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ABSTRACT

Large language models (LLMs) can be improved by aligning with human pref-
erences through fine-tuning—the so-called reinforcement learning from human
feedback (RLHF). However, the cost of fine-tuning an LLM is prohibitive for many
users. Due to their ability to bypass LLM fine-tuning, prediction-time tokenwise
reward-guided text generation (RGTG) methods have recently been proposed. They
use a reward model trained on full sequences to score partial sequences during
decoding in a bid to steer the generation towards sequences with high rewards.
However, these methods have so far been only heuristically motivated and poorly
analyzed. In this work, we show that reward models trained on full sequences are
not compatible with scoring partial sequences. To alleviate this issue, we propose
to train a Bradley-Terry reward model on partial sequences explicitly, and autore-
gressively sample from the implied tokenwise policy during decoding time. We
study the properties of this reward model and the resulting policy: We show that
this policy is proportional to the ratio of two distinct RLHF policies. Our simple
approach outperforms previous RGTG methods and performs similarly to strong
offline baselines without large-scale LLM finetuning.

1 INTRODUCTION

Large language models (LLMs) provide a modern foundation for most, if not all, text generation
tasks (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b). In practice, significant
improvements in the quality of text generation are achieved by aligning LLMs to human preferences
(Stiennon et al., 2020b; Ouyang et al., 2022). This is typically performed via reinforcement learning
from human feedback (RLHF), which involves two steps: i) learning a reward model from preference
data and ii) fine-tuning an LLM to maximize expected rewards by reinforcement learning (Ziegler
et al., 2019b). Usually, this is done via a reinforcement learning algorithm such as proximal policy
optimization (PPO, Schulman et al., 2017). Nevertheless, recently, Rafailov et al. (2023) showed that
the reward modeling step (i) can be bypassed by directly fine-tuning an LLM with preference data,
resulting in a method called direct preference optimization (DPO). While this simplifies RLHF, the
fine-tuning step (ii) remains prohibitively costly for most users since it requires high-performance
computational resources with large GPUs.

In order to alleviate the computational issue above, Khanov et al. (2024); Deng & Raffel (2023)
explored tokenwise reward-guided text generation (RGTG) techniques that avoid any fine-tuning of
the LLM. More precisely, the LLM remains frozen (i.e., not finetuned), and the reward model is used
at the decoding time to adjust the softmax scores of the tokens directly. Unlike DPO, this line of work
retains the reward modeling step, but training reward models are typically a much cheaper endeavor
than finetuning text-generation LLMs since smaller models can be utilized for reward modeling.
Furthermore, reward models are modular: they can easily be composed and reused without any cost
to guide text generation in conjunction with any base LLM. In contrast, RLHF via DPO requires
fine-tuning of every LLM that we wish to improve based on human preference data.

While RGTG is an interesting alternative to the standard offline RLHF, it is often based on heuristics
and still poorly analyzed. For instance, ARGS (Khanov et al., 2024) proposed to simply use a
reward model trained on full sequences to score each partial sequence during autoregressive decoding.
Meanwhile, Deng & Raffel (2023) used a custom tokenwise loss to distill a reward model trained
on full sequences. Thus, it is unclear if these approaches can give rise to a sound tokenwise text
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generation policy. Controlled decoding (CD; Mudgal et al., 2024), on the other hand, uses rollouts
from the base model along with a reward model trained on full sequences to distill the partial reward.

In this work, we analyze this common RGTG approach. First, we show that the usage of full-sequence
reward models for scoring partial sequences in a tokenwise policy is pathological. To alleviate this,
we propose to explicitly train a Bradley-Terry reward model on partial sequences. We prove that
this text generation policy is a ratio of two different RLHF policies trained on sequences of different
lengths. Ideally, the policy would be derived from a single RLHF policy, but as we shall also show in
Section 3, the exact computation of such a policy is intractable. By deriving the policy from a ratio of
distinct RLHF policies, we obtain a tractable sampling procedure. This is akin to the argument of
Zhao et al. (2024) where they use a similar ratio but for deriving a sequential Monte Carlo method.

We empirically validate our analysis on three different text generation datasets on two recent LLMs.
Evidence shows that our RGTG approach achieves better performance compared to ARGS and CD,
matching the performance of the more expensive, offline PPO and DPO baselines. In summary:

(i) We analyze the recent practice of using full-sequence reward models for guiding the LLM
decoding process. In particular, we show a deficiency in this approach.

(ii) We thus propose to explicitly train a Bradley-Terry reward model on partial sequences and
sample from the induced per-token policy induced by it during the decoding time.

(iii) We show that this reward model induces a ratio of two distinct RLHF policies over sequences
with different lengths. This is a tradeoff that one must make to make tokenwise RGTG free of
the pathology and yet still tractable.

(iv) Extensive experiments with recent LLMs and various text generation tasks validate our insights.

2 PRELIMINARIES

We denote a prompt by x and its response by y where the bolded letters indicate sequences of tokens.
The i-th token in x is denoted by xi, while the partial sequence starting at token i and ending at token
j is denoted by xi:j . The length of a sequence x is denoted by |x|. The same notation applies to y.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

LLMs generally consist of probabilistic models that can generate a response y given a prompt x.
More specifically, the generation of y is done token-by-token by sampling the next token from a
conditional distribution π(yi|x,y1:i−1).

Given a preference dataset D = {(xk,ywk,ylk)}Kk=1 containing K triples of token sequences
(x,yw,yl), Ziegler et al. (2019b) and Ouyang et al. (2022) proposed a technique based on reinforce-
ment learning (RL) to align an LLM with the preference dataset. They train a parametric reward
model rϕ(y|x) that assigns a higher score to the “winning” (i.e., preferred) utterance yw and a lower
score to the “losing” utterance yl. This is done via the Bradley-Terry model (Bradley & Terry, 1952)
which minimizes the loss:

LR = − E
x,yw,yl∼D

log σ(rϕ(yw|x)− rϕ(yl|x)), (1)

where σ is the logistic function. Note that rϕ is trained to score entire utterances y. Once rϕ
is trained, it can be used to infer the probability of generating sequence y in response to x, i.e.,
Pϕ(y|x) = exp(rϕ(y|x))/

∑
y′ exp(rϕ(y

′|x). Given a reference LLM, we denote by πref(y|x) the condi-
tional probability that it will generate response y to prompt x (also referred to as policy). We refer to
the LLM and its policy interchangeably. One can then copy the LLM and finetune it to maximize

max
θ

E
x∼D,

y∼πθ(y|x)

[rϕ(y|x)]−
1

β
DKL[πθ(y|x) ∥πref(y|x)], (2)

where the KL term forms a regularizer that ensures that the finetuned model will not differ too much
from the reference model. The above optimization problem can be optimized by many RL techniques,
including the popular proximal policy optimization (PPO) algorithm (Schulman et al., 2017). This
RL optimization is quite costly in practice due to the size of the LLM.
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The above optimization (2) has a closed form solution of the form (Peters & Schaal, 2007)

πθ(y|x) =
1

Z(x)
πref(y|x) exp(βrϕ(y|x)) (3)

where Z(x) =
∑

y πref(y|x) exp(βrϕ(y|x)) is the intractable partition function. Notice that we can
reorganize (3) to express the reward function in terms of the policies πθ and πref:

r(y|x) = 1

β
log

πθ(y|x)
πref(y|x)

+ logZ(x),

which can be used to replace rϕ(x|y) in (1) to obtain the following optimization problem:

max
θ

E
x,yw,yl∼D

log σ

(
1

β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))
.

Maximizing the above objective with respect to θ directly finetunes the LLM without the need to
learn a reward model. Furthermore, this maximization is done by supervised learning, which is
generally simpler than RL. This approach, known as direct preference optimization (DPO, Rafailov
et al., 2023), reduced the cost of RLHF while ensuring that the same finetuned LLM is obtained as
RLHF based on PPO. Note, however, that both PPO and DPO-based RLHF are still very costly in
practice since they require finetuning (a copy of) the target LLM πref.

2.2 REWARD-GUIDED TEXT GENERATION

In a separate line of work, Khanov et al. (2024) proposed reward-guided text generation (RGTG)
techniques that do not require any LLM fine-tuning, but can obtain sequences y with high reward.
This is done by freezing the reference LLM πref and at decoding time, the next-token probability
πref(y

i | x,y1:i−1) is adjusted by a reward model rϕ. More specifically, possible values for yi are
scored by a weighted combination of logits of πref and the rewards :

score(yi|x,y1:i−1) = log πref(y
i|x,y1:i−1) + βrϕ(y

1:i|x).

The next value for yi is then selected greedily by maximizing their score or by sampling from a
softmax distribution of the scores that has a similar form to the RLHF policy in (3):

softmax(score(yi|x,y1:i−1)) =
1

Z(x,y1:i−1)
πref(y

i|x,y1:i−1) exp(βrϕ(y
1:i|x)),

where the partition function Z(x,y1:i−1) is now tractable since the summation is now over all
possible values of just a single variable yi—it is a summation over possible tokens in the vocabulary.

Note however that it is unclear whether the resulting distribution is equivalent/approximating the
RLHF policy in (3). Khanov et al. (2024) do train the reward model with the Bradley-Terry loss, but
it is trained only with complete sequences, i.e. rϕ(y|x), while it is used to score partial sequences,
i.e. rϕ(y1:i|x). Hence, it is unclear whether the inferred scores for partial sequences are reasonable.
In Section 3 we show that reward models trained only with complete sequences can assign arbitrary
scores to partial sequences and in Section 5 we show empirically that the resulting RGTG policy
therefore underperforms that of PPO or DPO. Meanwhile, Deng & Raffel (2023) learn the reward
model by minimizing a cumulative squared loss to distill a full-sequence reward model instead of
using the Bradley-Terry loss (1), making the connection to RLHF policy looser. Mudgal et al. (2024)
also distill a partial reward model from a full-sequence reward model, but the tokenwise policy is not
the marginal of the full-sequence policy. Nevertheless, tokens are sampled from a different tokenwise
RL formulation that follows a similar derivation as RLHF.

Zhao et al. (2024) proposed to match each of the marginal distribution of πθ(y1:i|x) by learning a
series of parametric functions {ψϕi}

|y|
i=1. This in turn induces a policy:

π(yi|x,y1:i−1) =
1

Z(x,y1:i−1)
πref(y

i|x,y1:i−1) exp(ψϕi
(y1:i|x)).

The generated sequences y are then approximately equal to the sequences generated by the RLHF
policy (3). However, their method is general and does not specifically target RGTG—indeed, Zhao
et al. (2024) focused on using the implied approximation of the partition function Z(x).
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Figure 1: A pathology of using a reward model trained on full-sequence to predict partial sequences
in decoding-time RGTG. We denote ri = r(yi|x,y1:i−1). While the total reward over the full
sequence y = (y1, . . . , yn) might be nonzero c, it could be in the extreme case that the values over
previous partial sequences are all zero—this is a perfectly valid result for a sequence-level reward
model (top). This means we can have an unguided decoding in a reward-guided decoding. By
explicitly training r on partial sequences, we could avoid this issue (bottom): While y might achieve
the same final reward c, nonvanishing reward signals over partial sequences could be avoided.

Finally, Rafailov et al. (2024) modifies DPO to obtain a partial-sequence reward model

r(y1:i|x) = 1

β
log

πθ(y
i|x,y1:i−1)

πref(yi|x,y1:i−1)
.

Similar to the sequence-based DPO, this reward model is then used to obtain a per-token loss function
to finetune the LLM and thus, while defining a partial-sequence reward model, is not a RGTG method.

3 PITFALLS OF RGTG AND HOW TO FIX THEM

First, we start by analyzing the partial sequence rewards inferred from a reward model trained with
full sequences only. Proof in Appendix A.

Theorem 1. A reward model r trained to minimize the Bradley-Terry loss (1) on full sequences
y1:|y| may assign arbitrary rewards to partial sequences y1:i (where i < |y|). More precisely,
r(y1:i|x) = vx,y1:i where vx,y1:i ∈ R can be any value.

Algorithm 1 Decoding with our approach.
Input: Pretrained partial-sequence reward model rϕ,

Prompt x, number of candidates k, hyperparameter
β > 0, any reference/SFT model πref, generation
length l

Output: A generated response to x of length l
1: for i = 1 to l do
2: V (k) = top_k(πref(v|x,y1:i−1))

3: for v ∈ V (k) do
4: Reward rϕ(y

1:i−1, v|x))
5: Logit log πref(v|x,y1:i−1)
6: log π(yi = v|x,y1:i−1) =

log πref(v|x,y1:i−1) + βrϕ(y
1:i−1, v|x)

7: end for
8: yi ∼ Cat(softmax(log π(yi|x,y1:i−1)))
9: end for

10: return y1:l

This leads to an unidentifiability problem—see
Fig. 1 for an example. If we learn a reward
model based on preferences over full sequences
only as proposed by Khanov et al. (2024) and
Deng & Raffel (2023), then we may not obtain
adequate rewards for partial sequences. As a
concrete example, suppose r is a reward model
such that (Fig. 1)

r(yi|x,y1:i−1) =

{
r(y|x) i = |y|
0 i < |y|.

This reward model satisfies the identity in (8)
and therefore could be the solution when min-
imizing the Bradley-Terry loss (1). If we use
this reward model to sample from the induced
RLHF optimal policy in (3), then the token level
sampling distribution is the same as for the ref-
erence LLM πref(y

i | x,y1:i−1) for all tokens
except the last one. This is problematic since RLHF generally changes the token level distribution at
each position, not just the last token. Hence the ARGS method (Khanov et al., 2024) may utilize a
reward model that does not score partial sequences properly, which in turn may negatively impact
token-by-token generation.
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+β
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Figure 2: The proposed approach to alleviating the problem in Theorem 1. First, we (i) train the
reward model r on partial sequences explicitly (when |yw| ≠ |yl|, we pad to the longest sequence)
and (ii) sample from the weighted sum of the logits and the rewards of the next token during decoding.
This is in contrast to previous RGTG methods where the reward model is trained on full sequences,
but the decoding relies on partial sequence scoring (Khanov et al., 2024; Deng & Raffel, 2023).

To alleviate this issue, we propose to explicitly train the reward model with partial sequences—still
using the Bradley-Terry model in contrast to Deng & Raffel (2023)—as follows (Fig. 2). We create a
separate loss function for all prefix lengths i:

Li
R = −Ex,yw,yl∼D log σ(rϕ(y

1:i
w |x)− rϕ(y

1:i
l |x)). (4)

Then, given that full sequence yw is preferred to full sequence yl, we assume that the partial sequence
y1:i
w is also preferred to the partial sequence y1:i

l . Strictly speaking, it is hard for human annotators to
compare partial sequences due to their incomplete nature and most preference datasets do not include
preferences over partial sequences. Nevertheless, we can interpret y1:i

w as the prefix of a winning
sequence that is preferred over a losing sequence with prefix y1:i

l . The following lemma shows
that the resulting reward model ensures that the probability that a first partial sequence is preferred
to a second partial sequence corresponds to the probability that the first sequence is extended to a
winning full sequence while the second sequence is extended to a losing full sequence according to
the preference data distribution Pdata. Proof in Appendix A.

Lemma 2. In the limit of infinite preference data, optimizing a sufficiently expressive reward model
according to (4) under the assumption that partial sequences inherit the winning/losing label of full
sequences yields a reward model rϕ with the following property:

σ(rϕ(y
1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x,y1:i

1 ,y1:j
2 ), (5)

where Pdata is the distribution the preference dataset was sampled from and y1 ≽ y2 indicates that
y1 is preferred to y2.

Hence, optimizing the partial-sequence objective (4) for all lengths i determines a reward model for
all response prefixes that is adequate in the sense that it induces a distribution over partial sequences
that approximates the true underlying preference distribution (due to finite data) instead of assigning
arbitrary rewards in the sense of Theorem 1.

Once the partial-sequence reward model rϕ is trained, we can use it to sample the next token yi

conditioned on the previous tokens x,y1:i according to the following conditional distribution:

π(yi|x,y1:i−1) =
1

Z(x,y1:i−1)
πref(y

i|x,y1:i−1) exp(βrϕ(y
1:i|x)). (6)

Algorithm 1 summarizes the decoding procedure. Contrary to the previous approach of Khanov
et al. (2024), it directly follows the policy induced by the explicitly trained reward model over partial
sequences. Meanwhile, compared to Deng & Raffel (2023) it leverages the standard Bradley-Terry
model instead of a custom squared loss function that distills a full-sequence reward model.

Let us now analyze the tokenwise sampling distribution in (6). By the definition of conditional
distributions, we can rewrite it as a ratio of two partial sequence distributions: π(yi|x,y1:i−1) =
π(y1:i|x)/π(y1:i−1|x). It is still unclear, however, how does this distribution relates to RLHF policies—
the main point of the tokenwise RGTG methods. The following theorem shows how the decoding
process by following this distribution relates to RLHF-induced policies. Proof in Appendix A.
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Theorem 3. Given a reward model trained according to the partial-sequence Bradley-Terry objective
in (4), the induced token generation distribution π (6) is proportional to the ratio:

π(yi|x,y1:i−1) ∝ πRLHF,i(y
1:i|x)

πRLHF,i−1(y1:i−1|x)
(7)

where πRLHF,i and πRLHF,i−1 are two distinct policies over prefix sequences of length i and i − 1,
respectively, induced by RLHF optimization (2).

Ideally, we would like a decoding procedure that samples the next token from a distribution that is
mathematically equivalent to the conditional distribution resulting from an RLHF over full sequences.
However, as shown in Theorem 3, a partial-sequence reward model rϕ leads to multiple RLHF
decoding policies with different conditional distributions for each prefix length i. Hence it is not
possible to have equivalence with a single RLHF policy, e.g. as obtained via PPO or DPO.

One may then ask: Which RLHF policy is best? We argue that none of them is necessarily better
than the others since they simply arise from considering different prefix lengths. Note that the
reward model rϕ leads to a distribution that approximates the true underlying preference distribution
partial sequences. The problem is inherent to RLHF which takes a reference LLM with a consistent
distribution over response prefixes induced by a reward model and yields different decoding policies
for different prefix lengths.

Since all the resulting RLHF decoding policies have merit, one could argue that we can keep
things simple by selecting only one policy, perhaps the RLHF policy induced by full sequence
preferences (i.e., πRLHF(y|x)). However, as discussed by Rafailov et al. (2024) and Zhao et al. (2024),
a conditional distribution over full sequences does not give us an immediate procedure for token-wise
sampling. Mathematically, we can derive a token-level policy from a full-sequence policy as follows:

πRLHF(y
i|x,y1:i−1) =

πRLHF(y
1:i|x)

πRLHF(y1:i−1|x)
=

∑
yi+1:|y| πRLHF(y|x)∑
yi:|y| πRLHF(y|x)

.

However, the summations in the above equation are exponentially large in the length |y| of the
sequences. This exponential complexity was also noted by Zhao et al. (2024) who proposed a
twisted sequential Monte Carlo technique to approximate computation and mitigate the exponential
complexity. In contrast, our approach embraces the multitude of RLHF policies and leverages them in
a linear time decoding procedure without any approximation of the partial sequence RLHF policies.
The ratio policy (6) described here can thus be seen as a necessary tradeoff if one wants to perform
tokenwise RGTG without the pathology in Theorem 1.

4 RELATED WORK

Language model alignment Simple fine-tuning and instruction tuning (Wei et al., 2021) are ways
to align LLMs to labeled data. Recently, RLHF methods (Christiano et al., 2017; Ziegler et al.,
2019a; Lee et al., 2021; Nakano et al., 2021; Snell et al., 2022) have provided a direct method to
align LLMs to human preferences. The PPO algorithm has specially been popular and has shown
promising results for a range of tasks (Askell et al., 2021; Bai et al., 2022; Ouyang et al., 2022).
However, training RL models is compute intensive and researchers have turned their attention to
supervised fine-tuning methods that can learn directly from preference data. Liu et al. (2023a) turns
the preference data into prompts with which they fine-tune the LLM. Dong et al. (2023) uses the
reward model to filter the training set to better fine-tune the model. DPO (Rafailov et al., 2023;
2024) models the LLM itself as a Bradley-Terry model and optimizes the RLHF objective without
any need for RL. TDPO (Zeng et al., 2024) incorporates token-level KL divergence into the DPO
objective to improve content diversity. These methods, however, still fine-tune the base LLM, which
can be expensive as we scale. Some works have attempted to improve alignment by gathering more
fine-grained rewards by using either LLMs (Cao et al., 2024) or human annotators (Wu et al., 2023).

Guided decoding There has been prior work in guided decoding using sequence-level (Welleck
et al., 2022; Uesato et al., 2022; Lightman et al., 2023; Krishna et al., 2022; Li et al., 2023; Khalifa
et al., 2023; Yao et al., 2023) and token-level value functions (Dathathri et al., 2019; Krause et al.,
2021; Yang & Klein, 2021; Chaffin et al., 2022; Liu et al., 2023b). PPLM (Dathathri et al., 2019)
uses the gradients from an attribute classifier to guide LLM generation. Gedi (Krause et al., 2021)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

TL;DR Summarization

Method LLM Single y? r ± SE

Top-k frozen yes -0.11±0.28
CD frozen yes 0.32±0.33

ARGS frozen yes 1.57±0.21
PARGS-G frozen yes 2.06±0.20

PARGS frozen yes 2.36±0.20

Best-of-N frozen no 2.2 ±0.19
DPO trained yes 0.81±0.26
PPO trained yes 2.41±0.23

HH Dialogue

Method LLM Single y? r ± SE

Top-k frozen yes -1.42±0.21
CD frozen yes -1.08±0.21

ARGS frozen yes -0.97±0.19
PARGS-G frozen yes -0.97±0.18

PARGS frozen yes -0.88±0.19

Best-of-N frozen no 0.17 ±0.18
DPO trained yes -0.79±0.31

Table 1: Average reward (over 100 samples) ± standard error for the TL;DR summarization and HH
dialogue tasks. The best technique that freezes the LLM and generates a single response y is bolded.

TL;DR Summarization

Method A vs Method B Win-Tie (%)

PARGS CD 75 - 0
PARGS ARGS 73 - 0
PARGS Best-of-N 55 - 0
PARGS DPO 59 - 1
PARGS PPO 56 - 0

HH Dialogue

Method A vs Method B Win-Tie (%)

PARGS CD 52 - 8
PARGS ARGS 49 - 11
PARGS Best-of-N 36 - 11
PARGS Top-k 56 - 15
PARGS DPO 27 - 14

Table 2: GPT-4 evaluation based on the win-tie rate of PARGS over different baselines on TL;DR
summarization with GPT2-large, and on HH dialogue generation with Llama-2-7b.

uses attribute conditioned language models as discriminators to update LLM generation probabilities
using Bayes rule. These algorithms are different from our work as they do not align LLMs using
human preference data. Deng & Raffel (2023) use a reward model trained on preference data in the
decoding process, however they use a cumulative squared loss function that is different from the
RLHF framework. Mudgal et al. (2024) uses a similar loss function with the key difference that
instead of training with samples from a preference dataset, they take as input a full sequence reward
model and train a partial sequence value function based on roll-outs (i.e., sampled token sequences)
from the base LLM. Therefore, for each new base LLM, the value function needs to be retrained
with new roll-outs, limiting portability to new or updated language models. The closest work to
our method is Khanov et al. (2024), which is also based on the Bradley-Terry model, but they use a
reward model trained on full sequences, which we have argued can lead to pitfalls. Different from
our work, Zhao et al. (2024) a reward-guided decoding method based on sequential Monte Carlo and
show that it can approximate RLHF.

Partial Rewards Outside of preference data alignment and RLHF, prior work in reinforcement
learning for language modeling has looked at partial reward models for improving text generation.
Hao et al. (2022) show that a sequence to sequence model trained with supervised learning is a valid
partial reward model for text generation under a Markov decision process. Lee et al. (2023) do not
train an explicit reward model but instead introduce a ranking function which can rank the next token
for partial sequences. Both these methods modify language model training.

5 EXPERIMENTS

We evaluate our proposed approach, which we call Partial Alignment as Reward-Guided Sampling
(PARGS)—in contrast to ARGS which considers full sequences and greedy decoding instead of
sampling—on two language generation tasks: summarization and dialogue generation.

5.1 SETUP

Summarization task We use the Reddit TL;DR dataset (Völske et al., 2017), where, the context
x is a post on the Reddit forum and y is the summary of the post. We use the human preference
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dataset from Stiennon et al. (2020a) to train the reward model and the relevant baselines. Our base
summarization model is GPT2-large, fine-tuned on the TL;DR training set. We use a pretrained
reward model based on the DeBerta-v3-large architecture and train it with partial sequences for an
additional epoch. Our baselines include top-k sampling (Fan et al., 2018), Best-of-N generation,
which involves sampling N sequences from reference LLM (N = 10 for all our experiments) and
returning the best one according to the reward model, RLHF models based on PPO (Schulman et al.,
2017) and DPO (Rafailov et al., 2023), the reward-base decoding method ARGS (Khanov et al.,
2024) and controlled decoding (CD; Mudgal et al., 2024). We use CD-Fudge as the baseline in all our
CD experiments, noting that its performance is similar to CD-Q (see Table 4 in Mudgal et al. (2024)).

Dialogue task Next, we evaluate our model on single-turn dialogue using the Anthropic Helpful
and Harmless (HH; Bai et al., 2022) dataset. The goal is to generate a helpful and harmless response
to a general purpose query. Each sample provides a prompt x and two responses y with a label
indicating the preferred response. We use Llama-2-7b as the base model and DeBerta-v3 as the
reward model which is about 20× smaller. All details are in Appendix B.

Fine-grained text generation task We also evaluate our model on text generation using the
UltraFeedback dataset (Ganqu Cui et al., 2024). We use Zephyr-7B as the base LLM and Phi-1.5 (1.3
billion parameters) as the reward model.

Machine translation task We perform additional experiments on machine-translation on the
IWSLT-2017 dataset (Cettolo et al., 2017). We used the post-edit dataset from Kreutzer et al. (2020)
on the IWSLT-2017 English-German dataset to provide token-wise reward signals. We use Gemma-2b
as both the base model and the reward model. The evaluation is based on the standard BLUE score.

Evaluation Following Khanov et al. (2024), we compare all methods based on average reward on
the test samples as measured by the reward model. We use a different full-sequence reward model
and not the partial-sequence reward model (that we trained for our algorithm) to evaluate the models.
Since evaluating language generation, especially unconditionally, is nuanced and human evaluation
is very expensive, we use GPT-4-based evaluation, which has been shown to align with human
assessment (Zheng et al., 2023; Rafailov et al., 2023). Following Chiang et al. (2023) we construct
prompts for the two tasks and ask GPT-4 to score and rank response pairs. We randomly shuffle the
order of the responses to mitigate position bias (Zheng et al., 2023). Finally, we use the Rouge-L
score (Lin, 2004) and the BLEU score to evaluate the dialogue and translation tasks, respectively.

5.2 RESULTS

Table 1 (left) shows the average reward for the summaries generated by the different algorithms as
measured by the reward model. PARGS achieves the best average reward among the techniques that
keep the LLM frozen and generate a single response y. For reference, we also note that PARGS
outperforms DPO and is competitive with PPO based RLHF that incurs a large cost to finetune
the LLM, and Best-of-N that incurs significant overhead to generate multiple responses. Upon
siginficance testing we observed PARGS to be significantly better than all algorithms expect PPO.
Details in Appendix C. Note that we also evaluate our algorithm with greedy decoding (PARGS-G)
for a direct comparison with ARGS.

Similarly, Table 1 (right) presents average rewards for the responses of the different algorithms on the
HH dialogue task. Note that in this setting the reward model is 20× smaller than the base LLM. Again,
PARGS achieved the highest reward among the techniques that freeze the LLM and generate a single
response. We observe that Best-of-N achieved the highest average reward followed by DPO, but
incurred overhead to generate multiple responses and fine-tune the LLM respectively. Finally, Table 3
(left) presents average rewards on the UltraFeedback dataset. We observe that PARGS outperforms all
methods except Best-of-N . Significance testing (see Appendix C) reveals that PARGS is significantly
better.

Next we evaluate PARGS using GPT-4. The prompt used to probe GPT-4 is presented in Appendix H.
Table 2 reports the win-tie rate (i.e., percentage of utterances where GPT-4 finds PARGS’ response to
be better than or equivalent to those of the baselines). Table 2 (left) shows that PARGS has a higher
win-tie rate compared to all the methods, especially ARGS, for TL;DR summarization. As noted
by others Rafailov et al. (2023), Best-of-N is a strong baseline, but it is computationally intensive.
On HH, we observe (Table 2 right) that PARGS is better than CD and ARGS, but worse than Best-
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Ultra Feedback

Method LLM Single y? r ± SE

Top-k frozen yes -0.18±0.12
CD frozen yes -0.04±0.01

ARGS frozen yes 0.01±0.12
PARGS frozen yes 0.21±0.09

PARGS-G frozen yes 0.21±0.12

DPO trained yes -0.57±0.09
Best-of-N frozen no 1.15 ±0.08

Ultra Feedback

Method A vs Method B Win-Tie (%)

PARGS CD 53 - 13
PARGS ARGS 42 - 23
PARGS Best-of-N 29 - 19
PARGS Top-k 52 - 15
PARGS DPO 65 - 7

Table 3: Average reward (100 samples) ± std. error and GPT-4 evaluation for Ultra Feedback.

of-N and DPO. As we scale training based alignment methods, e.g., DPO become prohibitive. On
UltraFeedback (Table 3 right) we observe that PARGS outperforms all methods except Best-of-N .
We perform human evaluation for PARGS against ARGS, CD and DPO on UltraFeedback. PARGS
wins against all three baselines. Detailed results in Appendix E.

We next perform an experiment on English to German machine translation. We have access to a
dataset of post-edits. The edited sequence is considered the winning sequence. Table 4 compares
ARGS, PARGS-G and greedy decoding. We observe that applying ARGS reduces the BLUE score of
the greedy baseline where PARGS-G increases it by 1.5 on average.

We evaluate the diversity of generation on 50 samples from the UltraFeedback dataset. We compare
the sampling based techniques by generating 10 responses for each prompt, evaluating the Rouge-L
score between each generated pair. A lower Rouge-L score indicates a higher diversity. Table 5 shows
that PARGS generates the most diverse responses compared to top-K and DPO.

5.3 DECODING COSTS Table 4: BLEU Score on
IWSLT-17 English to German

Method BLEU ↑
Greedy 31.7 ± 3.6
ARGS 29.4 ± 3.4

PARGS-G 33.2 ± 3.5

We present an estimate for the floating point operations (FLOPs) per
token for inference with PARGS. The reward model adds a linear
layer with a single output to the language model. The number of
non-embedding parameters in a model, following the calculation of
Kaplan et al. (2020), is approximately N ≈ 12nlayersd

2
model, where

nlayers is the number of layers and dmodel is the hidden dimension size.
Additionally the FLOPs required by a forward pass is Cforward ≈ 2N+2nlayersnctxdmodel, where nctx is
the number of context tokens. The additional operations include 4dmodel for the embedding and 2d for
reward predicting. But since 6dmodel ≪ N , CRM ≈ Cforward. Also if dmodel ≫ nctx/12 we can assume
that CRM = Cforward = 2N (Deng & Raffel, 2023). At decode time we analyse k-tokens using the
reward model. In our experiments k = 10, so the total inference cost is Cforward + 10CRM FLOPs per
token. When the language model is GPT2-large and the reward model is DeBerta-v3-large, plugging
in the parameters, the inference FLOPs overhead is 4.3× the base model. When the language model is
Llama2-7b, with the DeBerta reward model the overhead is 0.47×. Note that the Best-of-N decoding
cost overhead would always be 9×. Appendix D shows the runtime to generate each token.

5.4 LIMITATIONS Table 5: Diversity based on
ROUGE-L.

Method ROUGE-L ↓
Top-k 0.230 ±0.011
DPO 0.206 ±0.006

PARGS 0.203 ±0.008

Ideally, all our experiments should be evaluated using human eval-
uation. However, we did not do so due to the monetary costs of
conducting such an experiment and instead provide human evalua-
tion for experiments on one of the dataset. In any case, we provide
a GPT-4 evaluation, which has become a standard in benchmarking
text generation methods. Another limitation in our method is the
overhead induced from performing forward passes through the reward model at each decoding step.
However, note that this is acceptable compared to performing large-scale offline PPO or DPO which
is often prohibitive. Moreover, this limitation is shared with other RGTG methods.
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6 CONCLUSION

We have discussed the pitfalls in tokenwise, decoding-time reward-guided text generation (RGTG)
with reward models trained on full sequences. These pitfalls can lead to inadequate reward during
the autoregressive decoding process and may lead to subpar performance. To alleviate this issue, we
proposed to train reward models on partial sequences and then sample from the implied per-token text
generation policy during decoding. We proved that this policy is a ratio of two distinct reinforcement
learning from human feedback (RLHF) policies. This means that this policy is not equivalent to
the standard offline RLHF methods. However, we have also shown that it is intractable to obtain
a tokenwise policy that is equivalent to a single RLHF policy. Training a partial-sequence reward
model can thus be seen as a tradeoff between avoiding the pitfall of using full-sequence reward model
in RGTG and tractability. Our experiment results validated our approach: it performs better than a
recent RGTG methods, ARGS, that leverages full-sequence reward models and CD.
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A PROOFS

Theorem 1. A reward model r trained to minimize the Bradley-Terry loss (1) on full sequences
y1:|y| may assign arbitrary rewards to partial sequences y1:i (where i < |y|). More precisely,
r(y1:i|x) = vx,y1:i where vx,y1:i ∈ R can be any value.

Proof. Let r(yi|x,y1:i) be the reward associated with token yi in the context of x,y1:i. Then
token-level and (partial) sequence-level rewards are related by the following identity:

r(y1:i|x) =
∑i

j=1 r(y
j |x,y1:j−1) for all x,y, i (8)

Optimizing a reward model with full-sequence preference data yields specific values for r(y1:|y||x).
Since partial sequence rewards are not directly optimized, it is not clear what values they may
converge to. The above system of linear equations can be used to infer partial sequence rewards from
full sequence rewards. However the system is underdetermined since there are more variables than
equations: there is one equation for every combination of x, y, and i, while there is one variable per
combination of x, y, and i on the left-hand side of each equation and many more variables on the
right-hand side. Hence partial sequence rewards can take arbitrary values and yet satisfy (8).

Lemma 2. In the limit of infinite preference data, optimizing a sufficiently expressive reward model
according to (4) under the assumption that partial sequences inherit the winning/losing label of full
sequences yields a reward model rϕ with the following property:

σ(rϕ(y
1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x,y1:i

1 ,y1:j
2 ), (5)

where Pdata is the distribution the preference dataset was sampled from and y1 ≽ y2 indicates that
y1 is preferred to y2.

Proof. In the limit of infinite preference data, maximizing the log-likelihood in (4) is equivalent to
minimizing the KL divergence between the learned preference distribution σ and the preference data
distribution for partial sequences.

argmax
ϕ

E
x,y1,y2∼Pdata

log σ(rϕ(y
1:i
1 |x)− rϕ(y

1:j
2 |x)) (9)

=argmin
ϕ

− E
x,y1,y2∼Pdata

log σ(rϕ(y
1:i
1 |x)− rϕ(y

1:j
2 |x)) (10)

=argmin
ϕ

E
x,y1,y2∼Pdata

log
Pdata(y1 ≽ y2|x,y1:i

1 ,y1:j
2 )

σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x))

(11)

=argmin
ϕ

KL(Pdata(y1 ≽ y2|x,y1:i
1 ,y1:j

2 )||σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x))) (12)

With a sufficiently expressive reward model, the KL divergence will be zero, and therefore, the
distribution σ equals the preference data distribution.

σ(rϕ(y
1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x,y1:i

1 ,y1:j
2 ) (13)

Theorem 3. Given a reward model trained according to the partial-sequence Bradley-Terry objective
in (4), the induced token generation distribution π (6) is proportional to the ratio:

π(yi|x,y1:i−1) ∝ πRLHF,i(y
1:i|x)

πRLHF,i−1(y1:i−1|x)
(7)
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where πRLHF,i and πRLHF,i−1 are two distinct policies over prefix sequences of length i and i − 1,
respectively, induced by RLHF optimization (2).

Proof. We first note that for each prefix length i, performing RLHF (2) under a reward model r
induces a different policy πRLHF,i(y

1:i|x) for different values of i. To see this, notice that by (2):

πRLHF,i(y
1:i|x) = 1/Z(x)πref(y

1:i|x) exp(βr(y1:i|x))

Then, for i < j, we have by marginalization:

πRLHF,j(y
1:i|x) =

∑
yi+1:j

πRLHF,j(y
1:j |x)

∝
∑

yi+1:j

πref(y
1:j |x) exp(βr(y1:j |x))

= πref(y
1:i|x) exp(βr(y1:i|x))

∑
yi+1:j

πref(y
i+1:j |x,y1:i)

exp(βr(y1:j |x))
exp(βr(y1:i|x))

∝ πRLHF,i(y
1:i|x)

∑
yi+1:j

πref(y
i+1:j |x,y1:i)

exp(βr(y1:j |x))
exp(βr(y1:i|x))

̸∝ πRLHF,i(y
1:i|x).

Since
∑

yi+1:j πref(y
i+1:j |x,y1:i) exp(βr(y

1:j |x))
exp(βr(y1:i|x)) depends on y1:i, it cannot be treated as a normaliza-

tion constant. Therefore πRLHF,i(y
1:i|x) ̸= πRLHF,j(y

1:i|x). Based on this fact, then:

π(yi|x,y1:i−1) ∝ πref(y
i|x,y1:i−1) exp(βr(y1:i|x)) (by (3))

∝ πref(y
i|x,y1:i−1)

exp(βr(y1:i|x)
exp(βr(y1:i−1|x))

(normalization constant)

=
πref(y

1:i|x) exp(βr(y1:i|x))
πref(y1:i−1|x) exp(βr(y1:i−1|x))

(conditional distribution definition)

∝ πRLHF,i(y
1:i|x)

πRLHF,i−1(y1:i−1|x)
. (by (3))

This completes the proof of the theorem.

B TRAINING DETAILS

TLDR Summarization HH Dialogue
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Figure 3: Runtime overhead.

Software and hardware All experiments are run
on a server with NVIDIA RTX6000 GPUs (24GB
VRAM) and NVIDIA A40 GPUs(40GB VRAM). We
use CUDA Toolkit version 11.7 and PyTorch 2.2.2
framework.

Training Partial Reward Models Based on
DeBerta-v3-Large We train two partial reward
models on the partial sequences retrieved from the
HH-RLHF and TL;DR dataset respectively, utilize
the TRL library to accelerate the training process. We
report the training parameters on Table 6 and 7.

Training DPO Models We train two DPO models
on the original preference dataset, one is trained based on GPT2-Large 1 on the TL;DR dataset, and
the other is trained based on Llama-2-7b 2 on the HH-RLHF dataset. We also adopt the TRL library
to train the DPO models. The training parameters are reported on Table 8.

1vistagi/gpt2-large-tldr-sum
2argsearch/llama-7b-sft-float32
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Parameters Value

TL;DR

n training samples 170053
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

β 1.5

Parameters Value

HH-RLHF

n training samples 218933
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

β 2

Table 6: Training Hyperparameters for Deberta-large-v3 partial reward models

Parameters Value

phi1_5

Number of epoches 1
Learning rate 2e-6

Batch size 2
Floating point format fp16

gradient accumulation steps 8
DeepSpeed Zero stage 3
Max. sequence length 512

β 1

Table 7: Training Hyperparameters for Ultra Feedback reward model

C SIGNIFICANCE TESTING

We ran the Wilcoxon signed rank test, which does not make any distributional assumptions, to
evaluate statistical significance. We report the p-values below (a p-value less than 0.05 indicates
that PARGS achieves results that are statistically better than the alternative method). Table 9 and
Table 10 show the p-values of the rewards of PARGS vs various baselines. We observes that PARGS
is significantly better than all baselines on TL;DR Summarization and all but Best-of-N on Ultra
Feedback. The results on HH-dialogue are better on average but only signficantly better than Top-K.

D RUNTIME

On Figure 3 we plot the average wall-clock time to generate a single token by the LLM and reward
model on an NVIDIA A40 GPU. Note that this is the time for one call to the llm and k = 10 calls to
the reward model.

Parameters Value

GPT2-L

Number of epoches 1
Learning rate 5e-5

Batch size 2
Floating point format fp16

gradient accumulation steps 16
LoRA r 16
LoRA α 16

Maximum prompt length 512
Maximum sequence length 512

Parameters Value

LLaMA-7b

Number of epoches 1
Learning rate 5e-5

Batch size 1
warmup steps 150

Floating point format bf16
gradient accumulation steps 16

LoRA r 16
LoRA α 16

Maximum prompt length 512
Maximum sequence length 512

Table 8: Training Hyperparameters for DPO models

16
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TL;DR Summarization

Method A vs Method B p-value

PARGS Top-K 6.67× 10−14

PARGS CD 7.41× 10−13

PARGS ARGS 4.82× 10−6

PARGS Best-of-N 7.75× 10−3

PARGS DPO 4.02× 10−10

Ultra Feedback

Method A vs Method B p-value

PARGS Top-K 1.15× 10−5

PARGS CD 4.07× 10−3

PARGS ARGS 3.98× 10−2

PARGS Best-of-N 1.0
PARGS DPO 2.46× 10−11

Table 9: P-values of the reward of different methods compared to PARGS

HH-Dialogue

Method A vs Method B p-value

PARGS Top-K 1.0× 10−2

PARGS CD 2.01× 10−1

PARGS ARGS 4.60× 10−1

PARGS Best-of-N 8.9× 10−1

PARGS DPO 9.9× 10−1

Table 10: P-values of the reward of different methods compared to PARGS

E HUMAN EVALUATION

We performed a human evaluation of the responses of PARGS versus ARGS, CD and DPO on the
Ultra Feedback dataset. We enlisted 6 independent evaluators to score the instruction following,
correctness and helpfulness, of two AI assistant responses, on a scale of 1 to 5. We used the score to
mark a win, tie or loss for PARGS. The evaluators did not know the identities of the AI assistants
and the responses were shuffled in random order. We can observe from the results on Table 11 that
PARGS has a high winning rate. We also observed a large percentage of ties.

Ultra Feedback
Method A vs Method B Win-Tie (%)

PARGS ARGS 45 - 50
PARGS CD 50 - 20
PARGS DPO 60 - 25

Table 11: Human Evaluation based on 20 evaluations

Arbitrary Rewards We ran another human evaluation for empirical verification that a full sequence
reward model can lead to arbitrary rewards. We took the TLDR test set of human summaries and
randomly sampled 40 examples. Then we randomly cut-off one-fourth of the examples at 25%, 50%,
75% of the sequence length. We kept the last one-fourth at full sequence length. For each prompt the
dataset had two responses. We enlisted 2 human subjects and asked them to select winning or losing
partial summaries based on which one looked the most promising for completion. If they could not
choose between the two they could mark a tie. Next we ranked each pair of summaries based on the
reward from the full sequence reward model. We compared the results of the human evaluation with
the ones from the reward model. We removed the ties from the evaluation scores.

We report the results on Table 12. We can observe that full sequence evaluations have a higher
conformity with human evaluation compared to partial sequence evaluation.

F SENSITIVITY ANALYSIS
We conduct a sensitivity test on the summarization task, using β ∈ {0.5, 1.0, 1.5, 2.0, 2.5} and
k ∈ {5, 10, 15}, we report the average reward and the standard deviations in Table 13, and the
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Sequence Length
%

Agreement
%

25 % 50 %
50 % 43 %
75 % 50 %

100 % 80%

Table 12: Conformity of Full reward model with human judgement for different sequence lengths

diversity score measure in Rouge-L in Table 14.We use the same methodology for evaluating diversity
as in Section 5.2

k/β β = 0.5 β = 1.0 β = 1.5 β = 2.0 β = 2.5
k = 5 0.12 ± 0.33 3.31 ± 0.22 3.65 ± 0.22 3.72 ± 0.20 2.20 ± 0.30
k = 10 -0.02 ± 0.38 3.35 ± 0.20 3.88 ± 0.17 3.88 ± 0.16 2.65 ± 0.25
k = 15 0.61 ± 0.38 1.04 ± 0.39 2.07 ± 0.29 2.21 ± 0.23 2.88 ± 0.27

Table 13: Average Reward of summarization task with different value of β and k

k/β β = 0.5 β = 1.0 β = 1.5 β = 2.0
k = 5 0.29 ± 0.03 0.31 ± 0.04 0.30 ± 0.03 0.30 ± 0.03
k = 10 0.27 ± 0.03 0.26 ± 0.03 0.27 ± 0.03 0.28 ± 0.03
k = 15 0.25 ± 0.03 0.25 ± 0.02 0.24 ± 0.03 0.28 ± 0.03

Table 14: Diversity based on ROUGE-L with different value of β and k. Lower score is better

For the reward scores, we observe that β = 2.0 achieves the highest score for every value of k, and
the score starts to drop when we further increase β to 2.5. Also k = 10 achieves the best reward
scores while k = 5 is usually better then k = 15.

Since k represents the size of candidates the generation algorithm will sample from, we expect higher
k would result in better diversity, and the empirical results also validate this intuition. On the other
hand, it seems β does not have a significant effect on generation diversity.

G GENERATED SAMPLES

The following are two example generations on Ultra-Feedback and TL;DR of all the baselines
including our method.

18
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Ultra Feedback Generation Samples

Prompt
In the Monkey King Story, how did Monkey king fight with vampire? Assistant:

Generations
[PARGS] As per the legend, Monkey King fought with a vampire named Yin Yang Shou, who was the
leader of the demons. Monkey King defeated Yin Yang Shou in a gruesome battle and took possession
of his magical sword. The sword was said to have the power to cut through even the strongest of demons
and it was an important part of Monkey King’s arsenal.

[DPO] Monkey King fought with vampire in the story of Journey to the West.

[ARGS] The Monkey King fought with the vampire by using his supernatural powers. He used his
strength to fight the vampire and eventually defeated him.

[CD] The Monkey King fought with the vampire by using his supernatural powers and martial arts
skills. He used his strength to overpower the vampire and his agility to dodge its attacks. He also used
his magical abilities to create illusions and distract the vampire. In the end, the Monkey King was able
to defeat the vampire and save the day.

[Best-of-N] In the Monkey King Story, the Monkey King fought with vampires by using his magical
powers and techniques. He used his speed and strength to attack the vampires and defend himself from
their attacks. Additionally, the Monkey King had the ability to turn into different shapes and sizes,
which he used to outmaneuver the vampires and gain an advantage in battle. Despite the vampires’
abilities, the Monkey King ultimately emerged victorious, using his intelligence and skill to defeat
them.
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TL;DR Generation Samples

Prompt
SUBREDDIT: r/relationships
TITLE: Me [19 M] with my GF [19 F] broke up after almost 3 years, hard time staying friends
POST: We broke up for college last year and I know I had a rough time, going from constantly seeing a
best friend to not even communicating. It was an understandably mutual decision as we were both
going forward in life, but it still hurt a lot.

Anyways after a few months of college, I thought I was done with her. Then she began
drunk texting me quite often. I was civil at first then ignored them as I realized it was just hurting me
and going nowhere. So I got over her again.Now that we’re back for summer, she’s been wanting to
hang out with mutual friends as we were all close. I thought I was at peace and had gotten over her but
just seeing her again ruined my day. I felt (and still feel) like I’m going through the breakup all over
again.

Avoiding her is out of the question since my best friends are close friends of hers as well.
We were all one big happy family and now there’s this awkward rift between my ex and I that is
stemming from my confused feelings and was damn near palpable to my friends when we all got
together today.

Also, I would never want to leave my friends, especially because of her.

TL;DR:

Generations
[PARGS] Ex and I broke up a few months ago, still hurting and I’m having trouble avoiding her,
especially since best friends are close friends of hers.

[DPO] I’m confused about my feelings towards my ex and want to avoid her as much as possible during
summer between college.

[ARGS] I’m confused about my feelings towards my ex and it’s causing tension between me and my
friends.

[CD] I am confused as hell and having trouble coping. I am a wreck and would love some advice.

[Best-of-N] I think I should stay friends with my ex, but it’s difficult to avoid her since we’re close. Any
advice on what I should do?

H GPT-4 EVALUATION

We use the following prompts for the summarization and the dialogue tasks.
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GPT-4 prompt for Evaluating TL;DR Summarization

System Prompt
[System]
Which of the following two summaries does a better job of summarizing the most important points in
the given forum post. Each summary receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Summary 1 and 2,
respectively. Second provide a one-sentence comparison of the two summaries, explaining which you
prefer and why.

User Prompt
[Post] Human: Hello reddit. I’m in need of your help. I need to have my classes picked for my high
school junior year and I have no idea what to do.
I live in Nevada, and I want to go to the University of Washington, Seattle right out of high school. Next
year I will be in my junior year of high school, so I’m picking classes. Here’s my problem:
I’m taking the hardest classes available in my school. The problem is, I suck at my foreign language
class. I already have 2 years of French. My dream is to go the University of Washington, and I’m sure
that it would look better to have more foreign language classes on my resume. My issue is that the
French 3 teacher is my friends mom, and I know that shes a HARD teacher. I am most likely going to
fail if I take a third year of French.
I need to know how important it is for me to take a third year of French. I’m stuck at a standstill and I
need to have my class recommendations in really soon.
TL;DR:

[The Start of Summary 1]
I need advice on whether or not it would be worth it to take a third year of french to get to a university
where my dream is to go, or if it would be detrimental to my future chances.
[The End of Summary 1]

[The Start of Summary 2]
I suck at foreign language, want to get into UW of Washington, Seattle next year, and need to pick
classes within 6 months.
[The End of Summary 2]
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GPT-4 prompt for Harmless and Helpful Dialogue

System Prompt
[System]
You are a helpful, harmless, and precise assistant for checking the quality of the answer. We would
like to request your feedback on the performance of two AI assistants in response to the user question.
Please rate the harmlessness, helpfulness, and level of detail of their responses. Your evaluation should
consider factors such as the helpfulness, harmlessness, relevance, accuracy, depth, creativity, and level
of detail of the response. Note that if a response appears cut off at the end due to length constraints,
it should not negatively impact the score. Also, base your evaluation solely on the given answer,
disregarding any preceding interactions in the question. Each assistant receives an overall score on a
scale of 1 to 10, where a higher score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Summary 1 and 2,
respectively. Second provide a one-sentence comparison of the two summaries, explaining which you
prefer and why.

User Prompt
[Question] Human: How do I get better at bowling? Assistant:

[The Start of Assistant 1’s Answer]
Bowling is a skill, and like all skills, it requires practice to get better. The first step is to decide what
you want to get better at: do you want to roll more strikes, or reduce the number of spares you leave?
Once you have a goal in mind, you’ll want to practice the following skills:
Striking: This is all about timing. You need to be able to get the ball to move the way you want it to, at
the right moment in your swing.
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
Bowling requires skill and coordination, as well as a good understanding of lane conditions and the
way the ball moves. There are several ways you can work to improve your bowling skills. Practice is
essential, and a good place to start would be to go to the local bowling alley with a friend or two and try
bowling a few games. Try different approaches, varying your stance, your grip on the ball, and your
arm swing. Practice throwing the ball and timing your release to match your movements. And try to
make sure your ball rolls straight down
[The End of Assistant 2’s Answer]

I PARTIAL SEQUENCE DATA GENERATION

We randomly sample a subset of the set of all partial sequences. We present an ablation on the tldr
summarization dataset where we present the average reward achieved by PARGS when training on
different size subsets.

Dataset Size Average Reward Wall clock time (approx)
1x 1.64 ± 0.22 1 hour

1.5x 2.32 ± 0.19 1.5 hour
2x 2.36 ± 0.20 2. hour
3x 2.23 ± 0.20 3 hour

Table 15: Average Reward with different partial sequence dataset sizes. x is the size of the full
sequence dataset.

We can observe from the results on Table 15 that we get diminishing returns when the dataset is more
than 1.5x. On the TLDR dataset we sample 2x and on the other datasets 1.5x of the total dataset size.
Note that the wall clock time is for training on 4 RTX6000 GPUs.

22


	Introduction
	Preliminaries
	Reinforcement Learning from Human Feedback
	Reward-Guided Text Generation

	Pitfalls of RGTG and How to Fix Them
	Related Work
	Experiments
	Setup
	Results
	Decoding costs
	Limitations

	Conclusion
	Proofs
	Training Details
	Significance Testing
	Runtime
	Human Evaluation
	Sensitivity Analysis
	Generated Samples
	GPT-4 Evaluation
	Partial Sequence Data Generation

