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Abstract

The rise of Multi-modal Pre-training highlights001
the necessity for a unified Multi-Modal Knowl-002
edge Graph (MMKG) representation learning003
framework. Such a framework is essential for004
embedding structured knowledge into multi-005
modal Large Language Models effectively, al-006
leviating issues like knowledge misconceptions007
and multi-modal hallucinations. In this work,008
we explore the efficacy of models in accurately009
embedding entities within MMKGs through010
two pivotal tasks: Multi-modal Knowledge011
Graph Completion (MKGC) and Multi-modal012
Entity Alignment (MMEA). Building on this013
foundation, we propose a novel SNAG method014
that utilizes a Transformer-based architecture015
equipped with modality-level noise masking to016
robustly integrate multi-modal entity features017
in KGs. By incorporating specific training ob-018
jectives for both MKGC and MMEA, our ap-019
proach achieves SOTA performance across a020
total of ten datasets, demonstrating its versatil-021
ity. Moreover, SNAG can not only function as022
a standalone model but also enhance other ex-023
isting methods, providing stable performance024
improvements. Code and data are available at025
https://anonymous.4open.science/r/SNAG.026

1 Introduction027

Current efforts to integrate MMKG with pre-028

training are scarce. Triple-level methods (Pan et al.,029

2022) treat triples as standalone knowledge units,030

embedding the (head entity, relationship, tail entity)031

structure into Visual Language Model’s space. On032

the other hand, Graph-level methods (Gong et al.,033

2023; Li et al., 2023b) capitalize on the structural034

connections among entities in a global MMKG. By035

selectively gathering multi-modal neighbor nodes036

around each entity featured in the training corpus,037

they apply techniques such as Graph Neural Net-038

works (GNNs) or concatenation to effectively incor-039

porate knowledge during the pre-training process.040

Figure 1: Unlike existing models that refuse and combat
noise in MMKGs, our SNAG accepts and deliberately
incorporates noise to mirror noisy real-world scenarios.

However, these approaches predominantly view 041

MMKG from a traditional KG perspective, not 042

fully separating the MMKG representation pro- 043

cess from downstream or pre-training tasks. In 044

this work, we revisit MMKG representation learn- 045

ing uniquely from the MMKG perspective itself, 046

employing two tasks: Multi-modal Knowledge 047

Graph Completion (MKGC) and Multi-modal En- 048

tity Alignment (MMEA) to validate our method. 049

Specifically, we introduce a unified Transformer- 050

based framework (SNAG) that achieves SOTA 051

results across an array of ten datasets by sim- 052

ply aligning it with task-specific Training targets. 053

SNAG stands out for its parameter-efficient de- 054

sign and adaptability, incorporating components 055

like Entity-Level Modality Interaction that can be 056

seamlessly upgraded with advanced technologies. 057

A key aspect of our method is the Gauss Modal- 058

ity Noise Masking module, whose design sharply 059

contrasts with previous MMKG-related efforts that 060

primarily focus on designing methods to refuse 061

and combat noise in MMKGs. In contrast, as 062

shown in Fig. 1, our SNAG accepts and deliber- 063

ately incorporates noise, adapting to the noisy real- 064

world scenarios. Drawing inspiration from tradi- 065

tional mask-based multi-modal Pre-trained Lan- 066

guage Models (PLMs) that enhance cross-modal 067

alignment at the token level, our strategy innovates 068

by applying masking at the modality level, signif- 069
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icantly enhancing model’s MMKG representation070

capabilities. Importantly, as the first MMKG effort071

to concurrently support both MKGC and MMEA072

tasks, this work demonstrates its adaptability of our073

strategy, highlighting its potential to interface with074

more training tasks in the future and paving the075

way for further research in MMKG Pre-training076

and Multi-modal Knowledge Injection.077

2 Related Work078

2.1 MMKG Representation079

The current mainstream approaches to MMKG rep-080

resentation learning can broadly be classified into081

two distinct categories: (i) Late Fusion methods082

emphasize modality interactions and feature aggre-083

gation just prior to output generation. For exam-084

ple, MKGRL-MS (Wang et al., 2022) crafts unique085

single-modal embeddings, employing multi-head086

self-attention to determine each modality’s con-087

tribution to semantic composition and sum the088

weighted multi-modal features for MMKG entity089

representation. MMKRL (Lu et al., 2022) learns090

cross-modal embeddings in a unified translational091

semantic space, merging them through concate-092

nation. DuMF (Li et al., 2022) applies a bilinear093

layer for feature projection and an attention block094

for modality preference learning in each track, in-095

tegrating features via a gate network. (ii) Early096

Fusion methods integrate multi-modal feature at097

an initial stage, enabling full modality interactions098

for complex reasoning. For example, Fang et al.099

(2023a) first normalizes entity modalities into a uni-100

fied embedding using an MLP, then refines them101

by contrasting with perturbed negative samples.102

MMRotatH (Wei et al., 2023) utilizes a gated en-103

coder to merge textual and structural data, filtering104

irrelevant information within a rotational dynamics-105

based KGE framework. Recent studies (Chen et al.,106

2022b; Lee et al., 2023) utilize (V)PLMs like BERT107

and ViT for multi-modal data integration. These108

methods convert graph structures, text, and im-109

ages into sequences or dense embeddings suited for110

LMs, leveraging the LMs’ reasoning abilities and111

embedded knowledge for tasks like Multi-modal112

Link Prediction. However, they rely heavily on pre-113

trained models, resulting in significant parameter114

sizes and training costs.115

In this paper, we propose a Transformer-based116

method SNAG that introduces fine-grained, entity-117

level modality preference to enhance entity rep-118

resentation. This strategy combines the benefits119

of Early Fusion, with its effective modality in- 120

teraction, while also aligning with the Late Fu- 121

sion modality integration paradigm. Furthermore, 122

our model is lightweight, with only 13M parame- 123

ters, far fewer than traditional PLM-based methods, 124

which often exceed 200M parameters. This offers 125

increased flexibility and wider applicability. 126

2.2 Multi-Modal Knowledge Graph 127

Completion and Alignment 128

Multi-modal Knowledge Graph Completion 129

(MKGC) is crucial for inferring missing triples in 130

existing MMKGs (Lee et al., 2023; Zhao et al., 131

2022). Entity Alignment (EA) focuses on KG 132

integration, aiming to identify identical entities 133

across different KGs by leveraging relational, 134

attributive, and literal (surface) features. Multi- 135

Modal Entity Alignment (MMEA) enhances this 136

by incorporating visual data, thereby improving 137

alignment accuracy (Chen et al., 2020a; Li 138

et al., 2023a). Further details are provided in 139

Appendix A.1. Despite nearly five years of 140

development, MMEA and MKGC have progressed 141

independently within the MMKG field, lacking 142

a unified framework that integrates these tasks. 143

Given the advancements in multi-modal LLMs, it 144

is timely to develop a comprehensive framework 145

that addresses both MKGC and MMEA, offering 146

enhanced multi-modal entity representations. 147

3 Method 148

3.1 Preliminaries 149

This paper focuses on A-MMKG (Zhu et al., 2022), 150

where images are attached to entities as attributes. 151

Definition 1. Multi-modal Knowledge Graph. A 152

KG is defined as G = {E ,R,A, T ,V} where T = 153

{TA, TR} with TR = E×R×E and TA = E×A× 154

V . MMKG utilizes multi-modal data (e.g., images) 155

as specific attribute values for entities or concepts, 156

with TA = E × A× (VKG ∪ VMM ), where VMM 157

are values of multi-modal data (e.g., images). 158

Definition 2. MMKG Completion. The objective 159

is to augment the set of relational triples TR within 160

MMKGs by identifying and adding missing rela- 161

tional triples among existing entities and relations, 162

potentially utilizing attribute triples TA. Specifi- 163

cally, our focus is on Entity Prediction, which in- 164

volves determining the missing head or tail entities 165

in queries of the form (head, r, ?) or (?, r, tail). 166

Definition 3. Multi-modal Entity Alignment. 167

Given two aligned MMKGs G1 and G2, the objec- 168
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Figure 2: The overall framework of SNAG.

tive of MMEA is to identify entity pairs (e1i , e2i )169

from E1 and E2, respectively, that correspond to the170

same real-world entity ei. This process utilizes a171

set of pre-aligned entity pairs, divided into a train-172

ing set (seed alignments S) and a testing set Ste,173

following a pre-defined seed alignment ratio Rsa174

= |S|/|S ∪Ste|. The modalities associated with an175

entity are denoted byM = {g, r, a, v, s}, signify-176

ing graph structure, relation, attribute, vision, and177

surface (i.e., entity names) modalities, respectively.178

3.2 Multi-Modal Knowledge Embedding179

Graph Structure Embedding. Let xgi ∈ Rd rep-180

resents the graph embedding of entity ei, which is181

randomly initialized and learnable, with d repre-182

senting the predetermined hidden dimension. In183

MKGC, we follow Zhang et al. (2024) to set hgi =184

FCg(Wg, x
g
i ), where FCg is a KG-specific fully185

connected layer applied to xgi with weights Wg. For186

MMEA, we follow Chen et al. (2023a) to utilize187

the Graph Attention Network (GAT) (Velickovic188

et al., 2018), configured with two attention heads189

and two layers, to capture the structural informa-190

tion of G. This is facilitated by a diagonal weight191

matrix (Yang et al., 2015) Wg ∈ Rd×d for linear192

transformation. The structure embedding is thus de-193

fined as hgi =GAT (Wg,Mg;x
g
i ), where Mg refers194

to the graph’s adjacency matrix.195

Relation and Attribute Embedding. Our196

MKGC study aligns with domain practices (Zhao197

et al., 2022; Li et al., 2023c) which focuses exclu-198

sively on relation triples. These are represented199

by learnable embeddings xrj ∈ Rd/2, where j200

uniquely identifies each relation rj , distinguishing201

it from entity indices. We exclude attribute triples202

to maintain consistency with methodological203

practices in the field. The choice of setting a204

dimensionality of d/2 is based on our application205

of the RotatE model (Sun et al., 2019), which206

assesses triple plausibility. RotatE interprets207

relations as rotations in a complex space, requiring 208

the relation embedding’s dimension to be half that 209

of the entity embedding to account for the real 210

and imaginary components of complex numbers. 211

For MMEA, following Yang et al. (2019), we 212

use bag-of-words features for relation (xr) and 213

attribute (xa) representations of entities (detailed 214

in § 4) . Separate FC layers, parameterized by 215

Wm ∈ Rdm×d, are employed for embedding space 216

harmonization: hmi = FCm(Wm, xmi ), where 217

m ∈ {r, a} and xmi ∈ Rdm represents the input 218

feature of entity ei for modality m. 219

Visual and Surface Embedding. For visual em- 220

beddings, a pre-trained (and thereafter frozen) vi- 221

sual encoder, denoted as Encv, is used to extract 222

visual features xvi for each entity ei with associated 223

image data. In cases where entities lack correspond- 224

ing image data, we synthesize random image fea- 225

tures adhering to a normal distribution, parameter- 226

ized by the mean and standard deviation observed 227

across other entities’ images (Chen et al., 2023a,b; 228

Zhang et al., 2024). Regarding surface embeddings 229

for MKGC, we leverage Sentence-BERT (Reimers 230

and Gurevych, 2019), a pre-trained textual encoder, 231

to derive textual features from each entity’s de- 232

scription. The [CLS] token serves to aggregate 233

sentence-level textual features xsi . Consistent with 234

the approach applied to other modalities, we utilize 235

FCm parameterized by Wm ∈ Rdm×d to integrate 236

the extracted features xvi and xsi into the embedding 237

space, yielding the embeddings hvi and hsi . 238

3.3 Gauss Modality Noise Masking 239

Recent research in MMKG (Chen et al., 2023b; 240

Guo et al., 2023) suggests that models can tolerate 241

certain noise levels without a noticeable decline 242

in the expressive capability of multi-modal entity 243

representations, a finding echoed across various 244

machine learning domains (Jain et al., 2023; Chen 245

et al., 2024). Additionally, Chen et al. (2023c) 246
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demonstrate that cross-modal masking and recon-247

struction can improve a model’s cross-modal align-248

ment capabilities in Zero-shot Image Classifica-249

tion scenario. Inspired by evidence of model noise250

resilience, we hypothesize that introducing noise251

during MMKG modality fusion training could en-252

hance both modal feature robustness and real-world253

performance. In light of these observations, we254

propose a new mechanism termed Gauss Modal-255

ity Noise Masking (GMNM), aimed at enhancing256

modality feature representations through controlled257

noise injection at the training stage for MMKG.258

This stochastic strategy introduces a probabilistic259

transformation to each modality feature xmi at the260

beginning of every training epoch, described as :261

x̂mi =

{
xmi , if p > ρ ,

(1− ϵ)xmi + ϵx̃mi , otherwise,
(1)262

where p ∼ U(0, 1) denotes a uniformly distributed263

random variable that determines whether noise is264

applied, with ρ being the threshold probability for265

noise application to each xmi . Here, ϵ signifies the266

noise (mask) ratio. We define the generation of267

noise vector x̃mi as:268

x̃mi = φm ⊙ z + µm , z ∼ N (0, I), (2)269

where φm and µm represent the standard deviation270

and mean of the modality-specific non-noisy data271

for m, respectively, and z denotes a sample drawn272

from a Gaussian distribution N (0, I) with mean273

vector with mean 0 and identity covariance matrix274

I , ensuring that the introduced noise is statistically275

coherent with the intrinsic data variability of the276

respective modality. Additionally, the intensity of277

noise (ϵ) can be dynamically adjusted to simulate278

real-world data imperfections. This adaptive noise279

injection strategy is designed to foster a model280

resilient to data variability, capable of capturing281

and representing complex multi-modal interactions282

with enhanced fidelity in practical applications.283

Note that after the transformation from xm to284

x̂m, these modified features are still subject to fur-285

ther processing through FCm as detailed in § 3.2.286

This critical step secures the generation of the ulti-287

mate modal representation, symbolized as ĥm. For288

clarity in subsequent sections, we will treat hm289

and hmi as representing their final states, ĥm290

and ĥmi , unless specified otherwise.291

3.4 Entity-Level Modality Interaction292

This phase is designed for instance-level modal-293

ity weighting and fusion, enabling dynamic ad-294

justment of training weights based on modality 295

information’s signal strength and noise-induced 296

uncertainty. We utilize a Transformer architec- 297

ture (Vaswani et al., 2017) for this purpose, noted 298

for its efficacy in modality fusion and its ability 299

to derive confidence-based weighting for modali- 300

tieswhich improves interpretability and adaptabil- 301

ity. The Transformer’s self-attention mechanism is 302

crucial for ensuring the model evaluates and priori- 303

tizes accurate and relevant modal inputs. 304

Specifically, we adapt the vanilla Transformer 305

through integrating three key components: Multi- 306

Head Cross-Modal Attention (MHCA), Fully 307

Connected Feed-Forward Networks (FFN), and 308

Instance-level Confidence (ILC). 309

(i) MHCA operates its attention function across Nh 310

parallel heads. Each head, indexed by i, employs 311

shared matrices W (i)
q , W (i)

k , W (i)
v ∈ Rd×dh (where 312

dh = d/Nh), to transform input hm into queries 313

Q
(i)
m , keys K(i)

m , and values V (i)
m : 314

Q(i)
m ,K(i)

m , V (i)
m = hmW (i)

q , hmW
(i)
k , hmW (i)

v . 315

The output for modality m’s feature is then gener- 316

ated by combining the outputs from all heads and 317

applying a linear transformation: 318

MHCA(hm) =
⊕Nh

i=1
headmi ·W0 , (3) 319

headmi =
∑

j∈M
β
(i)
mjV

(i)
j , (4) 320

where W0 ∈ Rd×d. The attention weight βmj cal- 321

culates the relevance between modalities m, j: 322

βmj =
exp(Q⊤

mKj/
√
dh)∑

i∈M exp(Q⊤
mKi/

√
dh)

. (5) 323

Besides, layer normalization (LN) and residual con- 324

nection (RC) are incorporated to stabilize training: 325

h̄m = LayerNorm(MHCA(hm) + hm) . (6) 326

(ii) FFN: This network, consisting of two linear 327

transformations and a ReLU activation, further pro- 328

cesses the MHCA output: 329

FFN(h̄m) = ReLU(h̄mW1 + b1)W2 + b2 , 330

h̄m ← LayerNorm(FFN(h̄m) + h̄m) , 331

where W1 ∈ Rd×din and W2 ∈ Rdin×d. 332

(iii) ILC: To capture crucial inter-modal interac- 333

tions and tailors the model’s confidence for each 334

entity’s modality, we calculate the confidence w̃m: 335

w̃m =
exp(

∑
j∈M

∑Nh
i=0 β

(i)
mj/
√

|M|×Nh)∑
k∈M exp(

∑
j∈M

∑Nh
i=0 β

(i)
kj

√
|M|×Nh)

. (7) 336
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3.5 Task-Specific Training337

Building upon the foundational processes detailed338

in previous sections, we have derived multi-modal339

KG representations denoted as hm (discussed in340

§ 3.3) and h̄m (elaborated in § 3.4, Eq. (6)), along341

with confidence scores w̃m for each modality m342

within the MMKG (introduced in § 3.4, Eq. (7)).343

MMKG Completion. Within MKGC, we con-344

sider two methods for entity representation as can-345

didates: (i) h̄g: Reflecting insights from previous346

research (Chen et al., 2023a; Zhang et al., 2024),347

graph structure embedding emerges as crucial for348

model performance. After being processed by the349

Transformer layer, h̄g not only maintains its struc-350

tural essence but also blends in other modal insights351

(refer to Eq. (3) and (4)), offering a comprehen-352

sive multi-modal entity representation. (ii) h̄avg:353

For an equitable multi-modal representation, we354

average all modality-specific representations via355

h̄avg = 1
|M|

∑
m∈M h̄m, whereM is the set of all356

modalities. This averaging ensures equal modality357

contribution, leveraging the rich, diverse informa-358

tion within MMKGs. For consistency in the fol-359

lowing descriptions, we will refer to both entity360

representations using the notation h̄.361

We apply the RotatE model (Sun et al., 2019)362

as our score function to assess the plausibility of363

triples. It is defined as:364

F(eh, r, et) = ||h̄head ◦ xr − h̄tail|| , (8)365

where ◦ represents the rotation operation in com-366

plex space, which transforms the head entity’s em-367

bedding by the relation to approximate the tail en-368

tity’s embedding.369

To prioritize positive triples with higher scores,370

we optimize the embeddings using a sigmoid-based371

loss function (Sun et al., 2019). The loss function372

is given by:373

Lkgc =
1

|TR|
∑

(eh,r,et)∈TR

(
− log σ(λ−F(eh, r, et))

−
∑K

i=1
υi log σ(F(eh′, r′, et′)− λ)

)
,

374

where σ denotes the sigmoid function, λ is the375

margin, K is the number of negative samples376

per positive triple, and υi represents the self-377

adversarial weight for each negatively sampled378

triple (eh′, r′, et′). Concretely, υi is calculated as:379

υi =
exp(τkgcF(eh′i , r′i, et′i ))∑K
j=1 exp(τkgcF(eh′j , r′j , et′j ))

, (9)380

with τkgc being the temperature parameter. Our pri- 381

mary objective is to minimize Lkgc, thereby refin- 382

ing the embeddings to accurately capture MMKG’s 383

underlying relationships. 384

Multi-modal Entity Alignment. In MMEA, fol- 385

lowing (Chen et al., 2023b,a), we adopt the Global 386

Modality Integration (GMI) derived multi-modal 387

features as the representations for entities. GMI 388

emphasizes global alignment by concatenating and 389

aligning multi-modal embeddings with a learnable 390

global weight, enabling adaptive learning of each 391

modality’s quality across two MMKGs. The GMI 392

joint embedding hGMI
i for entity ei is defined as: 393

hGMI
i =

⊕
m∈M

[wmhmi ] , (10) 394

where
⊕

signifies vector concatenation and wm is 395

the global weight for modality m, which is distinct 396

from the entity-level dynamic modality weights 397

w̃m in Eq. (7). 398

We note that the distinction between MMEA 399

and MKGC lies in their focus: MMEA emphasizes 400

aligning modal features between entities and distin- 401

guishing non-aligned entities, prioritizing original 402

feature retention. In contrast, MKGC emphasizes 403

the inferential benefits of modality fusion across 404

different multi-modal entities. As demonstrated 405

by Chen et al. (2023b), the modality feature is of- 406

ten smoothed by the Transformer Layer in MMEA, 407

potentially reducing entity distinction. GMI ad- 408

dresses this by preserving essential information, 409

aiding alignment stability. 410

Moreover, as a unified MMKG representation 411

framework, modal features extracted earlier are 412

optimized through MMEA-specific training ob- 413

jectives (Lin et al., 2022). Specifically, for each 414

aligned entity pair (e1i ,e2i ) in training set (seed align- 415

ments S), we define a negative entity set N ng
i = 416

{e1j |∀e1j ∈ E1, j ̸= i} ∪ {e2j |∀e2j ∈ E2, j ̸= i} 417

and utilize in-batch (B) negative sampling (Chen 418

et al., 2020b) to enhance efficiency. The alignment 419

probability distribution is: 420

pm(e1i , e
2
i ) =

γm(e1i , e
2
i )

γm(e1i , e
2
i ) +

∑
ej∈Nng

i
γm(e1i , ej)

, 421

where γm(ei, ej) = exp(hm⊤
i hmj /τea) and τea is 422

the temperature hyper-parameter. We establish a 423

bi-directional alignment objective to account for 424

MMEA directions: 425

Lm = −Ei∈B log[ pm(e1i , e
2
i ) + pm(e2i , e

1
i ) ]/2 , 426
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Table 1: MKGC performance on DB15K (Liu et al., 2019), MKG-W and MKG-Y (Xu et al., 2022) datasets. The
best results are highlighted in bold, and the third-best results are underlined for each column.

Models
DB15K (Liu et al., 2019) MKG-W (Xu et al., 2022) MKG-Y (Xu et al., 2022)

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

IKRL (IJCAI ’17) (Xie et al., 2017a) .268 .141 .349 .491 .324 .261 .348 .441 .332 .304 .343 .383
TBKGC (NAACL ’18) (Sergieh et al., 2018) .284 .156 .370 .499 .315 .253 .340 .432 .340 .305 .353 .401

TransAE (IJCNN ’19) (Wang et al., 2019) .281 .213 .312 .412 .300 .212 .349 .447 .281 .253 .291 .330
RSME (ACM MM ’21) (Wang et al., 2021) .298 .242 .321 .403 .292 .234 .320 .404 .344 .318 .361 .391

VBKGC (KDD ’22) (Zhang and Zhang, 2022) .306 .198 .372 .494 .306 .249 .330 .409 .370 .338 .388 .423
OTKGE (NeurIPS ’22) (Cao et al., 2022) .239 .185 .259 .342 .344 .289 .363 .449 .355 .320 .372 .414

IMF (WWW ’23) (Li et al., 2023c) .323 .242 .360 .482 .345 .288 .366 .454 .358 .330 .371 .406
QEB (ACM MM ’23) (Wang et al., 2023) .282 .148 .367 .516 .324 .255 .351 .453 .344 .295 .370 .423

VISTA (EMNLP ’23) (Lee et al., 2023) .304 .225 .336 .459 .329 .261 .354 .456 .305 .249 .324 .415
MANS (IJCNN ’23) (Zhang et al., 2023) .288 .169 .366 .493 .309 .249 .336 .418 .290 .253 .314 .345

MMRNS (ACM MM ’22) (Xu et al., 2022) .297 .179 .367 .510 .341 .274 .375 .468 .359 .306 .391 .455
AdaMF (COLING ’24) (Zhang et al., 2024) .325 .213 .397 .517 .343 .272 .379 .472 .381 .335 .404 .455

SNAG (Ours) .363 .274 .411 .530 .373 .302 .405 .503 .395 .354 .411 .471
- w/o GMNM .357 .269 .406 .523 .365 .296 .398 .490 .387 .345 .407 .457

(i) The training objective denoted as LGMI when427

using GMI joint embeddings, i.e., γGMI(ei, ej) is428

set to exp(hGMI⊤
i hGMI

j /τea).429

To integrate dynamic confidences into the train-430

ing process and enhance multi-modal entity align-431

ment, we adopt two specialized training objectives432

from Chen et al. (2023b): (ii) Explicit Confidence-433

augmented Intra-modal Alignment (ECIA): This434

objective modifies Eq. (3.5) to incorporate explicit435

confidence levels within the same modality, defined436

as: LECIA =
∑

m∈M L̃m , where:437

L̃m = −Ei∈B log[ϕm(e1i , e
2
i ) ∗ (pm(e1i , e

2
i ) + pm(e2i , e

1
i )) ]/2 .438

Here, ϕm(e1i , e
2
i ) represents the minimum confi-439

dence value between entities e1i and e2i in modality440

m, i.e., ϕm(ei, ej) = Min(w̃m
i , w̃m

j ), addressing441

the issue of aligning high-quality features with po-442

tentially lower-quality ones or noise. (iii) Implicit443

Inter-modal Refinement (IIR) refines entity-level444

modality alignment by leveraging the transformer445

layer outputs h̄m, aiming to align output hidden446

states directly and adjust attention scores adap-447

tively. The corresponding loss function is: LIIR =448 ∑
m∈M L̄m , where L̄m is also a variant of Lm449

(Eq. (3.5)) with γ̄m(ei, ej) = exp(h̄m⊤
i h̄mj /τea).450

The comprehensive training objective is formu-451

lated as: Lea = LGMI + LECIA + LIIR. Note452

that our SNAG framework can not only function as453

a standalone model but also enhance other existing454

methods, providing stable performance improve-455

ments in MMEA, as demonstrated in Table 2.456

4 Experiments Setup457

Iterative Training for MMEA. We employ a458

probation technique for iterative training, which459

acts as a buffering mechanism, temporarily storing460

a cache of mutual nearest entity pairs across KGs461

from the testing set (Lin et al., 2022). Specifically, 462

at every Ke (where Ke = 5) epochs, models iden- 463

tify and add mutual nearest neighbor entity pairs 464

from different KGs to a candidate list N cd. An en- 465

tity pair inN cd is then added to the training set if it 466

continues to be mutual nearest neighbors for Ks (= 467

10) consecutive iterations. This iterative expansion 468

of the training dataset serves as data augmentation 469

in the EA domain, enabling further evaluation of 470

the model’s robustness across various scenarios. 471

Implementation Details. MKGC: (i) Follow- 472

ing Zhang et al. (2024), vision encoders Encv are 473

configured with VGG (Simonyan and Zisserman, 474

2015) for DBP15K, and BEiT (Bao et al., 2022) for 475

MKG-W and MKG-Y. For entities associated with 476

multiple images, the feature vectors of these images 477

are averaged to obtain a singular representation. (ii) 478

The head number Nh in MHCA is set to 2. For en- 479

tity representation in DBP15K, graph structure em- 480

bedding h̄g is used, while for MKG-W and MKG-Y, 481

mean pooling across modality-specific representa- 482

tions h̄avg is employed. This distinction is made 483

due to DBP15K’s denser KG and greater absence 484

of modality information compared to MKG-W and 485

MKG-Y. (iii) We simply selected a set of candidate 486

parameters in AdaMF (Zhang et al., 2024). Specifi- 487

cally, the number of negative samples K per posi- 488

tive triple is 32, the hidden dimension d is 256, the 489

training batch size is 1024, the margin λ is 12, the 490

temperature τkgc is 2.0, and the learning rate is set 491

to 1e− 4. No extensive parameter tuning was con- 492

ducted; theoretically, SNAG could achieve better 493

performance with parameter optimization. (iv) The 494

probability ρ of applying noise in GMNM is set at 495

0.2, with a noise ratio ϵ of 0.7. (v) For fairness in 496

comparison, we excluded Ensemble-methods like 497

MoSE (Zhao et al., 2022) and PLM-based methods 498
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Table 2: Non-iterative MMEA results across three de-
grees of visual modality missing. Results are underlined
when the baseline, equipped with the Gauss Modality
Noise Masking (GMNM) module, surpasses its own
original performance, and highlighted in bold when
achieving SOTA performance.

Models Rimg=0.4 Rimg=0.6 Standard
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

D
B

P1
5K

Z
H

-E
N

EVA .623 .876 .715 .625 .877 .717 .683 .906 .762
w/ GMNM .629 .883 .724 .625 .881 .717 .680 .907 .760

MCLEA .627 .880 .715 .670 .899 .751 .732 .926 .801
w/ GMNM .652 .895 .740 .699 .912 .775 .754 .933 .819

MEAformer .678 .924 .766 .720 .938 .798 .776 .953 .840
w/ GMNM .680 .925 .767 .719 .939 .798 .777 .955 .841

SNAG (Ours) .735 .945 .812 .757 .953 .830 .798 .963 .858

D
B

P1
5K

JA
-E

N

EVA .546 .829 .644 .552 .829 .647 .587 .851 .678
w/ GMNM .618 .876 .709 .625 .874 .714 .664 .902 .748

MCLEA .568 .848 .665 .639 .882 .723 .678 .897 .755
w/ GMNM .659 .901 .745 .723 .924 .795 .752 .935 .818

MEAformer .677 .933 .768 .736 .953 .815 .767 .959 .837
w/ GMNM .678 .937 .770 .738 .953 .816 .767 .958 .837

SNAG (Ours) .735 .952 .814 .771 .961 .841 .795 .963 .857

D
B

P1
5K

FR
-E

N

EVA .622 .895 .719 .634 .899 .728 .686 .926 .771
w/ GMNM .628 .897 .725 .634 .900 .728 .686 .929 .772

MCLEA .622 .892 .722 .694 .915 .774 .734 .926 .805
w/ GMNM .663 .916 .756 .726 .934 .802 .759 .942 .827

MEAformer .676 .944 .774 .734 .958 .816 .776 .967 .846
w/ GMNM .678 .946 .776 .735 .965 .819 .779 .969 .849

SNAG (Ours) .757 .963 .835 .790 .970 .858 .814 .974 .875

O
pe

nE
A

E
N

-F
R

EVA .532 .830 .635 .553 .835 .652 .784 .931 .836
w/ GMNM .537 .829 .638 .554 .833 .652 .787 .935 .839

MCLEA .535 .842 .641 .607 .858 .696 .821 .945 .866
w/ GMNM .554 .848 .658 .624 .873 .714 .830 .950 .874

MEAformer .582 .891 .690 .645 .904 .737 .846 .862 .889
w/ GMNM .588 .895 .696 .647 .905 .738 .847 .963 .890

SNAG (Ours) .621 .905 .721 .667 .922 .757 .848 .964 .891

O
pe

nE
A

E
N

-D
E

EVA .718 .918 .789 .734 .921 .800 .922 .982 .945
w/ GMNM .728 .919 .794 .740 .921 .803 .923 .983 .946

MCLEA .702 .910 .774 .748 .912 .805 .940 .988 .957
w/ GMNM .711 .912 .782 .762 .928 .821 .942 .990 .960

MEAformer .749 .938 .816 .789 .951 .847 .955 .994 .971
w/ GMNM .753 .939 .817 .791 .952 .848 .957 .995 .971

SNAG (Ours) .776 .948 .837 .810 .958 .862 .958 .995 .972

O
pe

nE
A

D
-W

-V
1

EVA .567 .796 .651 .592 .810 .671 .859 .945 .890
w/ GMNM .597 .826 .678 .611 .826 .688 .870 .953 .900

MCLEA .586 .821 .672 .663 .854 .732 .882 .955 .909
w/ GMNM .604 .841 .689 .678 .869 .748 .889 .960 .915

MEAformer .640 .877 .725 .706 .898 .776 .902 .969 .927
w/ GMNM .656 .884 .738 .718 .905 .786 .904 .971 .929

SNAG (Ours) .678 .897 .758 .728 .915 .796 .905 .971 .930

O
pe

nE
A

D
-W

-V
2

EVA .774 .949 .838 .789 .953 .848 .889 .981 .922
w/ GMNM .787 .956 .848 .799 .958 .856 .892 .983 .924

MCLEA .751 .941 .822 .801 .950 .856 .929 .984 .950
w/ GMNM .766 .956 .836 .811 .965 .868 .938 .990 .957

MEAformer .807 .976 .869 .834 .980 .886 .939 .994 .960
w/ GMNM .833 .980 .886 .857 .983 .903 .942 .995 .962

SNAG (Ours) .852 .986 .901 .870 .988 .913 .946 .996 .965

like MKGformer (Chen et al., 2022b) due to signif-499

icant parameter size differences (our model: 13M;500

MKGformer: over 200M).501

MMEA: (i) Following Yang et al. (2019), Bag-502

of-Words (BoW) is employed for encoding rela-503

tions (xr) and attributes (xa) into fixed-length vec-504

tors (dr = da = 1000). This process entails sorting505

relations and attributes by frequency, followed by506

truncation or padding to standardize vector lengths,507

thus streamlining representation and prioritizing508

significant features. For any entity ei, vector po-509

sitions correspond to the presence or frequency510

of top-ranked attributes and relations, respectively. 511

(ii) Following (Chen et al., 2020a; Lin et al., 2022), 512

vision encoders Encv are selected as ResNet-152 513

(He et al., 2016) for DBP15K, and CLIP (Radford 514

et al., 2021) for Multi-OpenEA. (iii) An alignment 515

editing method is applied to minimize error accu- 516

mulation (Sun et al., 2018). (iv) The head number 517

Nh in MHCA is set to 1. The hidden layer di- 518

mensions d for all networks are unified into 300. 519

The total epochs for baselines are set to 500 with 520

an option for an additional 500 epochs of iterative 521

training (Lin et al., 2022). Our training strategies 522

incorporates a cosine warm-up schedule (15% of 523

steps for LR warm-up), early stopping, and gra- 524

dient accumulation, using the AdamW optimizer 525

(β1 = 0.9, β2 = 0.999) with a consistent batch 526

size of 3500. (v) The total learnable parameters of 527

our model are comparable to those of baseline mod- 528

els. For instance, under the DBP15KJA-EN dataset: 529

EVA has 13.27M, MCLEA has 13.22M, and our 530

SNAG has 13.82M learnable parameters. 531

5 Experimental Results 532

Overall MKGC Results. As shown in Tab. 1, 533

SNAG achieves SOTA performance across all 534

metrics on three MKGC datasets, especially no- 535

table when compared with recent works like 536

MANS (Zhang et al., 2023) and MMRNS (Xu et al., 537

2022) which all have refined the Negative Sampling 538

techniques. Our Entity-level Modality Interaction 539

approach for MMKG representation learning not 540

only demonstrates a significant advantage but also 541

benefits from the consistent performance enhance- 542

ment provided by our Gauss Modality Noise Mask- 543

ing (GMNM) module, maintaining superior perfor- 544

mance even in its absence. 545

Overall MMEA Results. As illustrated in the 546

third segment of Tab. 2, our SNAG achieves SOTA 547

performance across all metrics on seven standard 548

MMEA datasets. Notably, in the latter four datasets 549

of the OpenEA series (EN-FR-15K, EN-DE-15K, 550

D-W-15K-V1, D-W-15K-V2) under the Standard 551

setting where Rimg = 1.0 indicating full image 552

representation for each entity, our GMNM mod- 553

ule maintains or even boosts performance. This 554

suggests that strategic noise integration can lead 555

to beneficial results, demonstrating the module’s 556

effectiveness even in scenarios where visual data is 557

abundant and complete. This aligns with findings 558

from related work (Chen et al., 2023b,a), which 559

suggest that image ambiguities and multi-aspect 560
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Table 3: Component Analysis for SNAG on MKGC
datasets. The icon v indicates the activation of the
Gauss Modality Noise Masking (GMNM) module; u

denotes its deactivation. By default, GMNM’s noise
application probability ρ is set to 0.2, with a noise ratio
ϵ of 0.7. Our Transformer-based structure serves as the
default fusion method for SNAG. Alternatives include:
“FC” (concatenating features from various modalities
followed by a fully connected layer); “WS” (summing
features weighted by a global learnable weight per
modality); “AT” (leveraging an Attention network for
entity-level weighting); “TS” (using a Transformer for
weighting to obtain confidence scores w̃m for weighted
summing); “w/ Only hg” (using Graph Structure embed-
ding for uni-modal KGC). “Dropout” is an experimen-
tal adjustment where Equation (1) is replaced with the
Dropout function to randomly zero modal input features,
based on a defined probability.

Variants
DB15K MKG-W MKG-Y

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

v SNAG (Full) .363 .274 .530 .373 .302 .503 .395 .354 .471
v ρ = 0.3, ϵ = 0.6 .361 .272 .528 .373 .302 .502 .393 .353 .468
v ρ = 0.1, ϵ = 0.8 .360 .272 .525 .371 .299 .496 .391 .348 .463
v ρ = 0.4, ϵ = 0.4 .358 .268 .526 .365 .296 .492 .388 .346 .458
v ρ = 0.5, ϵ = 0.2 .360 .270 .528 .368 .299 .493 .389 .348 .457
v ρ = 0.7, ϵ = 0.2 .359 .270 .526 .367 .299 .490 .387 .345 .456

u SNAG .357 .269 .523 .365 .296 .490 .387 .345 .457

u - FC Fusion .327 .210 .522 .350 .287 .467 .378 .340 .442
u - WS Fusion .334 .218 .529 .361 .298 .480 .384 .345 .449
u - AT Fusion .336 .225 .528 .361 .296 .481 .379 .343 .445
u - TS Fusion .335 .221 .529 .358 .292 .472 .378 .344 .437
u - w/ Only hg .293 .179 .497 .337 .268 .467 .350 .291 .453

u - Dropout (0.1) .349 .252 .527 .361 .297 .479 .382 .344 .446
u - Dropout (0.2) .346 .249 .526 .359 .294 .478 .381 .343 .446
u - Dropout (0.3) .343 .242 .524 .356 .290 .477 .381 .343 .445
u - Dropout (0.4) .341 .238 .521 .356 .295 .467 .379 .341 .442

visual information can sometimes misguide the use561

of MMKGs. Unlike these studies that typically562

design models to refuse and combat noise, our563

SNAG accepts and intentionally integrates noise564

to better align with the inherently noisy conditions565

of real-world scenarios. Iterative training results566

further confirm the robustness of our approach as567

detailed in Appendix A.2.2.568

Most importantly, as a versatile MMKG repre-569

sentation learning approach, it is compatible with570

both MMEA and MKGC tasks, illustrating its ro-571

bust adaptability in diverse operational contexts.572

Uncertainly Missing Modality. The first two573

segments from Tab. 2 present entity alignment per-574

formance with Rimg = 0.4, 0.6, where 60%/40%575

of entities lack image data. These missing im-576

ages are substituted with random image features577

following a normal distribution based on the ob-578

served mean and standard deviation across other579

entities’ images (details in 3.2). This simulates un-580

certain modality absence in real-world scenarios.581

Our method outperforms baselines more signifi-582

cantly when the modality absence is greater (i.e.,583

Rimg = 0.4), with the GMNM module provid- 584

ing notable benefits. This demonstrates that in- 585

tentionally introducing noise can increase training 586

challenges while enhancing model robustness in 587

realistic settings. 588

Ablation studies. In Table 3, we dissect the in- 589

fluence of various components on our model’s per- 590

formance, focusing on three key aspects: (i) Noise 591

Parameters: The noise application probability ρ 592

and noise ratio ϵ are pivotal. Optimal values of 593

ρ = 0.2 and ϵ = 0.7 were determined empir- 594

ically, suggesting that the model tolerates up to 595

20% of entities missing images and that a modality- 596

mask ratio of 0.7 acts as a soft mask. For opti- 597

mal performance, we recommend empirically ad- 598

justing these parameters to suit other specific sce- 599

nario. Generally, conducting a grid search on a 600

smaller dataset subset can quickly identify suitable 601

parameter combinations. (ii) Entity-Level Modal- 602

ity Interaction: Our exploration shows that ab- 603

sence of image information (w/ Only hg) markedly 604

reduces performance, emphasizing MKGC’s im- 605

portance; Weighted summing methods (WS, AT, 606

TS) surpass simple FC-based approaches, indicat- 607

ing the superiority of nuanced modality integra- 608

tion; Using purely Transformer modality weights 609

w̃m for weighting does not demonstrate a clear 610

advantage over attention-based or globally learn- 611

able weight methods in MKGC. In contrast, our 612

approach, which utilizes h̄g (for DBP15K) and 613

h̄avg (for MKG-W and MKG-Y), significantly out- 614

performs others, demonstrating its efficacy. (iii) 615

Modality-Mask vs. Dropout: In assessing their 616

differential impacts, we observe that even minimal 617

dropout (0.1) adversely affects performance, likely 618

because dropout to some extent distorts the origi- 619

nal modal feature distribution, thereby hindering 620

model optimization toward the alignment objective. 621

Conversely, our modality-mask’s noise is inher- 622

ent, replicating the feature distribution seen when 623

modality is absent, and consequently enhancing 624

model robustness more effectively. 625

6 Conclusion 626

In this work, we introduce a unified noise- 627

powered multi-modal knowledge graph represen- 628

tation framework that accepts and intentionally in- 629

tegrates noise, thereby aligning with the complex- 630

ities of real-world scenarios. This initiative also 631

stands out as the first in the MMKG domain to sup- 632

port both MKGC and MMEA tasks simultaneously, 633

highlighting the adaptability of our approach. 634
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7 Limitations635

References & Definition. To aid quick compre-636

hension of tasks within limited space, definitions637

and boundaries may lack full accuracy and com-638

pleteness. Detailed explanations and related work639

are provided in the Appendix A.1 to elaborate on640

these concepts.641

Benchmarks & Baselines. Due to page con-642

straints, we selected datasets and benchmarks (e.g.,643

Tab. 1 and Tab. 2) primarily from recent main-644

stream works, such as DB15K (Liu et al., 2019),645

MKG-W and MKG-Y (Xu et al., 2022). This se-646

lection may overlook older datasets like FB15K-647

237 (Toutanova et al., 2015), WN18 (Bordes et al.,648

2013), and WN9-IMG (Xie et al., 2017b).649

For fairness in comparison, we excluded meth-650

ods based on MoE or Ensemble approaches, such651

as MoSE (Zhao et al., 2022), and did not compare652

with PLM-based methods like MKGformer (Chen653

et al., 2022b) due to significant differences in pa-654

rameter sizes (our model has only 13M parameters655

versus MKGformer’s over 200M).656

Future Applications. Our framework proposes a657

unified approach for MMKG representation learn-658

ing, ideally positioned as an MMKG encoder for659

integrating into LLM training processes, potentially660

enhancing multi-modal entity embeddings. While661

our method theoretically supports diverse training662

objectives, due to the focused scope of this study,663

we did not validate this aspect experimentally. As664

the field progresses, we envision further integra-665

tion of this unified framework into multi-modal666

knowledge pre-training, potentially supporting var-667

ious downstream tasks like Multi-modal Knowl-668

edge Injection and Retrieval-Augmented Genera-669

tion (RAG). Such developments could significantly670

benefit the community, particularly with the rapid671

advancements in Large Language Models.672
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A Appendix986

A.1 Supplementary for Related Work987

Typically, a KG is considered multi-modal when it988

contains knowledge symbols expressed across vari-989

ous modalities, including, but not limited to, text,990

images, sound, or video. Current research primar-991

ily concentrates on the visual modality, assuming992

that other modalities can be processed similarly.993

Multi-Modal Knowledge Graph Completion.994

Multi-modal Knowledge Graph Completion995

(MKGC) is crucial for inferring missing triples996

in existing MMKGs, involving three sub-tasks:997

Entity Prediction, Relation Prediction, and Triple998

Classification. Currently, most research in MKGC999

focuses on Entity Prediction, also widely recog-1000

nized as Link Prediction, with two main methods1001

emerging: Embedding-based Approaches build1002

on conventional Knowledge Graph Embedding1003

(KGE) methods (Bordes et al., 2013; Sun et al.,1004

2019), adapted to integrate multi-modal data,1005

enhancing entity embeddings. (i) Modality Fusion1006

Methods (Wilcke et al., 2023; Wang et al., 2022;1007

Huang et al., 2022) integrate multi-modal and1008

structural embeddings to assess triple plausibility.1009

Early efforts, like IKRL (Xie et al., 2017a), utilize1010

multiple TransE-based scoring functions (Bordes1011

et al., 2013) for modal interaction. RSME (Wang1012

et al., 2021) employs gates for selective modal1013

information integration. OTKGE (Cao et al.,1014

2022) leverages optimal transport for fusion,1015

while CMGNN (Fang et al., 2023b) implements a1016

multi-modal GNN with cross-modal contrastive1017

learning. HRGAT (Liang et al., 2023b) creates1018

a hyper-node relational graph, CamE (Xu et al.,1019

2023b) focuses on biological KGs with a triple1020

co-attention module, VISITA (Lee et al., 2023)1021

utilizes a transformer framework for relation1022

and triple-level multi-modal information fusion.1023

(ii) Modality Ensemble Methods train distinct1024

models per modality, merging outputs for predic-1025

tions. For example, MoSE (Zhao et al., 2022)1026

utilizes structural, textual, and visual data to train1027

three KGC models and employs, using ensemble1028

strategies for joint predictions. Similarly, IMF (Li1029

et al., 2023c) proposes an interactive model to1030

achieve modal disentanglement and entanglement1031

to make robust predictions. (iii) Modality-aware1032

Negative Sampling Methods (Lu et al., 2022;1033

Zhang and Zhang, 2022; Zhang et al., 2023; Xu1034

et al., 2022) boost differentiation between correct1035

and erroneous triples by incorporating multi-modal 1036

context for superior negative sample selection. 1037

MMKRL (Lu et al., 2022) introduces adversarial 1038

training to MKGC, adding perturbations to modal 1039

embeddings. Following this, VBKGC (Zhang and 1040

Zhang, 2022) and MANS (Zhang et al., 2023) 1041

develop fine-grained visual negative sampling to 1042

better align visual with structural embeddings for 1043

more nuanced comparison training. MMRNS (Xu 1044

et al., 2022) enhances this with relation-based sam- 1045

ple selection. Finetune-based Approaches (Chen 1046

et al., 2022b; Liang et al., 2023a) exploit the 1047

world understanding capabilities of pre-trained 1048

Transformer models like BERT (Devlin et al., 1049

2019) and VisualBERT (Li et al., 2019) for MKGC. 1050

These approaches reformat MMKG triples as 1051

token sequences for PLM processing (Liang et al., 1052

2022), often framing KGC as a classification task. 1053

For example, MKGformer (Chen et al., 2022b) 1054

integrates multi-modal fusion at multiple levels, 1055

treating MKGC as a Masked Language Modeling 1056

(MLM) task, while SGMPT (Liang et al., 2023a) 1057

extends this by incorporating structural data and a 1058

dual-strategy fusion module. 1059

Multi-Modal Entity Alignment. Entity Align- 1060

ment (EA) is pivotal for KG integration, aiming 1061

to identify identical entities across different KGs 1062

by leveraging relational, attributive, and literal 1063

(surface) features. Multi-Modal Entity Alignment 1064

(MMEA) enhances this process by incorporating 1065

visual data, thereby improving alignment accuracy 1066

accuracy (Liu et al., 2019; Chen et al., 2020a; 1067

Ni et al., 2023; Xu et al., 2023a). Introduced in 1068

2020, MMEA (Chen et al., 2020a) merges mul- 1069

tiple modalities to align entities in MMKGs by 1070

minimizing the distance between their holistic em- 1071

beddings. HMEA (Guo et al., 2021) represents 1072

MMKGs on the hyperbolic manifold, offering re- 1073

fined geometric interpretations. EVA (Liu et al., 1074

2021) applies an attention mechanism to modu- 1075

late the importance of each modality and intro- 1076

duces an unsupervised approach that utilizes vi- 1077

sual similarities for alignment, reducing reliance 1078

on gold-standard labels. MSNEA (Chen et al., 1079

2022a) leverages visual cues to guide relational 1080

feature learning. MCLEA (Lin et al., 2022) em- 1081

ploys KL divergence to mitigate the modality dis- 1082

tribution gap between uni-modal and joint embed- 1083

dings. DFMKE (Zhu et al., 2023) employs a late 1084

fusion approach with modality-specific low-rank 1085

factors that enhance feature integration across vari- 1086
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Table 4: Statistics for the MKGC datasets, where the
symbol definitions in the table header align with Defini-
tion 1.

Dataset |E| |R| |TR (Train)| |TR (Valid)| |TR (Test)|

DB15K 12842 279 79222 9902 9904
MKG-W 15000 169 34196 4276 4274
MKG-Y 15000 28 21310 2665 2663

ous knowledge spaces, complementing early fu-1087

sion output vectors. MEAformer (Chen et al.,1088

2023a) adjusts mutual modality preferences dy-1089

namically for entity-level modality fusion, address-1090

ing inconsistencies in entities’ surrounding modali-1091

ties. MoAlign (Li et al., 2023a), UMAEA (Chen1092

et al., 2023b) PCMEA (Wang et al., 2024a) and1093

DESAlign (Wang et al., 2024b) follow similar set-1094

tings.1095

A-MMKG vs. N-MMKG. Drawing on the cate-1096

gorization proposed in (Zhu et al., 2022), we distin-1097

guish between two types of MMKGs: A-MMKG1098

and N-MMKG. In A-MMKGs, images are attached1099

to entities as attributes, while in N-MMKGs, im-1100

ages are treated as standalone entities intercon-1101

nected with others. A-MMKGs are more prevalent1102

in current research and applications within the se-1103

mantic web community due to their accessibility1104

and similarity to traditional KGs. Therefore, this1105

paper will focus exclusively on A-MMKG, unless1106

stated otherwise. For instance, in an MMKG, an1107

attribute triple (e, a, v) in TA might associates an1108

image as v to an entity e via an attribute a, typically1109

denoted as hasImage.1110

A.2 Supplementary for Experiments1111

A.2.1 Datasets1112

In MMKG datasets like DBP15KJA-EN, where1113

67.58% of entities have images, the image associa-1114

tion ratio (Rimg) varies due to the data collection1115

process (Chen et al., 2023a).1116

MKGC: (i) DB15K (Liu et al., 2019) is con-1117

structed from DBPedia (Lehmann et al., 2015), en-1118

riched with images obtained via a search engine.1119

(ii) MKG-W and MKG-Y (Xu et al., 2022) are sub-1120

sets of Wikidata (Vrandecic and Krötzsch, 2014)1121

and YAGO (Suchanek et al., 2007) respectively.1122

Text descriptions are aligned with the correspond-1123

ing entities using the additional sameAs links pro-1124

vided by OpenEA benchmarks (Sun et al., 2020).1125

Detailed statistics are available in Tab. 5 & 4.1126

MMEA: (i) Multi-modal DBP15K (Liu et al.,1127

2021) extends DBP15K (Sun et al., 2017) by1128

Table 5: Statistics for the MMEA datasets. Each dataset
contains 15,000 pre-aligned entity pairs (|S| = 15000).
Note that not every entity is paired with associated im-
ages or equivalent counterparts in the other KG. Addi-
tional abbreviations include: DB (DBpedia), WD (Wiki-
data), ZH (Chinese), JA (Japanese), FR (French), EN
(English), DE (German).

Dataset G |E| |R| |A| |TR| |TA| |VMM |

DBP15KZH-EN
ZH 19,388 1,701 8,111 70,414 248,035 15,912
EN 19,572 1,323 7,173 95,142 343,218 14,125

DBP15KJA-EN
JA 19,814 1,299 5,882 77,214 248,991 12,739
EN 19,780 1,153 6,066 93,484 320,616 13,741

DBP15KFR-EN
FR 19,661 903 4,547 105,998 273,825 14,174
EN 19,993 1,208 6,422 115,722 351,094 13,858

OpenEAEN-FR
EN 15,000 267 308 47,334 73,121 15,000
FR 15,000 210 404 40,864 67,167 15,000

OpenEAEN-DE
EN 15,000 215 286 47,676 83,755 15,000
DE 15,000 131 194 50,419 156,150 15,000

OpenEAD-W-V1
DB 15,000 248 342 38,265 68,258 15,000
WD 15,000 169 649 42,746 138,246 15,000

OpenEAD-W-V2
DB 15,000 167 175 73,983 66,813 15,000
WD 15,000 121 457 83,365 175,686 15,000

adding images from DBpedia and Wikipedia (De- 1129

noyer and Gallinari, 2006), covering three 1130

bilingual settings (DBP15KZH-EN, DBP15KJA-EN, 1131

DBP15KFR-EN) and featuring around 400K triples 1132

and 15K aligned entity pairs per setting. (ii) 1133

MMEA-UMVM (Chen et al., 2023b) includes 1134

two bilingual datasets (EN-FR-15K, EN-DE-15K) 1135

and two monolingual datasets (D-W-15K-V1, D- 1136

W-15K-V2) derived from Multi-OpenEA datasets 1137

(Rsa = 0.2) (Li et al., 2023d) and all three bilin- 1138

gual datasets from DBP15K (Liu et al., 2021). It 1139

offers variability in visual information by randomly 1140

removing images, resulting in 97 distinct dataset 1141

splits with different Rimg. For this study, we fo- 1142

cus on representative Rimg values of {0.4, 0.6, 1143

maximum} to validate our experiments. When 1144

Rimg = maximum, the dataset corresponds to 1145

the original Standard dataset (as shown in Tab. 2). 1146

Note that for the Multi-modal DBP15K dataset, the 1147

“maximum” value is not 1.0. 1148

A.2.2 Iterative Training 1149

Iterative training results further confirm the robust- 1150

ness of our approach, as shown in Tab. 6. 1151

A.3 Metric Details 1152

A.3.1 MMEA Metrics 1153

(i) MRR (Mean Reciprocal Ranking ↑) is a statis- 1154

tic measure for evaluating many algorithms that 1155

produce a list of possible responses to a sample 1156

of queries, ordered by probability of correctness. 1157

In the field of EA, the reciprocal rank of a query 1158
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Table 6: Iterative MMEA results.

Models Rimg=0.4 Rimg=0.6 Standard
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

D
B

P1
5K

Z
H

-E
N

EVA .696 .902 .773 .699 .903 .775 .749 .914 .810
w/ GMNM .708 .906 .780 .705 .911 .778 .752 .919 .813

MCLEA .719 .921 .796 .764 .941 .831 .818 .956 .871
w/ GMNM .741 .945 .818 .782 .954 .846 .830 .968 .882

MEAformer .754 .953 .829 .788 .958 .853 .843 .966 .890
w/ GMNM .763 .947 .832 .799 .959 .860 .845 .970 .891

SNAG (Ours) .798 .957 .859 .821 .963 .876 .857 .972 .900

D
B

P1
5K

JA
-E

N

EVA .646 .888 .733 .657 .892 .743 .695 .904 .770
w/ GMNM .696 .910 .773 .700 .912 .776 .745 .916 .807

MCLEA .690 .922 .778 .756 .948 .828 .788 .955 .851
w/ GMNM .739 .937 .815 .796 .959 .858 .820 .969 .877

MEAformer .759 .957 .833 .808 .969 .868 .831 .972 .882
w/ GMNM .769 .953 .838 .817 .967 .872 .842 .974 .890

SNAG (Ours) .808 .959 .864 .839 .975 .890 .861 .976 .904

D
B

P1
5K

FR
-E

N

EVA .710 .931 .792 .716 .935 .797 .769 .946 .834
w/ GMNM .714 .929 .794 .720 .932 .798 .777 .950 .841

MCLEA .731 .943 .814 .789 .958 .854 .814 .967 .873
w/ GMNM .759 .964 .840 .806 .974 .871 .837 .980 .893

MEAformer .763 .963 .842 .811 .976 .874 .844 .980 .897
w/ GMNM .779 .968 .847 .817 .974 .876 .852 .981 .899

SNAG (Ours) .826 .976 .885 .852 .983 .904 .875 .987 .919

O
pe

nE
A

E
N

-F
R

EVA .605 .869 .700 .619 .870 .710 .848 .973 .896
w/ GMNM .606 .870 .701 .621 .874 .713 .856 .971 .898

MCLEA .613 .889 .714 .702 .928 .785 .893 .983 .928
w/ GMNM .625 .902 .726 .707 .934 .790 .893 .983 .928

MEAformer .660 .913 .751 .729 .947 .810 .895 .984 .930
w/ GMNM .666 .916 .755 .741 .943 .815 .905 .984 .937

SNAG (Ours) .692 .927 .778 .743 .945 .817 .907 .986 .939

O
pe

nE
A

E
N

-D
E

EVA .776 .935 .833 .784 .937 .839 .954 .984 .965
w/ GMNM .779 .936 .837 .789 .938 .843 .955 .984 .966

MCLEA .766 .942 .829 .821 .956 .871 .969 .994 .979
w/ GMNM .779 .948 .840 .829 .959 .876 .971 .995 .980

MEAformer .803 .950 .854 .835 .958 .878 .963 .994 .976
w/ GMNM .807 .949 .856 .841 .961 .882 .975 .995 .982

SNAG (Ours) .826 .962 .874 .859 .970 .899 .977 .998 .984

O
pe

nE
A

D
-W

-V
1

EVA .647 .856 .727 .669 .860 .741 .916 .984 .943
w/ GMNM .663 .859 .735 .673 .862 .743 .927 .986 .950

MCLEA .686 .896 .766 .770 .941 .836 .947 .991 .965
w/ GMNM .699 .907 .778 .776 .946 .840 .949 .991 .966

MEAformer .718 .901 .787 .785 .934 .841 .943 .990 .962
w/ GMNM .728 .901 .793 .803 .942 .855 .956 .991 .970

SNAG (Ours) .753 .930 .820 .808 .953 .864 .958 .993 .972

O
pe

nE
A

D
-W

-V
2

EVA .854 .980 .904 .859 .983 .908 .925 .996 .951
w/ GMNM .866 .980 .909 .872 .981 .913 .948 .997 .969

MCLEA .841 .984 .899 .877 .990 .923 .971 .998 .983
w/ GMNM .845 .987 .902 .882 .992 .926 .973 .999 .984

MEAformer .886 .990 .926 .904 .992 .938 .965 .999 .979
w/ GMNM .902 .990 .936 .918 .993 .948 .975 .999 .985

SNAG (Ours) .904 .994 .939 .924 .994 .952 .980 .999 .988

entity (i.e., an entity from the source KG) response1159

is the multiplicative inverse of the rank of the first1160

correct alignment entity in the target KG. MRR is1161

the average of the reciprocal ranks of results for a1162

sample of candidate alignment entities:1163

MRR =
1

|Ste|

|Ste|∑
i=1

1

ranki
. (11)1164

(ii) Hits@N describes the fraction of true aligned1165

target entities that appear in the first N entities of1166

the sorted rank list:1167

Hits@N =
1

|Ste|

|Ste|∑
i=1

I[ranki ⩽ N] , (12)1168

where ranki refers to the rank position of the first1169

correct mapping for the i-th query entities and I = 11170

if ranki ⩽ N and 0 otherwise. Ste refers to the 1171

testing alignment set. 1172

A.3.2 MKGC Metrics 1173

MKGC involves predicting the missing entity in a 1174

query, either (h, r, ?) for tail prediction or (?, r, t) 1175

for head prediction. To evaluate the performance, 1176

we use rank-based metrics such as mean reciprocal 1177

rank (MRR) and Hit@N (N=1, 3, 10), following 1178

standard practices in the field. (i) MRR is calcu- 1179

lated as the average of the reciprocal ranks of the 1180

correct entity predictions for both head and tail 1181

predictions across all test triples: 1182

MRR =
1

|Ttest|

|Ttest|∑
i=1

(
1

rh,i
+

1

rt,i
) . (13) 1183

(ii) Hits@N measures the proportion of correct 1184

entity predictions ranked within the top N positions 1185

for both head and tail predictions: 1186

Hit@N =
1

|Ttest|

|Ttest|∑
i=1

(I(rh,i ⩽ N)+I(rt,i ⩽ N)) ,

(14) 1187

where rh,i and rt,i denote the rank positions in head 1188

and tail predictions, respectively. 1189

Additionally, we employ a filter setting (Bor- 1190

des et al., 2013) to remove known triples from the 1191

ranking process, ensuring fair comparisons and mit- 1192

igating the impact of known information from the 1193

training set on the evaluation metrics. 1194
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