
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LADEEP: A DEEP LEARNING-BASED SURROGATE
MODEL FOR LARGE DEFORMATIONS OF ELASTIC-
PLASTIC SOLIDS

ABSTRACT

The scientific computing for large deformations of elastic-plastic solids is critical
for numerous real-world applications. Classical numerical solvers rely primarily on
local discrete linear approximations, which are constrained by an inherent trade-off
between accuracy and efficiency. Recently, Deep Learning models have achieved
impressive progress in solving PDEs. While previous models have explored various
architectures and constructed coefficient-solution mappings, they are designed for
general instances without considering specific problem properties and hard to
accurately handle with complex elastic-plastic solids involving contact, loading
and unloading. In this work, we take stretch bending, a popular metal fabrication
technique, as our case study and introduce LaDEEP, a deep learning-based surrogate
model for Large Deformations of Elastic-Plastic Solids. We encode the partitioned
regions of the involved solids into a token sequence to maintain their essential
order property. To characterize the physical process of the solid deformation, a
two-stage Transformer-based module is designed to predict the deformation with
the sequence of tokens as input. Empirically, LaDEEP achieves five magnitudes
faster speed than finite element methods with a comparable accuracy, and gains
20.47% relative improvement on average compared to other deep learning baselines.
We have also deployed our model into a real-world industrial production system,
and it has shown remarkable performance in both accuracy and efficiency.

1 INTRODUCTION

The scientific computing for large deformations of elastic-plastic solids (Bathe & Ozdemir, 1976) is
essential in continuum mechanics, which is widely used in various areas such as civil engineering
(AbouRizk & Hajjar, 1998), aerospace (Phanden et al., 2021), and nuclear materials (Allen et al.,
2012). The deformation of a solid typically results from the application of external loads and
constraints. Large deformations occur when the extent of deformation becomes significant enough
to invalidate the assumptions of infinitesimal strain theory (Bower, 2009). Metals are particularly
important subjects of study due to their distinct elastic and plastic behaviors. In the elastic regime,
metals tend to return to their original shape after deformation, but only up to a certain threshold.
Beyond this limit, when sufficient load is applied and the material enters the plastic state, permanent
deformation occurs. Upon the release of the load, the elastic component of the deformation will
recover, while the plastic deformation remains, causing the material to rebound slightly and assume
its final shape. An accurate and efficient solver for such complex task is in urgent demand.

Figure 1 illustrates a practical example known as stretch bending (Clausen et al., 2000), one of the
most widely used metal fabrication techniques (Murr et al., 2012). This process consists of two
distinct stages: loading and unloading. During the loading phase, the metal workpiece is positioned
on the machine and securely held by two working arms. These arms move and rotate, applying force
to the workpiece, causing it to lengthen and curve around a mold, which acts as a constraint. In the
unloading phase, the applied loads are released, allowing the metal to rebound and assume its final
shape. Our primary interest lies in predicting the final shape of the workpiece given the influence of
the applied loads and constraints.

This fabrication technique involves large deformation of elastic-plastic solids, governed by partial
differential equations (PDEs). The workpiece corresponds to the solution domain, the mold represents
the boundary condition, and the loads from the movement of the working arms are modeled as source
terms. Traditional methods, such as Finite Element Methods (FEM) (Reddy, 2019), depicted in
Figure 2a, rely on local discrete linear approximations. The material is subdivided into smaller

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Workpiece

Mold

Working Arms

Loading Unloading

Lengthen and Curve Rebound

Figure 1: The stretch-bending process. It consists of two elastic-plastic stages including loading
process and unloading process.

elements through meshing techniques in the solution domain (Alliez et al., 2005), and solutions
are incrementally approximated. However, these methods face a trade-off between computational
accuracy and efficiency due to the discretization. Higher accuracy could be achieved with finer and
more regular elements, though in practical cases, a large number of irregularly shaped elements may
be encountered. Moreover, discretizing continuous domains introduces tens of thousands of degrees
of freedom, resulting in an exponential rise in computational complexity (Köppen, 2000).

Recently, deep learning (DL) has demonstrated significant potential in solving PDEs (Raissi et al.,
2019; Lu et al., 2019; Li et al., 2022; Wen et al., 2022). Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2019) incorporate PDE constraints into the loss function and leverage automatic
differentiation to optimize the model, effectively transforming the network into a solver for specific
PDE instances. However, PINNs struggle to generalize to similar instances without retraining. Neural
operators, like FNOs (Li et al., 2022; Wen et al., 2022; Rahman et al., 2022; Gupta et al., 2021; Li
et al., 2020; 2023) and DeepONet (Lu et al., 2019), learn the mappings between infinite-dimensional
function spaces, offering a broader applicability. Transformer-based (Vaswani et al., 2017) methods
have also achieved noteworthy progress in PDE-solving (Liu et al., 2021; Li et al., 2024a; Wu et al.,
2023; 2024). LSM (Wu et al., 2023) employs an attention-based hierarchical projection network that
incorporates spectral methods (Gottlieb & Orszag, 1977) to reduce the high-dimensional data into
a compact latent space in linear time. Similarly, Transolver (Wu et al., 2024) introduces physics-
attention to adaptively partition the discretized domain into a series of learnable slices, capturing
the underlying physical states. While these methods are generally effective for problems in fluid
mechanics or simple solid mechanics, they tend to underperform in our problem, which involves
non-smooth boundary conditions (solid contacts) and multi-stage processes (unloading and loading)
due to the ignorance of characteristics of large deformation and staged modeling.

...

...

...

Characteristic Line

Preprocess

Motion Parameters

Cross-section Reconstruction

Postprocess

Interpolation

Visualization

...

LaDEEP

Traditional Method

AI-based Method

Discretization Step 1 Step 2 Step N

(a)

time of LaDEEP for per type
time of FEM for type 1-5

MAD of LaDEEP for per type
MAD of FEM for type 1-5

~×9603

~×41646
~×53560

~×60068
~×53489

(b)
Figure 2: (a) Traditional Method vs AI-based Method; (b) Comparison between LaDEEP and FEM
on the accuracy and speed, respectively.

To address these challenges, we begin by analyzing the inherent properties of the task and make a pio-
neering attempt to apply deep learning to the large deformations of elastic-plastic solids. Focusing on
a highly relevant industrial scenario, the stretch bending, we introduce LaDEEP as a surrogate model
to approximate the complex multi-stage process. The model follows an Encoder-Processor-Decoder
procedure (Battaglia et al., 2018). We develop several specialized modules to encode property-aware
token sequences, which represent sequentially partitioned regions corresponding to solids that retain
essential order properties. Then, a two-stage Transformer-based module, the Deformation Predictor
(DP), is proposed as a processor to characterize the loading and unloading process. By applying
attention mechanisms to the token sequences , DP effectively captures the complex underlying
interactions between objects (see Figure 5). To validate our approach, we first create a new dataset

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to fill the gap of data scarcity in this field and conduct extensive experiments comparing LaDEEP
with classical FEM method and other deep learning models. LaDEEP demonstrates significant
performance improvement over other alternatives. More importantly, we have successfully deployed
LaDEEP in practical scenario. Our main contributions are as follows.

• We are, to the best of our knowledge, the first to apply deep learning into solving complex
large deformations of elastic-plastic solids. We propose LaDEEP, a novel deep learning-
based framework tailored for an industrial instance, stretch bending task, with modules
designed to consider its key order properties.

• We introduce the Deformation Predictor (DP), a two-stage Transformer-based module
that effectively captures complex deformation behaviors through cross-attention and self-
attention mechanisms.

• We generate a new dataset for our case, supporting our approach and filling a critical data
gap in this domain. Experiments show that LaDEEP achieves five magnitudes faster speed
than classical FEM method (Reddy, 2019) with a comparable accuracy (Figure 2b), and
gains 20.47% relative improvement on average compared to deep learning baselines across
all evaluation metrics.

• We complete the design of seven products in practical scenario. Two of them have already
been put into real production with mean absolute distance (MAD) 0.305mm on average.

RELATED WORK

Physics-Informed Neural Networks. These approaches formulate the PDEs, including governing
equations, source items, initial conditions, and boundary conditions, as loss functions within DL
models (Raissi et al., 2019). During training, the output of the model progressively conforms to the
PDE constraints, ultimately providing an accurate approximation of the PDE solution. However,
These approaches require the precise formula of PDEs, making them difficult to apply to real-world
scenarios with incomplete observations. Additionally, they are typically limited to solving a single
problem instance, and any change in parameters requires retraining the models.

Neural Operators. The idea of neural operators is to learn mappings between two infinite-
dimensional function spaces. The most prevailing models are FNO (Li et al., 2022), which ap-
proximates integration with linear projection in the Fourier domain. Building on this, various variants
(Wen et al., 2022; Rahman et al., 2022; Gupta et al., 2021; Tran et al., 2021; Li et al., 2020; 2023;
2024b; Bonev et al., 2023) have been proposed with crafted architectures to improve the accuracy,
efficiency and application extensions. DeepONet (Lu et al., 2019) is also a prevalent model for
operator learning which is designed based on the Universal Approximation Theorem for Operator
(Chen & Chen, 1995). However, as shown in our experiments, they tend to degenerate in our case,
which involves non-smooth boundary conditions (solid contacts) and multiple stages (unloading and
loading) due to the lack of consideration over the properties of solids and staged modeling.

Transformer-based PDE Solvers. Transformers (Vaswani et al., 2017) have been employed to
solve PDEs. HT-Net (Ma et al., 2022) combines Swin Transformer (Liu et al., 2021) with multigrid
methods (Wesseling, 1995) to capture multiscale spatial relationships. FactFormer (Li et al., 2024a)
enhances efficiency by leveraging a low-rank structure with multidimensional factorized attention.
LSM (Wu et al., 2023) is introduced to address the high-dimensional complexity of PDEs by utilizing
spectral methods (Gottlieb & Orszag, 1977) within a learned latent space. Transolver (Wu et al.,
2024) introduces physics-attention to dynamically partition the discretized domain into learnable
slices that capture the underlying physical states. However, these approaches struggle to handle our
case due to the lack of the inherent property of the large deformations of elastic-plastic solids.

2 METHOD

The overview of LaDEEP is shown in Figure 3. For a given stretch bending problem, the inputs
contain a 3D-shaped workpiece, a 3D-shaped mold, and the motion parameters of the working arms.
The output is the final shape of workpiece. Initially, we preprocess the data to structure the inputs
and output, and design several encoders to extract property-aware tokens. We propose a two-stage,
Transformer-based (Vaswani et al., 2017) module, the Deformation Predictor (DP), to effectively

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Workpiece

Mold

Working Arms

Loading

Preprocess Encoders Decoders
Loading

Transformer
Unloading

Transformer

Deformation Predictor (DP)

Losses

Input

Physical Process

Unloading

Deep Learning-based Surrogate Model

Figure 3: The overview of LaDEEP. See Appendix A.1 for detailed framwork and model structure.

characterize physical interactions between objects. Finally, we decode high-dimensional tokens back
to the original space to calculate distinct losses and optimize different parts of the network.

2.1 PREPROCESS

The formats of the considered objects in our case are unstructured and unsuitable for deep learning
models. We first need to preprocess these objects to organize their structure, reduce redundancy, and
ensure completeness. In practice, most workpieces are slender with a constant cross-sectional shape
along their length. This means the cross-section remains the same when cut parallel to certain faces
of the workpiece, allowing it to be recorded as a 2D image. We define curves along the length of the
workpiece as “characteristic lines”, which contain curvature information and describe how the cross-
section expands. A 2D cross-section and a characteristic line can fully represent the 3D workpiece.
For the 3D mold, its cross-section is designed based on the workpiece, so it can be represented simply
by its characteristic line. We sample each characteristic line (for both the workpiece and the mold)
as a point set p = {pi|i = 1, · · · ,M}, consisting of M points where each point pi is a position
vector of (x, y, z). Regarding the motion of each working arm, it applies loads on the workpiece
through moving and rotating, controlled by 6 degrees of freedom (DoFs) {ux, uy, uz, rx, ry, rz},
where {ux, uy, uz} represent spatial displacements, and {rx, ry, rz} are rotations around each axis.
In practice, most of the products are symmetric and the middle of the workpiece are kept static when
processing. For simplicity and without violating the physics, we only consider the half of the system.

2.2 ENCODER
iz jz

ix

workpiece

mold
yu

xu

yr xr

motion parameters

16/ N

jx

jj yy ,,

ii yy ,,
pp yy ,,

qq yy ,,

order

Figure 4: Property-aware tokens denoted as se-
quence of x and z corresponding to the regions of
mold and workpiece, respectively.

After processing the objects, we introduce sev-
eral distinct encoders to individually encode
each object. These encoders are designed based
on the properties of different objects and inte-
grate those properties into the token sequences.

Characteristic Line Encoder (CLE). The char-
acteristic line is sampled as a point set. As men-
tioned earlier, most workpieces are slender, and
the molds follow a similar structure. Hence, the point set sampled from the characteristic line
possesses an inherent property of order, which is different from point clouds and crucial for capturing
different deformation behaviors. As shown in Figure 4, we encode the line into sequential region
tokens, ensuring each token (x and z) has explicit order implications during modeling. First, we
embed each point into a high-dimensional space with an embedding size of C using a linear layer.
We then patchify these high-dimensional points into N regions, each with M/N adjacent points (M
is set as an integer multiple of N). Next, N distinct linear layers are utilized to separately project
these local regions into tokens xl ∈ RN×C . However, these tokens capture local curvature but lack
global features, such as the overall trend and length. To incorporate global features, we utilize two
linear layers to embed and encode M original points into a global feature xg ∈ R1×C . Then this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

global feature is repeated N times and added to xl, forming the final token sequence. We apply two
separate CLEs, with non-shared parameters, to encode the characteristic lines of both the workpiece
and the mold, resulting in outputs xw,xm ∈ RN×C , respectively.

Cross-Section Encoder (CSE). Each workpiece has a constant cross-section that is described as a 2D
image with shape 1×H×W . We use the Signed Distance Function (SDF) (Guo et al., 2016) to provide
a low-redundancy representation of the shape and structure for cross-section, omitting unnecessary
brightness, spectrum and semantic information. Specifically, a contour set Con in a domain Ω ⊂ R2

is defined as Con = {(i, j) ∈ R2 : g(i, j) = 0}, where g is the sign function indicating the point’s
position relative to the contour: g(i, j) = −1 when (i, j) ∈ Ω and g(i, j) = 1 when g(i, j) ∈ ∁R2Ω.
The SDF D(i, j) is formulated as D(i, j) = min(i′,j′)∈Con |(i, j)−(i′−j′)|·g(i, j), which measures
the distance of a given point (i, j) to the nearest contour point with a sign indicting the relative
position. After getting the SDF representation s ∈ R1×H×W , a frozen pre-trained ResNet (He et al.,
2016) is utilized as a backbone to extract features, commonly applied in Computer Vision (CV)
(Voulodimos et al., 2018). Since the backbone is trained on natural images and may not be suitable
for the SDF, we add several convolutional layers with trainable parameters for greater flexibility. The
cross-section of the workpiece is taken as input, resulting in the flattened output feature sw ∈ R1×C .

Object Feature Fusioner (OFF). Recall that a workpiece is described by two separated features,
the cross-section sw ∈ R1×C and the characteristic line xw ∈ RN×C . We then fuse them to obtain
complete workpiece representation. We repeat the feature sw by N times and add it into xw to form
the fused result zw ∈ RN×C . In this way, on the one hand, we can ensure that each token in xw

contains cross-sectional information, preserving the knowledge of constant cross-section. On the
other hand, it does not disrupt the inherent order property within the feature of characteristic line xw.

Motion Parameter Encoder (MPE). As claimed before, the loads applied on the workpiece are
caused by the movement of each working arm, which is controlled by 6 DoFs. We use multiple
tokens to capture the comprehensive influence of the movement effect along each degree of freedom.
Specifically, the DoF of each axis is embedded with size C and then separately projected into
N = Y × 6 tokens in total by 6 distinct linear layers (N is set as an integer multiple of 6). Each DoF
is represented by adjacent Y tokens, distributing the effects across different tokens for better learning.
The final output are the tokens ym ∈ RN×C , representing the motion parameters.

We finally obtain three property-aware sequences corresponding to the mold xm, the motion parame-
ters yw and the workpiece zw. They share the same shape with N × C, where N is the number of
tokens and C is the embedding size. Without introducing ambiguity and for simplicity, we remove
the subscript notation and use x, y, z to represent these 3 sequences, respectively. Figure 4 illustrates
the stretch-bending process on the xoy plane and indicates the corresponding tokens. Each object’s
modeling retains its distinct physical structure, and each token contains specific inherent properties.

2.3 DEFORMATION PREDICTOR

(b) (d)

An
gl

e
C

ha
ng

e
(ra

d)

Length(mm)

Loaded Workpiece
Unloaded Workpiece

tail of the mold

(a)

Length(mm)

R
eb

ou
nd

 D
is

ta
nc

e
(m

m
)

(c)

mold

workpiece

tail

tail workpiece tail

Figure 5: Visualization of attention maps in DP. (a) The angle change of along the length of the
workpiece. (b) The contact points will be assigned higher weights. The red circle refers to the part of
the workpiece that exceeds the mold. (c) The rebound distance along the length of the workpiece. (d)
The weights change smoothly. Higher weights are assigned to parts with more rebound distance.

In traditional FEM method, the process is treated locally with incremental approximations. However,
with the powerful nonlinear modeling capabilities of deep learning, we can approximate solutions
globally, accounting for interaction across the entire structure. As we have encoded the sequentially
partitioned objects into property-aware token sequences, which contain essential order property of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

corresponding solids, it is natural to leverage the Transormer (Vaswani et al., 2017), which excels at
capturing global relationships and long-range dependencies, to explore the global interactions with the
order property. Hence, We propose the Deformation Predictor (DP) – a two-stage, Transformer-based
module, to effectively capture complex interactions between objects and approximate solutions with
property-aware token sequences.

In the first stage, we employ Transformer with cross-attention mechanism (Chen et al., 2021) to model
the relationships between objects in the loading stage. During this process, the working arm moves
and rotates, exerting loads on the workpiece, causing it to lengthen and curve over a mold. Both the
motion parameters and the mold affect the deformation of the workpiece through movement along
6 DoFs and complex nonlinear, non-smooth contact. Recall that x, y and z respectively represent
the property-aware token sequences of the motion parameters, the mold and the workpiece, the
relationships are modeled in the i-th layer as:

(x0,y0, z0) = (x+ xpos,y + ypos, z+ zpos)

(qi−1,ki−1,vi−1) = (Linear(concat(x0,y0)),Linear(zi−1),Linear(zi−1))

z′i−1 = LN(zi−1 + softmax(
qi−1k

T
i−1√

C
)vi−1), zi = LN(z′i−1 + FFN(z′i−1))

(1)

Here, xpos,ypos, zpos ∈ RN×C are position embeddings. Linear(·) is a linear projection layer, and
q,k,v ∈ RN×C . The j-th row of q contains information of the j-th region in the mold and the
⌊j/Y ⌋-th DoF of the motion parameters. The j-th rows of k and v represent the j-th region in
the workpiece. Consequently, through the cross-attention, the element of the j-th row and the k-th
column of the attention weight matrix represents the influence of the combined action of the ⌊j/Y ⌋-th
DoF’s motion and the j-th region of the mold on the k-th region of the workpiece. And thus, the
attention mechanism properly characterizes physical interaction between the mold and workpiece,
which rationalizes the usage of Transformer architecture. There are Sa layers in total. Throughout the
process, both the mold and the motion parameters remain invariant. Therefore, we use the concat(·)
of the initial x0 and y0 as inputs for each layer, only forwarding z0. The final output, za ∈ RN×C , is
the high-dimensional representation of the workpiece after loading.

In the second stage, we use Transformer with self-attention mechanism (Vaswani et al., 2017) to learn
the rebound of the workpiece. During this process, the working arm is released, allowing the elastic
part of the deformation in the workpiece to recover, causing a rebound. Since only the workpiece
itself is involved, we utilize self-attention to model this stage as follows:

z0 = za + zapos, (qi−1,ki−1,vi−1) = (Linear(zi−1),Linear(zi−1)Linear(zi−1))

z′i−1 = LN(zi−1 + softmax(
qi−1k

T
i−1√

C
)vi−1), zi = LN(z′i−1 + FFN(z′i−1))

(2)

This is the forward in the i-th layer. We project z0 into q,k,v ∈ RN×C as the inputs of self-attention.
The j-th rows of q, k and v contain information of the j-th region in the workpiece. Through self-
attention, the element of the j-th row and the k-th column of the attention weight matrix represents
the influence of the j-th region on the k-th region of the workpiece in the rebound stage. There are
Sb layers in total, and the final output, zb ∈ RN×C , is the high-dimensional representation of the
workpiece after unloading.

Toward an intuitive understanding of DP, we visualize the attention maps. There exists a noticeable
corner (Figure 5a) corresponding to the tail end of the mold, where the workpiece extends beyond the
mold, resulting in a distinct abrupt change. As shown in Figure 5b, the loading module learns the
interaction pattern of the mold on the workpiece due to the explicit inherent order property in the
input token sequences: the interaction is most evident at the contact points between the mold and the
workpiece, which are assigned higher weights, while the part of the workpiece extending beyond the
mold is minimally affected. Figure 5c and 5d show that the closer it is to the tail of the workpiece,
the greater the rebound. This is consistent with the pattern learned by the unloading module: the
attention weights change smoothly, with greater weights assigned as it is closer to the tail end.

2.4 DECODER AND LOSS FUNCTION

After getting the high-dimensional representations of the workpiece, we develop several decoders to
map high-dimensional representations back to the original space and calculate losses.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Characteristic Line Decoder (CLD). We roughly reverse the structure of the Characteristic Line
Encoder (CLE) as Characteristic Line Decoder (CLD) to decode the high-dimensional representation
back to the original space. Take zb ∈ RN×C from unloading module as input, we first use N
distinct linear layers to decode each token to adjacent M/N points. Then, a linear layer is utilized to
de-embed these points back to the Euclidean space. We decode za ∈ RN×C from loading module in
the same way. The final outputs for za and zb are pa ∈ RM×3 and pb ∈ RM×3, respectively.

Cross-Section Decoder (CSD). Given that the cross-section has a significant impact on the forming
of the workpiece (Yu et al., 2018), we establish a Cross-Section Decoder (CSD) to recover SDFs,
ensuring the extracted features by Cross-Section Encoder (CSE) are effective. We refer to the structure
of VAE (Kingma & Welling, 2022) and utilize deconvolution layers and interpolation operations to
construct CSD. Take sw ∈ R1×C from CSE as input, the output is sr ∈ R1×H×W , matching the
shape of ground truth s ∈ R1×H×W .

Loss Functions Our approach utilizes two distinct loss functions: the reconstruction loss lossr, for
the cross-section, and the prediction loss lossp , for the workpiece. The lossp is calculated twice,
once for the workpiece after loading and once after unloading. We use 3 optimizers to train different
parts of the network with corresponding losses. For the reconstruction loss, we measure the Mean
Square Error (MSE) lossr = 1

n

∑n
1 (s− sr)

2. The function lossp measures the discrepancy between
the characteristic lines. Due to imbalanced value distributions across different coordinate axes of
the 3D characteristic line, normalizing all axes equally could lead to incorrect shifts. To address
this, we emphasize axes with more significant orders of magnitude by employing a coordinated
L2 loss defined as: lossp = λx∥∆x∥2 + λy∥∆y∥2 + λz∥∆z∥2 , where λx, λy and λz are weights
corresponding to 3D axes, computed based on the data range along each axis. The terms ∆x, ∆y and
∆z denote the differences between the ground truth p̃a and p̃b and the prediction pa and pb along
each respective axis.

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

Figure 6: Five types of cross-section,
which are indexed 1-5 from left to right.

Dataset. We employ FEM (Reddy, 2019) with fine mesh
to generate highly accurate dataset. This dataset contains
3000 samples and each sample contains: a characteristic
and a cross-section of the 3D workpiece, a characteristic of the 3D mold, and the motion parameters.
For the cross-section, we select 5 representative types of cross-section structures, depicted in Figure 6,
which can cover most of the practical products. There are random parameters that control the arc
radius, arc radian, thickness and height. For the characteristic line of the workpiece, we place the
initial straight workpiece on the x-axis from original point to the maximal length and randomly
sample the length. Regarding the mold, we utilize two 1/4 elliptical arcs on two perpendicular planes
to combine a 3D curve as the characteristic line. The motion parameters are calculated by classical
involute approach (Arnold et al., 2012) with the characteristic line of the mold. We use Abaqus
(Khennane, 2013) software to perform the computation. The dataset is split into an 8:1:1 ratio for
training, evaluation and test. More details are in Appendix A.3.

Baselines. The compared baselines are classified into two groups, the traditional numerical methods,
and the deep learning methods. For traditional methods, we select FEM as the representative, and for
existing DL methods, we comprehensively compare LaDEEP with 10 well-known models: DeepONet
(Lu et al., 2019), FNO (Li et al., 2022), GINO (Li et al., 2024b), SFNO (Bonev et al., 2023), TFNO
(Kossaifi et al., 2023), UNO (Rahman et al., 2022), FactFormer (Li et al., 2024a), LSM (Wu et al.,
2023), Transolver (Wu et al., 2024) and TCN (Oord et al., 2016) which are well-known models of
PDE solvers. See Appendix A.4 for more comprehensive description.

Metrics. We utilize three metrics to evaluate LaDEEP from different aspects: MAD (Mean Absolute
Distance), IoU 3D (Intersection over Union) and TE (Tail Error) for evaluation. Details about these
metrics are described in Appendix A.5.

3.2 MAIN RESULTS

Compared to FEM Figure 2b shows the results of computing time and MAD between LaDEEP
and traditional FEM. The FEM methods are set with various granularities of meshes (coarser than

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

that for dataset generation) for different computation efficiency and accuracy. For FEM, a reduced
number of elements leads to improved computational speed, but at the expense of accuracy. For
workpieces of the type-1 cross-section, FEM methods need around 342s for coarse-grained meshes,
with errors on 2.0092mm(MAD) and around 598s for finer-grained meshes, with 0.0568mm(MAD).
For LaDEEP, only 0.0453s is needed for computations with 0.1823mm(MAD), providing around
9603 times acceleration. With the similar computation accuracy, the accelerations range from 9603
times to around 60068. In our dataset, the type-1 is the simplest, and type-4 is the most complicated
one that has two arcs with different radius and arc length. The FEM needs much more computation
time for type-4. But for LaDEEP, the shapes of cross-sections are all represented by SDFs with shape
512× 256. The inference speed is consistent regardless of shape complexity, as computation time
does not increase for more intricate profiles. We therefore observe a higher acceleration ratio.

Compared to deep learning alternatives To evaluate LaDEEP from a comprehensive view, we
experiment in two settings: (1) We compare LaDEEP with other naive baselines. These baselines are
added with simple encoders and decoders constructed with linear layers. (2) We compare LaDEEP
with other modified baselines. The encoders and decoders in LaDEEP are kept unchanged. We only
replace the Deformation Predictor (DP) with these baselines. From these two settings, we can explore
the effectiveness of the encoders, decoders and DP in LaDEEP. See Appendix A.4 for comprehensive
description of implementation.

Table 1: Performance comparison with baselines. Columns 2-4 are results in setting (1), and columns
5-7 are results in setting (2). For MAD and TE, a smaller value indicates better performance,
whereas for IoU 3D, the opposite is true. The best result is in bold and the second best is underlined.
Improvement in the last column refers to the average relative error reduction across all metrics of
corresponding models. Improvement in the last row refers to the relative error reduction w.r.t the
second best model.

Model MAD(mm) IoU 3D(%) TE(mm) MAD(mm) IoU 3D(%) TE(mm) Improvement

DeepONet 0.3836 74.43 0.7806 0.2445 82.52 0.6238 22.41%
FNO 0.3251 78.15 0.7488 0.2325 82.27 0.6060 16.44%
GINO 0.3394 76.65 0.8067 0.2567 81.08 0.6812 15.24%
SFNO 0.3366 77.79 0.7737 0.2362 82.26 0.6079 19.07%
TFNO 0.3267 78.03 0.7598 0.2389 81.59 0.6419 15.65%
UNO 0.3380 77.56 0.7795 0.2137 83.33 0.5810 23.23%

FactFormer 0.3458 78.28 0.8134 0.2404 82.17 0.6478 18.60%
LSM 0.3356 77.86 0.7222 0.2099 84.00 0.4987 25.43%

Transolver 0.3912 76.31 0.8359 0.2052 84.21 0.5422 31.03%
TCN 0.4047 73.12 0.8080 0.2585 78.61 0.6431 21.35%

LaDEEP 0.1698 86.58 0.4591 0.1698 86.58 0.4591 /
Improvement 47.77% 10.64% 36.43% 17.25% 2.81% 7.94% /

FNO

LSM

DeepONet

LaDEEP(ours)

PredictionGround Truth

TCN

Figure 7: Visualization of results in setting (2). Column 1
and 4 are characteristic lines. Column 2-3 and column 5-6 are
workpieces corresponding to column 1 and 4, respectively.
We only select part of results to visualize due to the space
limitation. More visualizations are in Appendix A.9.

As presented in Table 1, LaDEEP
performs consistent state-of-the-art in
both settings. Notably, from setting
(1) to (2), these baselines also gain
significant improvement (20.85% on
average) with proposed encoders and
decoders, demonstrating the effective-
ness of our design in handling large
deformations of elastic-plastic solids.
Also, some advanced Transformer-
based models, such as LSM and Tran-
solver, achieve impressive improve-
ment (25.43% and 31.03%) after tak-
ing property-aware token sequences
as inputs. This is because these mod-
els are designed for general cases,
without considering problem-specific properties, such as the order of the sequentially partitioned

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

regions on the slender workpiece. After incorporating the property-aware token sequences, these
models are more effective to characterize the interactions between objects. Additionally, they perform
better then neural operators due to the strong capacity of Transformer in global modeling and long-
distance dependency. However, the considered case is involved two stage – loading and unloading.
Without staged modeling approach, they struggle to approximate the solutions accurately. Neural
operators also face the same dilemma, although they also raise some improvements with our designed
modules. As shown in Figure 7, the deviations in the predictions are primarily due to discrepancies in
length (row 2, column 1-3) and shifts in curve positions (row 2, column 4-6). Benefit from analyzing
the inherent properties of the case, LaDEEP can effectively capture underlying correlation between
objects. We thereby achieve superior performance among all models. The analysis of samples with
large errors is in Appendix A.6. Table 2: Results of Cross-section Generalization.

Setting ID MAD(mm) IoU 3D(%) TE(mm)

1 0.4122 72.02 1.1084
2 0.2232 84.56 0.6153
3 0.2313 83.78 0.6341

Transferability We conduct experiments to
explore the transferability of LaDEEP to unseen
cross-sections. We keep the training parameters
the same for all experiments except the training
epoch. The training setting are: (1) Zero-shot
Testing: We use the first 4 out of 5 kinds of
cross-section as training data and the 5th unseen cross-section as test data. The model is trained for
600 epochs.(2) Fine-tuning: We further investigate by splitting the 5th cross-section into an 8:2
ratio for training and test. We fine-tune the model in (1) for additional 200 epochs. (3) Full Dataset
Training: We evaluate the model on the 5th cross-section using the model trained with all types of
cross-sections. The results are shown in Table 2 which demonstrate that while the LaDEEP exhibits
some zero-shot capabilities, there is room for improvement. Fine-tuning significantly enhances
performance, achieving results close to the baseline model trained with all cross-sections. This
highlights LaDEEP’s potential in practical applications. When new data with unseen cross-section
appears, fine-tuning the basic model to generalize the data is a considerable way. See Appendix A.7
for another experiment about the transferability on new materials.

3.3 ABLATION STUDIES

The proposed model comprises several essential components and we assess their efficacy through
comprehensive ablation studies. We consider four distinct variants including encoders, fusioner,
predictor and loss function. The settings are: 1) Replace the Object Feature Fusion (OFF) with
attention mechanism which is also a global fusioner; 2) Replace the SDF with gray image. 3) Replace
the CLE with PointNet (Qi et al., 2017) containing max operation that omits the order information 4)
Replace the 1st stage of the DP with MLP (Pinkus, 1999) to determine whether the global modeling
and long-distance dependency are important; 5) Replace the 2nd stage of the DP with MLP; 6)
Replace the lossp with Mean Square Error (MSE) which gives equal equations to all axes.

(c)(b)(a)

Figure 8: Results of ablation studies. The indexes on the y-axis are corresponding to the ablation
setting indexes. For MAD and TE, a smaller value indicates better performance, whereas for IoU 3D,
the opposite is true.

As shown in Figure 8, our proposed essential modules synergistically boost the modeling capacity and
performance. Compared with attention-based fusioner, while the accuracy is close, the computation
times are 67.9ms (LaDEEP) and 86.1ms (attention-based) with batch size 8, respectively. The
extra 26.8% runtime penalty does not pay off. Using gray images of cross-sections as input lowers
down the accuracy by 25.77% on MAD caused by the redundant information of gray images. The
consideration about the order of the points sampled from the characteristic line is significant. The

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

expanded overall error distribution in the results indicates a shift in the implicit physics learned
by the model. We can observe the same phenomenon if we replace two modules in DP with MLP,
respectively. Due to the lack of the explicit physical modeling, the inductive bias of the model has
shifted. This shift can lead to the model capturing incorrect dependencies and not learning accurate
physical knowledge. The results of MSE loss are much worse. Note that the characteristic line is
3D. The coordinate components on 3 axes are imbalanced. The results of MSE loss proves that the
coordinated L2 loss can effectively alleviate this problem.

3.4 DEPLOYMENT

Figure 9: A mold designed based on
LaDEEP is used for on-site production.

We deploy LaDEEP into a real manufacturing factory with
aluminum stretch bending fabrications. The FEM method
has been used for computations over years but provides
limited value due to the bad computation efficiency – a
practical workpiece requires days for a single FEM compu-
tation and the whole design process (iterative simulation)
holds for 2-3 months. This gap motives us to design more
efficient, deep learning-based surrogate models.

In real deployments, there are always inevitable errors between the computations and productions due
to the inherent complexities and uncertainties in the manufacturing process. These errors vary from
different product scenarios with many sources such as the mold production error, the mold installation
error, the motion parameters error, the material property variation error and etc. These errors can
be additive or canceling, resulting an overall application error (AE) around 1mm ∼ 10mm (e.g., a
workpiece with length 2m, the relative error is around 0.5%). Then, such application error will be
compensated by empirical production techniques and feedback to computations, ensuring the final
production error (PE) within 1mm. The empirical production techniques include machining of the
mold by tools directly, as well as fine-tuning the parameters of working arms.

Table 3: PE of two products designed by
our two-loop mold design paradigm.

Product DX11-RQT H93-FUQT
MAD(mm) 0.32 0.29

We deploy LaDEEP into practical scenarios and develop
a two-cycled mold design paradigm as shown in Fig-
ure 18 based on LaDEEP. More details are described in
Appendix A.8. We accomplish seven real-product designs
with LaDEEP and the average application error is around
8.5mm. This is sufficient for on-site adjustment. Tow of
them are corrected by on-site adjustment and the final production errors are shown in Table 3. The
mold design process is reduced to around 1 week and the efficiency is improved by around 8-10 times.
Figure 9 is a mold designed based on LaDEEP used for on-site production.

4 CONCLUSION AND DISCUSSION

In this paper, we firstly attempt to apply deep learning into large deformations of elastic-plastic solids.
We propose LaDEEP, a novel deep learning-based framework tailored for an industrial task, stretch
bending. We design several modules to encode sequential property-aware tokens and propose a
two-stage, Transformer-based module, the Deformation Predictor (DP) to approximate the two-stage
solutions. We generate a dataset to support our approach and fill the data gap in this area. LaDEEP
achieves five magnitudes faster speed than FEM with a comparable accuracy, and gains 20.47%
relative improvement on average compared to other deep learning baselines.

Limitation. We are well aware that there exists a limitation of the application scenarios of LaDEEP.
However, due to the general insights of exist models, directly applying them into the reality-related
complex large deformations of the elastic-plastic solids without problem-specific property would be
hard to capture the correlations among solids accurately. Hence, we take the industrial technique,
stretch bending, as a good start point to explore the problem properties and incorporate them into
the models to learn effective inductive biases. More complex problems and general solvers would
be studied in future works. We believe that the framework of LaDEEP is a meaningful modeling
approach for solids involving large elastic-plastic deformations and contacts, and has great potential
of being adapted to other complex industrial applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

G Abaqus. Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI, USA, pp. 3, 2011.

Simaan M AbouRizk and Dany Hajjar. A framework for applying simulation in construction.
Canadian journal of civil engineering, 25(3):604–617, 1998.

Todd R Allen, Roger E Stoller, and Prof Shinsuke Yamanaka. Comprehensive nuclear materials.
Technical report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2012.

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational tetrahedral
meshing. In ACM SIGGRAPH 2005 Papers, pp. 617–625. 2005.

Vladimir Igorevich Arnold, Sabir Medzhidovich Guseı̆n-Zade, and Aleksandr Nikolaevich Varchenko.
The classification of critical points, caustics and wave fronts. (No Title), 2012.

Ever J Barbero. Finite element analysis of composite materials using Abaqus®. CRC press, 2023.

Klaus-Jürgen Bathe and Haluk Ozdemir. Elastic-plastic large deformation static and dynamic analysis.
Computers & Structures, 6(2):81–92, 1976.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
sphere. In International conference on machine learning, pp. 2806–2823. PMLR, 2023.

Allan F Bower. Applied mechanics of solids. CRC press, 2009.

G Cafuta, N Mole, and B Štok. An enhanced displacement adjustment method: Springback and
thinning compensation. Materials & Design, 40:476–487, 2012.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vi-
sion transformer for image classification. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 357–366, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE transactions on
neural networks, 6(4):911–917, 1995.

Arild H Clausen, Odd S Hopperstad, and Magnus Langseth. Stretch bending of aluminium extrusions
for car bumpers. Journal of Materials Processing Technology, 102(1-3):241–248, 2000.

David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods: theory and applications.
SIAM, 1977.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Carl T Kelley. Solving nonlinear equations with Newton’s method. SIAM, 2003.

Amar Khennane. Introduction to finite element analysis using MATLAB® and abaqus. CRC Press,
2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Mario Köppen. The curse of dimensionality. In 5th online world conference on soft computing in
industrial applications (WSC5), volume 1, pp. 4–8, 2000.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid
tensorized fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120,
2023.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36, 2024a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209, 2022.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed
neural operator for large-scale 3d pdes. Advances in Neural Information Processing Systems, 36,
2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Mingjun Ma, Haiying Xia, Yumei Tan, Haisheng Li, and Shuxiang Song. Ht-net: hierarchical
context-attention transformer network for medical ct image segmentation. Applied Intelligence, pp.
1–14, 2022.

Lawrence E Murr, Sara M Gaytan, Diana A Ramirez, Edwin Martinez, Jennifer Hernandez, Krista N
Amato, Patrick W Shindo, Francisco R Medina, and Ryan B Wicker. Metal fabrication by additive
manufacturing using laser and electron beam melting technologies. Journal of Materials Science
& Technology, 28(1):1–14, 2012.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Rakesh Kumar Phanden, Priavrat Sharma, and Anubhav Dubey. A review on simulation in digital
twin for aerospace, manufacturing and robotics. Materials today: proceedings, 38:174–178, 2021.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195,
1999.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junuthula Narasimha Reddy. Introduction to the finite element method. McGraw-Hill Education,
2019.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, et al.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018, 2018.

David W Walker and Jack J Dongarra. Mpi: a standard message passing interface. Supercomputer,
12:56–68, 1996.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances
in Water Resources, 163:104180, 2022.

Pieter Wesseling. Introduction to multigrid methods. Technical report, 1995.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-dimensional
pdes with latent spectral models. arXiv preprint arXiv:2301.12664, 2023.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Jiaqi Yu, Yi Li, Fei Teng, Jicai Liang, Xiangfeng Lin, Ce Liang, Guangyi Chen, and Guangping Sun.
Research on the cross section forming quality of three-dimensional multipoint stretch forming
parts. Advances in Materials Science and Engineering, 2018(1):4265617, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LADEEP FRAMEWORK

The detailed overview of LaDEEP framework is illustrated in Figure 10. The whole framework
contains three main components.

Data Preprocess. In this process, we need to process the data to represent the assembly model
without redundant information. For a given stretch-bending problem, the inputs include a 3D-shaped
workpiece, a 3D-shaped mold, and the motion parameters of the working arms. In practice, most
of the products are symmetric. For simplicity and without violating the physics, we only consider
the simulating the half of the system and keep the middle of the workpiece static. We use the
combination of the cross-section and the characteristic line to represent the workpiece. The mold is
only represented by the characteristic because its cross-section is related to the cross-section of the
workpiece. The movement of the working arms is depicted by a vector with size of 6, representing 6
degree-of-freedom motion.

Deep Learning-based Surrogate Model. The detailed structure of the model is depicted in Fig-
ure 11.Take the processed representations as inputs, the model use encoders (CLE, CSE, MPE) to
extract the high-dimensional features. Then a fusioner (OFF) is utilized to fuse the two features
that represent the cross-section and characteristic line of the workpiece, respectively. The feature of
the cross-section is reconstructed by a decoder(CSD). Then the result is used to calculate the loss
function lossr and optimize the part of the model (CSE and CSD). Subsequently, the Deformation
Predictor (DP) is composed of two-stage modules, loading and unloading. The outputs of the loading
module and unloading module are projected back to the original space through decoders. Then the
outputs are used to calculate the losses lossp to train corresponding modules. See Appendix A.2 for
detailed training strategy.

Characteristic Line

Characteristic Line

Motion Parameters

Encoders

Deep Learning-based Surrogate Model

Fusioner

Decoders

DP

Load

Unload

Ground
Truth

Data Postprocess

Interpolation

Sweeping

Data Preprocess
Cross-section

Workpiecce

Mold

Working Arms

Loading Unloading

Figure 10: The detailed overview of LaDEEP framework.

Data Postprocess. After getting the deformed and rebounded characteristic line of the workpiece, we
reconstruct the original three-dimensional workpiece for practical usage. We first use the interpolation
operation to transform the sampled characteristic line into continuous form. Then with the two-
dimensional cross-section of the workpiece, we use sweeping operation to reconstruct the original
workpiece. The basic notion embodied in sweeping operation is that a set moving through space may
trace or sweep out volume (a solid) that may be represented by the moving set and its trajectory. More
specifically, we move the cross-section along the direction of the characteristic line from the front to
the end. In the sweep process, the cross-section is perpendicular to the tangent of the characteristic
line at the arrived point.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 MODEL CONFIGURATION AND TRAINING DETAILS

The detailed structure of LaDEEP model is depicted in Figure 11. For simplicity and clarity, we set
batch size as 15 and don’t emphasize it in the subsequent description. For the input features, the
size of SDF is 512× 256 with a single channel, the differential of characteristic lines for workpiece
and mold are the same shape 300 × 3 and the motion parameters are a 1D vector with length 6.
After being encoded by the corresponding modules, all high-dimensional features have the shape of
60× 64. For modules in Deformation Predictor (DP), both of the layer number for loading module
and unloading module are 3. The number of heads is 4 and the MLP expension ration is 2. The latent
state for the feature from DP is the same shape as the input features as 60× 64. Then after decoded,
the final output has the shape of 300× 3.

Length

Characteristic Line Encoder Deformation Predictor Cross-section Decoder

Motion Parameter EncoderObject Feature Fusion Characteristic Line Decoder

Ground Truth

Workpiece

Mold

Cross-section Encoder

Signed Distance Function

Figure 11: The detailed structure of LaDEEP.

When training LaDEEP, we employ there separate optimizers. One of them is to optimize the CSE and
CSD through the loss function lossr. For the other two optimizes, one is to optimize the unloading
part (Unloading module and corresponding CLD), while the other focuses on optimizing the loading
part and the rest (CLE, MPE, OFF, Unloading module and corresponding CLD). They are all Adam
and we set learning rate 1e-3, weight decay 5e-5 the same for them. We use cosine annealing schedule
to update the learning rate with Cosine half-cycle decay and the minimal learning rate 1e-6. The
batch size for training is 15 and the epoch is 1000. We use a sigle RTX 3090 GPU to train LaDEEP
and other deep learning baselines. The training time of LaDEEP with above hyperparameters is 3.5
hours on average. More details can be found in our implemented code. The training and evaluation
losses in a training process are shown in Figure 12.

A.3 DATASET GENERATION

The training of deep learning models requires sufficient amount of data, which can hardly be obtained
from real manufacturing environment. We employ traditional FEM method with fine mesh resolution
to generate highly accurate dataset. Each sample is composed of three components, the 3D workpiece,
the 3D mold, and the motion parameters. We collect both shapes of the workpieces after loading and
unloading.

• 3D Workpiece. The workpieces are determined by the cross-sections and characteristic lines.
The cross-sections will affect the overall structural force distribution. For practical concerns,
we select 5 representative types of cross-section structures, as depicted in Figure 13, from
practical observation. These cross-sections can cover most practical products in term of the
topology structure and size. Each kind of cross-section has different number, radian and
radius of arcs, various thicknesses and heights. In each kind of cross-section, the radius of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 12: The training and evaluation loss curves of LaDEEP. For all sub-figures, the x-axis is the
epochs and the y-axis is the corresponding loss. From top to bottom, from left to right, they are: the
training lossp of loading part, the training lossp of unloading part, the training lossr, the evaluation
lossp of loading part, the evaluation lossp of unloading part and the evaluation lossr. The smooth
parameter is 0.5.

thickness

height

arcs

Figure 13: Five representative types of cross-
section from practice. They are indexed 1-5
from left to right. Each kind of cross-section
has different number, radian and radius of
arcs, various thicknesses and heights.

1

2

1

3

2

1 2

3

4

1

2

3

4

1

3

2

4

Figure 14: The indexes on each kind of cross-
section are marks indicating that some param-
eters of the corresponding parts are sampled
from specific distributions. The specific dis-
tributions are listd in Table 4.

arcs, the height and thickness are also sampled from specific distributions. The concrete
configurations are listed in Table 14. For each type of cross-section structure, we generate
600 different samples. For the characteristic line of the workpiece, we place the initial
straight workpiece on the x-axis from original point to the maximal length and randomly
sample the length from a uniform distribution U [505, 550] (unit: mm).

• 3D Mold. In order to ensure the workpiece can contact the mold tightly during the defor-
mation, the characteristic lines for the mold should be smooth and convex. We generate
two 1/4 elliptical arcs separately on two perpendicular 2D planes, then combine them into
a 3D curve in space. These different elliptical arcs are determined by different ellipse
parameters with uniform distributions for varying curvatures. Consider a 2D elliptic formula
x2

a2 + y2

b2 = 1(a > b > 0) and let (c, 0) be its focus point, we use three uniform distributions
to control the generation, which are: c

a ∼ U [0.1, 0.3], b
a ∼ U [0.1, 0.3] and a ∼ U [700, 900]

(unit: mm).
• Motion parameters. The motion parameters consist of 6 degrees of freedom. including

spatial displacement (ux, uy, uz), and the rotations (rx, ry, rz). They are calculated by a
classical involute approach (Arnold et al., 2012) based on the characteristic line of the mold.

With all the 3000 sets of data, Abaqus (Khennane, 2013; Abaqus, 2011), a software based on FEM,
is applied to perform the computations. The mold is set to be rigid, and the workpiece is set as
elastic-plastic aluminum. In Abaqus setup, the explicit dynamics solver (Barbero, 2023) is adopted

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

for simulation calculation and the implicit static solver (Barbero, 2023) is for the rebound calculations.
Appendix A.4 describes more settings about the FEM model.

Table 4: Distributions that control the parameters for each kind of cross-section. The indexes in the
table are corresponding to those in Figure 14. The whole cross-section can be calculated through
given parameters. Let the positive direction of the x-axis be 0◦ and the clockwise is the positive
direction. The postfix ”s” means start arc and ”e” means end arc.

Type ID Radius Distribution (mm) Radian Distribution (◦) Length Distribution (mm)

1 / /
thickness: U [2.5, 4]

1: U [2.5, 4]
2: U [17, 20]

2 1: U [2.5, 3]
1s: U [95, 110]

1e: U [280, 310]
3s: U [240, 270]

thickness: U [1.8, 2.2]
2: U [14, 16]

3 1: U [1.4, 1.6]
1s: U [95, 110]

1e: U [230, 250]
4s: U [290, 310]

thickness: U [0.8, 1.2]
2: U [0.4, 0.6]
3: U [14, 16]

4 1: U [2.5, 3]
3: U [1.5, 1.7]

1s: U [95, 110]
1e: U [280, 310]
3s: U [210, 230]
4s: U [240, 270]

thickness: U [1.2, 1.4]
2: U [14, 16]

5 1: U [2.5, 3]
3: U [1.3, 1.5]

1s: U [95, 110]
1e: U [300, 310]

3s: [U][210, 230]

thickness: U [1, 1.2]
2: U [14, 16]

4: U [1, 2]

A.4 BASELINES

A.4.1 CLASSICAL FEM MODELS

The considered problem involves complex large deformation of elastic-plastic solid, nonlinear solid
contacts, three-dimensional motion, and nonlinear rebound. Due to the complexity and computational
demands, developing a custom FEM solver from the ground up would be impractical and time-
consuming. Therefore, we utilize Abaqus (Khennane, 2013; Abaqus, 2011), a robust and widely
adopted industrial simulation software based on FEM, to generate our data. Each assembly model
is divided into around 20,000 elements. And as a comparable baseline, we use scale factors {0.8,
0.6, 0.4, 0.2} to reduce the number of meshes in the highest resolution assembly models. During the
loading stage, we employ the explicit dynamic algorithm (Barbero, 2023) for forward calculations
based on dynamic equations. For the unloading stage, we use the implicit static algorithm (Barbero,
2023), iteratively solving the problem with Newton’s method (Kelley, 2003).

Since the explicit dynamic algorithm in Abaqus does not support GPU computation, we leverage a
32-core CPU server for parallel processing using MPI (Walker & Dongarra, 1996). We also assess
the impact of different core counts on computation speed and find that 32 cores nearly reach the
maximum acceleration for our single assembly model. Increasing the core count further lead to
diminishing returns due to higher communication overhead. We recognize the importance of ensuring
a fair comparison between the FEM and Deep Learning models. Given the different nature of
parallelization (CPU vs. GPU) and the inherent computational requirements of the FEM method, we
take all reasonable steps within the constraints of our available tools and hardware to optimize the
FEM simulations. We believe these measures demonstrate a conscientious approach to achieving
a fair and balanced comparison, considering the specific capabilities and limitations of the FEM
method within the industrial context of our study.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4.2 DEEP LEARNING MODELS

We implement all the deep learning baselines based on their official code. All the baselines are
trained and tested under the same training strategy and loss functions as LaDEEP. We align the shapes
of features through ”add” or ”concatenate” operation with the input shape of the models. It is not
a common task so there is no official setting of the model configurations. We have tried different
settings to improve the performance. We run all experiments for 3 times and compute the average
results and we also maintain approximately the same number of parameters.

As mentioned in Sec.3.2, we conduct the experiments under 2 kinds of settings: (1) We compare
LaDEEP with other naive baselines. These baselines are added with naive encoders and decoders
constructed with linear layers. (2) We compare LaDEEP with other modified baselines. The encoders
and decoders are kept unchanged. We only replace the Deformation Predictor (DP) with these
baselines.

First Setting. The implementations of baselines, encoder and decoder in setting (1) are listed below
(the parameters except mentioned below are default settings):

• Encoders and Decoders. For both CLE and CLD, we use four linear layers as the feature
extractor, and then one linear layer as the embedding. A dropout with p = 0.2 is used to
avoid over-fitting. The hidden activation is ”ReLU” and the output activation is ”Sigmoid”.
For MPE, we use two linear layers to align the feature shapes. Additionally, we use the
same CSE structure as LaDEEP and throw out CSR.

• DeepONet (Lu et al., 2019). We set branch layers sizes as {64, 512, 1024, 512, 64} and
trunk layers sizes as {64, 512, 1024, 512, 64}. The activation is set as ”tanh” and the kernel
initializer is set as ”Glorot Normal”. The number of outputs is set as 64. The multiple output
strategy is set as ”split both”.

• FNO (Li et al., 2022). We set the input channel as 3 and output channel as 1. The modes are
set as {20, 20}. The hidden channel is set as 64 and the number of layers is 4. The lifting
channel and projection channel channel are both 64.

• GINO (Li et al., 2024b). We set both of the input channel and the output channel as 3. The
GNO radius is set as 0.3. We set the number of the input GNO hidden layers and the output
GNO hidden layers as {8, 8}. The GNO coordinate dimension is set as 3. Both of the types
of input and output GNO transform are set as ”linear”. The modes are set as {8, 8, 8}. The
lifting channel and hidden channel are both 16. The projection channel is 64.

• SFNO (Bonev et al., 2023). We set the input channel as 3 and output channel as 1. We set
the modes as {32, 32} and the hidden channel as 64. The type of factorization is ”dense”.
The lifting channel and projection channel channel are both 256. The number of layers is 6.

• TFNO (Kossaifi et al., 2023). We set the input channel as 3 and output channel as 1. The
modes are set as {20, 20}. The projection channel and the lifting channel are both 256. The
hidden channel is set as 64 and the number of layers is 4. The rank is set as 0.5 and the type
of factorization is set as ”tucker”.

• UNO (Rahman et al., 2022). We set the input channel as 3 and output channel as 1. The
hidden channel is set as 64 and the domain padding is set as 0.2. The number of layser is
set as 5. Correspondingly, for each layer, the UNO output channels are set as {32, 64, 128,
64, 32}, the UNO modes are set as {{8, 8}, {16, 16}, {16, 16}, {16, 16}, {8, 8}}, and the
UNO scalings are set as {{1.0, 1.0}, {0.5, 0.5}, {1.0, 1.0}, {1.0, 1.0}, {2.0, 2.0}}.

• FactFormer (Li et al., 2024a). We set the both of the input dim the output dim as 64. The
number of heads is set as 8 and the kernel multiplier is set as 4. The latent dim is 256.

• LSM (Wu et al., 2023). We set the input channel as 3 and output channel as 1. We set the
dimension of model as 16. Both of the number of token and basis are set as 1. Both of the
patch size and the padding are set as ”1,1”. The flag of using bilinear is set as ”False”.

• Transolver (Wu et al., 2024). We set the number of layers as 4 and the hidden dimension
as 256. We use ”relu” as the activation. The number of heads is 16 and the mlp ratio is 4.
Both of the input and the output dimension are set as 64. The number of slices is set as 4 for
numerical stability. The flag of using unified position is set as ”False”.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• TCN (Oord et al., 2016). We implement a 5-layer TCN and the numbers of each layer
channel are set as {60, 180, 360, 360, 180, 60}. The kernel size is set as 4.

Table 5: Model parameter summary.

Model #Total Parameter #Trainable Parameter

DeepONet 13,814,952 2,638,440
FNO 15,224,617 4,048,105
GINO 14,169,041 2,992,529
SFNO 13,235,625 2,059,113
TFNO 13,460,245 2,283,733
UNO 15,091,049 3,914,537

FactFormer 13,811,816 2,635,304
LSM 13,794,377 2,617,865

Transolver 14,663,544 3,487,032
TCN 14,170,300 2,993,788

LaDEEP(ours) 14,260,750 3,084,238

The model parameter summary is shown in Table 6. The training and evaluation curves are shown in
Figure 15.

Figure 15: The training and evaluation loss curves of baselines in setting (1). For all sub-figures,
the x-axis is the epochs and the y-axis is the corresponding losses. From left to right, they are: the
training lossp and the evaluation lossp. The smooth parameter is 0.9.

Second Setting. The implementations of baselines in setting (2) are listed below (the parameters
except mentioned below are default settings):

• DeepONet (Lu et al., 2019). We set branch layers sizes as {64, 256, 256, 64} and trunk
layers sizes as {64, 256, 256, 64}. The activation is set as ”tanh” and the kernel initializer is
set as ”Glorot Normal”. The number of outputs is set as 64. The multiple output strategy is
set as ”split both”.

• FNO (Li et al., 2022). We set the input channel as 3 and output channel as 1. We use the
incremental modes to control the number of parameters with modes changing from {2, 2}
to {16, 16}. The hidden channel is set as 32 and the number of layers is 4.

• GINO (Li et al., 2024b). We set both of the input channel and the output channel as 3. The
GNO radius is set as 0.3. We set the number of the input GNO hidden layers and the output
GNO hidden layers as {8, 8}. The GNO coordinate dimension is set as 3. Both of the types
of input and output GNO transform are set as ”linear”. The modes are set as {8, 8, 8}.

• SFNO (Bonev et al., 2023). We set the input channel as 3 and output channel as 1. We set
the modes as {32, 32}, the hidden channel as 32 and the projection channel as 64. The type
of factorization is ”dense”.

• TFNO (Kossaifi et al., 2023). We set the input channel as 3 and output channel as 1. We use
the incremental modes to control the number of parameters with modes changing from {2,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2} to {16, 16}. The projection channel is set as 64. The hidden channel is set as 32 and the
number of layers is 4. The rank is set as 0.5 and the type of factorization is set as ”tucker”.

• UNO (Rahman et al., 2022). We set the input channel as 3 and output channel as 1. The
hidden channel is set as 64 and the domain padding is set as 0.2. The number of layser is
set as 5. Correspondingly, for each layer, the UNO output channels are set as {32, 64, 64,
64, 32}, the UNO modes are set as {{8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}}, and the UNO
scalings are set as {{1.0, 1.0}, {0.5, 0.5}, {1.0, 1.0}, {1.0, 1.0}, {2.0, 2.0}}.

• FactFormer (Li et al., 2024a). We set the both of the input dim the output dim as 64. The
number of heads is set as 8 and the kernel multiplier is set as 3. The latent dim is 128.

• LSM (Wu et al., 2023). We set the input channel as 3 and output channel as 1. We set the
dimension of model as 8. Both of the number of token and basis are set as 1. Both of the
patch size and the padding are set as ”1,1”. The flag of using bilinear is set as ”False”.

• Transolver (Wu et al., 2024). We set the number of layers as 4 and the hidden dimension
as 128. We use ”relu” as the activation. The number of heads is 8 and the mlp ratio is 1.
Both of the input and the output dimension are set as 64. The number of slices is set as 4 for
numerical stability. The flag of using unified position is set as ”False”.

• TCN (Oord et al., 2016). We implement a 5-layer TCN and the numbers of each layer
channel are set as {60, 120, 120, 120, 60}. The kernel size is set as 3.

Table 6: Model parameter summary.

Model #Total Parameter #Trainable Parameter

DeepONet 14,245,955 3,069,443
FNO 15,122,468 3,945,956
GINO 14,858,588 3,682,076
SFNO 14,329,508 3,152,996
TFNO 14,568,744 3,392,232
UNO 14,877,892 3,701,380

FactFormer 14,204,675 3,028,163
LSM 14,603,380 3,426,868

Transolver 14,441,971 3,265,459
TCN 14,333,551 3,157,039

LaDEEP(ours) 14,260,750 3,084,238

To ensure the comparison is apple-to-apple, we keep the encoders and decoders unchanged, only
replacing the DP module with the corresponding baseline. The model parameter summary is shown
in Table 6. The training and evaluation curves are shown in Figure 16.

A.5 EVALUATION METRICS

We utilize three different metrics to evaluate the performance of the model from multiple aspects.
The definition of these metrics are listed below:

• MAD. The mean absolute distance (MAD) measures the characteristic line distance between
the prediction and ground truth of the workpiece.

• IoU 3D. The intersection over union (IoU) of the reconstructed workpiece compared to the
ground truth objects. We utilize it to assess the real prediction accuracy at each point.

• Tail Error (TE). For large deformation, the errors on the tail faces are more likely to
accumulate. We therefore employ Tail Error (TE) for evaluation. It measures the mean
absolute error between point in the tail face for the prediction and ground truth of the
workpiece.

Additionally, we use relative error reduction to compute the promotion portion w.r.t. the second best
model, which is formulated as The second best error−Our error

The second best error × 100%.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 16: The training and evaluation loss curves of LaDEEP and baselines in setting (2). For
all sub-figures, the x-axis is the epochs and the y-axis is the corresponding losses. From top to
bottom, from left to right, they are: the training lossp, the training lossr, the evaluation lossp, and
the evaluation lossr. The smooth parameter is 0.9.

A.6 ANALYSIS FOR SAMPLES WITH LARGE ERRORS

Table 7 shows the maximal and minimal results of LaDEEP and baselines. For samples with large
errors, LaDEEP does not perform the best. This indicates that there is still room for improvement in
LaDEEP when handling samples with large errors.

We visualize two samples with large errors in Figure 17. We observe that errors are mainly due to the
underestimation of the predictions along the z axis. In most cases, the z-direction (thickness direction
of the workpiece) is the primary direction in which the workpiece is formed over the mold. When
there is a large displacement along the z-axis, prediction becomes more challenging. This is actually
a point worth paying attention to.

Ground TruthPrediction

Figure 1: Visualization of two samples with large error in MAD (left: 1.48mm, right: 1.77mm).Figure 17: Visualization of two samples with large error in MAD (left: 1.48mm, right: 1.77mm).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Best and worst samples of models in both settings described in Section 3.2. Up: Results
in setting (1); Down: Results in setting (2). For MAD and TE, a smaller value indicates better
performance, whereas for Iou 3D, the opposite is true.

Model MAD(mm) IoU 3D(%) TE(mm)
min max min max min max

DeepONet 0.0968 1.8079 24.71 99.49 0.0624 4.6450
FNO 0.0637 1.7474 24.88 97.44 0.0670 5.1231
GINO 0.0631 2.0506 24.23 96.30 0.0687 5.6545
SFNO 0.0779 1.8645 24.61 98.90 0.0713 5.3106
TFNO 0.0747 1.7692 24.71 98.10 0.0940 4.6956
UNO 0.0797 1.8011 22.43 97.26 0.0796 5.1126

FactFormer 0.0608 2.8023 14.24 98.42 0.0564 8.1669
LSM 0.0823 2.5066 20.19 97.38 0.0618 6.8324

Transolver 0.0807 2.0487 23.07 98.73 0.0894 5.6476
TCN 0.0733 1.8332 22.09 98.87 0.0803 4.8999

LaDEEP(ours) 0.0183 1.8435 24.39 99.30 0.0397 5.4094

Model MAD(mm) IoU 3D(%) TE(mm)
min max min max min max

DeepONet 0.0244 1.7669 26.22 99.41 0.0286 5.4313
FNO 0.0321 1.9502 24.62 98.74 0.0182 5.9502
GINO 0.0371 1.8564 24.00 99.61 0.0584 5.3937
SFNO 0.0324 2.1324 23.33 99.29 0.0536 6.2001
TFNO 0.0314 1.8642 24.80 98.95 0.0480 5.4331
UNO 0.0251 2.0244 22.87 98.86 0.0524 5.7634

FactFormer 0.0221 2.1131 23.04 99.26 0.0281 6.0887
LSM 0.0346 1.8776 25.37 99.82 0.0697 5.5618

Transolver 0.0311 1.9816 24.67 99.03 0.0227 5.7928
TCN 0.0184 2.0861 26.15 98.36 0.0499 6.0920

LaDEEP(ours) 0.0183 1.8435 24.39 99.30 0.0397 5.4094

A.7 TRANSFERABILITY ON NEW MATERIALS

In metal fabrication, stretch bending is a key profile processing technique, widely applied in automo-
tive manufacturing, aeronautical engineering, and similar fields. This process represents a typical
challenge involving large elastic-plastic deformation. We see it as an ideal starting point for applying
AI to problems in large elastic-plastic deformation. Additionally, we believe that the proposed
framework, with its explicit integration of physical modeling, can be extended to related tasks such
as stamping, forging, and more through transfer learning or customized feature extractors. Future
work will focus on developing improved models and tackling more complex tasks. Additionally, to
further explore the model’s transfer ability, we conduct further experiments to assess its potentials in
transferring to other tasks.

This experiment is to explore the model’s transferability across different metal materials. We use a
new aluminum alloy with different alloy ratios compared to the original dataset. These alloys differ in
material parameters: hardness, density, Poisson’s ratio, Young’s modulus, and stress-strain behavior,
leading to significant differences in deformation, stress, and rebound behavior. The parameters for
both alloys are measured from materials used in practical production. Using the 5 cross-sections
mentioned in the paper, we generate a total of 300 data samples, which are split into an 8:2 ratio for
training and test. Two experiment settings: (1) We take the model in the paper as the basic pre-trained
model with is trained on the original dataset for 600 epochs. Then we test the new data directly on
the pre-trained model. (2) We fine-tune the pre-trained model in (1) for 200 epochs with the new
dataset. The results are presented in Table 8.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Results of Cross-section Generalization.

Setting ID MAD(mm) IoU 3D(%) TE(mm)

1 0.2053 84.43 0.5338
2 0.1711 85.56 0.4389

These results demonstrate that with our pre-trained model, we can achieve rapid convergence on new
alloy data using only a small dataset and minimal fine-tuning iterations. This capability is highly valu-
able in practical applications where adapting to new materials efficiently is crucial. We acknowledge
that these experiments only explore generalization to unseen cross-sections and transferability across
different materials. While it does not fully demonstrate the model’s generalization across various
industrial scenarios and tasks, it highlights the potential of the proposed framework. We believe that
with further structural improvements and the combined use of pre-training and fine-tuning techniques,
this framework can be effectively extended to cover a broader range of applications.

A.8 TWO-LOOP MOLD DESIGN PARADIGM

Errors in mold design process are mainly categorized into simulation error (SE), application error
(AE) and production error (PE). The SE is the discrepancy between the result of simulation and the
target shape, defined within the virtual space. However, there is often a gap between simulation
results and their practical application due to various sources of factors arise at different stages of
process. For example, mold production inherently involves certain tolerances which are introduced by
the manufacturing machines. Installation tolerance arises when installing the mold onto the machine.
The motion parameters of working arms may exhibit zero-point drift, and the properties of workpiece
change over time, among other factors. The AE is defined as the error generated when simulation
results are directly implemented in production, within 10mm. This gap is inevitable due to the
inherent complexities. Then on-site adjustments will be carried out. On-site adjustment methods
include machining of the mold by tools directly, as well as fine-tuning the parameters of working
arms. By employing these methods, the final PE will be kept below 1mm for production.

Demo Mold
Reference Product

Motion Parameters

Simulation Model

Loading and Unloading
Computation

Diff between
Target and

Simulation Result

diff < tolerance

Field
Experiment

Diff between
Target and Field

Result

Initial loading position

Aluminum material properties

New Mold ← Demo Mold + Diff New Mold ← Demo Mold + Diff

Target Product

diff > tolerance

Put Into Production

Initilize

diff > tolerance

diff < tolerance

Inner Loop (Virtual Simulation)
Outerc Loop (Real-world Interaction)

Figure 18: Two-loop mold design paradigm.

In proposed two-loop mold design paradigm in Figure 18, we use inner and outer loop to guarantee
the reliability and meet all errors mentioned above. In inner loop, we use simulation and displacement
compensation method (Cafuta et al., 2012) to iteratively obtain a simulation result meet the SE and
AE. The simulation is FEM in traditional and LaDEEP now. Then through on-site adjustment, PE
could be met in most cases. If, after several adjustments, the on-site results still fail to meet production
standard, it is necessary to feedback the actual outcomes to the simulation system. This feedback
process, called outer loop, is crucial as it is a recalibration for the compensation. And it ensures a
seamless transition from the virtual simulation space to the real-world production environment.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We start from a naı̈ve design of mold (say a straight one), simulate the deformation process, compute
the distance between the simulation results and the desired shape. This distance helps us to re-design
the mold, and the computations start over. This cycle is conducted purely in computations, and
terminates until the workpiece deforms as designed after rebound. The mold will be delivered to the
factory and produced in real world. There will also be errors after real-world production, as there are
errors on simulation, which will be feedback to our LaDEEP model for further design.

A.9 VISUALIZATIONS

Figure 19: Visualization of attention maps. The patterns described in Sec 2.3 universally exist.

PredictionGround Truth

Figure 20: Visualization of results. Columns from left to right correspond to LaDEEP, DeepONet,
FNO, GINO, SFNO, TFNO, UNO, FactFormer, LSM, Transolver and TCN, respectively. Rows
1-3 represent a sample with a type-3 cross-section. Rows 4-6 represent a sample with a type-5
cross-section. Rows 1 and 4 are tails of the characteristic lines. Rows 2 and 5 are global views of the
workpieces. Rows 3 and 6 are tails of the workpieces.

24

	Introduction
	Method
	Preprocess
	Encoder
	Deformation Predictor
	Decoder and Loss Function

	Experiments
	Experiment Settings
	Main Results
	Ablation Studies
	Deployment

	Conclusion and Discussion
	Appendix
	LaDEEP Framework
	Model Configuration and Training Details
	Dataset Generation
	Baselines
	Classical FEM Models
	Deep Learning Models

	Evaluation Metrics
	Analysis for Samples with Large Errors
	Transferability on New Materials
	Two-Loop Mold Design Paradigm
	Visualizations

