
COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Jiale Ma * 1 2 Wenzheng Pan * 1 Yang Li 1 2 Junchi Yan 1 2

Abstract
Despite rapid progress in neural combinatorial
optimization (NCO) for solving CO problems
(COPs), as the problem scale grows, several bot-
tlenecks persist: 1) solvers of the Global Pre-
diction (GP) paradigm struggle in long-range
decisions where the overly smooth intermedi-
ate heatmaps impede effective decoding, and 2)
solvers of the Local Construction (LC) paradigm
are time-consuming and incapable of tackling
large instances due to the onerous auto-regressive
process. Observing these challenges, we propose
a new paradigm named Adaptive Expansion (AE)
with its instantiation COExpander, positioned to
leverage both advantages of GP and LC. COEx-
pander utilizes informative heatmaps generated
by a global predictor, which is learned under the
guidance of locally determined partial solutions,
to in turn direct the expansion of determined deci-
sion variables with adaptive step-sizes. To ensure
transparent evaluation, we further take the lead to
canonicalize 29 benchmarks spanning 6 popular
COPs (MIS, MCl, MVC, MCut, TSP, ATSP) and
various scales (50-10K nodes), upon which exper-
iments demonstrate concrete SOTA performance
of COExpander over these tasks.

1. Introduction
Combinatorial optimization problems (COPs) possess exten-
sive applications in diverse fields including logistics (Wang
& Tang, 2021), transportation (Baty et al., 2024), supply
chain management (Singh & Rizwanullah, 2022), and net-
work design (Paschos, 2014), in search of optimal solutions
within discrete states. However, due to the inherent NP-
hardness for most (especially large-scale) COPs, approach-

*Equal contribution 1Sch. of Artificial Intelligence & Sch.
of Computer Science, Shanghai Jiao Tong University 2Shanghai
Innovation Institute. Correspondence to: Junchi Yan <yan-
junchi@sjtu.edu.cn>. This work is partly supported by NSFC
(62222607, 623B1009). Code available at github repository.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ing (near) optimal solutions within reasonable time remains
a daunting challenge. Over the past decade, the neural com-
binatorial optimization (NCO) community (Zhang et al.,
2023; Guo et al., 2023; Wang et al., 2024) has fostered copi-
ous work to explore the potential of data-driven methods for
CO solvers and have shown considerable promise in terms
of both effectiveness and efficiency of problem solving.

Learning-based solvers for CO typically employ neural net-
works to generate neural predictions for either solution con-
struction or search guidance. Given that divide-and-conquer
(D&C) frameworks (Ye et al., 2024b; Zheng et al., 2024)
and solution optimization approaches (Chen & Tian, 2019;
Ma et al., 2023) are theoretically orthogonal to and practi-
cally applicable over the main solving stage, in this paper,
we focus on the core part of NCO, i.e., the acquisition of so-
lutions for COPs, and categorize the mainstream neural CO
solvers into two paradigms1 based on the way the solutions
are constructed. As the first type, Local Construction (LC)
methods (Kool et al. (2018); Berto et al. (2024); Drakulic
et al. (2023); Pan et al. (2025), etc.) cast COPs as Markov
Decision Processes (MDPs) and the neural networks are
trained to predict the best next-step action given the current
state. This process continues until a complete solution is
assembled, as depicted in Fig. 4 (a). While LC solvers effec-
tively decompose the solving process into the step-by-step
construction to leverage local states for the next decision,
they suffer from a lack of global perspective and encounter
scalability problems due to the laborious and myopic auto-
regression. On the other hand, Global Prediction (GP)
approaches (Joshi et al. (2019); Qiu et al. (2022); Sun &
Yang (2023); Li et al. (2023; 2024; 2025), etc.) use neural
networks to globally predict the likelihood of each node
or edge being selected, and then decode the probability
heatmaps (via heuristics as simple as greedy) to obtain solu-
tions, as shown in Fig. 4 (b). This paradigm provides global
guidance mapped from the entire graph structure for con-
structing the solution. However, as problem scales increase,
the predicted heatmap through one-shot inference tends to
be overly smooth (with many noisily similar values), hinder-
ing its guiding effect for the subsequent decoding procedure.
We delineate these observations in Appendix B.2 and B.3.

The issues of these two paradigms can be generalized as

1A paradigm is detached from any particular model or solver.

1

https://github.com/Thinklab-SJTU/COExpander

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

opposing extremes in the decision granularity, i.e., the quan-
tity of variables determined2 at each step, where GP leans
entirely on global prediction while LC depends solely on lo-
cal information for problem-solving. We note that diffusion-
and consistency-based solvers (Sun & Yang, 2023; Li et al.,
2023; 2024) constitute a distinct subset of GP solvers, en-
deavoring to generate globally complete solutions through
a sequential denoising process. However, they still fail to
ensure the intermediate steps interpretably direct the deter-
mination of variables, for the ultimate solution is unrevealed
until the final stage. Hence, a promising direction is to
explore a principled mechanism to adaptively control the
decision granularity in each forwarding step, replacing the
current practice of using a fixed step size, e.g., resolving
variables one at a time or updating them all at once.

Definition 1.1 (Variable Determination Process). Given
an optimization problem with N decision variables, we
define Variable Determination Process VDP(N, k) as an
iterative procedure transitioning from complete uncertainty
to full determination in k steps. Let d0, d1, . . . , dk−1 be the
number of determined variables at each step, which satisfies
d0 < d1 < · · · < dk−1, with d0 = 0 and dk−1 = N .

To fulfill the above motivation, we first define a new
paradigm for NCO solving, namely Adaptive Expansion
(AE). Paralleling GP and LC, AE encompasses a model-
agnostic training and solving pipeline that orients at fully
utilizing the intermediate state information during problem
solving while maintaining an adaptively controllable gran-
ularity regarding the step-size of the decisive predictions
produced by the neural networks. Further, we devise a novel
neural solver COExpander as a forerunner instantiation of
AE, where informative heatmaps are generated by a global
predictor learned under the guidance of locally determined
partial solutions, and in turn, guide an adaptive process to
expand the set of determined decision variables. Specifi-
cally, as sketched in Fig. 1, embedded masks representing
random intermediate solving states are fed as a prompt input
along basic graph features to train COExpander to predict
the full distribution under partial guidance. At solving stage,
iterative determination processes are performed, and in each
round only the most convincing components of the output
heatmap is accredited to determine arbitrary number of
decision variables and update the neural masks denoting
current partial solution state that prompts the next iteration.

In Def. 1.2, we provide a formal formulation of AE as well
as the comparison with the other two paradigms. Notably,
AE combines the merits of both and rectifies their individual
shortcomings by incorporating guidance derived from both
global and local perspectives. On the one hand, compared to
GP solvers, COExpander evolves from the previous “noise-

2Following Ahn et al. (2020), we regard the solving of a COP
as the determination process of decision variables, see Def. 1.1.

Definition 1.2 (Solving Paradigms). Given VDP(N, k), we
defined the following paradigms based on k and N :
· When k = 1, all decision variables are determined in a
single step, this process is defined as Global Prediction.
· When k = N , each step determines exactly one variable,
this process is defined as Local Construction.
· When 1 < k < N , the process is defined as Expansion.
Further, if the difference between consecutive steps is not
constant, the process is referred to as Adaptive Expansion.

to-full” to an adaptive “partial-to-full” manner of neural
mapping. Instead of predicting full solutions from proba-
bilistic noise, the “partial-to-full” approach starts from a
state with several decision variables already determined,
effectively narrowing the search space. The reasoning pro-
cess, thus guided, attentively leverages the most informative
portion of the inferential output of the neural model in each
determination round, thereby leading to more stable and
consistent predictions. On the other hand, in contrast to LC
solvers, COExpander evolves from the fixed “next-token”
to a flexible “next-few-token” manner of solution construc-
tion and incorporates global guidance. This progress chiefly
stems from the supervised global predictor in COExpander
which furnishes more comprehensive information in a single
inference than LC solvers, i.e., providing the probabilistic
estimation of all decision variables rather than merely that of
the next node to be selected. This augments both efficiency
and scalability while sustaining the quality of solutions. We
highlight our main contributions as follows:

• We propose the Adaptive Expansion (AE) paradigm and
the COExpander solver for COPs. It bridges the global
prediction (GP) and local construction (LC) paradigms
via utilization of a partial state prompted solution genera-
tor, replacing the rigid decision with adaptive step sizes
beyond auto-regression and one-shot solving.

• To establish a unified protocol for performance evaluating
and reporting for COPs, we re-wrap 5 non-learning base-
line solvers (Appendix D) and re-cononicalize 29 standard
datasets (Appendix E), providing a just and generalizable
benchmark for 6 commonly studied COPs.

• Compared with previous neural state-of-the-arts (SOTA),
COExpander has reduced the average optimality drop
on 6 COPs from 3.807% to 0.657%, with a speedup of
4.0x. Besides, COExpander shows good cross-scale and
cross-distribution generalization ability on real-world and
ultra-large instances within each problem type.

2. Related Work
GP Solvers. Different ways of learning have been applied to
generate effective heatmaps globally, including supervised
learning (SL) (Joshi et al., 2019; Fu et al., 2021), unsuper-
vised learning (UL) (Wang & Li, 2023; Min et al., 2024),
and meta-reinforced learning (RL) like DIMES (Qiu et al.,

2

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Current State Neural Model SolutionNew State
Partial Undetermination Partial UndeterminationOptimization Consistency Complete Determination

ℳ� = �

ℳ� = �; �� = �
ℳ� = �; �� = ��~��(��|�) ← ��(�(��, �,�), �, �,�) �,� ← �(�,�, �,�, ��)

N
od

e-
Se

le
ct

io
n

Ed
ge

-S
el

ec
tio

n

until �������� or �=�
� �� ≥ ��

Priority Order

Determine
successively

Until ∀� ∈ �,�� = �

Probability Heatmap
Adaptive Expansion (Determine)

until �������� or �=�
� �� ≥ ��

Priority Order

Determine
successively

Figure 1. General pipeline of COExpander under AE. x: decision variables;M: mask; y: partial solution; G: graph data; θ: model
parameters;H: probability heatmap; D: determination operator. A comparative illustration of the 3 pipelined paradigms is provided in
Appendix B. In this paper, node-selection problems include MCl, MCut, MIS and MVC; edge-selection problems include TSP and ATSP.

2022), etc. Lately promising are the graph diffusion-based
generative approaches (DIFUSCO (Sun & Yang, 2023),
DIFFUCO (Sanokowski et al., 2024), T2T (Li et al., 2023;
2024), etc.) to learn the instance-level solution distribution.

LC Solvers. Most commonly, the policy of the next-
step prediction is learned by RL (AM (Kool et al., 2018),
POMO (Kwon et al., 2020), MatNet (Kwon et al., 2021),
SYM-NCO (Kim et al., 2022), RL4CO (Berto et al., 2024),
etc.) with manually imposed masks to hard-guarantee the
feasibility. Lately, BQ-NCO (Drakulic et al., 2023) and
GOAL (Drakulic et al., 2024) managed to incorporate su-
pervision for sequential decisions to improve the scalability.

We also notice a few works that appear to contain similar
determining manners to our AE paradigm (Ahn et al., 2020;
Zhou et al., 2025), and defer the detailed discussion, com-
parison, and empirical studies on them to Appendix B.4.
Besides the aforementioned methods to which COExpander
is the most comparable, we also discuss in Appendix A
1) traditional solvers from operations research, 2) machine
learning-enhanced heuristics, 3) solution optimization meth-
ods, and 4) neural divide-and-conquer frameworks, to pro-
vide a comprehensive review of existent methods for CO.

3. Preliminaries
Problem Definition. The COPs studied in this paper can be
consistently characterized by the graph structure, i.e., G =
(V, E), where V = {1, · · · , N} denotes the node set and E
the edge set. Following previous works (Sun & Yang, 2023;
Li et al., 2023), we define x = {0, 1}M as the corresponding
decision variables of a given COP. For MCl, MIS, and MVC,
M = N and xi indicates whether the node i is selected. For
MCut, M = N and xi indicates which subset the node
i belongs to. For TSP and ATSP, M = N2 and xi·N+j

indicates whether the edge (i, j) is selected. Mathematically,
the optimization objective is to find optimal solution x∗ =

argmin
x∈Ω

c(x, G), where Ω denotes the feasible set of x that

satisfy the constrains and c(·, ·) is the objective cost function
of corresponding problems. The formal definitions of the
six COPs are presented in Appendix C.

Global Predictor for COExpander. Joshi et al. (2019) pio-
neered with success to adapt Graph Convolutional Network
(GCN), the fundamental model for graph data processing,
to solving COPs like TSP. Later, Sun & Yang (2023) and
Sanokowski et al. (2024) revealed the prospect of gener-
ative CO, proposing to integrate the diffusion principles
with graph representations and GCN, which entails a serial
noising process that converts the initial solution into a noisy
vector and a learnable denoising process in reverse. Further,
Fast-T2T (Li et al., 2024) devises the scheme of training
consistency for vanilla diffusion to ensure that all noised
trajectories conditioned on the same graph converge to the
same initial solution, which largely reduces the denoising
steps needed and puts forward the edge of NCO perfor-
mance to a great extent. Along this chain, we intuitively aim
to improve upon Fast-T2T, thus adapting the consistency
model as the global predictor of COExpander in favor of its
superior performance and efficiency.

4. Methodology
4.1. Model Learning: Partial Solution Prompted

Generation with Consistent Diffusion

4.1.1. DIFFUSION NOISING PROCESS

Following the definitions in Sec. 3, the distribution of the
solution space can be characterized by an M -dimensional
Bernoulli distribution p(x) ∈ [0, 1]M×2. The objective of
applying generative modeling to problem-solving is to learn
the distribution of high-quality solutions conditioned on a
given G, mathematically pθ(x|G). For an initial solution
x0, we adhere to the previous graph-based diffusion and

3

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

consistency models (Austin et al., 2021; Sun & Yang, 2023;
Li et al., 2024) to define the noise process, i.e.,

q(xt|x0) = p(x0)Qt;Qt =

[
βt 1− βt

1− βt βt

]
, (1)

where Qt = Q1Q2 · · ·Qt is the cumulative transition prob-
ability matrix with βt ∈ [0, 1] to ensure doubly stochasticity.

4.1.2. OPTIMIZATION CONSISTENCY

Given a problem instance G and the optimal solution x∗,
the noising process for discrete diffusion applied to x∗

is formulated as a trajectory x0:T = x0,x1,x2, · · · ,xT ,
where x0 = x∗ and each xi is sampled from the distri-
bution q(xt|x0). While vanilla Diffusion demands multi-
ple inference steps to model pθ(xt−1|xt, G) which is time-
consuming in practice, to achieve efficient one-step model
generation, Consistency Models (Song et al., 2023) have put
forward the concept of self-consistency that maps any point
at any time step to the trajectory’s starting point, and Fast-
T2T (Li et al., 2024) has further defined the optimization
consistency for COPs that all points along any trajectory
map to their optimal solution conditioned on instance G.

The consistency function is denoted as fθ(xt, t, G) with
learnable parameters θ. According to the definition of self-
consistency, for two noised points xt1 and xt2 on the same
trajectory, the original learning objective of the model is to
minimize the distance d(·, ·) between their mapping points:

L(θ) = E
[
d
(
fθ(xt1 , t1, G), fθ(xt2 , t2, G)

)]
. (2)

To better utilize the supervising information of x∗ during
training-stage, the distance between the mapping points
fθ(xt, t, G) and x∗ can be specified as d (fθ(xt, t, G),x∗).
Further in this work, the triangle inequality is leveraged to
bound and reformulate the training objective as

L(θ) ≤ E
[
d
(
fθ(xt1 , t1, G), x∗)+ d

(
fθ(xt2 , t2, G), x∗)]. (3)

This way, the only concentration is as clear as an optimiza-
tion over the neural estimation fθ, via supervised learning
with d(·, ·) = Binary Cross Entropy(·, ·).

4.1.3. THE PROMPT OF PARTIAL SOLUTION

Beyond previous graph-based diffusion and consistency
models that directly feed (xt, t, G) to the neural network,
we introduce an additional prompting component to the
model input, i.e., a masked array of (yt, t, G,M). Here,

(yt)i = Y (xt,x
∗,M) =

{
(xt)i Mi = 0

(x∗)i Mi = 1
, (4)

where M ∈ {0, 1}M has the same shape of the solution x
and is sampled from M -dimensional Bernoulli distribution

with a hyper-parameter ρ controlling Pr(Mi = 1). This
scheme enables the model to learn to make predictions in
aware of current solving progress (featured by the partial
solution). To guarantee a fundamental performance while
promoting data diversity of the model, ρ is also generated
conforming to a probability function of

P (ρ) = α · δ(ρ− 0) + (1− α) · U(ρ), (5)

where δ(·) denotes the Dirac delta function and U(·) a uni-
form distribution over the interval [0, 1]. In this paper, we
set α as 0.9, and the relevant ablation study is presented in
Appendix G.1. Subsequently, the sampled M is updated
according to the constraints of the specific COP type. For in-
stance, in the context of MIS, if a node j that belongs to the
maximum independent set (i.e., x∗

j = 1) is in a prompted
state (where Mj = 1), then all its neighboring nodes will
also be placed in a prompted state.

4.2. Problem Solving: Adaptive Expansion via
Multi-Step Determination

4.2.1. THE MAIN PROCESS OF PROBLEM-SOLVING

In general, with a well-trained model fθ(·, ·, ·, ·), COEx-
pander generate solutions x for a given instance G through
multiple determination steps. In each determination process,
we first sample xT from the uniform distribution and update
it with the current partial solution x and its mask M, then
we follow Fast-T2T to use the model to obtain the probabil-
ity heatmap H via multi-step inferences. After that, H is
utilized as a guide to expand the number of determined de-
cision variables in solution set and correspondingly update
x and M, as formulated in Algorithm 1.

Algorithm 1 Multi-step solution expanding.
Input: COExpander model fθ(·, ·, ·, ·), problem instance
graph G, decision variable x with its maskM, determination
operator D, sequence of time points τ1 > τ2 > · · · >
τNτ−1, sequence of determination numbers n1 < n2 <
· · · < nNn .
Initialize determination step: d← 0,M← 0
while 0 ∈M do

Sample xT from uniform distribution U
Update with partial solution: yT ← Y (xT ,x,M)
Model Inference: pθ(x0|G)← fθ(yT , T,G,M)
for n = 1 to Nτ − 1 do

Sample x0 from distribution pθ(x0|G)

xτn ← p(x0)Qτn
yτn ← Y (xτn ,x,M)
pθ(x0|G)← fθ(yτn , τn, G,M)

end for
Predict probability heatmap of x: H ∼ pθ(x0|G)
x,M←D(H, G,x,M, nd)
d← d+ 1

end while
Output: Solution x

4

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

4.2.2. DETERMINATION OPERATIONS FOR COPS

Overview. A determination operator D generally consists
of two parts. 1) An order prioritizing the decision variables
xi ∈ x based on H, and 2) A rule to assign values to the de-
cision variables and update the mask accordingly. Note that
to avoid extra sensitivity to ad-hoc designs, the operators
are implemented upon the simplest greedy heuristics.

During problem solving, given the predicted probabil-
ity heatmap H ∈ RM , graph instance G, current (par-
tial) solution x ∈ {0, 1}M with the corresponding mask
M ∈ {0, 1}M , and the maximum number of determination
rounds nd, D functions iteratively in the following generic
manner. It traverses x in the order of priority, in the case
where Mi = 0 (implying an undetermined xi), assign
xi = λ ∈ {0, 1} and update its mask via certain rules. If the
number of determined decision variables (i.e.,

∑M
i=1 Mi)

reaches nd, or if the next assignment of xi would violate
the constraints of the problem, then terminate this round of
determination and return the updated x and M. Empirically,
we define the problem-specific operators as follows.

MCl. Order: node i with descending order of Hi. Rule:
expand the clique set with node i and assign xi = 1, Mi =
1. Further, for ∀j ∈ V, (i, j) /∈ E , update xj = 0,Mj = 1.

MCut. Order: node i with descending order of |Hi − 1
2 |.

Rule: expand either partition set with node i, i.e., assign
xi = ⌈Hi− 1

2⌉, Mi = 1. Note that MCut has no constraints
that incur chain reactions for extra variable assignments.

MIS. Order: node i with descending order of Hi. Rule:
expand the independent set with node i, i.e., xi = 1, Mi =
1. Further, for ∀j ∈ V, (i, j) ∈ E , update xj = 0,Mj = 1.

MVC. Order: node i with ascending order of Hi. Rule:
select node i that should not belong to the vertex cover set,
and assign xi = 0, Mi = 1. Further, for ∀j ∈ V, (i, j) ∈ E ,
update xj = 1,Mj = 1.

TSP and ATSP. Order: edge (i, j) with descending order of
Hij . Rule: Select edge (i, j) to prolong the tour and assign
xij = 1, Mij = 1. Further, if a node has been entered and
left, all its neighbors shall also be assigned M = 1,x = 0.

4.3. Model Architecture: A Task-Agnostic Graph
Convolutional Network

Sec. 4.1 and Sec. 4.2 have so far depicted a high-level the-
oretical pipeline of COExpander. Next, we introduce the
specific graph convolutional network (GCN) to embody the
θ that previously parameterized the framework. Provided
the generality of the six different COPs mentioned earlier,
the model is designed with the best cross-problem compati-
bility so that different COPs can be handled with a single
unified model, mainly encompassing tailored embedding
layers, graph convolutional layers, and output layers.

Model Input. Similar to the training stage, a masked array
(yt, t,M, G) is obtained as described in Sec. 4.1.3 and fed
to the model. Note the ground truth x∗ in Eq. 4 should be
replaced by the current (partial) solution x at solving stage.

Embedding Layers. The input items are first projected to
h-dimensional embeddings before convolution.

(hv,he,ht) = embed(yt, t,M,V, E), (6)

where hv , he and ht are the embeddings for the node, edge
and time step, respectively. In detail, for all 6 COPs, ht =
S(t). For node-selection problems, hv = S(yt), he =
S(E). For TSP, hv = S(V), he = S(yt). For ATSP, hv

is not used, he = S(yt). Here, S(·) = W (S′(·)), where
S′(·) denotes a sinusoidal embedding layer and W denotes
a learnable linear layer.

S′(t) = cat

(
sin

t

T
0
d

, cos
t

T
0
d

, sin
t

T
2
d

, . . . , cos
t

T
d
d

)
, (7)

where d is the embedding dimension, T is a large number
(e.g., 10000), and cat(·) denotes concatenation.

Convolution Layers. Developed upon Joshi et al. (2019),
this process can be expressed in a compact formulation:

(hi+1
v ,hi+1

e) = Convi(hi
v,h

i
e) + hi

t · (α, 1− α), (8)

Specially, for ATSP, we only perform convolution on the
edges, using the original edge features E to update:

(hi+1
e) = Convi(hi

e, E) + hi
t · (α, 1− α), (9)

where α is the indicator of the COP’s type (1 for node-
selections and 0 for edge-selections). hi

t = W i
T (ReLU(ht))

is the time-step feature and Conv(·, ·) denotes the cross-
layer convolution operation, i.e., aggregating messages from
neighboring nodes/edges and ReLU(·) activations.

Output Layers. To generate heatmaps for both node- and
edge-selection tasks, after a group normalization Norm(·),
a 2-D convolution is employed to transform the L-th (final)
graph convolutional outputs into binary classification logits
(corresponding to the Bernoulli distribution), followed by a
Softmax function to form predicted probabilities.

Hnode = Softmax(Conv2d(Norm(hL
v)), (10)

Hedge = Softmax(Conv2d(Norm(hL
e)). (11)

5. Experiments
5.1. Datasets and Metrics

Synthetic Data. For node-selection problems, we have
generated datasets of three types, RB (Xu et al., 2005),
ER (Erd6s & Rényi, 1960), and BA (Barabási & Albert,
1999). Following DiffUCO (Sanokowski et al., 2024), DI-
FUSCO (Sun & Yang, 2023), we generate RB-SMALL and

5

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 1. Results on MIS. GP: global prediction; LC: local construction; AE: adaptive expansion, hereinafter.

METHOD TYPE
RB-SMALL RB-LARGE ER-700-800 SATLIB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS Heuristics 20.09∗ 0.00% 45.81s 43.00∗ 0.00% 56.97s 44.97∗ 0.00% 60.75s 425.95∗ 0.00% 24.37s
Gurobi OR 20.09 0.00% 0.54s 42.19 1.83% 33.84s 38.78 13.75% 60.49s 425.92 0.01% 3.95s

DIFUSCO (S=1,Is=50) ‡ GP – – – – – – 38.64 14.08% 2.80s 424.74 0.29% 2.74s
Fast-T2T (S=1,Gs=5,Is=5) ‡ GP 19.50 2.89% 0.41s – – – 40.69 9.51% 1.03s 424.44 0.36% 1.70s
DiffUCO: CE (S=1, F=1) ‡ GP 19.20 4.37% 0.47s 38.49 10.43% 4.71s – – – – – –
COExpander (S=1,Ds=20,Is=1) AE 19.66 2.09% 0.11s 41.23 4.06% 0.62s 42.38 5.75% 0.47s 425.05 0.22% 0.23s
DIFUSCO (S=4,Is=50) ‡ GP – – – – – – 40.97 8.89% 5.45s 425.11 0.20% 2.96s
Fast-T2T (S=4,Gs=5,Is=5) ‡ GP 19.74 1.70% 0.86s – – – 41.74 7.17% 1.96s 425.00 0.25% 2.67s
DiffUCO: CE (S=4, F=1) ‡ GP 19.38 3.46% 1.59s 39.55 7.94% 25.48s – – – – – –
COExpander (S=4,Ds=20,Is=1) AE 19.71 1.88% 0.12s 41.44 3.58% 1.30s 42.56 5.34% 0.70s 424.78 0.28% 0.27s
COExpander (S=4,Ds=5,Is=20) AE 19.79 1.48% 0.65s 40.69 5.31% 5.48s 42.13 6.32% 4.30s 425.28 0.16% 1.06s

RB-LARGE for MCl, MIS, MVC, ER-700-800 for MIS, and
BA-SMALL and BA-LARGE for MCut. For TSP, we follow
DIFUSCO to conduct experiments on TSP-50, TSP-100,
TSP-500, TSP-1K, and for ATSP, we conduct experiments
on ATSP-50 and ATSP-100, ATSP-200 and ATSP-500.

Real-World Data. Following Meta-EGN (Wang & Li,
2023), we conduct experiments for MCl, MVC on two real
datasets Twitter (Jure, 2014) and COLLAB (Yanardag &
Vishwanathan, 2015). For MIS and TSP, we follow DI-
FUSCO (Sun & Yang, 2023) to use SATLIB and TSPLIB.

Ultra-Large Data. To further study the generalization
of the model, we generate the ultra-large scale datasets.
RB-GIANT for MCl, MIS, MVC; ER-1400-1600 for MIS;
BA-GIANT for MCut and TSP-10K. Detailed information
regarding the datasets are introduced in Appendix E.

Metrics. 1) Objective. The average objective of the so-
lutions w.r.t. the corresponding instances. For MCl, MIS,
MVC, the objective is the vertices number of the selected
subset. For MCut, the objective is the sum of weights of
edges between the two partitioned subsets. For TSP and
ATSP, it is the total distance of the solved tour. 2) Drop. The
relative performance drop w.r.t. the objective compared to
the solutions obtained by the baseline exact solver or heuris-
tic solver. Mathematically, drop =

∣∣∣ c(x;G)−c(x∗;G)
c(x∗;G)

∣∣∣ · 100%.
3) Time. The average computational time per instance. Un-
less otherwise specified, all experiments were conducted
with a batch size set to 1 or in single-thread mode.

5.2. Evaluated Methods and Model Settings

Baseline Solvers. We take Gurobi (Gurobi Optimization,
2023) for MCl, MCut, MIS, MVC; KaMIS (Lamm et al.,
2016) for MIS; LKH (Helsgaun, 2017), GA-EAX (Nagata
& Kobayashi, 2013) and Concorde (Applegate et al., 2006)
for TSP, as baseline solvers to obtain reference solutions for
computing the optimality drops of the other solvers.

Neural Solvers. We compared the following recent neural
methods. GCN (Joshi et al., 2019), MatNet (Kwon et al.,
2021), GNNGLS (Hudson et al., 2021), DIMES (Qiu et al.,

2022), Meta-EGN (Wang & Li, 2023), BQ-NCO (Drakulic
et al., 2023), DIFUSCO (Sun & Yang, 2023), RL4CO (Berto
et al., 2024), DiffUCO (Sanokowski et al., 2024), Fast-
T2T (Li et al., 2024), GOAL (Drakulic et al., 2024).

Training Settings. During the training phase, we set the
number of convolution layers to 12, the learning rate to
0.0002, and the number of training epochs to 50. During the
fine-tuning phase, we set the learning rate to 0.00005 and
the number of training epochs to 10. Detailed parameters
are provided in Appendix F.

Basic Solving Settings. 1) Inference Step Is: the number
of time-steps the model denoises in the inference phase. 2)
Sampling Number S: the number of heatmaps sampled from
pθ(x0|s) with different random seeds (Sun & Yang, 2023).

Special Solving Settings. 1) Determination Step Ds: ap-
plied by our COExpander, the maximum number of deter-
mination; 2) Gradient-search Step Gs: applied by Fast-T2T,
the number of gradient search steps. 3) Evaluation Factor
F: applied by DiffUCO, the times the number of diffusion
steps is increased compared to that used during training.

Note on the Implementation. First, all the aforementioned
traditional solvers have been re-implemented and, in the
process, we find several insights into their solving perfor-
mance worthy of further discussion (see Appendix D). Con-
sequently, this paper refrains from citing several obsolete
data from previous research. Second, for neural solvers,
we employ pre-trained checkpoints to replicate their perfor-
mance whenever available (in the table: ‡). Otherwise, we
retrain the models from scratch (in the table: #). Gener-
ally, we present the re-evaluated results of all the compared
methods obtained on our standardized datasets and a uni-
fied hardware configuration, thus ensuring an impartial and
consistent comparison.

5.3. Problem-Specific Improving Techniques

By convention, typical per-instance searching techniques
are used to further enhance the quality of solutions.

Beam Search. For MIS and MCl, when Ds is set as 1, the

6

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 2. Results on MCl, MVC and MCut. BS: beam search. FT: finetuned model.

MAXIMUM CLIQUE TYPE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi OR 19.08∗ 0.00% 0.90s 40.18∗ 0.00% 276.66s

Meta-EGN ‡ GP 17.51 8.30% 0.27s 33.79 15.49% 0.54s
DiffUCO: CE (S=1, F=1) ‡ GP 15.14 18.25% 0.56s – – –
COExpander (S=1,Ds=20,Is=1) AE 18.77 1.89% 0.05s 36.75 8.82% 0.15s
COExpander (S=1,Ds=1,Is=1) + BS GP 18.66 2.51% 0.02s 38.75 3.80% 0.10s
DiffUCO: CE (S=4, F=1) ‡ GP 16.21 12.53% 1.41s – – –
COExpander (S=4,Ds=5,Is=20) AE 19.00 0.50% 0.65s 39.06 2.99% 6.36s
COExpander (S=4,Ds=1,Is=1) + BS GP 18.98 0.68% 0.06s 39.88 0.90% 0.37s

MINIMUM VERTEX COVER TYPE
RB-SMALL RB-LARGE

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Gurobi OR 205.76∗ 0.00% 3.34s 968.23∗ 0.00% 290.23s

Meta-EGN ‡ GP 208.97 1.56% 0.30s 1010.69 4.40% 1.03s
COExpander (S=1,Ds=20,Is=1) AE 206.75 0.48% 0.21s 969.92 0.18% 0.52s
COExpander (S=4,Ds=20,Is=1) AE 206.51 0.37% 0.39s 969.81 0.16% 0.63s

MAXIMUM CUT TYPE
BA-SMALL BA-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi OR 727.84∗ 0.00% 60.61s 2936.89∗ 0.00% 300.21s

DiffUCO: CE (S=1, F=1) ‡ GP 726.90 0.15% 0.20s 2986.93 -1.69% 0.65s
COExpander (S=1,Ds=20,Is=1) AE 727.53 0.06% 0.18s 2978.20 -1.39% 0.20s
COExpander-FT (S=1,Ds=20,Is=1) AE 726.54 0.20% 0.17s 2980.51 -1.47% 0.20s
DiffUCO: CE (S=4, F=1) ‡ GP 727.53 0.06% 0.61s 2989.46 -1.77% 2.70s
COExpander (S=4,Ds=1,Is=20) GP 728.32 -0.05% 0.20s 2960.66 -0.80% 0.36s
COExpander-FT (S=4,Ds=1,Is=20) GP 728.27 -0.04% 0.20s 2987.14 -1.69% 0.36s Figure 2. Ablation study.

determination process can be enhanced by a beam search
strategy where k (default: 16) candidate sets are maintained
simultaneously during the search. When a node is being
determined, each candidate set is checked, and once the
constraints met, the node is added to the corresponding set.

Objective Guided Fine-Tuning. Inspired by Sanokowski
et al. (2023; 2024), we adopt the energy function of MCut as
an unsupervised loss function to fine-tune the MCut model,
where C is a constant (1000) to limit the loss function value.
Note that we used the same training set as initial training.

L =
∑

(i,j)∈E

1

C
· (2xi − 1) · (2xj − 1) (12)

Two-Opt. Two-Opt is widely employed to improve the so-
lutions for routing problems (Deudon et al., 2018; da Costa
et al., 2020; Li et al., 2023). For TSP, given a distance matrix
D and an initial tour x1, ...,xp,xp+1, ...,xq−1,xq,xq+1, ...,
two nodes xp and xq are selected to perform the Two-
Opt operation, i.e., connecting the two nodes and swap-
ping the subsequence between them and resulting a
new path x1, ...,xp,xq,xq−1...,xp+1,xq+1. The reward
r = Dp,p+1 + Dq,q+1 − Dp,q − Dp+1,q+1 denotes
the improvement after the swap. For ATSP, given an
initial tour x1, ...,xp,xp+1, ...,xq−1,xq,xq+1, ..., Two-
Opt performing on nodes xp and xq results in a new
path x1, ...,xp,xq,xp+1...,xq−1,xq+1 with reward r =
Dp,p+1 + Dq−1,q + Dq,q+1 − Dp,q − Dq,p+1 − Dq−1,q+1.
In each iteration, the new tour that yields the maximum
reward is fixed for the next round. The iteration terminates
when either no further improvements can be made or the
maximum number of iterations (default: 5000) is reached.

5.4. Main Results

Main experimental results are presented in Table 1 (MIS),
Table 2 (MCl, MVC and MCut), and Table 3 (TSP & ATSP).
The complete results with more model settings evaluated
and standard deviations of the performance drop reported
are provided in Table 18 through Table 23 in Appendix G.

Node-selection Problems. Compared to previous SOTA,
COExpander reduces the drop by 37.9%, 94.4%, 92.4%
and 1.4% on average, with a speedup of 8.4x, 1.1x, 2.2x
and 5.9x, on MIS, MCl, MVC, and MCut, respectively.

Edge-selection Problems. Compared to previous SOTA,
our COExpander achieves an average performance improve-
ment of 27.8%, 75.4% on TSP and ATSP respectively.

5.5. Ablation Study

On Inference Steps. As shown in Fig. 2 (top), with Is
increasing (1, 5, 10, 20), the optimality drop generally varies
in a downward trend, decreasing from an average of about
7.0% to 4.1%. This naturally aligns with what has been
observed in previous diffusion-based models.

On Determination Steps. As Ds increases from 1 to 20, the
drop decreases significantly from an average of about 7.0%
to 2.2% (Fig. 2 (middle)). This also reasonably conforms
to the motivation of AE that more determination rounds
enables a more precise utilization of each prediction.

On Multiple Sampling. As shown in Fig. 2 (bottom), the
drop decreased intuitively as S grows, reaching 4.8% as S
set to 8 to allow richer diversity of solution sampling.

7

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 3. Results on TSP and ATSP across problem sizes.

METHOD TYPE
TSP-50 TSP-100 TSP-500 TSP-1K

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde Exact 5.69∗ 0.00% 0.06s 7.76∗ 0.00% 0.24s 16.55∗ 0.00% 18.67s 23.12∗ 0.00% 84.41s
LKH (500) Heuristics 5.69 0.00% 0.06s 7.76 0.00% 0.18s 16.55 0.00% 1.85s 23.12 0.00% 4.64s
GA-EAX Heuristics 5.69 0.00% 0.10s 7.76 0.00% 1.86s 16.55 0.00% 1.86s 23.12 0.00% 17.54s

GCN + 2OPT # GP 5.69 0.07% 0.01s 7.78 0.24% 0.01s 16.77 1.35% 0.06s 23.53 1.77% 0.23s
GNNGLS + 2OPT # GP 5.71 0.33% 0.02s 7.86 1.30% 0.13s – – – – – –
DIMES + 2OPT # GP 5.89 3.58% 0.01s 8.11 4.54% 0.01s 17.66 6.71% 0.31s 24.91 7.74% 0.66s
DIFUSCO (S=1,Is=50) + 2OPT ‡ GP 5.69 0.10% 2.59s 7.78 0.27% 2.69s 16.81 1.59% 2.78s 23.54 1.83% 3.42s
Fast-T2T (S=1,Is=5) + 2OPT ‡ GP 5.69 0.02% 0.25s 7.76 0.07% 0.25s 16.70 0.91% 0.33s 23.39 1.16% 0.95s
RL4CO (SymNCO) + 2OPT ‡ LC 5.73 0.68% 0.17s 7.89 1.75% 0.32s – – – – – –
BQ-NCO + 2OPT ‡ LC 5.80 1.89% 0.21s 7.89 1.77% 0.39s 16.84 1.77% 2.45s 23.65 2.29% 5.72s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 5.69 0.02% 0.08s 7.76 0.04% 0.09s 16.63 0.49% 0.24s 23.34 0.95% 0.70s

DIFUSCO (S=4,Is=50) + 2OPT ‡ GP 5.69 0.02% 2.69s 7.76 0.07% 2.69s 16.70 0.92% 3.03s 23.42 1.31% 7.89s
Fast-T2T (S=4,Is=5) + 2OPT ‡ GP 5.69 0.01% 0.26s 7.76 0.02% 0.27s 16.63 0.50% 0.47s 23.29 0.74% 1.93s
BQ-NCO + Beam-16 + 2OPT ‡ LC ‡ 5.79 1.72% 0.24s 7.87 1.48% 0.90s 16.77 1.33% 4.02s 23.51 1.71% 10.34s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 5.69 0.01% 0.09s 7.76 0.01% 0.18s 16.59 0.25% 0.66s 23.27 0.64% 2.43s

METHOD TYPE
ATSP-50 ATSP-100 ATSP-200 ATSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LKH (1000) Heuristics 1.55∗ 0.00% 0.10s 1.57∗ 0.00% 0.24s 1.56∗ 0.00% 0.72s 1.57∗ 0.00% 4.38s

MatNet ‡ LC 1.58 1.32% 0.04s 1.62 3.26% 0.06s 3.83 145.08% 0.11s – – –
GOAL # LC 1.65 5.85% 0.31s 1.64 4.61% 0.64s 1.62 3.35% 1.4s 1.72 9.02% 3.26s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 1.57 1.13% 0.09s 1.60 2.26% 0.10s 1.60 2.56% 0.52s 1.61 2.41% 1.77s
MatNet (×16) ‡ LC 1.56 0.30% 0.04s 1.59 1.58% 0.07s 3.73 138.40% 0.16s – – –
GOAL + Beam-16 # LC 1.63 4.74% 0.35s 1.62 3.53% 0.91s 1.61 2.86% 4.69s 1.70 8.13% 32.24s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 1.56 0.17% 0.10s 1.58 0.95% 0.52s 1.59 1.50% 1.10s 1.60 1.57% 6.60s

Table 4. Results for generalization experiments on ultra-large scale node-selection problems.

METHOD TYPE
RB-GIANT (MCl) BA-GIANT (MCut) RB-GIANT (MIS) ER-1400-1600 (MIS) RB-GIANT (MVC)

OBJ.↑ TIME↓ OBJ.↑ TIME↓ OBJ.↑ TIME↓ OBJ.↑ TIME↓ OBJ.↓ TIME↓
Gurobi (60s) OR 50.98 60.25s 7216.96 61.23s 44.76 56.01s 40.82 62.14s 2400.80 60.01s
Gurobi (300s) OR 51.92 302.64s 7217.86 300.50s 46.72 302.73s 41.20 304.49s 2398.48 211.42s
Gurobi (3600s) OR 81.52 3606.20s 7217.90 3601.34s 48.56 3426.21s 44.81 3602.52s 2396.78 1813.79s

COExpander AE 84.12 1.52s 7381.92 1.76s 46.64 14.66s 48.43 4.52s 2400.36 8.20s

Additionally, under the same number of model calls (e.g.,
with Ds · Is fixed), the “partial-to-full” multi-step determi-
nations (AE) demonstrate better stability and effectiveness
than the “noise-to-full” multi-step inferences (GP). Com-
plete results are provided in Table 17 (Appendix G).

On Backbone Models. Despite our design choice of the ad-
vanced generative model to embody COExpander, we also
test vanilla GCN to empower AE. Results in Table 16 show
superior performance of COExpander-GCN over GCN, val-
idating our stance that any backbone model (readily tai-
lored for COP solving) can be adapted to instantiate the AE
paradigm to enjoy the model-agnostic performance gain.

5.6. Generalization Study

Cross-Distribution Generalization: On Real-World Data.
For MCl and MVC, we train COExpander on RB-SMALL
and test it on Twitter and COLLAB. As shown in Table 19
and Table 20, COExpander achieves a performance improve-
ment of 19.7% on MCl and 98.5% on MVC compared with
the previous SOTA, i.e., Meta-EGN. For TSP, we test our
model on 2D Euclidean instances selected from TSPLIB
with 51 to 1002 nodes. A competitive drop of only 0.367%
is achieved. Per-instance results are provided in Table 24.

Cross-Scale Generalization: On Ultra-Large Scale Data.
For node-selection problems, COExpander is trained on
RB-LARGE and ER-700-800, and tested on RB-GIANT and
ER-1400-1600. Results in Table 4 demonstrate COExpander
as the first neural solver to outperform Gurobi(3600s) by
1.9% with a significant speedup of 1134.1x. For TSP, we
fine-tune the TSP-1K model to solve TSP-10K, reducing
the drop from 1.595% to a new SOTA of 1.450% with a
speedup of 1.39x , as shown in Table 22.

A summary of results on all COPs comparing COEx-
pander with previous SOTA is listed in a single Table 25.

6. Extended Discussions and Experiments
6.1. Sampling Methods for the Node-Selection Problems

In addition to learning-based methods, sampling methods
like iSCO (Sun et al., 2023) and RLSA (Feng & Yang, 2025)
have shown strong capabilities in solving COPs with simple
constraints, such as node-selection problems in this paper.
These methods transform a problem into an energy function
and perform sampling guided by gradient information.

Given that these sampling methods do not depend on spe-
cific distributions and do not require training, we take the

8

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 5. Using the RLSA as a post-processor for COExpander on MIS. τ0: initial temperature; d: regularization factor; k: parallel
numbers; t: iterations; β: penalty factor of the energy function; α1&α2: initialization factors; FAIL: no feasible solution generated.

DATASET
RLSA SETTINGS RLSA (using 2t) COEXPANDER + RLSA

τ0 d k t β α1 α2 OBJ. DROP↓ TIME↓ OBJ. DROP↓ TIME↓
RB-SMALL 0.01 5 1000 500 1.02 0.16 0.3 20.084 0.028±0.712% 0.534s 20.070 0.093±0.655% 0.449s
RB-LARGE 0.01 5 1000 1000 1.02 0.09 0.3 41.870 2.569±1.745% 2.166s 42.400 1.366±1.493% 1.738s
ER-700-800 0.2 10 1000 1000 1.001 0.12 0.3 44.906 0.130±1.488% 1.657s 44.984 -0.041±1.389% 1.352s

SATLIB 0.01 5 1000 1000 1.02 0.67 0.3 FAIL – – 425.316 0.151±0.173% 1.778s
ER-1400-1600 0.2 10 1000 1000 1.001 0.07 0.3 50.414 1.019±1.335% 3.797s 50.719 0.418±1.489% 4.416s

RB-GIANT 0.01 5 1000 1000 1.02 0.04 0.3 FAIL – – 47.880 2.741±2.001% 9.526s

Table 6. Results on CVRP across problem sizes.

METHOD TYPE
CVRP-50 CVRP-100 CVRP-200 CVRP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
HGS (Vidal et al., 2012) Heuristics 10.37∗ 0.00% 1.01s 15.56∗ 0.00% 20.03s 19.63∗ 0.00% 60.02s 37.15∗ 0.00% 360.38s

RL4CO (Sym-NCO) + Classic-LS # LC 10.56 1.91% 0.09s 15.93 2.38% 0.17s 20.19 2.88% 0.34s 38.70 4.17% 0.88s
COExpander + Classic-LS AE 10.77 3.90% 0.04s 16.22 4.25% 0.06s 20.59 4.89% 0.15s 39.12 5.34% 0.61s

RLSA as an example and orthogonally apply it as a post-
processing plugin for the vertex selection problem on top of
our method. Algorithm 2 shows how we integrate RLSA as
a post-processor, where τ0 denotes the initial temperature;
d represents the regularization term, where the d-th largest
gradient value is used to control the overall flipping probabil-
ity; k indicates the number of parallel runs, which must be
greater than d; t represents the total number of iterations; α2

denotes the noise factor. To diversify the initialization and
facilitate escaping local optima, we introduce some noise
to the initial solution x0. Besides, we have adjusted the
initialization part of original RLSA by incorporating prior
knowledge: the initial probability of each node is changed
from p0 = 0.5 to p0 = 0.5α1, where α1 = 2

N

∑N
i=1(xi).

Algorithm 2 RLSA as Post-Processor.
Input: Grpah G, Energy Function H(·), hyperparameter (τ0, d,
k, t, α2), Initial Solution x0.
Parallel k:
x← Bernoulli((1− α2) · x0 + α2 · Bernoulli(p = 0.5))
for s = 1 to t do

τ ← τ0(1− s−1
t

), ∆← (2x− 1)⊙∇H(x)
for i = 1 to N do

p← Sigmoid
(
(∆i −∆(d))/(2τ)

)
c ∼ Bernoulli(p)
xi ← xi · (1− c) + (1− xi) · c

end for
if H(x) < H(x∗) then

x∗ ← x
end if

end for
Output: Solution x

We conduct experiments on the MIS using RLSA as a solver
and as a post-processor for COExpander, as shown in Ta-
ble 5. It should be noted that, to ensure fairness in the time
dimension, we used twice the number of iterations t when
employing RLSA as a solver. The experimental results
demonstrate the strong solving capability of the sampling

method, but there are also cases where no feasible solution
could be found. However, when served as a post-processor,
since the initial state starts from a feasible solution, the phe-
nomenon of not finding a feasible solution can be avoided.

6.2. Applied to Capacitated Vehicle Routing Problem

We have attempted to apply COExpander to CVRP-50,
CVRP-100, CVRP-200 and CVRP-500, as shown in Table 6,
where Classic-LS is the post-processing method for CVRP
that we have designed based on previous works (Prins, 2004;
Vidal et al., 2012). Details of the experimental setup and
corresponding discussions are provided in the Appendix H.

The results demonstrate that COExpander performs less
favorably on CVRP. We believe this is due to the limita-
tions of the global predictor, i.g. consistency model, of
COExpander. To our best knowledge, before our work, con-
sistency model (Li et al., 2024) has only been applied to two
combinatorial optimization problems: TSP and MIS. As a
direction for future work, we elaborate in Appendix H on
the potential of extending AE to more complex constrained
problems such as CVRP, via integration with Markov De-
cision Processes (MDP) and Proximal Policy Optimization
(PPO, Schulman et al. (2017)).

7. Conclusion and Future Work
We propose the AE paradigm and COExpander model for
NCO, combining the advantages of global prediction and
local construction methods to achieve adaptive granularity
of neural decisions. Our method reaches SOTA performance
on 6 COPs compared to 11 neural baselines. Future work
includes 1) coupling outer mask updates with inner diffu-
sion steps; 2) solving more COPs like the vehicle routing
problems; and 3) fine-tuning the iterative determination with
RL for a more principled expansion. Details of future work
and limitations of our paper are discussed in Appendix H.

9

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Impact Statement
This work aims to improve the field of neural combina-
torial optimization with a streamlined generative method
of stronger performance, higher efficiency and better inter-
pretability. To the best of our knowledge, no aspect of our
research raises ethical issues or harmful insights.

References
Ahn, S., Seo, Y., and Shin, J. Learning what to defer for

maximum independent sets. In International Conference
on Machine Learning. PMLR, 2020.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-
corde tsp solver, 2006.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Baty, L., Jungel, K., Klein, P. S., Parmentier, A., and Schif-
fer, M. Combinatorial optimization-enriched machine
learning to solve the dynamic vehicle routing problem
with time windows. Transportation Science, 2024.

Berto, F., Hua, C., Park, J., Luttmann, L., Ma, Y., Bu, F.,
Wang, J., Ye, H., Kim, M., Choi, S., Zepeda, N. G.,
Hottung, A., Zhou, J., Bi, J., Hu, Y., Liu, F., Kim, H.,
Son, J., Kim, H., Angioni, D., Kool, W., Cao, Z., Zhang,
Q., Kim, J., Zhang, J., Shin, K., Wu, C., Ahn, S., Song,
G., Kwon, C., Tierney, K., Xie, L., and Park, J. Rl4co:
an extensive reinforcement learning for combinatorial
optimization benchmark, 2024.

Chen, X. and Tian, Y. Learning to perform local rewrit-
ing for combinatorial optimization. Advances in neural
information processing systems, 32, 2019.

da Costa, P. R. d. O., Rhuggenaath, J., Zhang, Y., and Akcay,
A. Learning 2-opt heuristics for the traveling salesman
problem via deep reinforcement learning. In Pan, S. J.
and Sugiyama, M. (eds.), Proceedings of The 12th Asian
Conference on Machine Learning, volume 129 of Pro-
ceedings of Machine Learning Research, pp. 465–480.
PMLR, 18–20 Nov 2020.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., and
Rousseau, L.-M. Learning heuristics for the tsp by pol-
icy gradient. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 15th In-
ternational Conference, CPAIOR 2018, Delft, The Nether-
lands, June 26–29, 2018, Proceedings 15, pp. 170–181.
Springer, 2018.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli, J.-
M. Bq-nco: Bisimulation quotienting for efficient neural
combinatorial optimization, 2023.

Drakulic, D., Michel, S., and Andreoli, J.-M. Goal: A
generalist combinatorial optimization agent learner, 2024.

Erd6s, P. and Rényi, A. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci, 5:17–61, 1960.

Feng, S. and Yang, Y. Regularized langevin dynam-
ics for combinatorial optimization. arXiv preprint
arXiv:2502.00277, 2025.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large tsp instances. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pp. 7474–7482, 2021.

Guo, W., Zhen, H., Li, X., Luo, W., Yuan, M., Jin, Y., and
Yan, J. Machine learning methods in solving the boolean
satisfiability problem. Machine Intelligence Research,
2023.

Gurobi Optimization, L. Gurobi optimizer reference manual
(2020), 2023.

Helsgaun, K. An extension of the lin-kernighan-helsgaun
tsp solver for constrained traveling salesman and vehicle
routing problems. Roskilde: Roskilde University, 12,
2017.

Holme, P. and Kim, B. J. Growing scale-free networks
with tunable clustering. Physical review E, 65(2):026107,
2002.

Hudson, B., Li, Q., Malencia, M., and Prorok, A. Graph
neural network guided local search for the traveling sales-
person problem. arXiv preprint arXiv:2110.05291, 2021.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Jure, L. Snap datasets: Stanford large network dataset
collection. Retrieved December 2021 from http://snap.
stanford. edu/data, 2014.

Kim, M., Park, J., and Kim, J. Learning collaborative
policies to solve np-hard routing problems. In Advances
in neural information processing systems, 2021.

Kim, M., Park, J., and Park, J. Sym-nco: Leveraging
symmetricity for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:
1936–1949, 2022.

10

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Kim, M., Choi, S., Kim, H., Son, J., Park, J., and Bengio, Y.
Ant colony sampling with GFlownets for combinatorial
optimization. In The 28th International Conference on
Artificial Intelligence and Statistics, 2025.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kool, W., van Hoof, H., Gromicho, J., and Welling, M.
Deep policy dynamic programming for vehicle routing
problems. In International conference on integration
of constraint programming, artificial intelligence, and
operations research, pp. 190–213. Springer, 2022.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33:21188–21198, 2020.

Kwon, Y.-D., Choo, J., Yoon, I., Park, M., Park, D., and
Gwon, Y. Matrix encoding networks for neural combi-
natorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Lamm, S., Sanders, P., Schulz, C., Strash, D., and Wer-
neck, R. F. Finding near-optimal independent sets at
scale. In 2016 Proceedings of the eighteenth workshop
on algorithm engineering and experiments (ALENEX),
pp. 138–150. SIAM, 2016.

Li, Y., Guo, J., Wang, R., and Yan, J. From distribution
learning in training to gradient search in testing for com-
binatorial optimization. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Li, Y., Guo, J., Wang, R., Zha, H., and Yan, J. Fast t2t: Opti-
mization consistency speeds up diffusion-based training-
to-testing solving for combinatorial optimization. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Li, Y., Ma, J., Pan, W., Wang, R., Geng, H., Yang, N., and
Yan, J. Unify ml4tsp: Drawing methodological principles
for tsp and beyond from streamlined design space of
learning and search. In The Thirteenth International
Conference on Learning Representations, 2025.

Lischka, A., Wu, J., Chehreghani, M. H., and Kulcsár, B. A
great architecture for edge-based graph problems like tsp,
2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

Luo, F., Lin, X., Wang, Z., Tong, X., Yuan, M., and Zhang,
Q. Self-improved learning for scalable neural combinato-
rial optimization, 2024.

Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-opt. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Min, Y., Bai, Y., and Gomes, C. P. Unsupervised learning
for solving the travelling salesman problem, 2024.

Nagata, Y. and Kobayashi, S. A powerful genetic algorithm
using edge assembly crossover for the traveling salesman
problem. INFORMS Journal on Computing, 25(2):346–
363, 2013.

Pan, W., Xiong, H., Ma, J., Zhao, W., Li, Y., and Yan,
J. UniCO: On unified combinatorial optimization via
problem reduction to matrix-encoded general TSP. In
The Thirteenth International Conference on Learning
Representations, 2025.

Paschos, V. T. Applications of combinatorial optimization.
John Wiley & Sons, 2014.

Prins, C. A simple and effective evolutionary algorithm for
the vehicle routing problem. Computers & operations
research, 31(12):1985–2002, 2004.

Qiu, R., Sun, Z., and Yang, Y. DIMES: A differentiable
meta solver for combinatorial optimization problems. In
Advances in Neural Information Processing Systems 35,
2022.

Sanokowski, S., Berghammer, W., Hochreiter, S., and
Lehner, S. Variational annealing on graphs for combi-
natorial optimization. Advances in Neural Information
Processing Systems, 36:63907–63930, 2023.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffusion
model framework for unsupervised neural combinatorial
optimization. In Forty-first International Conference on
Machine Learning, 2024.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Singh, G. and Rizwanullah, M. Combinatorial optimization
of supply chain networks: A retrospective & literature
review. Materials today: proceedings, 62:1636–1642,
2022.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models, 2023.

Studio, I. I. C. O. V20.1: User’s manual for cplex. IBM
Corp, pp. 1–20, 2020.

Sui, J., Ding, S., Liu, R. T., Xu, L., and Bu, D. Learning
3-opt heuristics for traveling salesman problem via deep
reinforcement learning. In Asian Conference on Machine
Learning, 2021.

11

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Sui, J., Ding, S., Xia, B., Liu, R., and Bu, D. Neuralgls:
learning to guide local search with graph convolutional
network for the traveling salesman problem. Neural Com-
put. Appl., 36(17):9687–9706, October 2023. ISSN 0941-
0643. doi: 10.1007/s00521-023-09042-6.

Sun, H., Goshvadi, K., Nova, A., Schuurmans, D., and Dai,
H. Revisiting sampling for combinatorial optimization.
In International Conference on Machine Learning, pp.
32859–32874. PMLR, 2023.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and
Rei, W. A hybrid genetic algorithm for multidepot and
periodic vehicle routing problems. Operations Research,
60(3):611–624, 2012.

Wang, H. and Li, P. Unsupervised learning for combina-
torial optimization needs meta-learning. arXiv preprint
arXiv:2301.03116, 2023.

Wang, Q. and Tang, C. Deep reinforcement learning for
transportation network combinatorial optimization: A
survey. Knowledge-Based Systems, 233:107526, 2021.

Wang, R., Guo, Z., Pan, W., Ma, J., Zhang, Y., Yang, N.,
Liu, Q., Wei, L., Zhang, H., Liu, C., et al. Pygmtools:
A python graph matching toolkit. Journal of Machine
Learning Research, 25(33):1–7, 2024.

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998.

Xin, L., Song, W., Cao, Z., and Zhang, J. Neurolkh: Com-
bining deep learning model with lin-kernighan-helsgaun
heuristic for solving the traveling salesman problem. In
Advances in Neural Information Processing Systems, vol-
ume 34, 2021.

Xu, K., Boussemart, F., Hemery, F., and Lecoutre, C. A
simple model to generate hard satisfiable instances. arXiv
preprint cs/0509032, 2005.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1365–1374, 2015.

Ye, H., Wang, J., Cao, Z., Liang, H., and Li, Y. Deepaco:
neural-enhanced ant systems for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems,
36, 2024a.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
Glop: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2024b.

Zhang, J., Liu, C., Li, X., Zhen, H.-L., Yuan, M., Li, Y., and
Yan, J. A survey for solving mixed integer programming
via machine learning. Neurocomputing, 519:205–217,
2023.

Zheng, J., He, K., Zhou, J., Jin, Y., and Li, C.-M. Combin-
ing reinforcement learning with lin-kernighan-helsgaun
algorithm for the traveling salesman problem. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35
(14):12445–12452, May 2021. doi: 10.1609/aaai.v35i14.
17476.

Zheng, Z., Zhou, C., Xialiang, T., Yuan, M., and Wang, Z.
Udc: A unified neural divide-and-conquer framework for
large-scale combinatorial optimization problems. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Zhou, S., Ding, Y., Zhang, C., Cao, Z., and Jin, Y. Dualopt:
A dual divide-and-optimize algorithm for the large-scale
traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, February 2025.

12

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

A. Additional Related Work
Prior to the prevalence of end-to-end neural combinatorial optimization as we introduced in Sec. 1 and Sec. 2, traditional
solvers from operations research and some neural-heuristic attempts were widely applied, demonstrating the progress of the
manner and level of neural involvement for solving COPs. Additionally, a series of solution optimizing approaches as well
as divide-and-conquer frameworks have also been devised as post- or prior-inference techniques at a higher and orthogonal
level for solving COPs. We hereby include them as related work to form a comprehensive review.

Solvers from Operations Research. These methods depend on linear (integer) programming algorithms to discover
exact or near-optimal solutions to COPs, commonly resorting to branch and bound, cutting planes, meta-heuristics, etc.
Representatively, CPLEX (Studio, 2020), Gurobi (Gurobi Optimization, 2023), etc., are globally leading large-scale
optimizers. For certain tasks, Concorde (Applegate et al., 2006), LKH (Helsgaun, 2017), GA-EAX (Nagata & Kobayashi,
2013) for TSP, and KaMIS (Lamm et al., 2016) for MIS, etc., are designed with reputed efficiency and quality. These
traditional solvers have exhibited strong performance on their respective problems, yet at the cost of a great deal of expert
knowledge and solving time, especially when the instances scale up large.

Machine Learning Enhanced Heuristics. These works have focused on devising or improving heuristics incorporating
machine learning components. They either adjust partial parameters of traditional solvers or design heuristics under neural
guidance. VSRLKH (Zheng et al., 2021) and NeuroLKH (Xin et al., 2021) combine LKH with reinforcement learning (RL)
and supervised learning (SL) respectively. GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2023) hybridize
GNNs and Guided Local Search (GLS) for TSP solving. Similar works (da Costa et al., 2020; Sui et al., 2021; Ma et al.,
2023) are there to solve COPs by neurally defining 2-, 3-, and k-opt heuristics in a data-driven manner. Kool et al. (2022);
Ye et al. (2024a); Kim et al. (2025) also explore to combine ML techniques with heuristics upon dynamic programming, ant
colony, and probabilistic search algorithms. Note that a common drawback is their heavy dependence on established solvers
and lack of universality, as they require tailoring specialized neural tricks for particular base solvers to achieve satisfactory
synergy.

Solution Optimization Approaches. These works primarily focus on how to optimize starting from an initial solution,
which is typically obtained using a simple heuristic, such as a greedy algorithm. NeuRewriter (Chen & Tian, 2019) uses
neural networks to learn how to select heuristics (e.g. k-opt) and iteratively rewrite local parts of the current solution to
optimize it. NeuOpt (Ma et al., 2023) learns to perform flexible k-opt exchanges based on a tailored action factorization
method and a customized recurrent dual-stream decoder, and proposed the Guided Infeasible Region Exploration (GIRE)
scheme, applying the idea of taboo search to combinatorial optimization. Att-GCRN (Fu et al., 2021) use the heatmap
obtained from the global predictor to guide the Monte Carlo search (MCTS), thereby optimizing the initial TSP tour.

Divide-and-Conquer (D&C) Frameworks. In terms of solving large scaled CO problems, resorting to divide-and-conquer
paradigm is popular and proved feasible and performant, as shown in Fig. 3. Fu et al. (2021) trains a lightweight model to
predict sub-heatmaps which are later combined for large TSP instances. Luo et al. (2024) proposes a self-improved learning
method for better scalability. Most recently, GLOP (Ye et al., 2024b) and UDC (Zheng et al., 2024) learn to partition
large routing problems into sub-TSPs or sub-VRPs and conquer them via local revisers. Kim et al. (2021) introduces a
collaborative policy framework that explicitly decouples exploration (via diversified solution generation) and exploitation
(via parallelized local revision). In this paper, we primarily focus on the solution construction process, yet D&C methods
can always be further employed on top of these paradigms.

SolutionInstance � Initial Tour

Unselected
Selected

������
 ���������

Sub -TSP Solver -- Conquer

Divide Compose
Neural Model

Neural Model

Figure 3. The solving pipeline of the D&C frameworks (GLOP (Ye et al., 2024b)). They are mainly applied for edge-selection problems.

13

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

B. Discussion on the Paradigms for Neural Combinatorial Optimization
B.1. Comparison of Solving Pipelines

Local Construction (LC). As shown in Fig. 4 (a), LC use the well-trained neural networks to predict the best next-step
action (e.g., selecting the next node/edge) given the current state. This process is executed continuously until a complete
solution is constructed.

Global Prediction (GP). As shown in Fig. 4 (b), given graph data G, GP use the well-trained neural networks (i.e. fθ(·)) to
globally predict the probability H that each node or edge is selected, and then decode H to obtain solutions x.

Adaptive Expansion (AE). As shown in Fig. 4 (c), given graph data G, AE iteratively perform adaptive expansion processes.
For each process, AE use the global predictor (i.e. fθ(·, ·, ·)) to globally predict the probability H that each node or edge
is selected, and then utilizes the most convincing components of the H to determine (i.e. D(·, ·, ·, ·, ·)) the corresponding
decision variables x. We further discuss existing methods that can be categorized in a generalized AE family in Sec. B.4.

Neural Model

Until ∀� ∈ �, �� = �

� ← ��(�, �, �) �, � ← ������(�, �, �)

Score

Unselected
Selected

Current State

Ed
ge

-S
el

ec
tio

n
N

od
e-

Se
le

ct
io

n

New State Solution

(a) Local Construction.

Instance � Neural Model Heatmap Solution

Unselected
Selected

��(��|�) ← ��(�) �~��(��|�)� = (�, �) � ← ������(�)

N
od

e-
Se

le
ct

io
n

Ed
ge

-S
el

ec
tio

n

Instance � Neural Model Heatmap Solution

Unselected
Selected

(b) Global Prediction.

Current State Neural Model SolutionNew StateHeatmap

Until all decision variables are determined Undetermined

Determined and not selected
Determined and selected��(�|�) ← ��(�, �, �) �~��(�|�) �, � ← �(�, �, �, �, ��)� ← �(�, �)

N
od

e-
Se

le
ct

io
n

Ed
ge

-S
el

ec
tio

n

(c) Adaptive Expansion (ours).

Figure 4. The solving pipeline of the three paradigms. G: graph data; x: decision variables;M and M : mask; y: partial solution; θ:
model parameters;H: probability heatmap; D: determination operator.

14

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

B.2. Limitations of Existing LC Solvers

Modeling Limitation. The past LC solvers (Kwon et al., 2021; Drakulic et al., 2023; Berto et al., 2024; Drakulic et al.,
2024) generally involves primarily trained to learn how to predict the next node to select/visit the next node based on the
current state rather than determining whether the next nodes belong to the solution set. Therefore, they are difficult to
directly apply to the four node-selection problems discussed in this paper.

Subpar Performance and Inefficiency. We take TSP as an example to compare the differences between Fast-T2T (GP
solver) and SymNCO (LC solver) in terms of performance and time. Both adopt a greedy decoding method, and the results
are presented in Table 7. Despite the consistent total amount of reasoning information (For TSP-K, GP reasons K2 edges in
one inference, and LC also reasons a total of K2 edges in K inferences), the actual reasoning time of LCis obviously higher
than that of GP due to its sequential decoding method. Additionally, when the scale increases, the solving performance of
Sym-NCO drops sharply, and it is even worse than the greedy insertion algorithm when it comes to TSP-500.

Table 7. Comparison of performance and time of LC and GP paradigms on TSP.

METHOD TYPE
TSP-50 TSP-100 TSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde (Applegate et al., 2006) Exact 5.688∗ 0.000% 0.074s 7.756∗ 0.000% 0.404s 16.546∗ 0.000% 18.672s
Insertion (Ye et al., 2024b) Heuristic 6.126 7.708% 0.002s 8.508 9.699% 0.003s 18.608 12.461% 0.006s

Fast-T2T (S=1, Is=1) (Li et al., 2024) GP 5.706 0.297% 0.058s 7.858 1.269% 0.068s 17.828 7.500% 0.164s
Sym-NCO (RL4CO) (Berto et al., 2024) LC 5.738 0.877% 0.169s 7.927 2.209% 0.304s 21.105 27.561% 0.460s

B.3. Limitations of Existing GP Solvers

Modeling Limitation. We find that the graph neural networks (GNNs) used by previous GP solvers (Joshi et al., 2019;
Sun & Yang, 2023; Li et al., 2024) all performed convolutions on nodes, which required initial node features, such as the
node coordinates in TSP. Therefore, these GNNs were difficult to apply to the ATSP, which only has a distance matrix. The
MatNet (Kwon et al., 2021) of LC paradigm provides a method for obtaining node features from an asymmetric matrix, but
we fail to apply it to our convolutional network. To address this issue, we abandoned node features and adopted convolutions
only on edges. To our best knowledge, this is the first global predictor with good performance for ATSP.

Prediction Conflicts. Although GP solvers can obtain a large amount of information, i.e., probability heatmap H, in a
single inference process, they still require specific decoding methods to extract solutions from H. Take the most common
greedy decoding algorithm applied to MIS as an example. When selecting nodes from high to low according to H, the most
tricky thing is the addition of the current node causing constraint conflicts. Since the acquisition and decoding of H is a
two-stage process, the only way for GP solvers to deal with such conflicts in the decoding stage is to skip the conflict node
and continue searching, which leads to poor final solving results. We refer to this kind of conflict as prediction conflict,
and use Nc to denote the total number of prediction conflict, use C1 to denote the number of determined nodes/edges when
the first prediction conflicts occurs. We take Fast-T2T (Li et al., 2024) as the representative of GP solvers to study and
the results are shown in Table 8. We provide the following explanation for the experimental results: 1) An increase in the
number of inferences can reduce the frequency of prediction conflicts in the heatmap decoding and delay the first occurrence
of prediction conflicts; 2) The reduction of prediction conflicts generally improves the decoding results. However, when
the first prediction conflict occurs relatively early (i.e., C1 ≪ Obj.) the interpretability of subsequent predictions is lower,
thereby leading the possibility that a single step of inference may perform worse than multi-steps.

Table 8. Study of prediction conflicts on MIS.

METHOD
RB-SMALL SATLIB

Obj.∗↑ Obj.↑ Drop↓ Nc ↓ C1 ↑ Obj.∗↑ Obj.↑ Drop↓ Nc ↓ C1 ↑
Fast-T2T (S=1, Is=1) (Li et al., 2024) 20.090 18.552 7.553% 39.334 9.604 425.954 421.734 0.995% 187.240 291.448
Fast-T2T (S=1, Is=3) (Li et al., 2024) 20.090 18.412 8.239% 9.532 15.034 425.954 423.266 0.634% 97.326 343.450
Fast-T2T (S=1, Is=5) (Li et al., 2024) 20.090 18.818 6.265% 3.092 17.272 425.954 424.112 0.434% 27.862 407.824

METHOD
ER-700-800 ER-1400-1600

Obj.∗↑ Obj.↑ Drop↓ Nc ↓ C1 ↑ Obj.∗↑ Obj.↑ Drop↓ Nc ↓ C1 ↑
Fast-T2T (S=1, Is=1) (Li et al., 2024) 44.969 36.922 17.888% 152.070 17.414 50.938 36.414 28.499% 1116.219 4.531
Fast-T2T (S=1, Is=3) (Li et al., 2024) 44.969 36.117 19.680% 73.539 21.359 50.938 34.305 32.649% 1010.984 4.039
Fast-T2T (S=1, Is=5) (Li et al., 2024) 44.969 37.375 16.888% 22.289 29.516 50.938 33.203 34.806% 959.797 5.016

15

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

B.4. Comparison of Existing AE Solvers

Similar to the mature paradigms GP and LC, we are dedicated to fostering our newly proposed AE paradigm so that
more innovative works can be subsumed within this category. To our knowledge, similar concepts have been devised in a
few previous works, while systematic proposal and analyses of a new solving paradigm have yet to emerge till our work.
LwD (Ahn et al., 2020) introduces a deferred Markov Decision Process (MDP) that dynamically adjusts the number of
decision stages by allowing the agent to either determine or defer vertex inclusion at each step. Extended upon LCP (Kim
et al., 2021) and GLOP (Ye et al., 2024b), DualOPT (Zhou et al., 2025) attempts to address TSP through a dual divide-
and-conquer strategy. It integrates a grid-based partitioning phase, which decomposes the problem into subgrids solved in
parallel using LKH3, and a path-based optimization phase, where neural solvers refine subpaths iteratively. The nodes and
edges within each round of conquering process is determined by the rough solution from LKH (Helsgaun, 2017), and only
interior determinations are fixed towards subsequent rounds.

Table 9. Comparison of methods with similar design as our AE paradigm.

METHOD PARADIGM TECHNIQUE APPLICABLE PROBLEMS

LwD (Ahn et al., 2020) AE GCN+RL MIS (locally decomposable)
DualOPT (Zhou et al., 2025) AE LKH+GAT+RL TSP

COExpander (Ours) AE Diffusion+SL
MIS, MVC, MCl, MCut,

TSP, ATSP, CVRP

Table 10. Comparative results on MIS and TSP of AE Solvers. † denotes results reported from the original paper.

MIS TYPE
ER-700-800 ER-1400-1600

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS Heur. 44.97∗ 0.00% 60.75s 50.94∗ 0.00% 60.82s

LwD (Ahn et al., 2020) (S=1) AE 37.29 17.07% 0.59s 39.52 22.40% 1.47s
COExpander (S=1,Ds=20,Is=1) AE 42.38 5.75% 0.47s 48.16 5.43% 2.21s
LwD (Ahn et al., 2020) (S=4) AE 39.21 12.80% 0.61s 42.48 16.60% 1.48s
COExpander (S=4,Ds=20,Is=1) AE 42.56 5.34% 0.46s 48.43 4.91% 4.52s

TSP TYPE
TSP-1K TSP-10K

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde / LKH(500) Exact / Heur. 23.12∗ 0.00% 84.41s 71.76∗ 0.00% 332.76s

DualOPT (Zhou et al., 2025)† AE 23.31 0.83% 5.60s 72.62 1.21% 33.90s
COExpander AE 23.27 0.64% 2.43s 72.80 1.45% 29.50s

Reproduction of LwD. We follow the training code provided in the github repository3 of the Lwd (Ahn et al., 2020) and
have made some fixes. We train the model for 20,000 iterations on the unlabeled ER-700-800 dataset (generated randomly)
and test it on our ER-700-800 and ER-1400-1600 datasets. The results are shown in Table 10.

Remark. Lwd is trained using reinforcement learning (Proximal Policy Optimization), which inevitably encounters
challenges such as sparse rewards and scalability constraints. Moreover, its application scope is relatively narrow, solely
applicable to the “locally decomposable” problems (i.e., node-selection tasks in our discourse). DualOPT, on the other
hand, places greater emphasis on the divide-and-conquer principle. Its core competence stems from the robust initial
solutions computed by LKH, even requiring up to 10 runs. However, it is exclusively tailored for TSP. Notably, COExpander
represents a pioneering effort in synergizing the latest generative architectures with supervised learning, exhibiting extensive
applicability across node-selection (isolated constraints like MIS), edge-selection tasks (simple global constraints like TSP),
and even more complex-constrained VRPs (discussed thoroughly in Appendix ??). On basic COPs on graphs, COExpander
achieves state-of-the-art performance without relying on any external pre-solving techniques. Despite the limitations inherent
in these methods, we retain an open-minded stance to view them as the preliminary practices within the paradigm of adaptive
solution expansion (AE) for combinatorial optimization problems on graphs. It is our hope that this novel NCO pipeline will
foster further innovations.

3https://github.com/sungsoo-ahn/learning_what_to_defer

16

https://github.com/sungsoo-ahn/learning_what_to_defer

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

C. Formal Problem Definitions
In this paper, our proposed method is evaluated on six representative COPs on graphs. Given a graph G = (V, E), where
V = {1, 2, · · · , N} denotes the node set and E the edge set, the tasks can be defined as follows.

Maximum Clique (MCl). Given G, a clique K ⊆ V is a subset of nodes such that every pair of nodes in K is adjacent.
Mathematically, it aims to find K that maximizes |K| s.t., ∀i, j ∈ K, (i, j) ∈ E .

Maximum Cut (MCut). Given G, a cut C = (S, S) is a partition of the node set V into two disjoint sets S and S.
Mathematically, the problem is to find a cut C that maximizes

∑
i∈S,j∈S Cij , where C is the adjacency matrix of G.

Maximum Independent Set (MIS). Given G, an independent set S ⊆ V is a subset of nodes such that no two nodes in S
are adjacent. Mathematically, it aims to find S that maximizes |S| s.t., ∀i, j ∈ S, (i, j) /∈ E .

Minimum Vertex Cover (MVC). Given G, a vertex cover C ⊆ V is a subset of nodes such that for every edge (i, j) ∈ E ,
at least one of i or j is in C. Mathematically, it aims to find C that minimizes |C| s.t., ∀(i, j) ∈ E , i ∈ C or j ∈ C.

Traveling Salesman Problem (TSP). Given G along with a cost matrix C of shape N ×N where the entry Cij is the cost
for edge (i, j) ∈ E , it aims to find the tour τ = (i1, · · · , iN) to minimize the cost

∑N−1
k=1 Cikik+1

+CiN i1 .

Asymmetric Traveling Salesman Problem (ATSP). ATSP is a special case of TSP where the cost matrix is not necessarily
symmetric, i.e., Cij = Cji dose not always hold for all i, j ∈ V . In particular, we follow (Kwon et al., 2021; Drakulic
et al., 2023; Ye et al., 2024b) to study the metric ATSP where the triangle inequality holds, i.e., Cij +Cjk ≥ Cik for any
different three nodes i, j, and k.

D. Discussion of Non-Learning Baseline Solvers
During our experimental implementation, a number of issues have been uncovered regarding the baseline solvers and
benchmark data referenced in numerous prior articles. 1) there is a continuous citation of articles from several years past,
yet the cited solvers are either outdated or have incorrect parameter settings. 2) the performance of the devices (dating back
several years) utilized is subpar, which presents an obvious unfairness when compared to neural combinatorial optimization
(NCO) approaches employing advanced CPU and GPU equipment. Therefore, we have used the more recent versions of all
the non-learning traditional solvers employed in this paper, analyzed and discussed the solving parameters of some solvers,
and conducted experiments on the dataset in a fair and advanced CPU environment. Additionally, to facilitate the use by
future researchers, we have encapsulated all solvers and wrote convenient Python versions.

D.1. Gurobi

Introduction. Gurobi (Gurobi Optimization, 2023) is a versatile optimization solver used for solving various types of
mathematical programming problems, including linear programming (LP), mixed-integer programming (MIP), quadratic
programming (QP), and more. In this paper, we use Gurobi to solve problems such as MCl, MCut, MIS and MVC. Although
the field researching these problems is currently making extensive use of the Gurobi, we notice that there is no work that
systematically introduces how Gurobi solves these problems. Therefore, we will provide a detailed introduction to the three
stages of Gurobi’s solution process for these COPs, thereby providing a basis for the setting of Gurobi’s time limits. Note
that we use the version 11.0.34, released on July 11, 2024.

Solving Stages. 1) Pre-solving. The pre-solving stage is the first step in Gurobi’s optimization process. During this stage,
Gurobi performs several operations to simplify the problem. The objective of pre-solving is to remove unnecessary variables,
constraints, and simplify the structure of the problem, making it easier to solve. Additionally, Gurobi will also use built-in
heuristic algorithms to obtain an initial solution during this stage. 2) Root Relaxation. After pre-solving, Gurobi will
solve the root relaxation, which refers to solving a relaxed version of the MIP (e.g. treating integer variables as continuous).
Root relaxation is a key part of Gurobi’s branch-and-bound algorithm, providing an initial solution and helping guide
the subsequent search process. 3) Optimization. The optimization stage follows the root relaxation and begins the main
branch-and-bound process. During this stage, Gurobi explores the search tree by branching on decision variables and solving
subproblems recursively. The optimization process continues until an optimal solution is found or the time limit is reached.

An Example. We take an instance each from the RB-LARGE and RB-GIANT test datasets of MCl as examples. As shown in

4https://www.gurobi.com/downloads/gurobi-optimizer-readme-v11-0-3/

17

https://www.gurobi.com/downloads/gurobi-optimizer-readme-v11-0-3/

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Fig. 5, the time for Pre-Solve is very short, which means the solver obtained a heuristic initial solution at a very fast speed
and then began the Root Relaxation. During the Root Relaxation stage, the solver is dealing with the relaxed problem, so it
does not modify the solution of the original problem. Therefore, if the preset time limit is reached during this stage, it is
equivalent to directly returning a relatively poor heuristic solution. This is also why the results are so poor when we set a
300-second time limit for Gurobi to solve RB-GIANT. Therefore, when setting the time limit for Gurboi, it is necessary to
first obtain the approximate time for Root Relaxation of the problem to be solved, and the time limit must exceed this time.

0 20 40 60 80 100 120 140
Time

30

35

40

45

50

O
bj

ec
ti

ve
 V

al
ue

Optimization Progress Over Time (MCl-RB-LARGE)

Incumbent
Bound

(a) RB-LARGE

0 200 400 600 800 1000 1200 1400
Time

40

50

60

70

80

90

100

O
bj

ec
ti

ve
 V

al
ue

Optimization Progress Over Time (MCl-RB-GIANT)

Incumbent
Bound

(b) RB-GIANT

Figure 5. The curve of objective during Gurobi solving MCl. Incumbent: the current searched best solution.

D.2. LKH

LKH (Helsgaun, 2017), Lin-Kernighan-Helsgaun, is a heuristic algorithm for solving the TSP and its variants, such as the
ATSP. LKH uses local search and neighborhood exchange techniques (like 2-opt, 3-opt, etc.) to iteratively improve the
current solution, generating shorter paths. Known for its strong performance, LKH can find near-optimal solutions and excel
in real-world applications, especially for large-scale problems. The version of LKH we used is 3.0.75.

We greatly appreciate the work done by PyLKH6, which provides a Python interface for LKH and has been widely used in
various previous studies on ML4TSP, such as DIFUSCO (Sun & Yang, 2023), T2TCO (Li et al., 2023), FastT2T (Li et al.,
2024), etc. However, during our re-implementation process, we discovered that the lkh package7 utilizes the SPECIAL
parameter when calling LKH. This setting affects several parameters, including Gain23Used. When SPECIAL is enabled,
Gain23Used is set to 0 in LKH, which disables the use of both 2-opt and 3-opt. Therefore, we removed this setting when
solving the TSP, resulting in a significant improvement. As shown in Table 11, for TSP, we achieved an average performance
improvement of 97.7% in terms of drop when trials set to 100 and 95.8% when trials set to 500; for ATSP, the performance
improvement is 99.7% and 99.9% respectively.

D.3. Others

KaMIS Solver (Lamm et al., 2016) is a powerful tool designed for solving the MIS problem. KaMIS employs a combination
of greedy algorithms, local search techniques, and meta-heuristics like Simulated Annealing and Genetic Algorithms to
explore the solution space. These methods are designed to quickly converge to good solutions, even for large-scale graphs
where exact methods would be too slow. We use the version 0.3.08, released on Oct 11, 2024.

Concorde Solver (Applegate et al., 2006) is an exact solver for the TSP. It combines advanced mathematical optimization
techniques such as cutting-plane and branch-and-bound to achieve exact solutions efficiently. We use the version 03.12.199,
released on Dec 19, 2003.

5http://akira.ruc.dk/˜keld/research/LKH-3/LKH-3.0.7.tgz
6https://github.com/ben-hudson/pylkh
7https://pypi.org/project/lkh/2.0.0/
8https://github.com/KarlsruheMIS/KaMIS/releases/tag/v3.0
9https://www.math.uwaterloo.ca/tsp/concorde/downloads/codes/src/co031219.tgz

18

http://akira.ruc.dk/~keld/research/LKH-3/LKH-3.0.7.tgz
https://github.com/ben-hudson/pylkh
https://pypi.org/project/lkh/2.0.0/
https://github.com/KarlsruheMIS/KaMIS/releases/tag/v3.0
https://www.math.uwaterloo.ca/tsp/concorde/downloads/codes/src/co031219.tgz

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

GA-EAX Solver (Nagata & Kobayashi, 2013) is a genetic algorithm-based method for solving TSP. It leverages the
Edge Assembly Crossover (EAX) operator, a well-known crossover technique specifically designed for TSP, to generate
high-quality solutions. We use the version 1.010, released on Dec 29, 2021.

Table 11. Comparative results regarding our re-implemented LKH and the widely used original package. “Improv.” denotes the relative
improvement in terms of the optimality drop.

DATASET TRIALS
LKH Package Re-Implementation IMPROV.

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
TSP-50 100 5.68941 0.03120±0.15186% 0.03379s 5.68770 0.00180±0.02233% 0.03667s 94.231%
TSP-50 500 5.68787 0.00478±0.05548% 0.04831s 5.68763 0.00071±0.01361% 0.05833s 85.146%

TSP-100 100 7.77324 0.22374±0.37015% 0.05615s 7.75615 0.00394±0.03000% 0.07887s 98.239%
TSP-100 500 7.76210 0.08038±0.19958% 0.07386s 7.75593 0.00099±0.01413% 0.17751s 98.768%
TSP-500 100 16.79727 1.51973±0.55313% 0.37958s 16.54771 0.01153±0.02733% 0.72745s 99.241%
TSP-500 500 16.69069 0.87548±0.37302% 0.41296s 16.54616 0.00217±0.01042% 1.84759s 99.752%
TSP-1K 100 23.60515 2.10707±0.53664% 1.31383s 23.12207 0.01709±0.02402% 2.11221s 99.189%
TSP-1K 500 23.43974 1.39137±0.36672% 1.36344s 23.11936 0.00536±0.01069% 4.64110s 99.615%

ATSP-50 100 1.55778 0.20841±0.41944% 0.05988s 1.55449 0.00068±0.01395% 0.05986s 99.674%
ATSP-50 500 1.55572 0.07764±0.23443% 0.08643s 1.55449 0.00014±0.00496% 0.08226s 99.820%
ATSP-100 100 1.57642 0.66077±0.64928% 0.11557s 1.56606 0.00131±0.01127% 0.12431s 99.802%
ATSP-100 500 1.57037 0.27685±0.36311% 0.16125s 1.56604 0.00007±0.00236% 0.21403s 99.975%

E. Re-Standardization of Benchmark Datasets
Upon reviewing the recent work relevant to the COPs investigated in this paper, we have identified a substantial disparity
in the benchmark datasets employed for evaluation among the works that examine the same problems, including, but not
limited to, unfixed data generation process, varied quantity of testing samples, different normalization tricks, etc. This
significant variation considerably reduces the informativeness and fairness of the evaluation process. In response to this
issue, our work represents the first and vastest attempt to standardize the training and testing datasets within the NCO
community for the six COPs included in this paper. Through this effort, we have established a total of 29 normative datasets
that serve as benchmarks for different scales of the corresponding problems, as summarized in Table 12. The specific
parameters for data synthesis of each type are introduced separately below.

E.1. Datasets for Node-Selection Problems

RB Graph. Following previous works (Li et al., 2024; Sanokowski et al., 2024), we use the so-called RB-Model (Xu et al.,
2005) to generate RB Graph. Three main generation parameters: 1) n: the number of cliques, which are groups of nodes
that are fully interconnected; 2) k: the number of nodes within the clique are specified. 3) p: the parameter that controls the
level of interconnectivity between different cliques. We have generated three scales of RB datasets, each corresponding
to a distinct number of nodes. RB-SMALL: v ∈ (200, 300), n ∈ (20, 25) , k ∈ (5, 12), p ∈ (0.3, 1.0). RB-LARGE:
v ∈ (800, 1200), n ∈ (40, 55) , k ∈ (20, 25), p ∈ (0.3, 1.0). RB-GIANT: v ∈ (2000, 3000), n ∈ (50, 60) , k ∈ (40, 50),
p ∈ (0.3, 1.0). v denotes the number of nodes in a graph.

ER Graph. ER graph (Erd6s & Rényi, 1960) is randomly generated with each edge maintaining a fixed probability of being
present or absent, independently of the other edges. We follow DIFUSCO (Sun & Yang, 2023), Fast-T2T (Li et al., 2024) to
set the probability as 0.15 and generate two datasets of different scales: ER-700-800 and ER-1400-1600.

BA Graph. BA graph (Barabási & Albert, 1999) is a scale-free graph where nodes are added incrementally, linking
preferentially to highly connected nodes. At each step, a new node is added to the graph, which connects to at most n
existing nodes. We follow DiffUCO (Sanokowski et al., 2024) to set n as 4 and generate three datasets of different scales:
BA-SMALL, BA-LARGE, and BA-GIANT. The number of nodes are consistent with the RB graph.

Twitter Graph and COLLAB Graph. Twitter Graph dataset (Jure, 2014) and COLLAB dataset (Yanardag & Vishwanathan,
2015) are both part of the Stanford Network Analysis Project collection. Twitter Grpah represents a snapshot of the social
network formed by Twitter users and their interactions, and COLLAB Graph represents collaboration networks among
scientists in various fields (nodes are scientists, and edges denote co-authorships). We download the original datasets from

10https://github.com/nagata-yuichi/GA-EAX

19

https://github.com/nagata-yuichi/GA-EAX

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

TUDataset11 and follow Meta-EGN (Wang & Li, 2023) to select 20% of the data as the generalization test sets.

E.2. Datasets for Edge-Selection Problems

Uniform Graph. For TSP, we follow Sun & Yang (2023) to generate TSP instances by randomly sampling nodes from a
uniform distribution over the unit square and the data scale ranges from 50 to 10K. For ATSP, we follow the pioneering
work (Kwon et al., 2021) to randomly sample the distance matrix from a uniform distribution over the unit square and
ensure the satisfaction of triangle inequality. Note that unlike recent works (Drakulic et al., 2023; Ye et al., 2024b; Drakulic
et al., 2024; Lischka et al., 2024) that re-permute or re-normalize the distance matrices differently, we resist performing any
additional tricks on the graph data to ensure fair comparison. The data scale of ATSP includes 50, 100, 200, 500.

SATLIB. Follow previous works (Qiu et al., 2022; Sun & Yang, 2023; Li et al., 2024), we divide the SATLIB12 dataset, and
then transform the SAT problems into MIS problems.

TSPLIB. We select 2D-Euclidean distance data with the number of nodes ranging from 51 to 1002 from TSPLIB13.

Table 12. List of our re-collated datasets benchmarking six COPs for training and testing COExpander and any related neural solvers. The
“MODEL” column denotes the dataset on which the model is trained. I.e., datasets with the same “TYPE” and “MODEL” is suggested
for i.i.d. training-testing, whereas datasets with different “TYPE” and “MODEL” (with “testing” part only) are designed for evaluating
the o.o.d. generalization performance of models trained on the corresponding (smaller-scaled, differently distributed, etc.) data. The
parentheses indicate the solver parameters used: the maximum solution time for Gurobi and KaMIS; the maximum trials for LKH.

ID PROBLEM TYPE MODEL
Training Testing

DATA SIZE SOLVER STORAGE DATA SIZE SOLVER OBJ.

1 MCl RB-SMALL RB-SMALL 64,000 Gurobi(60s) 3.42GB 500 Gurobi(60s) 19.082
2 MCl Twitter RB-SMALL – – – 195 Gurobi(60s) 14.210
3 MCl COLLAB RB-SMALL – – – 1000 Gurobi(60s) 42.113
4 MCl RB-LARGE RB-LARGE 6,400 Gurobi(300s) 4.74GB 500 Gurobi(300s) 40.182
5 MCl RB-GIANT RB-LARGE – – – 50 Gurobi(3600s) 81.520

6 MCut BA-SMALL BA-SMALL 128,000 Gurobi(60s) 1.78GB 500 Gurobi(60s) 727.844
7 MCut BA-LARGE BA-LARGE 128,000 Gurobi(300s) 8.08GB 500 Gurobi(300s) 2936.886
8 MCut BA-GIANT BA-LARGE – – – 50 Gurobi(300s) 7217.900

9 MIS RB-SMALL RB-SMALL 64,000 KaMIS(10s) 3.52GB 500 KaMIS(60s) 20.090
10 MIS RB-LARGE RB-LARGE 6,400 KaMIS(60s) 4.74GB 500 KaMIS(60s) 43.004
11 MIS RB-GIANT RB-LARGE – – – 50 KaMIS(60s) 49.260
12 MIS ER-700-800 ER-700-800 12,800 KaMIS(60s) 7.83GB 128 KaMIS(60s) 44.969
13 MIS ER-1400-1600 ER-700-800 – – – 128 KaMIS(60s) 50.938
14 MIS SATLIB SATLIB 39,500 KaMIS(60s) 3.75GB 500 KaMIS(60s) 425.954

15 MVC RB-SMALL RB-SMALL 128,000 Gurobi(60s) 7.01GB 500 Gurobi(60s) 205.764
16 MVC Twitter RB-SMALL – – – 195 Gurobi(60s) 85.251
17 MVC COLLAB RB-SMALL – – – 1000 Gurobi(60s) 65.086
18 MVC RB-LARGE RB-LARGE 6,400 Gurobi(300s) 4.74GB 500 Gurobi(300s) 968.228
19 MVC RB-GIANT RB-LARGE – – – 50 Gurobi(300s) 2398.480

20 TSP Uniform-50 Uniform-50 1,280,000 Concorde 2.48GB 1280 Concorde 5.688
21 TSP Uniform-100 Uniform-100 1,280,000 Concorde 4.95GB 1280 Concorde 7.756
22 TSP Uniform-500 Uniform-500 64,000 Concorde 1.26GB 128 Concorde 16.546
23 TSP Uniform-1K Uniform-1K 64,000 LKH(1000) 2.53GB 128 Concorde 23.118
24 TSP Uniform-10K Uniform-10K 6,400 LKH(500) 2.59GB 16 LKH(500) 71.755
25 TSP TSPLIB Mixed – – – 49 Concorde 8.062

26 ATSP Uniform-50 Uniform-50 640,000 LKH(500) 14.72GB 2500 LKH(1000) 1.5545
27 ATSP Uniform-100 Uniform-100 128,000 LKH(500) 11.78GB 2500 LKH(1000) 1.5660
28 ATSP Uniform-200 Uniform-200 32,000 LKH(1000) 11.76GB 100 LKH(1000) 1.5647
29 ATSP Uniform-500 Uniform-500 6,400 LKH(1000) 14.70GB 100 LKH(1000) 1.5734

Broader Impact. Future research on NCO solvers can be conveniently and consistently evaluated within the unified protocol
of our re-standardized benchmarks and re-implemented baseline solvers.

11https://chrsmrrs.github.io/datasets/docs/datasets/
12https://www.cs.ubc.ca/˜hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
13http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

20

https://chrsmrrs.github.io/datasets/docs/datasets/
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

F. Details of Model Setting
Hardware. All models are trained and tested using NVIDIA H100 (80G) GPUs and an Intel(R) Xeon(R) Platinum 8558
96-Core Processor CPU. For all test evaluations, a single GPU is utilized, and the batch size is set to 1 to ensure a fair
comparison of the solving time across different models.

Training Settings and Hyper-parameters. We have organized the training settings and model parameters of COExpander
in Table 13. In the table, we adopt the name of the targeted training data to denote each individually trained model (21 in
total) throughout this paper. In a curriculum-learning manner, models trained on larger-scale data are initialized from those
trained on smaller-scale data. For instance, we first train the model for MCl problem on RB-SMALL dataset (line 1) for at
least 50 epochs from scratch, and subsequently use the exact model weights to initialize the training on RB-LARGE (line 2)
for at least another 10 epochs. Note that AdamW (Loshchilov & Hutter, 2018) optimizer is adopted with a cosine-decayed
LR scheduler and a weight decay of 0.0001 to train all the models.

Table 13. Hyper-parameters and datasets for training COExpander on different COPs. Pre-train: the checkpoint to initialize corresponding
model. Epoch: the minimum number of training epochs required (over corresponding data size) to guarantee reliable reproduction of
our reported results. LR: learning rate. LR and batch size are tuned to align each other to suit our computational resources. Sparse:
sparsification factor by K-Nearest Neighbors, with -1 meaning the model is trained on dense graphs. Layers: the number of GCN layers.

ID PROBLEM MODEL PRE-TRAIN
Training Parameters Model Parameters

DATA SIZE EPOCH BATCH SIZE LR SPARSE LAYERS HIDDEN DIM.

1 MCl RB-SMALL – 64,000 50 8 2e-4 N/A 12 256
2 MCl RB-LARGE RB-SMALL 6,400 10 4 5e-5 N/A 12 256

3 MCut BA-SMALL – 128,000 50 8 2e-4 N/A 12 256
4 MCut BA-SMALL-FT BA-SMALL 128,000 10 4 5e-5 N/A 12 256
5 MCut BA-LARGE BA-SMALL 128,000 10 4 5e-5 N/A 12 256
6 MCut BA-LARGE-FT BA-LARGE 128,000 10 4 5e-5 N/A 12 256

7 MIS RB-SMALL – 64,000 50 8 2e-4 N/A 12 256
8 MIS RB-LARGE RB-SMALL 6,400 10 4 5e-5 N/A 12 256
9 MIS ER-700-800 – 12,800 50 4 2e-4 N/A 12 256

10 MIS SATLIB – 39,500 50 4 2e-4 N/A 12 256

11 MVC RB-SMALL – 128,000 50 8 2e-4 N/A 12 256
12 MVC RB-LARGE RB-SMALL 6,400 10 4 5e-5 N/A 12 256

13 TSP Uniform-50 – 1,280,000 50 32 2e-4 -1 12 256
14 TSP Uniform-100 Uniform-50 1,280,000 50 16 2e-4 -1 12 256
15 TSP Uniform-500 Uniform-100 64,000 50 4 2e-4 50 12 256
16 TSP Uniform-1K Uniform-500 64,000 50 2 2e-4 100 12 256
17 TSP Uniform-10K Uniform-1K 6,400 10 1 5e-5 50 12 256

18 ATSP Uniform-50 – 640,000 50 32 2e-4 -1 12 256
19 ATSP Uniform-100 Uniform-50 128,000 50 16 2e-4 -1 12 256
20 ATSP Uniform-200 Uniform-100 32,000 50 4 2e-4 -1 12 256
21 ATSP Uniform-500 Uniform-200 6,400 10 1 5e-5 -1 12 256

Discussion on Graph Sparsification. For node-selection problems, the original data is sparse by nature, eliminating the
need for additional processing. In contrast, for edge-selection problems, e.g., TSP and ATSP, in order to cut down on
training memory and shrink the search space, the prevalent approach is to employ K-Nearest Neighbors (KNN) to sparsify
the distance matrix. However, the application of KNN inevitably results in the loss of partial information from the original
problem, which consequently causes deviations in problem-solving.

For instance, given graph data G, consider an edge ei,j belonging to the optimal solution set x∗, if ei,j is the s-th nearest edge
from point i, and if K is less than s, then the optimal solution of the sparse problem Gs

K , i.e., xs
K , will no longer be equivalent

to that on the original dense graph, i.e., x∗. We define Rs
K as the proportion of edges in x∗ that remain in Gs

K , which reflects
the degree of influence introduced by sparsification over the quality of the training data with supervision. Additionally,
we define the K-nearest sparse loss as Ls

K =
∣∣∣ c(xs

K ;G)−c(x∗;G)
c(x∗;G)

∣∣∣ · 100%, which represents the relative performance drop
of xs

K with respect to x∗. Obviously, the choice of K involves a trade-off among Rs
K , Ls

K and the benefits of sparsity,
such as reduced memory usage and accelerated search. Therefore, we conduct experiments on the sparse factor K for
each node-selection problem, and the results are demonstrated in Table 14. The experimental results indicate that graph
sparsification has little adverse impact on problem-solving for TSP (Rs

K = 100% with K = 50), thus justifying the

21

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

presumption that xs
K = x∗ when K is set as 50. However, for ATSP, such impact is significant: even with a large value

assigned to K (e.g., K > 100), a considerable number of optimal edges would be excluded from the supervision label after
sparsification. Consequently, in this paper, we apply graph sparsification with K = 50 to TSP, but refrain from using graph
sparsification for ATSP.

Table 14. Results on edge-selection tasks with different sparsification factors.

PROBLEM OBJ.∗↓ K = 20 K = 50 K = 100

RK
s ↑ OBJ.↓ LK

s ↓ RK
s ↑ OBJ.↓ LK

s ↓ RK
s ↑ OBJ.↓ LK

s ↓
TSP-500 16.546 99.990% – – 100.000% – – – – –
TSP-1K 23.118 99.993% – – 100.000% – – – – –

ATSP-200 1.5647 95.120% 1.6949 8.2896% 98.400% 1.6082 2.7630% 99.455% 1.5800 0.9551%
ATSP-500 1.5734 94.802% 1.7391 10.5228% 98.054% 1.6365 4.0116% 99.124% 1.6000 1.6945%

PROBLEM OBJ.∗↓ K = 150 K = 200 K = 250

RK
s ↓ OBJ.↓ LK

s ↓ RK
s ↓ OBJ.↓ LK

s ↓ RK
s ↓ OBJ.↓ LK

s ↓
ATSP-200 1.5647 99.860% 1.5688 0.2566% – – – – – –
ATSP-500 1.5734 99.488% 1.5884 0.9526% 99.668% 1.5830 0.6064% 99.794% 1.5802 0.4267%

G. Supplementary Experiments and Discussions
G.1. Supplementary Results of Ablation Study

Ablation on α in Eq. 5. To determine the value of α in Eq. 5, we conduct ablation experiments on MIS(RB-SMALL) as an
example. We train the same model under six different settings (α ∈ [0.2, 0.5, 0.8, 0.9, 0.95, 0.99]), focusing primarily on
the results of the first seven epochs, as shown in Table 15 and Fig. 6. Since α is merely a probability value for prompting
and does not directly affect the loss function, the training results tend to converge when the number of epoch is large. The
experimental results show that, when the value of α is set relatively low (e.g., 0.2, 0.5), the model has poor effect on one-shot
reasoning. And when α is set relatively high (e.g., 0.95, 0.99), due to the smaller proportion of prompted samples, there
may be a certain delay in the model’s learning of the mask M. Therefore, we believe that the value of alpha should be set
around 0.8 to 0.9. Furthermore, we observed that the first determination round often dominates the final performance, we
thus ultimately chose α = 0.9 in this paper, with the expectation that the model will be sufficiently trained on cases to solve
from scratch while balancing the training diversity for solving from arbitrary intermediate states.

1 2 3 4 5 6 7
Epoch

10

11

12

13

14

Dr
op

 (%
)

Metric
Alpha = 0.2
Alpha = 0.5
Alpha = 0.9
Alpha = 0.99

(a) COExpander (S=1, Ds=1, Is=1)

1 2 3 4 5 6 7
Epoch

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Dr
op

 (%
)

Metric
Alpha = 0.2
Alpha = 0.5
Alpha = 0.9
Alpha = 0.99

(b) COExpander (S=1, Ds=20, Is=1)

Figure 6. Ablation study on α in Eq. 5 using MIS (RB-SMALL) as an example

22

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 15. Ablation study on α in Eq. 5 using MIS (RB-SMALL) as an example.

COExpander (S=1, Ds=1, Is=1)

α EPOCH-1 EPOCH-2 EPOCH-3 EPOCH-4 EPOCH-5 EPOCH-6 EPOCH-7

0.2 17.200, 14.210% 17.478, 12.873% 17.584, 12.356% 17.584, 12.348% 17.762, 11.480% 17.642, 12.053% 17.782, 11.372%
0.5 17.338, 13.562% 17.508, 12.703% 17.756, 11.512% 17.668, 11.931% 17.732, 11.598% 17.828, 11.144% 17.842, 11.064%
0.8 17.608, 12.222% 17.644, 12.044% 17.824, 11.146% 17.878, 10.881% 18.012, 10.229% 17.968, 10.229% 17.950, 10.522%
0.9 17.470, 12.894% 17.730, 11.594% 17.634, 12.098% 17.740, 11.567% 17.878, 10.890% 17.868, 10.940% 17.924, 10.651%

0.95 17.548, 12.509% 17.634, 12.073% 17.644, 12.046% 17.890, 10.817% 17.922, 10.662% 17.924, 10.662% 17.948, 10.546%
0.99 17.418, 13.147% 17.658, 11.974% 17.792, 11.314% 17.836, 11.107% 17.950, 10.531% 18.064, 9.985% 18.080, 9.895%

COExpander (S=1, Ds=20, Is=1)

α EPOCH-1 EPOCH-2 EPOCH-3 EPOCH-4 EPOCH-5 EPOCH-6 EPOCH-7

0.2 18.970, 5.515% 19.214, 4.291% 19.238, 4.153% 19.268, 4.057% 19.312, 3.804% 19.334, 3.719% 19.344, 3.665%
0.5 19.054, 5.113% 19.184, 4.454% 19.240, 4.172% 19.334, 3.707% 19.304, 3.856% 19.312, 3.836% 19.296, 3.900%
0.8 19.114, 4.792% 19.166, 4.540% 19.306, 3.839% 19.354, 3.598% 19.348, 3.636% 19.364, 3.550% 19.356, 3.600%
0.9 19.052, 5.103% 19.252, 4.095% 19.246, 4.133% 19.334, 3.704% 19.334, 3.721% 19.356, 3.602% 19.378, 3.502%

0.95 18.906, 5.810% 19.146, 4.632% 19.184, 4.437% 19.312, 3.817% 19.350, 3.632% 19.340, 3.688% 19.366, 3.540%
0.99 18.684, 6.911% 18.928, 5.706% 19.198, 4.383% 19.246, 4.120% 19.256, 4.097% 19.320, 3.782% 19.340, 3.690%

Ablation on Backbone model. In this paper, we primarily adopt the consistency model (Li et al., 2024) as the global
predictor for its powerful expressiveness and performance. However, this does not mean that AE is dependent on the specific
consistency model. It should be noted that the AE we propose is a solving paradigm and does not rely on any specific model
or solver. To verify this point, we have supplemented experiments using GCN (Joshi et al., 2019) as the global predictor on
the MIS problem, as shown in Table 16. The experimental results indicate that the GCN model applying the AE paradigm
achieved an average performance improvement of 68.4%. Additionaly, it can also be seen that the consistency model (single
inference) has an approximate 6.6% performance enhancement compared with the GCN model.

Table 16. Ablation results of different backbone models for COExpander on the MIS problem. Compare the line of method “X” and the
line of method “COExpander-X” to learn the model-agnostic enhancing effect of our AE paradigm. COExpander-CM is the same model
as referred to as “COExpander” elsewhere in this paper.

METHOD TYPE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS (Lamm et al., 2016) Heuristics 20.090∗ 0.000±0.000% 45.809s 43.004∗ 0.000±0.000% 56.974s
Gurobi (Gurobi Optimization, 2023) OR 20.090 0.000±0.000% 0.538s 42.192 1.829±2.942% 33.843s

GCN (Joshi et al., 2019) GP 18.056 9.997±6.852% 0.014s 36.040 16.029±6.449% 0.044s
COExpander-GCN (Ds=5) AE 19.292 3.905±3.936% 0.050s 40.092 6.683±3.705% 0.188s
COExpander-GCN (Ds=10) AE 19.376 3.480±3.573% 0.084s 40.674 5.361±3.216% 0.361s
COExpander-GCN (Ds=20) AE 19.464 3.055±3.296% 0.121s 40.892 4.862±3.042% 0.650s

CM (Li et al., 2024) (S=1, Is=1) GP 18.400 8.305±6.381% 0.014s 36.394 15.219±6.259% 0.044s
COExpander-CM (S=1, Ds=5, Is=1) AE 19.500 2.876±3.486% 0.052s 40.674 5.359±3.202% 0.188s
COExpander-CM (S=1, Ds=10, Is=1) AE 19.596 2.410±3.038% 0.092s 41.056 4.477±2.935% 0.364s
COExpander-CM (S=1, Ds=20, Is=1) AE 19.662 2.088±2.891% 0.112s 41.234 4.060±2.822% 0.624s

METHOD TYPE
ER-700-800 ER-1400-1600

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS (Lamm et al., 2016) Heuristics 44.969∗ 0.000±0.000% 60.753s 50.938∗ 0.000±0.000% 60.824s
Gurobi (Gurobi Optimization, 2023) OR 38.781 13.749±3.017% 60.489s 44.813 12.015±2.736% 3602.519s

GCN (Joshi et al., 2019) GP 35.359 21.360±4.087% 0.039s 37.742 25.895±3.484% 0.118s
COExpander-GCN (Ds=5) AE 40.477 9.984±3.340% 0.172s 43.695 14.204±3.358% 0.531s
COExpander-GCN (Ds=10) AE 41.656 7.356±2.909% 0.313s 45.453 10.755±2.702% 1.016s
COExpander-GCN (Ds=20) AE 42.117 6.331±2.712% 0.477s 46.203 9.284±2.494% 1.555s

CM (Li et al., 2024) (S=1, Is=1) GP 35.711 20.580±4.169% 0.039s 37.859 25.670±3.368% 0.117s
COExpander-CM (S=1, Ds=5, Is=1) AE 41.055 8.686±3.184% 0.172s 45.625 10.417±3.282% 0.531s
COExpander-CM (S=1, Ds=10, Is=1) AE 41.961 6.683±2.866% 0.305s 47.094 7.538±2.866% 1.001s
COExpander-CM (S=1, Ds=20, Is=1) AE 42.383 5.746±2.639% 0.469s 47.523 6.691±2.566% 1.508s

Ablation on S, Ds and Is. The complete table of the ablation study (corresponding to Fig. 2) is presented in Table 17.

23

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 17. Ablation results on the number of sampling (S), determination steps (Ds), and inference steps (Is). S: SMALL; L: LARGE;
ER: ER-700-800; ST: SATLIB.

Settings MIS-RB-S MIS-RB-L MIS-ER MIS-ST MCl-RB-S MCl-RB-L MVC-R-S MVC-R-L MCut-BA-S MCut-BA-L

S=1,Ds=1,Is=1 8.305% 15.219% 20.580% 1.031% 4.870% 9.809% 0.827% 0.696% 3.504% 5.231%
S=1,Ds=1,Is=5 6.420% 14.208% 15.231% 0.539% 4.748% 22.722% 0.972% 0.621% 0.789% 0.523%

S=1,Ds=1,Is=10 4.646% 11.485% 12.380% 0.413% 3.220% 16.967% 1.032% 0.543% 0.548% -0.011%
S=1,Ds=1,Is=20 3.710% 9.388% 10.618% 0.329% 2.850% 12.672% 0.984% 0.453% 0.319% -0.369%
S=1,Ds=5,Is=1 2.876% 5.359% 8.686% 0.356% 2.801% 8.870% 0.466% 0.256% 0.379% -0.599%

S=1,Ds=10,Is=1 2.410% 4.464% 6.683% 0.269% 2.406% 8.355% 0.410% 0.205% 0.157% -1.124%
S=1,Ds=20,Is=1 2.088% 4.060% 5.746% 0.215% 1.892% 8.817% 0.398% 0.176% 0.058% -1.387%
S=2,Ds=1,Is=1 7.502% 15.228% 19.226% 0.964% 2.292% 5.018% 0.732% 0.651% 3.243% 5.009%
S=4,Ds=1,Is=1 6.877% 12.829% 18.095% 0.914% 1.510% 2.977% 0.665% 0.614% 3.080% 4.821%
S=8,Ds=1,Is=1 6.409% 12.083% 17.382% 0.878% 1.027% 1.720% 0.611% 0.581% 2.949% 4.670%

G.2. Supplementary Results of Generalization Study

TSPLIB. For TSP, we conduct generalization experiments on the well-known TSPLIB. The results are shown in Table 24.
Our average gap on the number of nodes ranging from 51 to 1002 is only 0.367%.

G.3. Complete Results on the Six COPs

Results for MIS. The complete results are presented in Table 18. Compare with pervious SOTA NCO solvers, COExpander
has significant advantages in both performance and time. Without using sampling, COExpander achieves a performance
improvement of 27.7%, 61.1%, 39.6%, 24.6%, 80.4%, 61.3% and a speedup of 3.7x, 7.6x, 2.2x, 12.0x, 1.6x, 8.6x
on RB-SMALL, RB-LARGE, ER-700-800, SATLIB, ER-1400-1600, RB-GIANT, respectively. When all methods employ
sampling (×4), COExpander realizes a performance improvements of 14.7%, 54.9%, 25.5%, 20.0%, 20.0%, 20.0%, and a
speedup of 1.5x, 19.6x, 2.8x, 2.8x, 1.5x, 23.1x. Compare with traditional solvers, COExpander is superior in solving speed,
and as the scale increases, such as ER-1400-1600, COExpander even excels Gurobi in solving performance.

Results for MCl. The complete results are presented in Table 19. Compared with previous SOTA NCO solvers, COExpander
has significantly enhanced the solution performance, with a 94.8% improvement for RB-SMALL; and a 94.2% improvement
for RB-LARGE. Besides, we have studied how the time limit affect the solution quality of Gurobi on RB-GIANT and have
made a detailed analysis in Appendix D. However, even when Gurobi is set with a maximum time limit of 3600 seconds,
COExpander can still achieve an improvement of 6.4% with a speedup of 2372.5x, which fully demonstrates the significant
advantage of COExpander in large-scale MCl problems.

Results for MVC. The complete results are presented in Table 20. Compared with previous SOTA NCO solvers, COExpander
has significantly enhanced the solution performance, with a 81.4% improvement for RB-SMALL; and a 96.3% improvement
for RB-LARGE. Besides, we have extended the problem scale to RB-GIANT for the first time and have surpassed Gurobi-60s.

Results for MCut. The complete results are presented in Table 21. On BA-SMALL dataset, COExpander have achieved a
breakthrough surpassing the previous SOTA as well as Gurobi-60s; on BA-LARGE and BA-GIANT dataset, although there
was no improvement in performance, COExpander achieves a speed increase of 7.5x.

Results for TSP. The complete results are presented in Table 22. The TSP is one of the most extensively studied problems
in NCO, which is also the only one among the six problems discussed in this paper that covers three paradigms as well
as the divide-and-conquer (D&C) method. From the experimental results, we can observe that the GP solvers and our
COExpander have significant advantages in both performance and speed compared to the LC solver and the D&C method.
The previous SOTA is Fast-T2T, which is also the global predictor adopted in this paper, and our COExpander has achieved
an improvement of about 17.5% on this basis.

Results for ATSP. The complete results are presented in Table 23. Compare with pervious SOTA NCO solvers, COExpander
has achieved a performance improvement of 50.8%, 36.6%, 45.5%, 70.7% on ATSP-50, ATSP-100, ATSP-200, ATSP500
respectively. Besides, it is worth noting that when Ds = 1, COExpander can be regarded as a type of GP solver. To our best
knowledge, this is the first effective global predictor for ATSP.

24

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 18. Complete results on MIS.

METHOD TYPE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS (Lamm et al., 2016) Heuristics 20.090∗ 0.000±0.000% 45.809s 43.004∗ 0.000±0.000% 56.974s
Gurobi (Gurobi Optimization, 2023) OR 20.090 0.000±0.000% 0.538s 42.192 1.829±2.942% 33.843s

Fast-T2T (S=1,Gs=5,Is=5) (Li et al., 2024) GP 19.498 2.887±3.325% 0.414s – – –
DiffUCO: CE (S=1,F=1) (Sanokowski et al., 2024) GP 19.200 4.369±3.965% 0.470s 38.490 10.428±3.552% 4.712s
COExpander (S=1,Ds=1,Is=1) GP 18.400 8.305±6.381% 0.014s 36.394 15.219±6.259% 0.044s
COExpander (S=1,Ds=20,Is=1) AE 19.662 2.088±2.891% 0.112s 41.234 4.060±2.822% 0.624s
COExpander (S=1,Ds=1,Is=20) GP 19.330 3.710±3.952% 0.192s 38.936 9.388±4.740% 0.714s
COExpander (S=1,Ds=5,Is=20) AE 19.604 2.375±3.003% 0.802s 40.590 5.559±3.334% 3.562s
COExpander (S=1,Ds=1,Is=1) + Beam-16 GP 18.466 7.973±6.078% 0.020s 36.530 14.902±5.974% 0.104s

Fast-T2T (S=4,Gs=5,Is=5) (Li et al., 2024) GP 19.738 1.700±3.321% 0.860s – – –
DiffUCO: CE (S=4,F=1) (Sanokowski et al., 2024) GP 19.380 3.464±3.388% 1.587s 39.546 7.944±3.171% 25.479s
COExpander (S=4,Ds=1,Is=1) GP 18.690 6.877±5.675% 0.018s 37.424 12.829±5.764% 0.138s
COExpander (S=4,Ds=20,Is=1) AE 19.706 1.880±2.691% 0.120s 41.438 3.582±2.379% 1.298s
COExpander (S=4,Ds=1,Is=20) GP 19.742 1.690±2.467% 0.332s 40.066 6.742±3.971% 2.398s
COExpander (S=4,Ds=5,Is=20) AE 19.786 1.482±2.417% 0.652s 40.686 5.306±3.290% 5.484s
COExpander (S=4,Ds=1,Is=1) + Beam-16 GP 18.748 6.584±5.404% 0.052s 37.498 12.658±5.619% 0.368s

METHOD TYPE
ER-700-800 SATLIB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS (Lamm et al., 2016) Heuristics 44.969∗ 0.000±0.000% 60.753s 425.954∗ 0.000±0.000% 24.368s
Gurobi (Gurobi Optimization, 2023) OR 38.781 13.749±3.017% 60.489s 425.924 0.007±0.074% 3.953s

DIFUSCO (S=1,Is=50) (Sun & Yang, 2023) GP 38.641 14.079±6.564% 2.797s 424.744 0.285±0.252% 2.744s
Fast-T2T (S=1,Gs=5,Is=5) (Li et al., 2024) GP 40.688 9.513±3.153% 1.031s 424.438 0.358±0.256% 1.704s
COExpander (S=1,Ds=1,Is=1) GP 35.711 20.580±4.169% 0.039s 421.578 1.031±0.508% 0.016s
COExpander (S=1,Ds=20,Is=1) AE 42.383 5.746±2.639% 0.469s 425.046 0.215±0.235% 0.228s
COExpander (S=1,Ds=1,Is=20) GP 40.195 10.618±3.117% 0.641s 424.556 0.329±0.247% 0.190s
COExpander (S=1,Ds=5,Is=20) AE 41.992 6.610±2.577% 3.188s 424.734 0.287±0.228% 1.034s

DIFUSCO (S=4,Is=50) (Sun & Yang, 2023) GP 40.969 8.889±3.122% 5.445s 425.108 0.200±0.201% 2.962s
Fast-T2T (S=4,Gs=5,Is=5) (Li et al., 2024) GP 41.742 7.169±2.837% 1.961s 425.002 0.252±0.197% 2.670s
COExpander (S=4,Ds=1,Is=1) GP 36.828 18.095±3.726% 0.109s 422.078 0.914±0.480% 0.036s
COExpander (S=4,Ds=20,Is=1) AE 42.563 5.343±2.229% 0.703s 424.776 0.278±0.245% 0.268s
COExpander (S=4,Ds=1,Is=20) GP 41.430 7.867±2.460% 2.094s 425.276 0.160±0.161% 0.428s
COExpander (S=4,Ds=5,Is=20) AE 42.125 6.321±2.323% 4.297s 425.278 0.160±0.168% 1.056s

METHOD TYPE
ER-1400-1600 RB-GIANT

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
KaMIS (Lamm et al., 2016) Heuristics 50.938∗ 0.000±0.000% 60.824s 49.260∗ 0.000±0.000% 60.960s
Gurobi (3600s) (Gurobi Optimization, 2023) OR 44.813 12.015±2.736% 3602.519s 48.560 1.377±2.452% 3426.207s
Gurobi (300s) (Gurobi Optimization, 2023) OR 41.203 19.098±2.795% 304.485s 46.720 4.900±7.737% 302.726s
Gurobi (60s) (Gurobi Optimization, 2023) OR 40.820 19.856±2.575% 62.141s 44.760 8.806±10.968% 56.010s

Fast-T2T (S=1,Gs=5,Is=5) (Li et al., 2024) GP 36.797 27.749±2.602% 3.570s – – –
DiffUCO: CE (S=1,F=1) (Sanokowski et al., 2024) GP – – – 40.480 17.722±5.765% 45.680s
COExpander (S=1,Ds=1,Is=1) GP 37.859 25.670±3.368% 0.117s 38.200 22.316±6.721% 0.220s
COExpander (S=1,Ds=50,Is=1) AE 48.164 5.432±2.188% 2.211s 45.840 6.856±3.531% 5.340s
COExpander (S=1,Ds=1,Is=50) GP 44.094 13.430±3.135% 5.117s 38.380 21.995±6.499% 8.980s

Fast-T2T (S=4,Gs=5,Is=5) (Li et al., 2024) GP 37.984 25.417±2.197% 6.961s – – –
DiffUCO: CE (S=4,F=1) (Sanokowski et al., 2024) GP – – – 42.120 14.352±4.582% 339.010s
COExpander (S=4,Ds=50,Is=1) AE 48.429 4.911±2.107% 4.516s 46.640 5.221±2.970% 14.660s
COExpander (S=4,Ds=1,Is=50) GP 46.117 9.446±2.654% 23.781s 40.260 18.120±6.109% 43.760s

25

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 19. Complete results on MCl.

METHOD TYPE
RB-SMALL RB-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi (Gurobi Optimization, 2023) OR 19.082∗ 0.000±0.000% 0.900s 40.182∗ 0.000±0.000% 276.657s

DiffUCO: CE (S=1,F=1) (Sanokowski et al., 2024) GP 15.142 18.245±18.185% 0.559s – – –
Meta-EGN (Wang & Li, 2023) GP 17.512 8.300±12.719% 0.270s 33.792 15.487±18.576% 0.542s
COExpander (S=1,Ds=1,Is=1) GP 18.258 4.870±10.775% 0.016s 36.402 9.809±16.700% 0.042s
COExpander (S=1,Ds=20,Is=1) AE 18.766 1.892±4.479% 0.046s 36.752 8.817±15.326% 0.150s
COExpander (S=1,Ds=1,Is=20) GP 18.608 2.850±6.945% 0.200s 35.384 12.672±19.874% 0.708s
COExpander (S=1,Ds=5,Is=20) AE 18.686 2.374±5.831% 0.516s 36.176 10.159±16.850% 1.660s
COExpander (S=1,Ds=1,Is=1) + Beam-16 GP 18.664 2.510±6.024% 0.022s 38.754 3.798±9.039% 0.104s
COExpander (S=1,Ds=1,Is=20) + Beam-16 GP 18.768 1.914±4.745% 0.200s – – –

DiffUCO: CE (S=4,F=1) (Sanokowski et al., 2024) GP 16.206 12.527±18.723% 1.412s – – –
COExpander (S=4,Ds=1,Is=1) GP 18.846 1.510±4.082% 0.018s 39.074 2.977±8.296% 0.130s
COExpander (S=4,Ds=20,Is=1) AE 18.922 1.018±3.009% 0.056s 39.170 2.722±7.875% 0.414s
COExpander (S=4,Ds=1,Is=20) GP 18.982 0.607±2.521% 0.328s 38.706 4.197±11.586% 2.386s
COExpander (S=4,Ds=5,Is=20) AE 19.002 0.503±2.077% 0.646s 39.062 2.993±8.985% 6.358s
COExpander (S=4,Ds=1,Is=1) + Beam-16 GP 18.976 0.675±2.156% 0.058s 39.880 0.898±3.150% 0.368s
COExpander (S=4,Ds=1,Is=20) + Beam-16 GP 19.014 0.434±2.061% 0.362s – – –

METHOD TYPE
Twitter COLLAB

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi (Gurobi Optimization, 2023) OR 14.210∗ 0.000±0.000% 0.276s 42.113∗ 0.000±0.000% 0.063s

Meta-EGN (Wang & Li, 2023) GP 13.677 3.812±6.352% 0.134s 41.993 0.662±3.392% 0.129s
COExpander (S=1,Ds=1,Is=1) GP 13.051 9.536±13.448% 0.015s 41.593 2.496±9.210% 0.013s
COExpander (S=1,Ds=20,Is=1) AE 13.528 6.154±11.888% 0.067s 41.874 1.808±8.092% 0.139s
COExpander (S=1,Ds=1,Is=20) GP 12.236 16.961±24.014% 0.195s 39.501 14.496±26.836% 0.222s
COExpander (S=1,Ds=1,Is=1) + Beam-16 GP 13.303 6.504±8.451% 0.021s 41.772 1.695±5.767% 0.014s
COExpander (S=1,Ds=1,Is=20) + Beam-16 GP 12.979 10.067±13.192% 0.200s 41.084 5.815±11.750% 0.220s

COExpander (S=4,Ds=1,Is=1) GP 13.687 4.672±9.833% 0.021s 42.000 1.089±7.022% 0.022s
COExpander (S=4,Ds=20,Is=1) AE 13.805 3.997±10.243% 0.082s 42.040 0.841±6.363% 0.092s
COExpander (S=4,Ds=1,Is=20) GP 13.349 8.596±18.106% 0.297s 41.051 5.974±17.730% 0.314s
COExpander (S=4,Ds=1,Is=1) + Beam-16 GP 13.810 2.766±4.777% 0.041s 42.034 0.583±3.183% 0.025s
COExpander (S=4,Ds=1,Is=20) + Beam-16 GP 13.610 5.157±9.572% 0.318s 41.620 3.023±9.230% 0.437s

METHOD TYPE
RB-GIANT

OBJ.↑ DROP↓ TIME↓
Gurobi (3600s) (Gurobi Optimization, 2023) OR 81.520∗ 0.000±0.000% 3606.201s
Gurobi (300s) (Gurobi Optimization, 2023) OR 51.920 32.774±23.131% 302.640s
Gurobi (60s) (Gurobi Optimization, 2023) OR 50.980 33.917±22.693% 60.248s

COExpander (S=1,Ds=1,Is=1) GP 60.860 22.902±29.840% 0.240s
COExpander (S=1,Ds=1,Is=1) + Beam-16 GP 77.340 2.732±24.924% 0.420s
COExpander (S=4,Ds=1,Is=1) GP 77.860 2.145±25.410% 0.820s
COExpander (S=4,Ds=1,Is=1) + Beam-16 GP 84.120 -6.424±26.720% 1.520s

26

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 20. Complete results on MVC.

METHOD TYPE
RB-SMALL RB-LARGE

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Gurobi (Gurobi Optimization, 2023) OR 205.764∗ 0.000±0.000% 3.341s 968.228∗ 0.000±0.000% 290.227s

Meta-EGN (Wang & Li, 2023) GP 208.974 1.563±0.579% 0.297s 1010.692 4.400±0.337% 1.025s
COExpander (S=1,Ds=1,Is=1) GP 207.460 0.827±0.575% 0.016s 974.950 0.696±0.276% 0.044s
COExpander (S=1,Ds=20,Is=1) AE 206.576 0.398±0.381% 0.108s 969.922 0.176±0.128% 0.522s
COExpander (S=1,Ds=1,Is=20) GP 207.778 0.984±0.577% 0.186s 972.608 0.453±0.195% 0.718s
COExpander (S=1,Ds=5,Is=20) AE 207.374 0.787±0.535% 0.870s 970.734 0.259±0.151% 3.520s
COExpander (S=4,Ds=1,Is=1) GP 207.126 0.665±0.500% 0.018s 974.162 0.614±0.244% 0.132s
COExpander (S=4,Ds=20,Is=1) AE 206.360 0.290±0.332% 0.086s 969.806 0.163±0.118% 0.626s
COExpander (S=4,Ds=1,Is=20) GP 207.060 0.633±0.462% 0.322s 971.420 0.330±0.163% 2.412s
COExpander (S=4,Ds=5,Is=20) AE 206.906 0.557±0.430% 0.646s 970.416 0.227±0.124% 4.778s

METHOD TYPE
Twitter COLLAB

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Gurobi (Gurobi Optimization, 2023) OR 85.251∗ 0.000±0.000% 0.133s 65.086∗ 0.000±0.000% 0.058s

Meta-EGN (Wang & Li, 2023) GP 92.728 8.670±4.598% 0.192s 65.694 1.248±2.457% 0.148s
COExpander (S=1,Ds=20,Is=1) AE 85.574 0.326±0.574% 0.138s 65.121 0.047±0.303% 0.056s
COExpander (S=1,Ds=5,Is=20) AE 86.031 0.857±1.066% 0.862s 65.114 0.057±0.391% 0.503s
COExpander (S=4,Ds=20,Is=1) AE 85.446 0.204±0.481% 0.062s 65.107 0.028±0.227% 0.038s
COExpander (S=4,Ds=5,Is=20) AE 85.574 0.318±0.578% 0.446s 65.092 0.008±0.110% 0.354s

METHOD TYPE
RB-GIANT

OBJ.↓ DROP↓ TIME↓
Gurobi (3600s) (Gurobi Optimization, 2023) OR 2396.780∗ 0.000±0.000% 1813.786s
Gurobi (300s) (Gurobi Optimization, 2023) OR 2398.480 0.067±0.113% 211.428s
Gurobi (60s) (Gurobi Optimization, 2023) OR 2400.800 0.162±0.172% 58.121s

COExpander (S=1,Ds=1,Is=1) GP 2407.540 0.450±0.110% 0.240s
COExpander (S=1,Ds=50,Is=1) AE 2400.600 0.160±0.061% 4.360s
COExpander (S=4,Ds=1,Is=1) GP 2406.060 0.388±0.104% 0.820s
COExpander (S=4,Ds=50,Is=1) AE 2400.360 0.149±0.052% 8.200s

27

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 21. Complete results on MCut.

METHOD TYPE
BA-SMALL BA-LARGE

OBJ.↑ DROP↓ TIME↓ OBJ.↑ DROP↓ TIME↓
Gurobi (Gurobi Optimization, 2023) OR 727.844∗ 0.000±0.000% 60.612s 2936.886∗ 0.000±0.000% 300.214s

DiffUCO: CE (S=1,F=1) (Sanokowski et al., 2024) GP 726.900 0.146±0.483% 0.197s 2986.932 -1.688±0.480% 0.654s
COExpander (S=1,Ds=1,Is=1) GP 702.376 3.504±1.841% 0.014s 2783.834 5.231±1.156% 0.016s
COExpander (S=1,Ds=20,Is=1) AE 727.526 0.058±0.419% 0.182s 2978.200 -1.387±0.517% 0.204s
COExpander (S=1,Ds=1,Is=20) GP 725.624 0.319±0.557% 0.172s 2948.112 -0.369±0.580% 0.194s
COExpander (S=1,Ds=5,Is=20) AE 725.888 0.284±0.508% 0.888s 2952.520 -0.518±0.554% 0.992s
COExpander-FT(S=1,Ds=1,Is=1) GP 718.592 1.281±0.765% 0.014s 2941.740 -0.153±0.583% 0.016s
COExpander-FT(S=1,Ds=20,Is=1) AE 726.382 0.219±0.455% 0.184s 2975.712 -1.304±0.511% 0.202s
COExpander-FT(S=1,Ds=1,Is=20) GP 726.538 0.195±0.476% 0.172s 2980.508 -1.467±0.513% 0.196s
COExpander-FT(S=1,Ds=5,Is=20) AE 726.524 0.196±0.495% 0.884s 2978.486 -1.399±0.509% 0.972s

DiffUCO: CE (S=4,F=1) (Sanokowski et al., 2024) GP 727.534 0.061±0.462% 0.610s 2989.458 -1.773±0.466% 2.701s
COExpander (S=4,Ds=1,Is=1) GP 705.446 3.080±1.503% 0.016s 2795.804 4.821±1.051% 0.024s
COExpander (S=4,Ds=20,Is=1) AE 726.798 0.159±0.442% 0.064s 2961.500 -0.821±0.544% 0.114s
COExpander (S=4,Ds=1,Is=20) GP 728.316 -0.049±0.371% 0.202s 2960.664 -0.797±0.494% 0.362s
COExpander-FT(S=4,Ds=1,Is=1) GP 720.240 1.056±0.666% 0.016s 2954.102 -0.574±0.534% 0.024s
COExpander-FT(S=4,Ds=20,Is=1) AE 726.232 0.238±0.467% 0.064s 2980.652 -1.475±0.477% 0.114s
COExpander-FT(S=4,Ds=1,Is=20) GP 728.272 -0.043±0.386% 0.196s 2987.142 -1.693±0.474% 0.364s

METHOD TYPE
BA-GIANT

OBJ.↑ DROP↓ TIME↓
Gurobi (3600s) (Gurobi Optimization, 2023) OR 7217.900∗ 0.000±0.000% 3601.342s
Gurobi (300s) (Gurobi Optimization, 2023) OR 7217.860 0.001±0.003% 300.504s
Gurobi (60s) (Gurobi Optimization, 2023) OR 7216.960 0.011±0.075% 61.228s

DiffUCO: CE (S=1,F=1) (Sanokowski et al., 2024) GP 7384.020 -2.306±0.326% 2.480s
DiffUCO: CE (S=4,F=1) (Sanokowski et al., 2024) GP 7387.760 -2.358±0.325% 10.760s
COExpander (S=1,Ds=1,Is=1) GP 6860.220 4.935±0.841% 0.060s
COExpander (S=1,Ds=50,Is=1) AE 7369.980 -2.111±0.330% 0.720s
COExpander (S=1,Ds=1,Is=50) GP 7308.260 -1.258±0.403% 0.700s
COExpander (S=4,Ds=1,Is=50) GP 7329.420 -1.553±0.339% 1.760s
COExpander-FT(S=1,Ds=1,Is=1) GP 7264.660 -0.656±0.448% 0.060s
COExpander-FT(S=1,Ds=50,Is=1) AE 7361.800 -1.997±0.318% 0.740s
COExpander-FT(S=1,Ds=1,Is=50) GP 7372.100 -2.134±0.330% 0.720s
COExpander-FT(S=4,Ds=1,Is=50) GP 7381.920 -2.276±0.327% 1.760s

28

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 22. Complete results on TSP.

METHOD TYPE
TSP-50 TSP-100

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde (Applegate et al., 2006) Exact 5.688∗ 0.000±0.000% 0.059s 7.756∗ 0.000±0.000% 0.238s
LKH (500) (Helsgaun, 2017) Heuristics 5.688 0.001±0.014% 0.058s 7.756 0.001±0.014% 0.176s
GA-EAX (Nagata & Kobayashi, 2013) Heuristics 5.688 0.000±0.001% 0.101s 7.756 0.000±0.004% 1.862s

GCN + 2OPT (Joshi et al., 2019) GP 5.691 0.066±0.316% 0.007s 7.775 0.243±0.546% 0.009s
GNNGLS + GLS (Hudson et al., 2021) GP 5.707 0.333±0.809% 0.020s 7.857 1.295±1.026% 0.129s
DIMES + 2OPT (Qiu et al., 2022) GP 5.891 3.578±2.361% 0.007s 8.108 4.543±1.838% 0.012s
DIFUSCO (S=1,Is=50) + 2OPT (Sun & Yang, 2023) GP 5.693 0.099±0.307% 2.587s 7.776 0.265±0.463% 2.691s
Fast-T2T (S=1,Is=5) + 2OPT (Li et al., 2024) GP 5.689 0.022±0.083% 0.254s 7.762 0.074±0.226% 0.252s
RL4CO (AM) + 2OPT (Berto et al., 2024) LC 5.733 0.799±0.932% 0.171s 7.902 1.887±1.117% 0.247s
RL4CO (POMO) + 2OPT (Berto et al., 2024) LC 5.727 0.686±0.857% 0.221s 7.918 2.097±1.189% 0.319s
RL4CO (SymNCO) + 2OPT (Berto et al., 2024) LC 5.726 0.680±0.807% 0.169s 7.891 1.746±1.081% 0.315s
BQ-NCO + 2OPT (Drakulic et al., 2023) LC 5.795 1.894±1.902% 0.205s 7.893 1.772±1.281% 0.387s
GLOP (W=35,I10=5,I20=10,I50=30) (Ye et al., 2024b) D&C 5.704 0.287±0.495% 2.719s 7.831 0.973±0.843% 2.777s
COExpander (S=1,Ds=1,Is=1) + 2OPT GP 5.691 0.065±0.344% 0.007s 7.773 0.223±0.529% 0.009s
COExpander (S=1,Ds=3,Is=1) + 2OPT AE 5.689 0.029±0.145% 0.018s 7.765 0.124±0.361% 0.021s
COExpander (S=1,Ds=1,Is=5) + 2OPT GP 5.689 0.029±0.119% 0.030s 7.762 0.078±0.197% 0.031s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 5.689 0.018±0.059% 0.084s 7.759 0.043±0.107% 0.091s

DIFUSCO (S=4,Is=50) + 2OPT (Sun & Yang, 2023) GP 5.689 0.016±0.063% 2.688s 7.761 0.067±0.154% 2.692s
Fast-T2T (S=4,Is=5) + 2OPT (Li et al., 2024) GP 5.688 0.008±0.037% 0.256s 7.757 0.017±0.058% 0.265s
BQ-NCO + Beam-16 + 2OPT (Drakulic et al., 2023) LC 5.785 1.723±1.837% 0.239s 7.871 1.484±1.229% 0.901s
GLOP (W=140,I10=5,I20=10,I50=30) (Ye et al., 2024b) D&C 5.697 0.169±0.394% 2.722s 7.817 0.783±0.719% 2.969s
COExpander (S=4,Ds=1,Is=1) + 2OPT GP 5.691 0.051±0.275% 0.009s 7.768 0.151±0.377% 0.021s
COExpander (S=4,Ds=3,Is=1) + 2OPT AE 5.689 0.020±0.136% 0.023s 7.762 0.076±0.244% 0.046s
COExpander (S=4,Ds=1,Is=5) + 2OPT GP 5.688 0.006±0.038% 0.031s 7.757 0.017±0.053% 0.065s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 5.688 0.005±0.030% 0.088s 7.757 0.014±0.048% 0.180s

METHOD TYPE
TSP-500 TSP-1K

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
Concorde (Applegate et al., 2006) Exact 16.546∗ 0.000±0.000% 18.672s 23.118∗ 0.000±0.000% 84.413s
LKH (500) (Helsgaun, 2017) Heuristics 16.546 0.002±0.010% 1.848s 23.119 0.005±0.011% 4.641s
GA-EAX (Nagata & Kobayashi, 2013) Heuristics 16.546 0.001±0.004% 1.857s 23.118 0.000±0.001% 17.544s

GCN + 2OPT (Joshi et al., 2019) GP 16.769 1.348±0.589% 0.063s 23.527 1.769±0.434% 0.227s
DIMES + 2OPT (Qiu et al., 2022) GP 17.655 6.707±1.121% 0.314s 24.906 7.735±0.823% 0.662s
DIFUSCO (S=1,Is=50) + 2OPT (Sun & Yang, 2023) GP 16.810 1.593±0.728% 2.781s 23.540 1.826±0.540% 3.422s
Fast-T2T (S=1,Is=5) + 2OPT (Li et al., 2024) GP 16.696 0.907±0.573% 0.328s 23.387 1.164±0.421% 0.953s
BQ-NCO + 2OPT (Drakulic et al., 2023) LC 16.838 1.766±0.625% 2.454s 23.647 2.287±0.486% 5.722s
GLOP (W=1,I20=5,I50=25,I100=20) (Ye et al., 2024b) D&C 17.196 3.932±0.707% 5.796s 24.200 4.682±0.603% 5.967s
COExpander (S=1,Ds=1,Is=1) + 2OPT GP 16.750 1.233±0.687% 0.055s 23.481 1.571±0.412% 0.211s
COExpander (S=1,Ds=3,Is=1) + 2OPT AE 16.684 0.837±0.512% 0.070s 23.421 1.309±0.387% 0.273s
COExpander (S=1,Ds=1,Is=5) + 2OPT GP 16.690 0.869±0.528% 0.102s 23.423 1.319±0.387% 0.328s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 16.626 0.487±0.388% 0.242s 23.337 0.946±0.409% 0.703s

DIFUSCO (S=4,Is=50) + 2OPT (Sun & Yang, 2023) GP 16.697 0.917±0.375% 3.031s 23.421 1.308±0.396% 7.891s
Fast-T2T (S=4,Is=5) + 2OPT (Li et al., 2024) GP 16.629 0.500±0.283% 0.469s 23.289 0.740±0.257% 1.930s
BQ-NCO + Beam-16 + 2OPT (Drakulic et al., 2023) LC 16.765 1.326±0.497% 4.016s 23.513 1.707±0.360% 10.336s
GLOP (W=10,I20=5,I50=25,I100=20) (Ye et al., 2024b) D&C 17.094 3.313±0.608% 5.836s 24.085 4.184±0.453% 6.056s
COExpander (S=4,Ds=1,Is=1) + 2OPT GP 16.698 0.920±0.506% 0.180s 23.428 1.343±0.318% 0.719s
COExpander (S=4,Ds=3,Is=1) + 2OPT AE 16.644 0.594±0.341% 0.219s 23.359 1.042±0.318% 0.945s
COExpander (S=4,Ds=1,Is=5) + 2OPT GP 16.627 0.490±0.294% 0.320s 23.339 0.954±0.214% 1.141s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 16.587 0.251±0.193% 0.656s 23.266 0.640±0.212% 2.430s

METHOD TYPE
TSP-10K

OBJ.↓ DROP↓ TIME↓
LKH (500) (Helsgaun, 2017) Heuristics 71.755∗ 0.000±0.000% 332.758s

DIFUSCO (S=1,Is=50) + 2OPT (Sun & Yang, 2023) GP 73.955 3.066±0.197% 55.438s
Fast-T2T (S=1,Is=5) + 2OPT (Li et al., 2024) GP 72.900 1.595±0.086% 40.938s
GLOP (W=1,I20=5,I50=25,I100=50) (Ye et al., 2024b) D&C 75.902 5.780±0.269% 11.776s
COExpander (S=1,Ds=1,Is=5) + 2OPT GP 72.982 1.710±0.120% 28.313s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 72.796 1.450±0.096% 29.495s

29

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 23. Complete results on ATSP.

METHOD TYPE
ATSP-50 ATSP-100

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LKH (1000) (Helsgaun, 2017) Heuristics 1.5545∗ 0.0000±0.0000% 0.097s 1.5660∗ 0.0000±0.0000% 0.238s
LKH (100) (Helsgaun, 2017) Heuristics 1.5545 0.0007±0.0139% 0.065s 1.5661 0.0013±0.0113% 0.119s

MatNet (Kwon et al., 2021) LC 1.5752 1.3232±1.0733% 0.035s 1.6171 3.2551±1.2724% 0.061s
GOAL (Drakulic et al., 2024) LC 1.6450 5.8473±3.0859% 0.313s 1.6382 4.6066±2.1008% 0.638s
COExpander (S=1,Ds=1,Is=1) GP 1.6623 6.9484±5.1644% 0.006s 1.6651 6.3286±3.3771% 0.008s
COExpander (S=1,Ds=3,Is=1) AE 1.6367 5.3044±4.2257% 0.019s 1.6455 5.0855±3.1454% 0.023s
COExpander (S=1,Ds=1,Is=5) GP 1.6019 3.0433±4.0207% 0.029s 1.6275 3.9351±2.3738% 0.033s
COExpander (S=1,Ds=3,Is=5) AE 1.5823 1.7901±2.9643% 0.086s 1.6166 3.2326±2.1912% 0.099s
COExpander (S=1,Ds=1,Is=1) + 2OPT GP 1.6135 3.8045±2.9147% 0.007s 1.6303 4.1041±2.1430% 0.009s
COExpander (S=1,Ds=3,Is=1) + 2OPT AE 1.6014 3.0289±2.5430% 0.019s 1.6186 3.3611±1.9963% 0.024s
COExpander (S=1,Ds=1,Is=5) + 2OPT GP 1.5797 1.6160±2.2942% 0.029s 1.6076 2.6648±1.6867% 0.034s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 1.5720 1.1253±1.8664% 0.086s 1.6013 2.2576±1.5627% 0.099s

MatNet (×16) (Kwon et al., 2021) LC 1.5592 0.3001±0.4365% 0.037s 1.5909 1.5823±0.7496% 0.067s
GOAL + Beam-16 (Drakulic et al., 2024) LC 1.6277 4.7351±2.7136% 0.354s 1.6212 3.5325±1.6100% 0.913s
COExpander (S=4,Ds=1,Is=1) GP 1.6541 6.4197±4.9830% 0.008s 1.6479 5.2313±2.9126% 0.029s
COExpander (S=4,Ds=3,Is=1) AE 1.6152 3.9176±3.4767% 0.024s 1.6207 3.4889±2.2488% 0.103s
COExpander (S=4,Ds=1,Is=5) GP 1.5620 0.4850±1.4123% 0.033s 1.5946 1.8267±1.6501% 0.161s
COExpander (S=4,Ds=3,Is=5) AE 1.5587 0.2688±1.0225% 0.101s 1.5878 1.3929±1.4938% 0.511s
COExpander (S=4,Ds=1,Is=1) + 2OPT GP 1.6088 3.5017±2.8542% 0.009s 1.6192 3.3956±1.9178% 0.032s
COExpander (S=4,Ds=3,Is=1) + 2OPT AE 1.5890 2.2313±2.1856% 0.025s 1.6026 2.3398±1.5522% 0.101s
COExpander (S=4,Ds=1,Is=5) + 2OPT GP 1.5583 0.2414±0.7138% 0.034s 1.5842 1.1596±1.1187% 0.167s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 1.5572 0.1709±0.6111% 0.101s 1.5808 0.9464±1.0335% 0.516s

METHOD TYPE
ATSP-200 ATSP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
LKH (1000) (Helsgaun, 2017) Heuristics 1.5647∗ 0.0000±0.0000% 0.724s 1.5734∗ 0.0000±0.0000% 4.376s
LKH (100) (Helsgaun, 2017) Heuristics 1.5647 0.0011±0.0056% 0.244s 1.5735 0.0010±0.0039% 1.022s

MatNet (Kwon et al., 2021) LC 3.8307 145.0832±8.6424% 0.114s – – –
GOAL (Drakulic et al., 2024) LC 1.6170 3.3481±1.2360% 1.412s 1.7152 9.0157±1.3033% 4.056s
GLOP + MatNet (Ye et al., 2024b) D&C 2.0222 29.3824±21.4434% 0.143s 2.3353 48.4783±14.5705% 0.352s
COExpander (S=1,Ds=1,Is=1) GP 1.6785 7.2801±2.4748% 0.037s 1.6747 6.4434±1.4536% 0.127s
COExpander (S=1,Ds=3,Is=1) AE 1.6284 4.0780±2.0543% 0.099s 1.6463 4.6344±1.7081% 0.403s
COExpander (S=1,Ds=1,Is=5) GP 1.6381 4.6773±2.0655% 0.162s 1.6410 4.2941±1.6633% 0.558s
COExpander (S=1,Ds=3,Is=5) AE 1.6146 3.2001±1.4612% 0.547s 1.6228 3.1280±1.4024% 1.669s
COExpander (S=1,Ds=1,Is=1) + 2OPT GP 1.6524 5.6083±1.9575% 0.046s 1.6534 5.0880±1.0975% 0.231s
COExpander (S=1,Ds=3,Is=1) + 2OPT AE 1.6161 3.2926±1.5259% 0.111s 1.6299 3.5915±1.1390% 0.478s
COExpander (S=1,Ds=1,Is=5) + 2OPT GP 1.6154 3.2517±1.4556% 0.168s 1.6218 3.0776±1.0087% 0.648s
COExpander (S=1,Ds=3,Is=5) + 2OPT AE 1.6047 2.5634±1.1579% 0.517s 1.6114 2.4080±0.8883% 1.766s

MatNet (×16) (Kwon et al., 2021) LC 3.7263 138.4024±7.6532% 0.156s – – –
GOAL + Beam-16 (Drakulic et al., 2024) LC 1.6093 2.8627±1.0017% 4.690s 1.7012 8.1275±1.1215% 32.239s
COExpander (S=4,Ds=1,Is=1) GP 1.6632 6.2877±2.0898% 0.087s 1.6520 4.9994±1.1873% 0.497s
COExpander (S=4,Ds=3,Is=1) AE 1.6085 2.7981±1.1689% 0.278s 1.6233 3.1669±0.8271% 1.492s
COExpander (S=4,Ds=1,Is=5) GP 1.6083 2.7717±1.0595% 0.360s 1.6135 2.5429±0.8289% 2.144s
COExpander (S=4,Ds=3,Is=5) AE 1.5928 1.7904±0.9533% 1.073s 1.6044 1.9648±0.6598% 6.267s
COExpander (S=4,Ds=1,Is=1) + 2OPT GP 1.6407 4.8634±1.7464% 0.124s 1.6364 4.0057±0.9356% 0.922s
COExpander (S=4,Ds=3,Is=1) + 2OPT AE 1.6015 2.3567±0.9981% 0.288s 1.6148 2.6292±0.7023% 1.807s
COExpander (S=4,Ds=1,Is=5) + 2OPT GP 1.5974 2.0943±0.8417% 0.391s 1.6046 1.9800±0.6106% 2.484s
COExpander (S=4,Ds=3,Is=5) + 2OPT AE 1.5882 1.5011±0.8053% 1.097s 1.5981 1.5681±0.4867% 6.597s

30

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 24. Complete results on individual instances from TSPLIB. “Orig.”: solved tour length w.r.t the original distance of each instance.
“Norm.”: tour length calculated on normalized distances for clearer comparison.

INSTANCE
CONCORDE SOLVER COEXPANDER

Length(Orig.) Length(Norm.) Used Model Length(Orig.) Length(Norm.) Drop

eil51 428.872 6.701 Uniform-100 428.872 6.701 0.000%
berlin52 7544.366 4.348 Uniform-100 7544.366 4.348 0.000%

st70 677.110 6.839 Uniform-100 677.110 6.839 0.000%
eil76 544.369 7.561 Uniform-100 544.369 7.561 0.000%
pr76 108159.438 5.518 Uniform-100 108159.438 5.518 0.000%
rat99 1219.244 5.671 Uniform-500 1219.244 5.671 0.000%

kroA100 21285.443 5.408 Uniform-500 21285.443 5.408 0.000%
kroB100 22139.075 5.626 Uniform-500 22303.429 5.668 0.742%
kroC100 20750.763 5.276 Uniform-500 20820.370 5.294 0.335%
kroD100 21294.291 5.431 Uniform-500 21294.291 5.431 0.000%
kroE100 22068.759 5.557 Uniform-500 22068.759 5.557 0.000%

rd100 7910.396 8.065 Uniform-500 7910.396 8.065 0.000%
eil101 640.212 8.536 Uniform-500 640.212 8.536 0.000%
lin105 14382.996 4.756 Uniform-500 14382.996 4.756 0.000%
pr107 44301.684 3.778 Uniform-500 44346.187 3.782 0.100%
pr124 59030.736 5.009 Uniform-500 59492.914 5.048 0.783%

bier127 118293.524 6.106 Uniform-500 118293.524 6.106 0.000%
ch130 6110.722 8.751 Uniform-500 6110.722 8.751 0.000%
pr136 96770.924 7.767 Uniform-500 97348.263 7.813 0.597%
pr144 58535.222 4.538 Uniform-500 58620.693 4.544 0.146%
ch150 6530.903 9.342 Uniform-500 6530.903 9.342 0.000%

kroA150 26524.863 6.693 Uniform-500 26761.764 6.753 0.893%
kroB150 26127.358 6.635 Uniform-500 26153.602 6.641 0.100%

pr152 73683.641 5.234 Uniform-500 73824.720 5.244 0.191%
u159 42075.670 6.574 Uniform-500 42075.670 6.574 0.000%

rat195 2333.873 7.993 Uniform-500 2343.642 8.026 0.419%
d198 15808.652 3.924 Uniform-500 15885.773 3.944 0.488%

kroA200 29369.407 7.437 Uniform-500 29385.727 7.441 0.056%
kroB200 29440.412 7.467 Uniform-500 29691.071 7.530 0.851%

ts225 126645.934 10.554 Uniform-500 128058.222 10.672 1.115%
tsp225 3859.000 7.895 Uniform-500 3866.710 7.911 0.200%
pr226 80370.257 5.279 Uniform-500 80813.061 5.308 0.551%
gil262 2385.804 12.050 Uniform-500 2389.772 12.070 0.166%
pr264 49135.005 6.200 Uniform-500 49135.005 6.200 0.000%
a280 2586.770 9.238 Uniform-500 2586.770 9.238 0.000%

pr299 48194.920 6.638 Uniform-500 48823.925 6.725 1.305%
lin318 42042.535 10.170 Uniform-500 42053.026 10.172 0.025%
rd400 15275.985 15.344 Uniform-500 15291.238 15.359 0.100%
fl417 11914.309 6.286 Uniform-500 12044.736 6.354 1.095%

pr439 107215.302 8.991 Uniform-500 108096.965 9.065 0.822%
pcb442 50783.548 13.364 Uniform-500 51020.753 13.427 0.467%

d493 35018.526 9.350 Uniform-500 35446.905 9.465 1.223%
u574 36934.771 12.023 Uniform-500 37320.427 12.149 1.044%

rat575 6795.968 13.619 Uniform-500 6830.574 13.689 0.509%
p654 34646.835 7.196 Uniform-1000 34894.068 7.247 0.714%
d657 48915.630 12.212 Uniform-1000 49246.478 12.294 0.676%
u724 41907.728 14.437 Uniform-1000 42384.083 14.601 1.137%

rat783 8842.995 15.247 Uniform-1000 8887.347 15.323 0.502%
pr1002 259066.663 16.397 Uniform-1000 260668.540 16.498 0.618%

mean – 8.062 – – 8.095 0.367%

31

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

Table 25. COExpander v.s. Previous SOTA: A Summarized Comparison. ∗ denotes ultra-large datasets.

PROBLEM DATASET
PREVIOUS SOTA OR GUROBI COEXPANDER

METHOD TYPE DROP↓ TIME↓ DROP↓ TIME↓
MIS RB-SMALL Fast-T2T (Li et al., 2024) GP 1.700% 0.860s 1.482% 0.652s
MIS RB-LARGE DiffUCO (Sanokowski et al., 2024) GP 7.944% 25.479s 3.582% 1.298s
MIS ER-700-800 Fast-T2T (Li et al., 2024) GP 7.169% 1.961s 5.343% 0.703s
MIS SATLIB DIFUSCO (Sun & Yang, 2023) GP 0.200% 2.962s 0.160% 1.056s
MIS∗ ER-1400-1600 Fast-T2T (Li et al., 2024) GP 25.417% 6.961s 4.911% 4.516s
MIS∗ ER-1400-1600 Gurobi (60s) (Gurobi Optimization, 2023) OR 19.856% 62.141s 4.911% 4.516s
MIS∗ RB-GIANT DiffUCO (Sanokowski et al., 2024) GP 14.352% 339.010s 5.221% 14.660s
MIS∗ RB-GIANT Gurobi (60s) (Gurobi Optimization, 2023) OR 8.806% 56.010s 5.221% 14.660s
MCl RB-SMALL Meta-EGN (Wang & Li, 2023) GP 8.300% 0.270s 0.434% 0.362s
MCl RB-LARGE Meta-EGN (Wang & Li, 2023) GP 15.487% 0.542s 0.898% 0.368s
MCl∗ RB-GIANT Gurobi (60s) (Gurobi Optimization, 2023) OR 33.917% 60.248s -6.424% 1.520s
MVC RB-SMALL Meta-EGN (Wang & Li, 2023) GP 1.563% 0.297s 0.290% 0.086s
MVC RB-LARGE Meta-EGN (Wang & Li, 2023) GP 4.400% 1.025s 0.163% 0.515s
MVC∗ RB-GIANT Gurobi (60s) (Gurobi Optimization, 2023) OR 0.162% 58.121s 0.149% 8.200s
MCut BA-SMALL DiffUCO (Sanokowski et al., 2024) GP 0.061% 0.610s -0.043% 0.202s
MCut BA-LARGE DiffUCO (Sanokowski et al., 2024) GP -1.773% 2.701s -1.693% 0.364s
MCut∗ BA-GIANT DiffUCO (Sanokowski et al., 2024) GP -2.358% 10.760s -2.276% 1.760s
MCut∗ BA-GIANT Gurobi (60s) (Gurobi Optimization, 2023) OR 0.011% 61.228s -2.276% 1.760s

TSP TSP-50 Fast-T2T (Li et al., 2024) GP 0.008% 0.256s 0.005% 0.088s
TSP TSP-50 RL4CO (SymNCO) (Berto et al., 2024) LC 0.680% 0.169s 0.005% 0.088s
TSP TSP-100 Fast-T2T (Li et al., 2024) GP 0.017% 0.265s 0.014% 0.180s
TSP TSP-100 BQ-NCO (Drakulic et al., 2023) LC 1.484% 0.901s 0.014% 0.180s
TSP TSP-500 Fast-T2T (Li et al., 2024) GP 0.500% 0.469s 0.251% 0.656s
TSP TSP-500 BQ-NCO (Drakulic et al., 2023) LC 1.326% 4.016s 0.251% 0.656s
TSP TSP-1K Fast-T2T (Li et al., 2024) GP 0.740% 1.930s 0.640% 2.430s
TSP TSP-1K BQ-NCO (Drakulic et al., 2023) LC 1.707% 10.336s 0.640% 2.430s
TSP∗ TSP-10K Fast-T2T (Li et al., 2024) GP 1.595% 40.938s 1.450% 29.495s
ATSP ATSP-50 MatNet (Kwon et al., 2021) LC 0.3001% 0.037s 0.1709% 0.101s
ATSP ATSP-100 MatNet (Kwon et al., 2021) LC 1.5823% 0.067s 0.9464% 0.516s
ATSP ATSP-200 GOAL (Drakulic et al., 2024) LC 2.8627% 4.690s 1.5011% 1.097s
ATSP ATSP-500 GOAL (Drakulic et al., 2024) LC 8.1275% 32.239s 1.5681% 6.597s

Summary of Main Results

MIS MAIN Global Prediction Solvers GP 4.253% 7.816s 2.642% 0.927s
MCl MAIN Global Prediction Solvers GP 11.894% 0.406s 0.666% 0.365s
MVC MAIN Global Prediction Solvers GP 2.982% 0.661s 0.227% 0.301s
MCut MAIN Global Prediction Solvers GP -0.856% 1.656s -0.868% 0.283s
TSP MAIN Global Prediction Solvers GP 0.316% 0.729s 0.228% 0.839s
TSP MAIN Local Construction Solvers LC 1.299% 3.856s 0.228% 0.839s

ATSP MAIN Local Construction Solvers LC 4.253% 7.816s 1.047% 2.078s
Average MAIN Previous SOTA NCO Solvers – 3.807% 3.181s 0.657% 0.799s

Summary of Ultra-Large Scale Results

MIS∗ Ultra-Large Global Prediction Solvers GP 19.885% 172.986s 5.066% 9.588s
MIS∗ Ultra-Large Gurobi (60s) (Gurobi Optimization, 2023) OR 14.331% 59.076s 5.066% 9.588s
MCl∗ Ultra-Large Gurobi (60s) (Gurobi Optimization, 2023) OR 33.917% 60.248s -6.424% 1.520s
MVC∗ Ultra-Large Gurobi (60s) (Gurobi Optimization, 2023) OR 0.162% 28.121s 0.149% 8.200s
MCut∗ Ultra-Large Global Prediction Solvers GP -2.358% 10.760s -2.276% 1.760s
MCut∗ Ultra-Large Gurobi (60s) (Gurobi Optimization, 2023) OR 0.011% 61.228s -2.276% 1.760s
TSP∗ Ultra-Large Global Prediction Solvers GP 1.595% 40.938s 1.450% 29.495s

32

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

H. Discussion of Limitation
H.1. Limitation of Training Methods and Generalization

COExpander currently relies on supervised learning (SL), which inevitably requires a certain amount of labeled data (details
are presented in Appendix E). However, it is worth noting that the traditional solvers we re-wrapped (Appendix D) support
parallel processing on CPUs. Therefore, the time required to generate each training dataset ranges from several hours to tens
of hours, which is an acceptable time cost.

Although we have conducted some generalization experiments across models, sizes, and distributions in Appendix G,
there is still a lack of generalization experiments on problems such as TSP and ATSP under other distributions (e.g.,
gaussian, cluster), as well as on problems such as MIS, MCl, MVC, and MCut under other distributions (e.g., Holme&Kim
(HK) (Holme & Kim, 2002), Watts&Strogatz (WS) (Watts & Strogatz, 1998)). In future work, we will complete the
experiments and analysis in this regard.

Table 26. Complete Results on CVRP.

METHOD TYPE
CVRP-50 CVRP-100

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
HGS (Vidal et al., 2012) Heuristics 10.489∗ 0.000±0.000% 1.005s 15.563∗ 0.000±0.000% 20.027s

RL4CO (Sym-NCO) (Berto et al., 2024) LC 10.769 3.891±1.640% 0.087s 16.220 4.241±1.131% 0.166s
RL4CO (Sym-NCO) (Berto et al., 2024) + Classic-LS LC 10.565 1.910±1.435% 0.091s 15.933 2.379±1.001% 0.173s
COExpander (S=1,Ds=1,Is=1) GP 12.640 21.835±6.535% 0.009s 19.202 23.333±5.155% 0.010s
COExpander (S=1,Ds=3,Is=1) AE 11.979 15.407±6.898% 0.033s 17.497 12.343±5.459% 0.047s
COExpander (S=1,Ds=1,Is=1) + Classic-LS GP 10.871 4.836±5.552% 0.013s 16.294 4.698±3.120% 0.018s
COExpander (S=1,Ds=3,Is=1) + Classic-LS AE 10.773 3.903±4.052% 0.037s 16.224 4.253±1.991% 0.055s

METHOD TYPE
CVRP-200 CVRP-500

OBJ.↓ DROP↓ TIME↓ OBJ.↓ DROP↓ TIME↓
HGS (Vidal et al., 2012) Heuristics 19.630∗ 0.000±0.000% 60.024s 37.154∗ 0.000±0.000% 360.376s

RL4CO (Sym-NCO) (Berto et al., 2024) LC 20.662 5.274±0.926% 0.320s 40.382 8.723±0.810% 0.769s
RL4CO (Sym-NCO) (Berto et al., 2024) + Classic-LS LC 20.193 2.880±0.854% 0.341s 38.700 4.173±0.606% 0.883s
COExpander (S=1,Ds=1,Is=1) GP 25.064 27.616±5.095% 0.059s 47.749 28.509±2.920% 0.091s
COExpander (S=1,Ds=3,Is=1) AE 22.402 13.977±4.072% 0.145s 43.901 18.199±2.834% 0.554s
COExpander (S=1,Ds=1,Is=1) + Classic-LS GP 20.662 5.290±1.471% 0.063s 39.195 5.530±0.937% 0.215s
COExpander (S=1,Ds=3,Is=1) + Classic-LS AE 20.587 4.893±1.344% 0.153s 39.121 5.337±0.938% 0.605s

H.2. Limitation of Resolving Complex-Constraint Problems

COExpander is the result of combining AE and CM, so its scope of application is limited by its global predictor, i.g.
consistency model. To our best knowledge, before our work, consistency model (Li et al., 2024) has only been applied to
two combinatorial optimization problems: TSP and MIS. At present, there is no consistency model (and even from a higher
level, no global prediction solvers) that can solve combinatorial optimization problems with relatively complex constraints,
such as CVRP (with demand constraints).

We have attempted to apply COExpander to CVRP-50, CVRP-100, CVRP-200 and CVRP-500. Following GOAL (Drakulic
et al., 2024) and NeuOpt-GIRE (Ma et al., 2023), the coordinates of the depot and clients were sampled from a uniform
distribution over the unit square, consistent with the TSP setting. The demands of clients are randomly generated integers
from the interval [1, 10], and the vehicle capacity is set to 40 / 50 / 80 / 100 for CVRP-50 to CVRP-500, respectively. During
the training phase, we use HGS (Vidal et al., 2012) to generate 1,280,000 / 640,000 / 32,000 / 12,800 samples for CVRP-50
to CVRP-500, respectively, and then each model has been trained with a total of 10 training epochs. In the testing phase,
for CVRP-50 and CVRP-100, consistent with NeuOpt-GIRE, each test dataset has 10,000 samples. For CVRP-200 and
CVRP-500, we generated 100 samples each as the test set. The results are shown in Table 26.

From the experimental results, although the GP solver, i.g., COExpander (S=1, Ds=1, Is=1) has certain advantages in speed,
it is far inferior to the LC solver (we take Sym-NCO (Berto et al., 2024) as a representative of the LC solver) in terms
of effectiveness. After we apply Adaptive Expansion to the GP solver for solving CVRP (determining partial complete
sub-tours in each determination process to ensure the satisfiability of constraints), the performance has been improved
to some extent, but it is still not satisfactory. Furthermore, we consider introducing post-processing. Following previous
work (Prins, 2004), we have implemented the local search method (Classic-LS) for CVRP, leading to great performance

33

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

improvements for solvers of the three paradigms. Of course, we believe that solving the CVRP in this manner is far from
sufficient. Therefore, we will discuss in detail in the next subsection the possibility of using the AE paradigm to solve
complex-constraint problems such as the CVRP.

H.3. Discussion on How Adaptive Expansion solves Complex-Constraint Problems

Overview. Since the AE paradigm is an iterative process where the future state depends only on the current state, i.e.,
satisfying the Markov property, it can naturally be modeled as a Markov Decision Process (MDP). Also, AE makes
determinations on variables during the intermediate steps, which allows it to handle complex constraints through the
determination process. Furthermore, inspired by LwD (Ahn et al., 2020), we plan to employ Proximal Policy Optimization
(PPO, Schulman et al. (2017)) for model training, in order to better adapt to the relationship between actions and constraints,
thereby extending the capability of AE methods on complex-constrained tasks. Note that a feasible scheme is theoretically
described as follows, while the implementation and empirical results have obviously exceeded the scope of this paper,
hence reasonably remitted to future researches.

Modeling. An MDP is defined by (S,A,P,R), where s ∈ S denotes a state in the state space S, a ∈ A represents an
action in the action space A, P(st+1|st,at) is the state transition distribution, and R(st,at) is the reward function. Given
graph data G, cost function c(·, ·), we modeling the COPs on graph G using AE paradigm VDP(N, k) as follows:

• State. Every state s can be represented as a tuple of the current partial solution x and the mask M, i.g., st := (xt,Mt).
• Action. An action a can be divided into two parts: selection m and assignment z, i.g., at := (mt, zt). Selection is to

determine which decision variables will be fixed, while assignment is to assign values to these decision variables.
• Transition. Given two consecutive states st, st+1 and the corresponding action at, the transition P(st+1|st,at) is also

divided into two steps as below, where ∨ denotes “ logic or ”.

Update Partial Solution: xi
t+1 =

{
zit if mi

t = 1

xi
t if mi

t = 0
, Update Mask: Mt+1 = Mt ∨mt;

• Reward. We define the reward function only in the final step, i.g., R(st,at) :=

{
−c(G,xt) if t = k − 1,

0 otherwise

Training Model with PPO. The model f(·, ·) takes the current state st, graph data G as inputs, and outputs a policy
distribution πt

θ := πθ(at|st, G) = f(G, st). And the assignment part zt of action at is sampled from πt
θ via Bernoulli

sampling and then set the determined variables as 0:

zt = Bernoulli(πt
θ); zit =

{
zit if Mi

t = 0

0 if Mi
t = 1

.

The training goal is to maximize the expected cumulative reward over the episode: max
θ

Eπθ

[∑k−1
t=0 R(st,at)

]
=

max
θ

Eπθ
[−c(G,xk−1)]. To achieve this objective, we use PPO algorithm, which updates the policy parameters θ by

minimizing the following loss function:

L(θ) = Et

[
min

(
πt
θ

πt
θold

Ât, clip

(
πt
θ

πt
θold

, 1− ϵ, 1 + ϵ

)
Ât

)]
,

where πθold is the old policy before the update; ϵ is a hyperparameter that controls the clipping range to prevent large policy
updates; Ât is the estimated advantage function. In PPO, Ât = Qt − Vt. Given the discount factor γ, the action-value
function is defined as Qt = −γk−1−t · c(G,xk−1), and the state-value function is defined as Vt = Eθ [−c(G,xk−1|st)].

The Selection Part of Action. The selection part m of a is the core of controlling constraint satisfaction, and we need to
design it specifically for the particular problem. We will take CVRP as an example to illustrate how to design m.

• Symmetry. The dimensions of m, z, and M can all be reshaped into n× n, where n is the number of nodes including the
depot. Note that due to the symmetry of the CVRP problem, z needs to undergo an OR operation with its transpose.

• Pre-assignment. pre-assignment is defined as x̂i,j =

{
zi,j if Mi,j = 0,

xi,j if Mi,j = 1
.

34

COExpander: Adaptive Solution Expansion for Combinatorial Optimization

• Check Constraint. To check constraint, we need first to construct the vector C = {0}n to indicate the two constraints
that need to be checked in CVRP: the node degree constraint and the vehicle capacity constraint. As for the first constraint,
we check sequentially whether the degree of each node is less than or equal to 2. And for the capacity constraint, we
transform the adjacency matrix x̂ into a partition matrix p̂, and then we sequentially check whether the sub-path containing
each node satisfies the capacity constraint. The whole process can be represented as below, where dj is the normalized
demand of the j-th node.

Ci =

{
1 if

∑n
j=1 x̂i,j > 2 or

∑n
j=1 pi,j · dj > 1

Ci otherwise

• Actual Assignment. After checking the constraints, we determine the actual assignment ẑ based on the indicator vector

C and z, i.g., ẑi,j =

{
0 if Ci = 1,

zi,j otherwise
. And we perform the pre-assignment again, x̂i,j =

{
ẑi,j if Mi,j = 0

xi,j if Mi,j = 1
.

• Selection Part. Based on the above operations, we can naturally obtain mi,j =

{
1 if ẑi,j = 1 or

∑n
j=1 x̂i,j = 2

0 otherwise
.

35

