 74.8 82.4 94.3 63.5 68.7 68.6 71.3
− TEMP 29.0 41.0 11.4 39.9 0.9 49.7 31.3

Llama
13B

Standard ICL 70.4 81.6 94.3 60.0 76.1 70.6 39.9
− TEMP 36.9 82.1 17.5 51.4 8.6 39.5 22.0

Llama
33B

Standard ICL 81.6 85.0 96.5 68.1 78.4 78.5 83.3
− TEMP 63.0 73.5 82.8 58.8 39.9 66.4 56.7

and outputs without compromising performance. This approach not only conserves computational
resources but also addresses token length limitations in LLMs, allowing for extended sequence
processing and potentially more nuanced learning from longer contexts.

This area is indeed attracting increased research attention, and our findings could contribute valuable
insights into ongoing work on efficient sequence modeling and memory management in LLMs (Liu
et al., 2023b; Zhang et al., 2023; Bai et al., 2024). By identifying which tokens retain critical
task-related information, our work aligns with and can inform methods focused on compressing inter-
mediate states and improving long-context processing for applications ranging from summarization
and document understanding to interactive dialogue systems.

In-context learning with more demonstrations Given our findings, there is a promising avenue
for improving in-context learning (ICL) performance by including a greater number of examples in
ICL prompts (Li et al., 2023a; Hao et al., 2022; Bertsch et al., 2024). Our results suggest that only a
subset of token representations, specifically task-encoding tokens, play a critical role in determining
ICL performance, while the representations of other tokens are less impactful. This observation
opens up the possibility of selectively compressing or omitting unimportant token representations
after the initial encoding of a demonstration. By doing so, it becomes feasible to maximize the use of
the model’s fixed-length capacity, potentially enabling the inclusion of a higher number of examples
within the same prompt length constraints. This approach may enhance the effectiveness of ICL in
tasks where the availability of diverse examples contributes to improved model accuracy and stability.

Better ICL prompt designing and engineering Our investigation into which components of ICL
prompts are most critical for task performance is worthwhile and useful for directing where to put
effort into tuning or improving prompts. Furthermore, the exploration on the characteristics of task-
encoding tokens are useful for future design choices in ICL prompting, and help the field understand
why some prompts work better than others for ICL. For instance, knowing that template and stopword
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Table 28: Ablation for different template token representations with the answer label token representa-
tions, presented as percentages. The results showing the greatest impact from ablation are underlined.

Models Settings AGNews SST2 TREC DBPedia RTE CB

with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:”

OpenLlama
3B

TEMP with Dout 56.5 47.4 86.7 83.7 27.1 26.5 62.2 59.8 56.4 56.0 52.3 56.1
−Tin 50.3 47.1 85.7 84.4 28.9 24.4 57.7 57.7 56.5 56.1 53.2 55.2
−Tout 34.6 32.7 86.9 82.3 28.2 31.2 55.5 54.1 58.3 59.2 55.4 58.3

Llama
7B

TEMP with Dout 70.8 57.3 90.2 87.1 58.4 46.7 66.2 63.8 66.3 59.5 73.5 69.6
−Tin 62.7 55.1 91.6 87.1 52.8 43.3 61.6 61.8 58.9 56.5 59.2 55.7
−Tout 50.8 48.6 84.9 82.8 46.0 50.2 57.9 55.2 56.7 56.7 66.2 64.5

Llama
13B

TEMP with Dout 80.0 76.2 92.3 89.1 58.6 54.0 76.9 71.4 68.5 59.8 47.7 35.0
−Tin 79.9 76.3 91.5 88.9 55.1 47.8 75.8 70.7 65.5 59.0 35.7 24.5
−Tout 72.0 72.1 81.1 75.9 47.1 48.3 60.3 35.5 61.2 58.4 36.2 36.0

Llama
33B

TEMP with Dout 80.5 75.0 95.2 93.3 65.2 66.7 75.2 73.5 79.0 77.1 80.0 70.7
−Tin 78.7 71.5 95.2 92.8 68.1 67.7 75.1 73.8 77.4 75.4 73.3 62.3
−Tout 69.2 69.5 93.9 92.9 62.1 66.2 71.3 70.1 72.8 70.0 67.4 63.5

Table 29: Ablation for different template token representations without the answer label token
representations. All values are presented as percentages. The results showing the greatest decrease
during the ablation are underlined.

Models Settings AGNews SST2 TREC DBPedia RTE CB

with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:” with “:” w/o “:”

OpenLlama
3B

TEMP w/o Dout 41.5 54.6 14.3 73.2 36.5 42.0 29.4 21.7 24.7 45.7 0.7 3.5
−Tin 42.2 52.2 18.5 79.9 39.7 42.2 22.6 22.5 49.8 57.1 3.1 6.5
−Tout 36.3 35.5 83.0 83.4 43.2 41.9 16.3 18.7 54.4 56.8 1.2 4.2

Llama
7B

TEMP w/o Dout 50.4 56.6 68.2 56.1 55.3 48.5 0.2 1.3 40.7 42.5 28.5 18.8
−Tin 46.1 50.6 61.9 55.1 43.5 44.7 0.0 0.2 43.7 49.9 27.1 26.5
−Tout 21.4 12.7 86.2 66.5 54.4 55.6 0.0 0.0 56.0 55.6 39.4 35.1

Llama
13B

TEMP w/o Dout 66.9 77.0 65.6 87.9 51.8 53.1 0.1 0.1 57.5 53.7 16.7 21.9
−Tin 72.9 76.6 83.0 89.5 45.5 48.4 0.0 0.0 53.6 52.8 16.0 20.1
−Tout 79.2 77.7 77.5 47.5 56.8 43.2 0.0 0.0 54.8 53.7 4.3 2.4

Llama
33B

TEMP w/o Dout 77.3 78.2 17.3 88.9 65.4 69.3 31.0 41.7 71.8 65.8 23.8 23.0
−Tin 72.9 72.4 29.2 87.4 65.6 70.9 14.9 37.9 70.6 67.8 19.9 21.1
−Tout 69.5 74.3 92.6 92.8 70.0 70.8 42.0 20.3 67.0 61.3 23.1 18.5

tokens are particularly task-encoding allows developers to optimize prompts by focusing on specific
token structures or repetitions that are most influential. This insight can improve task performance
consistency across variations in prompt phrasing and structure, ultimately making prompt creation
more efficient and predictable.

Improving Model Robustness The findings in our study can also inform techniques to enhance the
robustness of large language models (LLMs). Since prompt sensitivity (e.g., to token arrangement)
can often lead to fluctuations in performance, understanding task-encoding tokens helps mitigate these
vulnerabilities. By aligning model training and prompt engineering to leverage task-encoding token
characteristics, it becomes possible to minimize performance drops due to minor prompt alterations,
thereby enhancing the stability and reliability of LLMs in production environments.

P RESULTS OF REPRESENTATION-LEVEL PARTIAL TASK-ENCODING TOKEN
ABLATION

The full results on all the six datasets are shown in Table 28 and Table 29. Most of the results align
with our descriptions in Section 5.1, where the task-encoding tokens should be utilized together to
provide the best performance and that removing some of them would cause performance degeneration,
demonstrated by the performance decrease from Table 28, or instability issues, shown by Table 29.

Q SIGNIFICANCE TEST FOR THE REPRESENTATION-LEVEL ABLATION

In this section, we report the p-value of all the pair-wise comparisons in the representation-level
ablation experiments in Table 2 and Table 3. Results are shown in Table 30. Most of the ablation
results show significant difference among different ablation scenarios.
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Table 30: The pair-wise t-test significance results. “T” means True while “F” means False. In this
table, “temp” means only keeping temp, which is zero-shot + TEMP. “temp_cont” means ablating the
stopword token representations, which is Standard ICL − STOP.

Models Settings AGNews SST2 TREC DBPedia RTE CB

P-value p < 0.05 P-value p < 0.05 P-value p < 0.05 P-value p < 0.05 P-value p < 0.05 P-value p < 0.05

OpenLlama
3B

temp <-> cont 0.0000581 T 0.0000000 T 0.1952165 F 0.0000000 T 0.0042427 T 0.0027293 T
temp <-> stop 0.0001605 T 0.0571278 F 0.0242797 T 0.0000663 T 0.0319815 T 0.0985942 F
cont <-> stop 0.0023957 T 0.0000001 T 0.1940792 F 0.0000000 T 0.0000073 T 0.0000698 T
temp_cont <-> cont_stop 0.0000065 T 0.0385760 T 0.3206221 F 0.0000000 T 0.1237570 F 0.0544049 F
temp_stop <-> cont_stop 0.0001166 T 0.4514005 F 0.2549225 F 0.0000001 T 0.0545474 F 0.0534521 F
temp_cont <-> temp_stop 0.0000507 T 0.0096752 T 0.0005775 T 0.0000000 T 0.1208140 F 0.3193696 F

Llama
7B

temp <-> cont 0.0000000 T 0.0000001 T 0.0000020 T 0.0000001 T 0.0000004 T 0.0000001 T
temp <-> stop 0.0000083 T 0.0101283 T 0.0002883 T 0.1438193 F 0.0000000 T 0.0000031 T
cont <-> stop 0.0000060 T 0.0000001 T 0.0019529 T 0.0000001 T 0.3392237 F 0.0016487 T
temp_cont <-> cont_stop 0.0000115 T 0.0030175 T 0.0005950 T 0.0000000 T 0.0000000 T 0.0001649 T
temp_stop <-> cont_stop 0.0002004 T 0.0227328 T 0.0015468 T 0.0000000 T 0.0000001 T 0.0000094 T
temp_cont <-> temp_stop 0.0086396 T 0.0003632 T 0.0089932 T 0.0000007 T 0.1637608 F 0.1553081 F

Llama
13B

temp <-> cont 0.0000000 T 0.0000000 T 0.0000082 T 0.0000001 T 0.0006445 T 0.1060226 F
temp <-> stop 0.0003841 T 0.0000012 T 0.0034370 T 0.0002018 T 0.0000000 T 0.0010178 T
cont <-> stop 0.0000000 T 0.0000202 T 0.0002820 T 0.0000000 T 0.0098209 T 0.0022848 T
temp_cont <-> cont_stop 0.0010838 T 0.0000730 T 0.0004557 T 0.0000048 T 0.0000001 T 0.0002364 T
temp_stop <-> cont_stop 0.0007763 T 0.0000310 T 0.0016544 T 0.0000000 T 0.0000000 T 0.0000888 T
temp_cont <-> temp_stop 0.4411518 F 0.1158895 F 0.3323328 F 0.0000000 T 0.3148253 F 0.0144961 T

Llama
33B

temp <-> cont 0.0000000 T 0.0000003 T 0.1534319 F 0.0000000 T 0.0000000 T 0.0002244 T
temp <-> stop 0.0007359 T 0.0048547 T 0.1797405 F 0.0000023 T 0.0000002 T 0.0008789 T
cont <-> stop 0.0000000 T 0.0000003 T 0.0204911 T 0.0000000 T 0.0002626 T 0.4319440 F
temp_cont <-> cont_stop 0.0001365 T 0.0788756 F 0.0032131 T 0.0000000 T 0.0000098 T 0.0003242 T
temp_stop <-> cont_stop 0.0006045 T 0.0609501 F 0.0165374 T 0.0000011 T 0.0000009 T 0.0003821 T
temp_cont <-> temp_stop 0.0012936 T 0.3583931 F 0.1415489 F 0.0001034 T 0.0009055 T 0.3979685 F

R TEMPLATE USED FOR THE RANDOM STRING EXPERIMENTS

In this section, we present all the in-context learning templates used for the random experiments in
Section 5.2. In the Randomfixed scenario, the Tin and Tout are consistent across all demonstrations.
For the Randomnonfixed scenario, we employ different random string templates for each demon-
stration. We use 5 random string templates for each setting, shown in Table 36, Table 37, Table 38,
Table 39, and Table 40. The results in Section 5.2 are averaged over the results with all the different
random string templates.

S SUPPLEMENTAL EXPERIMENTS FOR THE REPETITION CHARACTERISTIC

In Section 5.2.2, we examine the repetition characteristic of task-encoding tokens with random
template tokens, which could not be general enough since random string tokens are less used in
real-world applications. Hence, we conduct another set of experiments in this section, using template
tokens with lexical meanings to test the characteristic of repetition.

These experiments includes two sets of comparisons shown in Table 31 and Table 32. The first set of
templates uses meaningful, normal words but exhibits less lexical similarity to the task. The second
set of templates is more closely related to the task. All comparisons are made between non-repetitive
and repetitive cases.

The results presented in Table 33 show that, when random strings without lexical meanings are not
used, the repetitive patterns can also enhance the final performances and help encode the task within
the representations of template tokens, proving our claim that repetition is an important characteristic
of task-encoding tokens.

T SUPPLEMENTAL EXPERIMENTS FOR THE STRUCTURAL CUE
CHARACTERISTIC

In this section, we describe a set of supplemental experiments, which support the characteristic
of structural cues from the perspective of representation-level ablation. An intuitive method to
verify the effect of the structural cue would be using the same random strings to replace Tin and
Tout, making it harder for a model to parse the structure of the text. However, this would bring the
factor of repetition into the process, potentially confounding the results. Hence, we instead design a
one-shot Randomfixed experiment. The one-shot Randomfixed setting allows us to control both the
characteristics of lexical meaning and repetition since the templates are made up of random strings
and there is only one training demonstration. With these two characteristics controlled, we use the
masking ablation method from Section 4.3.1 to confirm to what extent these random string tokens
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Table 31: A 3-shot example sampled from AGNews dataset using Template 1 and Template 2.

Template 1

Classify the news articles into the categories of World, Sports, Business, and Technology.

dog: First class to the moon. London - British airline magnate Richard Branson announced a plan on Monday
for the world’s first commercial space flights, saying "thousands" of fee-paying astronauts could be sent into
orbit in the near future.
cat: Technology

juice: Amazon’s Holiday Pi. Leave it to Amazon.com (Nasdaq: AMZN). Apparently, the holiday season could
be a rich opportunity to addict more users to Amazon’s A9.
wine: Technology

sleep: Will historic flight launch space tourism?. Regardless, space competitions are poised to become big
business.
wake: Technology

bunny: SMART-1 makes lunar orbit. The SMART-1 probe has entered its lunar orbit, and the history books as
the first European mission to have done so. Professor David Southwood, director of science for the European
Space Agency (ESA), said: "Europe ...
easter:

Template 2

Classify the news articles into the categories of World, Sports, Business, and Technology.

dog: First class to the moon. London - British airline magnate Richard Branson announced a plan on Monday
for the world’s first commercial space flights, saying "thousands" of fee-paying astronauts could be sent into
orbit in the near future.
cat: Technology

dog: Amazon’s Holiday Pi. Leave it to Amazon.com (Nasdaq: AMZN). Apparently, the holiday season could
be a rich opportunity to addict more users to Amazon’s A9.
cat: Technology

dog: Will historic flight launch space tourism?. Regardless, space competitions are poised to become big
business.
cat: Technology

dog: SMART-1 makes lunar orbit. The SMART-1 probe has entered its lunar orbit, and the history books as the
first European mission to have done so. Professor David Southwood, director of science for the European Space
Agency (ESA), said: "Europe...
cat:

can function effectively as delimiters between inputs and outputs in ICL prompts. Specifically, we
include results from the Zero-shot + TEMPrandom

1-shot and Zero-shot + “:”random
1-shot scenarios, as well as the

standard results of one-shot Randomfixed, for a more comprehensive analysis, shown in Table 34.
Examples of all the different model variants are shown in Appendix U.

We observe that adding the attention to random template token representations in the one-shot setting
often leads to performance increases while masking the attention to the template tokens and only
attending to “:” +Dout leads to performance decreases. This indicates that the presence of these
tokens is critical to maintaining task performance. With all other characteristics being controlled,
this leads us to believe that the delimiting nature of template tokens is likely to be an important
characteristic in their role as task-encoding tokens.

U DISCUSSION ABOUT THE CHARACTERISTIC OF STRUCTURAL CUE

As discussed in Section 5.2.3, we view structural cue as the textual and structural cues present in the
prompt allowing the model to distinguish between the different parts of the ICL demonstration. We
believe that task-encoding tokens naturally play this role since the same types of tokens are likely to
delimit pretraining text (e.g., html, markdown, etc.). An example of how we believe task-encoding
tokens naturally delimit an ICL prompt is shown in Table 35, sampled from the SST2 dataset tested
in our experiments. We bold and place in brackets the role of each section of the prompt as well as
what types of tokens it contains.
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Table 32: A 3-shot example sampled from AGNews dataset using Template 3 and Template 4.

Template 3

Classify the news articles into the categories of World, Sports, Business, and Technology.

article: First class to the moon. London - British airline magnate Richard Branson announced a plan on Monday
for the world’s first commercial space flights, saying "thousands" of fee-paying astronauts could be sent into
orbit in the near future.
answer: Technology

input: Amazon’s Holiday Pi. Leave it to Amazon.com (Nasdaq: AMZN). Apparently, the holiday season could
be a rich opportunity to addict more users to Amazon’s A9.
output: Technology

text: Will historic flight launch space tourism?. Regardless, space competitions are poised to become big
business.
label: Technology

sentence: SMART-1 makes lunar orbit. The SMART-1 probe has entered its lunar orbit, and the history books
as the first European mission to have done so. Professor David Southwood, director of science for the European
Space Agency (ESA), said: "Europe...
result:

Template 4

Classify the news articles into the categories of World, Sports, Business, and Technology.

article: First class to the moon. London - British airline magnate Richard Branson announced a plan on Monday
for the world’s first commercial space flights, saying "thousands" of fee-paying astronauts could be sent into
orbit in the near future.
answer: Technology

article: Amazon’s Holiday Pi. Leave it to Amazon.com (Nasdaq: AMZN). Apparently, the holiday season could
be a rich opportunity to addict more users to Amazon’s A9.
answer: Technology

article: Will historic flight launch space tourism?. Regardless, space competitions are poised to become big
business.
answer: Technology

article: SMART-1 makes lunar orbit. The SMART-1 probe has entered its lunar orbit, and the history books as
the first European mission to have done so. Professor David Southwood, director of science for the European
Space Agency (ESA), said: "Europe...
answer:

During LLM pre-training, it is very likely that the model has seen text formatted in a similar way (e.g.
in html, plain text with headings), in which the LLM would learn to recognize and store information
in the representation of these formatting tokens. A recent study also provides supporting facts from
the perspective of pretraining for this (Chen et al., 2024).

One possible way to examine if these structural cues are a key characteristic is to use the same
template text for the input demonstration and the output label, disturbing the structure of the prompt
and making it difficult to recognize the input and the output (e.g.: input: [demonstration]\n input:
[label]). However, this would bring the confounding factor of the repetition and lexical meaning when
we use multiple demonstrations. Even if we only use one example, the two same templates (“input”
and “input”) could form a repetition. We therefore choose to use a one-shot Randomfixed scenario to
avoid that for the experiments in Appendix T. In this case, there are no repetition or lexical meaning
confounds.

Zero-shot + TEMPrandom
1-shot and Zero-shot + “:”random

1-shot To investigate whether these random string tokens
are working as task-encoding tokens, given that they only serve as providing structural cues, we
applied the representation-level ablation to see the model’s performance when the test examples
have or do not have access to the representations of these random string tokens, comparing the
performance among [one-shot Randomfixed], [Zero-shot + TEMPrandom

1-shot] and [Zero-shot + “:”random
1-shot].

[Zero-shot + TEMPrandom
1-shot] and [Zero-shot + “:”random

1-shot] are all the representation-level ablation models
based on one-shot Randomfixed, where the templates in these settings are all random strings, shown
in Table 35.

The results in Table 34 show that in this setting, the model could still store the task-related information
in the representations of the random string tokens, shown by the performance drop when removing
their representations. There is nothing else for the model to recognize these random strings and store
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Table 33: The accuracy results of the repetitive supplemental experiments.

Models Setting AGNews DBPedia TREC △Avg.

OpenLlama
3B

Template 1 33.56 9.72 5.84 16.37
Template 2 55.56 61.44 22.36 46.45
Template 3 48.24 50.16 24.84 41.08
Template 4 69.64 63.20 20.96 51.27

Llama
7B

Template 1 6.00 0.24 12.92 6.39
Template 2 26.52 51.20 25.32 34.35
Template 3 19.80 62.28 1.88 27.99
Template 4 36.44 64.68 18.68 39.93

Llama
13B

Template 1 7.40 0.00 5.68 4.36
Template 2 46.68 71.40 35.80 51.29
Template 3 15.60 76.36 4.96 32.31
Template 4 49.08 75.56 23.80 49.48

Llama 2
7B

Template 1 52.84 12.08 35.60 33.51
Template 2 75.60 82.80 56.04 71.48
Template 3 32.96 76.56 7.04 38.85
Template 4 70.16 80.96 58.24 69.79

Llama 2
13B

Template 1 8.28 0.04 2.68 3.67
Template 2 19.80 44.52 13.92 26.08
Template 3 5.84 59.88 1.72 22.48
Template 4 28.60 65.04 12.64 35.43

Mistral
7B

Template 1 27.68 0.20 17.96 15.28
Template 2 67.48 67.60 31.20 55.43
Template 3 2.64 47.68 4.04 18.12
Template 4 59.12 70.64 39.12 56.29

Table 34: One-shot representation masking experiments conducted to verify if structural template
formats could influence the effectiveness of the task-encoding tokens. Dout is preserved in all the
settings. The results showing the greatest decrease during the ablation are underlined.

Models Settings AGNews SST2 TREC DBPedia RTE CB Avg.

OpenLlama
3B

One-shot Randomfixed 47.5 51.8 32.6 19.4 51.8 42.4 40.9
Zero-shot+TEMPrandom

1-shot 39.5 49.8 27.7 13.3 49.8 44.9 37.5
Zero-shot+“:”random

1-shot 31.5 35.9 23.8 8.0 35.9 33.8 28.2

Llama
7B

One-shot Randomfixed 3.9 16.9 3.5 9.6 16.9 10.4 10.2
Zero-shot+TEMPrandom

1-shot 2.1 15.5 7.6 3.7 15.5 5.4 8.3
Zero-shot+“:”random

1-shot 3.6 7.5 14.6 3.0 7.5 6.8 7.2

Llama
13B

One-shot Randomfixed 46.1 47.5 25.0 50.8 47.5 21.4 39.7
Zero-shot+TEMPrandom

1-shot 29.2 48.9 36.1 35.7 48.9 14.0 35.5
Zero-shot+“:”random

1-shot 14.3 22.4 25.4 22.5 22.4 28.9 22.7

Llama
33B

One-shot Randomfixed 69.7 53.0 37.8 72.8 53.0 37.6 54.0
Zero-shot+TEMPrandom

1-shot 61.2 56.3 41.1 69.2 56.3 43.0 54.5
Zero-shot+“:”random

1-shot 43.3 41.8 37.4 65.0 41.8 39.5 44.8

the information in their representations except that these tokens serve as delimiters to inform the
model distinguishing the different parts of the prompt.
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Table 35: An example, sampled from the SST2 dataset tested in our experiments, of the structural cue
characteristic of task-encoding tokens and how they serve as delimiters of the text prompts, where
<m> means that this token is masked.

Standard ICL

Classify the reviews into the categories of Positive and Negative. [instruction]

Review: [delimiter: template]
Peppered with witty dialogue and inventive moments. [demonstration: content + stopword]
Answer: [delimiter: template]
Positive [label]

One-shot Randomfixed

Classify the reviews into the categories of Positive and Negative. [instruction]

dsafjkldafdsajk: [delimiter: random template 1]
Peppered with witty dialogue and inventive moments. [demonstration]
reqwiorewsdafjl: [delimiter: random template 2]
Positive [label]

Zero-shot+TEMPrandom
1-shot

Classify the reviews into the categories of Positive and Negative. [instruction]

dsafjkldafdsajk: [delimiter: random template 1]
<m><m><m> ... <m> [masked demonstration]
reqwiorewsdafjl: [delimiter: random template 2]
Positive [label]

Zero-shot+“:”random
1-shot

Classify the reviews into the categories of Positive and Negative. [instruction]

<m>: [delimiter: random template 1]
<m><m><m> ... <m> [masked demonstration]
<m>: [delimiter: random template 2]
Positive [label]
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Table 36: Example #1 of the ICL template used in all of our random experiments.

Datasets Notations Examples

Randomfixed

CB & RTE Tin fdafdasjklfdadf: {DinA}\n zcxvnmxcjkfdas: {DinB}\n
Tout reqwiorewsdafjl: {Dout}\n\n

Other tasks Tin dsafjkldafdsajk: {Din}\n
Tout reqwiorewsdafjl: {Dout}\n\n

Randomnonfixed

CB & RTE

Tin
1 fdafdasjklfdadf: {DinA}\n zcxvnmxcjkfdas: {DinB}\n

Tout
1 xiadfjdsalgfweqrjl: {Dout}\n\n

Tin
2 gfhdajkgfhdasfj: {DinA}\n cvxhlkdadsajfk: {DinB}\n

Tout
2 yufoufgaddavfdnsl: {Dout}\n\n

Tin
3 rrqetrizxcsdafq: {DinA}\n vncmxasdgfadsl: {DinB}\n

Tout
3 afdgvcxjlzxnvxzla: {Dout}\n\n

Tin
4 mvfvxadfawewqro: {DinA}\n lkajsdfopsadfp: {DinB}\n

Tout
4 fgsgfskjvcdafds: {Dout}\n\n

Tin
t sdsajfjdsaczvvv: {DinA}\n hkljfdiabasdfj: {DinB}\n

Tout
t dafhglajfdvcaol: {Dout}\n\n

Other tasks

Tin
1 dsafjkldaasdfjkl: {Din}\n

Tout
1 xiadfjdsalgfweqrjl: {Dout}\n\n

Tin
2 ewqroudajfsdafq: {Din}\n

Tout
2 yufoufgaddavfdnsl: {Dout}\n\n

Tin
3 eqdashcxzlreqguio: {Din}\n

Tout
3 afdgvcxjlzxnvxzla: {Dout}\n\n

Tin
4 cxzvadeqrczxdsa: {Din}\n

Tout
4 fgsgfskjvcdafds: {Dout}\n\n

Tin
t vcxnkfgahvczxkl: {Din}\n

Tout
t dafhglajfdvcaol: {Dout}\n\n

Swap

CB & RTE Tin Answer: {DinA}\n Hypothesis: {DinB}\n
Tout Premise: {Dout}\n\n
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Table 37: Example #2 of the ICL template used in all of our random experiments.

Datasets Notations Examples

Randomfixed

CB & RTE Tin eszycidpyopumzg: {DinA}\n sgrlobvqgthjpwz: {DinB}\n
Tout zbyygcrmzfnxlsu: {Dout}\n\n

Other tasks Tin eszycidpyopumzg: {Din}\n
Tout zbyygcrmzfnxlsu: {Dout}\n\n

Randomnonfixed

CB & RTE

Tin
1 eszycidpyopumzg: {DinA}\n sgrlobvqgthjpwz: {DinB}\n

Tout
1 zbyygcrmzfnxlsu: {Dout}\n\n

Tin
2 cwknayjkywwvpty: {DinA}\n muzprouhvtidhqe: {DinB}\n

Tout
2 lnlgffeurextxme: {Dout}\n\n

Tin
3 pdnizszmpkfjzvo: {DinA}\n ujulhuzkkqlfwkl: {DinB}\n

Tout
3 gflemobnbdjngii: {Dout}\n\n

Tin
4 gvsrxbdoxmpablo: {DinA}\n ujulhuzkkqlfwkl: {DinB}\n

Tout
4 gflemobnbdjngii: {Dout}\n\n

Tin
t gvsrxbdoxmpablo: {DinA}\n xipddzrshrhprrb: {DinB}\n

Tout
t npkxdzaipdpkbrs: {Dout}\n\n

Other tasks

Tin
1 eszycidpyopumzg: {Din}\n

Tout
1 zbyygcrmzfnxlsu: {Dout}\n\n

Tin
2 cwknayjkywwvpty: {Din}\n

Tout
2 lnlgffeurextxme: {Dout}\n\n

Tin
3 pdnizszmpkfjzvo: {Din}\n

Tout
3 gflemobnbdjngii: {Dout}\n\n

Tin
4 gvsrxbdoxmpablo: {Din}\n

Tout
4 npkxdzaipdpkbrs: {Dout}\n\n

Tin
t dgldzypdptzcekq: {Din}\n

Tout
t xobxfpnzsfzipol: {Dout}\n\n
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Table 38: Example #3 of the ICL template used in all of our random experiments.

Datasets Notations Examples

Randomfixed

CB & RTE Tin bcclfxzvjitgtbs: {DinA}\n evtlfrwvtfmjtns: {DinB}\n
Tout qtnheeipeustcwn: {Dout}\n\n

Other tasks Tin bcclfxzvjitgtbs: {Din}\n
Tout qtnheeipeustcwn: {Dout}\n\n

Randomnonfixed

CB & RTE

Tin
1 bcclfxzvjitgtbs: {DinA}\n evtlfrwvtfmjtns: {DinB}\n

Tout
1 qtnheeipeustcwn: {Dout}\n\n

Tin
2 ymupnggvmbnoobq: {DinA}\n rrrnpgbmmgqymky: {DinB}\n

Tout
2 xleuwtyqnnfgzjx: {Dout}\n\n

Tin
3 pdnizszmpkfjzvo: {DinA}\n qlfulxzxwfnwbum: {DinB}\n

Tout
3 jpnvgbnjjlawqfo: {Dout}\n\n

Tin
4 mfkqxjoxtpmzdrs: {DinA}\n yyzdeayigwzjosn: {DinB}\n

Tout
4 pdsqooqrhvydszp: {Dout}\n\n

Tin
t rerlkjfvlvyzpmc: {DinA}\n iuumpcsevursgqe: {DinB}\n

Tout
t tuaqblysbipihsv: {Dout}\n\n

Other tasks

Tin
1 bcclfxzvjitgtbs: {Din}\n

Tout
1 qtnheeipeustcwn: {Dout}\n\n

Tin
2 ymupnggvmbnoobq: {Din}\n

Tout
2 xleuwtyqnnfgzjx: {Dout}\n\n

Tin
3 pdwunmjronsmuvu: {Din}\n

Tout
3 jpnvgbnjjlawqfo: {Dout}\n\n

Tin
4 mfkqxjoxtpmzdrs: {Din}\n

Tout
4 pdsqooqrhvydszp: {Dout}\n\n

Tin
t rerlkjfvlvyzpmc: {Din}\n

Tout
t tuaqblysbipihsv: {Dout}\n\n
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Table 39: Example #4 of the ICL template used in all of our random experiments.

Datasets Notations Examples

Randomfixed

CB & RTE Tin hsreltpusctapir: {DinA}\n woxwxgwctxdumok: {DinB}\n
Tout prlhxooromawkcp: {Dout}\n\n

Other tasks Tin hsreltpusctapir: {Din}\n
Tout prlhxooromawkcp: {Dout}\n\n

Randomnonfixed

CB & RTE

Tin
1 hsreltpusctapir: {DinA}\n woxwxgwctxdumok: {DinB}\n

Tout
1 prlhxooromawkcp: {Dout}\n\n

Tin
2 cbptgaytithxayh: {DinA}\n bhxgcstisqmfnpz: {DinB}\n

Tout
2 mvpvoeuvgczfemz: {Dout}\n\n

Tin
3 htkbzfizxwpeqrm: {DinA}\n felxgmjeuabznwd: {DinB}\n

Tout
3 glfwilpyrwnsujg: {Dout}\n\n

Tin
4 frskoasvqybxcob: {DinA}\n bkepuhnckdaqmhx: {DinB}\n

Tout
4 ljttiywadveyzah: {Dout}\n\n

Tin
t dfpqndhxehhtser: {DinA}\n bvucjofrggmmcsh: {DinB}\n

Tout
t koesxfmmjjjjvmp: {Dout}\n\n

Other tasks

Tin
1 hsreltpusctapir: {Din}\n

Tout
1 prlhxooromawkcp: {Dout}\n\n

Tin
2 cbptgaytithxayh: {Din}\n

Tout
2 mvpvoeuvgczfemz: {Dout}\n\n

Tin
3 htkbzfizxwpeqrm: {Din}\n

Tout
3 glfwilpyrwnsujg: {Dout}\n\n

Tin
4 frskoasvqybxcob: {Din}\n

Tout
4 ljttiywadveyzah: {Dout}\n\n

Tin
t dfpqndhxehhtser: {Din}\n

Tout
t koesxfmmjjjjvmp: {Dout}\n\n
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Table 40: Example #5 of the ICL template used in all of our random experiments.

Datasets Notations Examples

Randomfixed

CB & RTE Tin hjdxmpeccamrjzy: {DinA}\n agxyhmkawezafde: {DinB}\n
Tout ndxtrwvqugyygku: {Dout}\n\n

Other tasks Tin hjdxmpeccamrjzy: {Din}\n
Tout ndxtrwvqugyygku: {Dout}\n\n

Randomnonfixed

CB & RTE

Tin
1 hjdxmpeccamrjzy: {DinA}\n agxyhmkawezafde: {DinB}\n

Tout
1 ndxtrwvqugyygku: {Dout}\n\n

Tin
2 mcsgenpkdwsfknc: {DinA}\n egnqobhzvxjhsxh: {DinB}\n

Tout
2 ijkdikcmiskofsg: {Dout}\n\n

Tin
3 cmaqcvtdkemdauv: {DinA}\n oslzaygbefxlwqt: {DinB}\n

Tout
3 mumrjhndwmidwmj: {Dout}\n\n

Tin
4 cgmylzvslxmojvq: {DinA}\n tlwxsjmnfkolffl: {DinB}\n

Tout
4 mitaowjyibjwwol: {Dout}\n\n

Tin
t pvockachyflybtk: {DinA}\n wtjqmtwxbnpyqbp: {DinB}\n

Tout
t ydediotfezhfnbx: {Dout}\n\n

Other tasks

Tin
1 hsreltpusctapir: {Din}\n

Tout
1 prlhxooromawkcp: {Dout}\n\n

Tin
2 cbptgaytithxayh: {Din}\n

Tout
2 mvpvoeuvgczfemz: {Dout}\n\n

Tin
3 htkbzfizxwpeqrm: {Din}\n

Tout
3 glfwilpyrwnsujg: {Dout}\n\n

Tin
4 frskoasvqybxcob: {Din}\n

Tout
4 ljttiywadveyzah: {Dout}\n\n

Tin
t dfpqndhxehhtser: {Din}\n

Tout
t koesxfmmjjjjvmp: {Dout}\n\n
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