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Abstract

Constrained hybrid-action reinforcement learning (RL) promises to learn a safe
policy within a parameterized action space, which is particularly valuable for
safety-critical applications involving discrete-continuous hybrid action spaces.
However, existing hybrid-action RL algorithms primarily focus on reward max-
imization, which faces significant challenges for tasks involving both cost con-
straints and hybrid action spaces. In this work, we propose a novel Constrained
Hybrid-action Policy Optimization algorithm (CHPO) to address the problems
of constrained hybrid-action RL. Concretely, we rethink the limitations of hybrid-
action RL in handling safe tasks with parameterized action spaces and reframe
the objective of constrained hybrid-action RL by introducing the concept of Con-
strained Parameterized-action Markov Decision Process (CPMDP). Subsequently,
we present a constrained hybrid-action policy optimization algorithm to confront
the constrained hybrid-action problems and conduct theoretical analyses demon-
strating that the CHPO converges to the optimal solution while satisfying safety
constraints. Finally, extensive experiments demonstrate that the CHPO achieves
competitive performance across multiple experimental tasks. Our code is available
at github.CHPO.

1 Introduction

Hybrid-action reinforcement learning (RL) aims to handle tasks with parameterized action spaces,
combining discrete and continuous actions to enable effective decision-making in complex scenar-
ios [[1H3]. Recent works of hybrid-action RL have achieved remarkable achievements in the domains
of policy games [4, 5], robotics [6H9]], resource allocation [[10H12]], and autonomous driving [[13}[14].
However, safety concerns remain a primary challenge to the real-world deployment of hybrid-action
RL, particularly in scenarios with high safety requirements [[15H17]. For instance, in the context of
autonomous driving, agents need to learn a reward-maximizing policy within parameterized action
spaces while simultaneously ensuring collision avoidance [18-20]. Constrained hybrid-action RL is
a promising and potentially effective approach to address the aforementioned issues. It learns policies
that satisfy safety constraints in tasks with parameterized action spaces.
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Although substantial progress is being made by leveraging the Parameterized Action Markov Decision
Process (PAMDP) framework [21]] for policy learning in hybrid action tasks [12, 5, [22]], its adaptation
to handle safety constraints in such settings remains challenging and unresolved [23-25]]. For the
aforementioned cost constraint problems, common methods, like the Lagrange multiplier and penalty
function methods [26H29], are sensitive to initial values and require extra coefficients, leading to
training instability and costly hyperparameter tuning. Furthermore, since hybrid-action RL requires
the simultaneous optimization of discrete actions and continuous parameters within policy networks,
this typically necessitates the design of evaluation strategies for both components to jointly guide
policy updates, which increases the difficulty of convergence compared to RL for a single action
space. To make matters worse, the additional hyperparameters introduced by safety constraints further
exacerbate the instability of model training. Therefore, this work focuses on solving the problems of
constrained hybrid-action RL involving hybrid actions and cost constraints.

To solve the aforementioned constrained hybrid-action optimization problem in parameterized action
spaces, we propose a novel Constrained Hybrid-action Policy Optimization algorithm (CHPO).
Concretely, we introduce the Constrained Parameterized-action Markov Decision Process (CPMDP)
to represent the cost constraints in parameterized action spaces. Based on this, we redefine a
novel constrained hybrid-action RL objective for tasks involving hybrid actions and cost constraints.
Subsequently, we propose a constrained hybrid-action policy optimization algorithm to address the
constrained hybrid-action RL tasks. Furthermore, we present theoretical analyses on the convergence
and safety of CHPO, demonstrating its capability to adaptively learn safe policies for parameterized
action spaces under given safety constraints. Finally, extensive experiments demonstrate that the
CHPO algorithm achieves competitive performance across multiple experimental tasks, particularly
outperforming baseline algorithms in maximizing rewards while ensuring that the average cost across
multiple seeds satisfies the safety constraint. The main contributions of this work are listed as follows:

* To the best of my knowledge, we are the first to formulate a constrained hybrid-action RL
objective for the policy optimization problem involving hybrid actions and cost constraints.

* We develop a constrained hybrid-action policy optimization method to solve the constrained
hybrid-action RL tasks, which not only learns safe policies that satisfy safety constraints but
also improves the stability of the algorithm.

* Theoretical analyses provide the convergence and safety guarantees of CHPO, indicating
CHPO can learn safe policies for hybrid action spaces under given safety constraints.

 Extensive comparisons and ablation experiments demonstrate that the CHPO algorithm deliv-
ers competitive performance, particularly outperforming baseline algorithms in maximizing
rewards while ensuring that average costs across multiple seeds satisfy safety constraints.

2 Related Work

In this section, we extensively discuss the related work on constrained hybrid-action RL. We primarily
focus on hybrid-action RL and constrained RL. In addition, we provide a supplementary discussion
of the related work on RL in Appendix [A]

Hybrid-action RL is an approach to address parameterized actions composed of discrete actions with
continuous action parameters. The straightforward method is to directly discretize the continuous
action spaces and transform them into a large discrete set, which often results in an excessively
large discrete action space [30]]. Currently, the PAMDP [21]] framework has been widely adopted
to better address the policy learning challenges in RL with parameterized action spaces. Based
on it, PADDPG [1]] applies the DDPG [31]] algorithm directly by relaxing discrete action spaces
into a continuous set, and PDQN [4] combines the spirits of both DQN [32] for discrete action
spaces and DDPG for continuous action spaces. Furthermore, MPDQN [5]] utilizes multi-pass deep
Q-networks to separate continuous action parameters, and HPPO [2] uses the hybrid actor-critic
architecture flexible to the structure of the action space. Moreover, some studies focus on considering
the dependency between discrete and continuous actions to solve RL tasks with hybrid actions [8}[33]].

Constrained RL aims to solve policy optimization problems where cost constraints are enforced
alongside maximizing rewards. After the proposal of the Constrained Markov Decision Pro-
cess (CMDP) [34] framework, numerous constrained RL algorithms have been developed to learn
safe policies satisfying cost constraints [35} 36, 116, 137]. Among them, some works directly use



Lagrange multipliers and show outstanding performance in satisfying constraints [38-41]]. Editor
policies and safe exploration have also achieved promising results as alternatives to Lagrangian
multipliers [42,43]]. Furthermore, there have been successful attempts in addressing constrained RL
tasks by employing constrained methods such as interior-point [26], conditional value-at-risk [44-46],
penalty function methods [28]], and world models [47}48]]. Moreover, the algorithms based on the
primal-dual methods have been widely applied to solve constrained RL problems, such as PDO [49],
CVPO [50], and RCPO [51]]. Extensive research on offline safe RL further enhances the safety of
the training process [52H57]. These diverse methodologies underline the versatility and growing
sophistication of constrained RL research.

In summary, compared to purely discrete or continuous action spaces, parameterized action spaces are
more challenging to handle in RL. This difficulty arises because parameterized action spaces include
both discrete actions and continuous parameters, whereas most RL models are designed specifically
for either discrete or continuous action spaces. More critically, the difficulty further exacerbates
the challenge of selecting safe discrete actions and continuous action parameters in safety-critical
parameterized action spaces when both cost and reward are involved. When extending constrained RL
algorithms to hybrid action spaces naively, directly relaxing them into a continuous space substantially
increases action complexity and degrades performance, making existing constrained PPO variants [29]
inapplicable. To the best of our knowledge, our work is the first attempt to simultaneously address
parameterized actions and cost constraints.

3 Preliminaries

This section presents fundamental concepts of RL, hybrid-action RL, and constrained RL. Sub-
sequently, we rethink the existing works and highlight the purpose and significance of our work.

3.1 Concepts and Background

Standard RL employs the Markov Decision Process (MDP) framework defined by the tuple
(S, A, P,r, po,7y), where S € R™ is the state space, A € R" is the single discrete or continu-
ous action space, P : § x A x § — [0, 1] denotes the state transition probability p(s;y1|s¢, a;) from
state s; to state s;1 under the action a4, 7 : S X A — R represents the reward function abbreviated
as r = r(s¢,at), po : S — [0, 1] is the distribution of initial states, and v € (0, 1] is the discount
factor. The policy 7 is a probability distribution mapping the state s; to the action a;. The common
objective of standard RL is to maximize the cumulative rewards:
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where the 7 = {sg,ap,---} ~ 7 denotes the trajectory. Moreover, constrained RL is based
on the CMDP framework to define a tuple (S, A, C, P,r, po, ), where the added C'is the set of
costs {¢; : S x A — Ry ,i =1,2,---,m} for violating m constraints. We use shorthand ¢; ; =
¢i(st, ay) for simplicity. The goal of constrained RL is to maximize the cumulative rewards 7* =
arg max, E-[Y o, v'r] while satisfying safety constraints E..[> .~ 7'c; ] <&, where ¢; is
the cost threshold of the i-th cost constraint.

On the other hand, hybrid-action RL utilizes the PAMDP to define the parameterized tuple
(S, A,, P,r, po,7). The whole parameterized action space A, includes a finite set of discrete actions
Aq = {a1, a9, ar} and a set of real-valued continuous parameters .4, C RA« corresponding
to each discrete action ay € A4. In this way, a complete action in step ¢ is composed of a4 ; and
act, Where aq; € Ag is a discrete action and a. ¢ € A, is the chosen parameter to execute with the
discrete action a4 . The whole action space .4, is the union of each discrete action with all possible
parameters for that action:

Ap = J{(@a, ac)laa € Ag,ac € A} 2)

The parameterized policy Tl'p(a(Lh ac,t|st) is to select the discrete action aq4 ; and the continuous
parameter a. ., which are unified as a; = (aqy4, ac,). Similar to standard RL, the objective of
hybrid-action RL is also to maximize rewards:

T, =arg max Ernn, lz ’ytrt]. 3)
’ t=0



3.2 Rethinking to Hybrid-action RL

We rethink the application requirements of hybrid-action RL algorithms in real-world scenarios. In
the autonomous driving parking task [58) 59], the intelligent vehicle needs to select the direction
of travel and the distance to travel in that direction to successfully park, but the vehicle must avoid
collisions with obstacles ensuring safety throughout the process. In this work, we establish and
test a parameterized Parking task with specific details provided in Appendix [D.1] Similarly, in
robotic manipulation, both the selection of operations and the corresponding operation parameters
must be considered, along with constraints related to hazardous areas. These cases require us to
simultaneously account for parameterized actions and cost constraints.
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Figure 1: The figure depicts the reward and cost curves for the Moving and HardMove tasks. The
shaded curves represent the mean and variance of online testing during the training process with three
different random seeds. The cost limit is set as ¢; = 1.

We conduct experiments on the hybrid-action RL algorithms of PAMDP in the typical experimental
scenarios Moving [2, 122,133} 160] and HardMove [22,|33}160] of DI-engine [60] where we introduce
costs and hazardous areas into these tasks. A detailed description of the tasks is provided in
Appendix The experimental results are shown in Fig.[T] The curve of the HPPO [2] algorithm
indicates that, while the current hybrid-action RL algorithm can achieve high rewards, it often violates
safety constraints to a significant extent. Additionally, inspired by the RCPO [51]] algorithm, we
attempt to use the cost as a negative reward to learn policies that satisfy safety constraints. We
combine the PDQN algorithm [4]] with reward-constrained policy optimization to form PDQN-Rco.
The result of PDQN-Rco shows that although the reward-constrained method can learn policies that
adhere to safety constraints, the rewards are relatively poor. This suggests that the reward-constrained
method for hybrid action spaces tends to drive the policy towards local optima, making it challenging
to ensure optimal performance.

In summary, for parameterized action spaces, the current hybrid-action RL algorithms and the reward-
constrained approaches are insufficient to adequately meet the requirement of maximizing rewards
while satisfying safety constraints. Inspired by CMDP and PAMDP, we propose a novel constrained
hybrid-action RL task for addressing the simultaneous treatment of parameterized action spaces and
cost constraints in RL application scenarios.

4 Methodology

In this section, we provide a detailed exposition of constrained hybrid-action policy optimization for
constrained hybrid-action RL. Firstly, we define the constrained hybrid-action RL task and reframe the
objective of constrained hybrid-action RL by introducing the concept of CPMDP. Subsequently, we
construct a constrained hybrid-action actor-critic architecture to address scenarios involving costs and
hybrid actions and propose a constrained hybrid-action policy optimization algorithm for constrained
hybrid-action RL within the architecture. Additionally, we present theoretical analyses demonstrating
that CHPO guarantees the convergence of learning safe policies under safety constraints.

4.1 Constrained Hybrid-action RL
Definition 4.1. Constrained hybrid-action RL tasks refer to tasks that involve parameterized ac-

tion spaces and cost constraints, with the objective of maximizing rewards while satisfying safety
constraints. This is formulated as:

oo oo
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Based on the analysis and discussion in Section [3.2] it is known that existing hybrid-action RL
algorithms and the reward-constrained method face challenges when dealing with tasks that involve
cost constraints and parameterized actions. Therefore, we introduce the cost to define the constrained
parameterized tuple (S, A,, C, P,r, pg,~y) as the CPMDP framework, where the added C is the set
of costs {¢; : S x A, = Ry,i=1,2,---,m} for violating m constraints in parameterized action
spaces and we also use shorthand ¢; ; = ¢;(s¢, at) = ¢;(S¢, (aa,t, ac,t)) for simplicity.

4.2 Constrained Hybrid-action Policy Optimization

Due to the difficulty in directly handling the objective stated in Definition [4.1] we are inspired
by HPPO [2] to define the state-value for reward on the parameterized policy 7, as V" (s) =
Eror, [Doieo 77 (s, ai)|so = s] and the state-value for cost is defined similarly as Vi (s) =
Ernr, [Z;’i o 'ytci,t(st, at)|so = s]. Furthermore, since the policy T outputs two types of actions,
we define the discrete policy 74 outputting discrete actions a4 and the continuous policy 7. outputting
continuous parameters a. separately, which together form the policy 7, for a clearer explanation.
Therefore, the Eq. (Ef[) 18 rewritten as:

5, =arg max Eons V3, ()], 5.6 Eons [V (5)] < 6)
P

where ¢, and ¢, represent the parameters of the state-value functions, and 6, = (64,0.) is the
parameters of the policy m, consisting of 64 and 6..

To handle a class of discrete-continuous hybrid action spaces with safety constraints, we propose a
constrained hybrid-action actor-critic architecture capable of learning safe policies in both discrete
and continuous action spaces under cost constraints. The architecture comprises two critic networks
and two actor networks: the reward critic network represents the reward state-value function V' (s),
the cost critic network represents the cost state-value function V(;Z (s), the discrete actor network

defines the discrete policy function g, and the continuous actor network defines the continuous
policy function 7y_. In our architecture, the cost critic network provides the estimation of the cost
advantage function fl? = —V(sy) +cip +vCipt1 + -+ ATt g + ATV (s7) tO
allow the constrained hybrid-action actor-critic architecture to flexibly adapt to constrained policy
optimization methods, where 71" is timesteps for the policy 7, and much less than the length of an

episode, and ¢ € [0, 7] is the timestep index. The computation of the reward advantage function Ar,
similar to A%, is given by AL = —V7"(s¢) + 74 +yreg1 + -+ ep g + 4TV (s7). The
objective of the cost state-value update is written as:

. A o 2
£(¢c,) =argmin Es~s[(0i(8) — Vil () } ) 6)
where C;(s) = Z;io Y ¢it45(St4j, art;) is the target cost return computed by the Monte Carlo
method and s; = s. Similarly, the objective of the reward state-value update is expressed as:

L(¢p,)=arg II(;IH]ESNS[(R(S) — V(;T(s))ﬂ, (7

where R(s) is the target reward return computed using R(s) = Z?io Virej(St4i,aty;) and sp = s.

The constrained hybrid-action optimization described in Eq. (3 is conventionally tackled using
the Lagrange multiplier method, which converts the constrained formulation into an unconstrained
optimization problem by incorporating penalty terms into the objective function. While effective in
principle, this primal-dual approach often suffers from issues such as sensitivity to the initialization of
Lagrange multipliers and the careful selection of learning rates, making it computationally expensive
due to the extensive hyperparameter tuning required. Inspired by CRPO [61]], we directly tackle
the constrained hybrid-action problem using the policy gradient of the primal objective based on
stochastic approximation theory, effectively avoiding the instability and inefficiency associated
with auxiliary Lagrange multipliers. Theoretical analyses in Section [4.3]indicate that the direct
optimization method ensures stable convergence and enhances the practicality of solving constrained
hybrid-action RL problems.

Based on the above analysis, we propose a Constrained Hybrid-action Policy Optimization (CHPO)
for RL with parameterized action spaces to solve constrained hybrid-action RL tasks. The param-
eterized policy update for the CHPO algorithm is performed within the constrained hybrid-action



actor-critic architecture. We first evaluate whether the current policy satisfies the cost constraints
based on the cost state-value and then update the parameterized policy by maximizing the reward
or minimizing the cost. Specifically, when the cost constraints in parameterized action spaces are

satisfied (i.e., Esug [V;C (s)] <¢;), the constrained hybrid-action optimization described in Eq. (3)) is

transformed into an unconstrained optimization problem, requiring consideration of reward maximiza-
tion within the parameterized action spaces. If the cost constraints are not satisfied, the constrained
hybrid-action optimization in Eq. (3)) is converted into minimizing the cost in discrete-continuous
hybrid action spaces. Therefore, the objective of the policy update is expressed as:

g, (als) - ies
)' (]Iﬂ'ngﬂ'SA _Hm;p&TrSA ) 3 (8)

Tox (als

L(6p) = arg n})axIESNS l

where 7, represents the safe policy, mg, € 75 indicates that the policy 7y, satisfies safety constraints,
while 7y, ¢ 7, denotes that the policy 7, violates the constraints. ]Lrsp e, 1s a sign function that
takes the value one when o, satisfies safety constraints; otherwise, it takes zero. Similarly, when o,
violates safety constraints, ]I,mp ¢ is equal to one; otherwise, it equals zero. 05 is the parameters of
the discrete and continuous actor networks at k-th update including 9’5 and 6%. The policy g, update
involves separately updating the discrete policy 7y, and the continuous policy g, which includes
handling 6, and .. A detailed update example is provided in Section

4.3 Theoretical Analysis

To validate the convergence properties and cost safety of CHPO, we derive the policy and cost
boundary. Before deriving the following, we review the policy boundary of the natural stochastic
gradient, as presented in Lemma[4.2]

Lemma 4.2. The boundary of the policy based on natural stochastic gradient updates [61)]:
2077.S|IA| | 1

1QF, — Qillz + —22=0— +

3(1 4+ armax) 1
i-° 'a

(=)
_DKL(ng‘|W9];+1)),

L(mg,,) — L(mgr) < Esvs(Drr (| |mgx)

&)

where ryax represents the maximum reward, Qy, and Qk denote the evaluated value and the estimated
value of the action-state at k-th update, ok and .11 represent the policies at step k and k +
P

1, respectively. The parameter o = (1 —~)15/\/|S||A|K. |S| and | A| represent parameters
associated with the dimensions of the observation state s and the action space a, respectively. K
denotes the maximum number of policy update steps.

Based on the policy boundary presented in Lemma [.2] and the update method of the CHPO, we
derive the policy and cost boundary as shown in Propositions [4.3] and 4] The propositions 4.3
and [d.4] are presented and discussed in detail in Appendices [B.Z]and[B.3]

Proposition 4.3. After updating the policy for the K steps according to the method described in
Eq. @), the policy converges to a boundary.

] VISIIA|
L(m;,) — E[L(my)]<O ( TESTE \/7{) : (10)

Proposition 4.4. After updating the policy for K steps according to the method described in Eq. (8),
the policy cost converges to a boundary.
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The proposition 4.3 shows that the policy converges to the optimal policy after K iterations, with
the convergence bound dependent on the dimensions of the state space |S|, the action space |.A|, and
the number of update steps /. The proposition 4.4 demonstrates that, after K iterations, the policy



cost converges to within a bounded range of the cost threshold, where the bound depends on the
dimensions of the state space |S]|, the action space |.A|, and the number of iterations K. The number
of iterations K consists of the number of iterations |V,.| for maximizing the reward and the number

Ve, |

of iterations | N, inimizi . io= % as the proportion of

update steps dedicated to cost minimization relative to the total number of policy.

Remark 4.5. The proportion (C/A ratio) between the update iterations allocated to reward maxi-
mization and cost minimization influences the final optimal policy E[ﬁ(ﬂ'gz )]

A detailed discussion of Remark [4.5]is presented in Appendix with corresponding experiments
further supplemented in the ablation study.

4.4 Practical Algorithm

To facilitate the understanding of the implementation process of the CHPO algorithm, we provide
a detailed explanation of a practical instance of the CHPO algorithm. The pseudo-code for the
CHPO algorithm is shown in Algorithm [I|of Appendix [C| In the state-value estimation step, we
employ Eq. (6) and Eq. (7)) in the constrained hybrid-action actor-critic architecture to separately
update the state-values of reward and cost. In the policy update step, we evaluate whether the cost
constraints are satisfied and update the policy network parameters ¢, including 64 and 6. Since
the cost state-value function VC’ “(s) estimates the cost return with the discount factor ~, utilizing

the cost state-value in Eq. (3)) to determine whether the safety constraints are met may lead to the
neglect of some unsafe circumstances. Therefore, we use the cost return without the discount factor
Le, (o) = IETNWB L Do Cit] instead of VC‘ (s) in Eq. (3) to decide whether cost constraints are

satisfied and the objectlve of policy update, where gk Tepresents the parameterized policy 7y, at
k-th update. Concretely, for the parameterized policy 7y, update including the discrete policy g,
and continuous policy 7y, update, if cost constraints are satisfied, the objective of policy update in
Eq. (8) is transformed into:

) o als) 5 o, (als)
L(0,)=arg Hgix]ESNS [mln (714 llp(w7

7T9k (Z| )
where (95 is the parameters of the parameterized policy network at k-th update, and a includes the
discrete action a4 and the continuous action a.. Conversely, if the safety constraints are not satisfied,
the objective of the policy update is expressed as:

- m(als)
L(6,)=arg HQILHESNS [mm (m

1-e,1+e)2v“>], (12)

7o, (als

Aci chp( Wek(

|| ; 1—e,1+e)/1”)}, (13)

That is to say, the discrete policy 7y, and continuous policy 7y, constitute the parameterized policy
mg,, to determine complete actions, achieving reward maximization while satisfying safety constraints.

5 Experimental Evaluation

In this section, we conduct comprehensive comparative experiments between CHPO and previous
hybrid-action RL methods in tasks with different hybrid action spaces and observation dimensions.

5.1 Task and Baseline

Task. To assess the performance of CHPO in various tasks with parameterized action spaces, we
select three widely adopted tasks from DI-engine [60] and establish a Parking task with parameterized
action spaces as experimental tasks in this work. Concretely, we choose the Moving [2, 122} 33, 160],
Sliding (2, 160l], and HardMove [22, 33, 160] tasks, all of which require agents to perform both
discrete and continuous actions to reach a target area. For instance, in the Moving task, the agent
can take discrete actions such as turn, accel, or break, accompanied by two continuous parameters:
acceleration and steering angle. To the best of my knowledge, there are currently no standardized
tasks for constrained hybrid-action RL. To facilitate further research and reproducibility of this work,
we modify the aforementioned standard experimental scenarios of DI-engine for hybrid-action RL
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Figure 2: The figure depicts the reward and cost curves of CHPO and the baseline algorithms in the
comparison experiment to showcase the performance of each algorithm. The shaded areas on the
curves represent the variance obtained from online testing conducted with three random seeds. The
cost limit of the four tasks is set at ¢; = 1.
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by introducing costs and hazardous areas into these tasks. Additionally, in the Parking task, the
intelligent vehicle selects from three discrete directional actions, each associated with a specific
movement distance, to park in designated areas while avoiding collisions with obstacles and other
vehicles. A more detailed description of four task settings can be found in Appendix

Baselines. Due to the lack of hybrid-action RL algorithms that can simultaneously handle parameter-
ized action spaces and cost constraints, we enhance existing hybrid-action RL methods to develop
constrained hybrid-action RL algorithms as the experimental baselines. PADDPG-Lag is an improved
hybrid-action RL algorithm that combines the Lagrange multiplier method with PADDPG [1]] to
enable the optimization of constrained hybrid-action policies in parameterized action spaces. That is
to say, the online safe RL algorithm DDPG-Lag handles these tasks by relaxing discrete action spaces
into a continuous set. Similarly, we introduce the Lagrange multiplier method based on HPPO [2] to
relax the constrained hybrid-action problem into an unconstrained optimization problem and obtain
an improved algorithm HPPO-Lag. Moreover, we incorporate the reward-constrained method [S1]]
into PDQN [4] which combines the spirits of both DQN for discrete action spaces and DDPG for
continuous action spaces, resulting in an enhanced algorithm PDQN-Rco.

5.2 Performance Comparison Experiment

Performance on various tasks. To evaluate the performance of the CHPO algorithm across various
safe tasks with parameterized action spaces, we conduct comprehensive comparative experiments.
The results involve comparing the performance of the CHPO algorithm with the baseline algorithms in
the four tasks: Moving, Sliding, HardMove, and Parking. Fig.[2]illustrates the reward and cost curves
for the baseline algorithms and the CHPO algorithm in the four tasks. From the illustrated results,
it can be observed that compared to the baseline algorithms, CHPO maintains the average costs
within the specified cost limit while achieving higher rewards. Furthermore, the CHPO algorithm
demonstrates a more stable performance compared to other baseline algorithms. Notably, CHPO
provides the highest rewards across all four tasks while adhering to the cost limit. The above results
indicate that CHPO consistently enforces policy compliance with safety constraints across various
safe tasks involving parameterized action spaces while delivering competitive reward returns.

Performance on different cost limits. To evaluate the performance of the CHPO algorithm under
different cost limits, we conduct comparative experiments between the CHPO algorithm and the
baseline algorithms at multiple cost limits. The results in Table [T| demonstrate that the CHPO
algorithm ensures adherence to cost constraints while providing competitive reward returns across
the four tasks with varying cost limits. Additionally, from the results in the table, it is evident that an
increase in the cost limit and more relaxed safety constraints lead to higher mean values of reward
for the CHPO algorithm and the baseline algorithms in the four tasks. Notably, compared to other
baseline algorithms, the CHPO algorithm effectively adjusts the policy based on different cost limits
to maximize the reward as much as possible. Moreover, the reward and cost curves for the CHPO
algorithm and the baseline algorithms under these cost limits ¢; = 1.5 and ¢; = 2 during online
testing are provided in Fig. [d]and Fig. 5] of Appendix The analysis of the above results indicates
that the CHPO algorithm can effectively learn policies that satisfy various safety constraints across
tasks with parameterized action spaces while achieving excellent rewards.



Table 1: The performance of CHPO and the baseline algorithms is evaluated across different cost
limits. The results from experiments involving 40 episodes are conducted with 3 random seeds.
These cost limits of the four tasks are set at ¢; = 1, ¢; = 1.5 and ¢; = 2. The costs satisfying safety
constraints are shaded gray, with the highest-reward entries highlighted in bold.

Method Metrics Moving Sliding

=1 ¢ =1.5 ¢ =2 =1 ¢ =15 ¢ =2
Reward T -0.43+0.55 -0.07+0.89  0.89+0.86 -0.93+0.16 -0.92+0.18 -0.67£0.30

HPPO-Lag Cost | 0.17£6.58  0.43+8.22 1.09+1.41 0.28+1.12 1.04+3.95 1.32+3.61
PADDPG-Lag Reward t  1.30+0.67 1.41£0.54 1.50+£0.52 -0.67+0.33 -0.61+0.32 -0.46+0.33
Cost | 0.36x1.59 1.10£3.57 1.59+6.95 1.09+1.68 1.17+£1.86 1.29+£1.96

PDQN-Rco Reward T -0.83+0.25 0.22+1.02  0.58+0.92 -0.99+0.09 -0.93+0.22 -0.89+0.39
Cost | 0.31£0.62  0.63+5.20  0.39+3.24 0.12+1.09 1.2242.02 1.74+5.69

CHPO Reward T 1.41+0.55  1.52+0.46 1.60+0.36 -0.37+0.52 0.34+0.43 -0.30+0.51
Cost |  0.22+0.99 1.42+4.03  1.85+2.11 0.92+1.60 1.24+1.67 1.93+3.45

Method Metrics HardMove Parking
ci=1 ¢ =15 ¢ =2 ci=1 ¢ =15 ¢ =2

HPPO-Lag Reward T -0.51+£0.39  0.02+0.64  0.21+0.65 20.01£25.21 23.22+13.03  23.02+£16.92
Cost | 0.67£1.22 1.08+1.95 1.33+1.53 0.82+1.26 1.26+3.72 1.75+£5.24

PADDPG-Lag Reward T -0.29+0.59  0.80+1.20 1.28+0.81  26.66+£16.39  35.21+5.52 37.24+3.00
Cost |  0.35+1.11 1.18+1.76 1.73+3.39 0.94+2.15 1.21+2.62 2.27+2.73

PDQN-Rco Reward T -0.88+0.20 -0.84+0.23 -0.81+0.24  32.72+7.44 34.95+5.30 35.33+5.34
Cost | 0.37£0.89  0.38+1.04  0.43+1.10 0.21£0.35 0.34+0.75 0.87£2.30

CHPO Reward T 0.89+0.59 1.02+0.54  1.36+0.53 37.63+3.04 37.98+2.47 37.73+3.15

Cost | 0.97+1.41  1.48+2.13  1.73+2.14 0.93+3.17 1.39+5.31 1.88+2.27

5.3 Ablation Experiment

Performance with and without the constraint module. We evaluate the impact of the constraint
module in the CHPO algorithm by removing it during policy updates. The HPO represents CHPO
without the constraint module during policy updates. Fig. [3|displays the reward and cost curves for the
CHPO algorithm and the CHPO algorithm without the constraint module in the Moving and HardMove
tasks. From the figure, it can be observed that when the constraint module is not used to handle
safety tasks with parameterized action spaces, HPO achieves higher rewards compared to CHPO.
However, the costs achieved by HPO significantly exceed the predefined cost limit ¢; = 1, resulting
in substantial violations of safety constraints. Meanwhile, CHPO effectively adheres to the safety
constraints with only a minimal loss in rewards. Additionally, the results of this ablation experiments
for the Sliding and Parking tasks are presented in Fig.[6] of Appendix This demonstrates that the
constraint module in the CHPO algorithm effectively enforces safety constraints in tasks with hybrid
action spaces while maintaining satisfactory reward performance.
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Figure 3: The figure depicts the reward and cost curves in ablation experiments regarding the
constraint module. The HPO represents CHPO without the constraint module. The shadowed areas
represent the variance of the test results for three random seeds and the cost limit is set at ¢; = 1.

Performance on different C/A ratios. To evaluate the impact of the C/A ratios on the performance
of CHPO, we experiment with four different C/A ratios tailored to the practical training scenarios
of four distinct tasks. Fig. [7]of Appendix[D.2|presents the mean and standard deviation of CHPO’s
performance on safety tasks with parameterized action spaces across different C/A ratios. The
results in the figure indicate that as the C/A ratios increase which reflects a higher frequency of
cost minimization policy updates, the mean costs generally follow a decreasing trend. However,
when the number of cost minimization policy updates becomes excessively high, the mean costs
no longer decrease and instead begin to rise, accompanied by a reduction in rewards. This effect is
particularly pronounced in the Moving, Sliding, and Parking tasks, where excessive cost minimization



policy updates result in higher cost values, lower mean rewards, and increased reward variance.
Additionally, the reward and cost curves corresponding to these observations are presented in Fig. [8|of
Appendix [D.2] The above results indicate that the CHPO algorithm can achieve satisfactory rewards
while ensuring that average costs satisfy safety constraints within a broad range of C/A ratios.

6 Conclusion

In this work, we propose a novel constrained hybrid-action policy optimization algorithm for con-
strained hybrid-action reinforcement learning. Concretely, we first rethink the requirements of
hybrid-action RL in real-world applications and redefine the constrained hybrid-action RL objective
for tasks involving hybrid actions and cost constraints by introducing the CPMDP. Subsequently,
we present a constrained hybrid-action policy optimization algorithm to address the constrained
hybrid-action RL tasks within the constrained hybrid-action actor-critic architecture. Additionally,
we present theoretical analyses demonstrating that our method guarantees the convergence of learn-
ing safe policies for parameterized action spaces under given safety constraints. Finally, extensive
experiments illustrate that the CHPO algorithm is capable of handling the constrained hybrid-action
RL tasks and providing competitive performance, particularly in terms of safety.
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Justification: Please refer to Appendix [E] In summary, our algorithm primarily focuses on
simulation environments and relies on online interactions, which are often constrained by
low data sampling efficiency. We aim to deploy our method in real-world applications and
explore offline RL methods for constrained hybrid-action policy optimization in the future.
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
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Answer: [Yes]

Justification: We provide the code necessary to run our own method (CHPO), as well as
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setting can be found in Appendix [D.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance of all presented empirical results is justified. In
particular, we include standard deviation values for all results presented in Table [T} In
addition, we use the shaded areas in the figures to represent the variance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: We present the details of the hardware and other resources used for our
experiments in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics carefully and affirm that our
work adheres to all listed requirements.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: To the best of our knowledge, our work cannot be misused in any way to cause
any form of negative social impact. The impact statements can be found in Appendix [E]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The research does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper already cited related packages that we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets with this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

In this section, we further discuss the related work on standard RL algorithms to illustrate the
challenges in handling hybrid action spaces.

RL seeks to learn reward-maximizing policies through interactions with environments characterized
by a single action space. On the one hand, RL for discrete action spaces has been extensively
studied, focusing on tasks where the set of possible actions is finite. Based on the Q-learning [62]]
algorithm which represents the expected cumulative reward of taking action, some variations of
DQN [63] are widely used in discrete action spaces, including asynchronous DQN [64], double
DQN [65], and dueling DQN [32]. On the other hand, policy gradient [66] methods, such as
PPO [67] and DDPG [31]], have shown effectiveness in handling continuous action spaces by directly
optimizing policies using a gradient. Extensions like TRPO [68]] and SAC [69] improve stability
and efficiency through constraints on policy updates and entropy regularization. Since most RL
models are specifically designed for either discrete or continuous action spaces, they struggle to
simultaneously handle action spaces that contain both discrete and continuous components.

B Proofs and Discussions

Lemma B.1. (Policy gap [61]) The policy gap for the natural stochastic gradient updated policy is:
3(1 4+ armax o ax|S|IA
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where T ax represents the maximum reward, Qy, and Qk denote the evaluated value and the estimated
value of the action-state at k-th update, ok and Tgk-+1 represent the policies at step k and k + 1,

respectively. The parameter o = (1 — )15/, /|S||A|K.

Proposition B.2. After updating the pollcy for the K steps according to the method described in
Eq. [8), the policy converges to a boundary.

. VISIA
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Proof. The relationship between the policy after K steps of updates and the optimal policy is
represented as L(mj ) — L(mgx).
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where N,. represents the set of policies updated based on maximizing rewards and | V,.| represents

Ci

policy updates based on the ¢-th cost and the number of update steps based on the ¢-th cost, respectively.

Ci
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|S| and |.A| are the dimensions of the observation space and the action space, respectively. K is the
maximum number of steps for policy updates. Based on the relationship of the policy boundaries
updated by natural gradient as shown in Lemma the relationship of the inequalities {4} is
obtained. Set the Remax = max{rmax, Cmax }» the inequality {i:} is derived. Based on the relation
1Qr— Okl < Y—2214 (17\;%5”“4‘ , the inequality {47} is obtained. Substitute K = > [N, | + [N |,
the equation {iv} is derived. Where o = (1 —)1?//|S||A|K € (0, 1), the inequality {v} is
obtained, and substituting o = (1 — )*®/1/|S||A| K results in inequality {vi}. Based on Eq. (T6),

it follows that £(mj ) — E[L(7gx )| <O ( A ) thus proving Proposition

Proposition B.3. Afier updating the policy for K steps according to the method described in Eq. (§),
the policy cost converges to a boundary.
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Proof. After K updates of the policy, the cost constraint relationship is expressed as follows:
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When the policy is updated based on rewards, the policy satisfies the cost restriction fully, resulting
in the inequality {7}. Eq. is further simplified as shown in Eq. (I9).
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After K steps of policy updates from lines 14 to 17 in Algorithm [} assuming that the condition
Le, (71'9;;) — ¢ < 0, the inequality relation of equation {4} is derived. Based on the relation [70]

L, (71'9;;) — L., (7@5) < [|Q5 — Q5 |2, the inequality relation of equation {ii} is derived. From the

inequality relation ||Qj — Qllz < 7”(1_]7){‘5“& inequality {4i7} is obtained. Based on Eq. (T9),

E[ﬁ(mgz;)] -¢ <0 <\/ M}'f'““) thus proving Proposition

Remark B.4. The proportion (C/A ratio) between the update iterations allocated to reward maxi-
mization and cost minimization influences the final optimal policy E[ﬁ(weg )]

Proof. Based on Eq. (I6), the relationship between the final policy Ton after k iterations and the
optimal policy 7y is derived.
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In the above Eq. @]), S, Ay, and Rep,.x are constants. Therefore, the deviation between the policy

\/\SIIA
( )1 o

, which is closely influenced by the number of update steps allocated to the minimization

after the K update steps and the optimal policy depends not only on , but also on the

pohcy

of costs and maximization of rewards. The proportion (C/A ratio) between the update iterations
allocated to reward maximization and cost minimization influences the final optimal policy. We

define C/A ratio= % as the proportion of update steps dedicated to cost minimization

relative to the total number of policy, and conduct comprehensive evaluations of its effect through
ablation experiments.

C Practical Algorithm

To facilitate the understanding of the CHPO algorithm’s implementation, we provide its pseudo-code
shown in Algorithm |1} After estimating the reward and cost advantage functions A} and Aj*, we first
employ Eq. (6) and Eq. (7) to update the cost state-value function V;* (s) and the reward state-value
function Vi (s), respectively. Subsequently, to more accurately assess unsafe situations, we compute
the cost return without the discount factor y as L., (wezpc) = ET””eg [>"i20 i) in Eq. (B) to decide
whether cost constraints are satisfied. When the cost constraints are satisfied, the parameterized
policy 7y, is updated according to Eq. (I2) with the objective of maximizing the reward. If the cost
constraints are not satisfied, the update objective of the parameterized policy 7y, is to minimize the
cost through Eq. (T3). In summary, we evaluate whether the cost constraints are satisfied and update
the policy network parameters 6, including 64 and 6., in the policy update step.
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Algorithm 1 CHPO

1: Input: The tuple (S, A,,C, P,r, po,7)
2: Output: Policy networks parameters 6, including discrete policy parameters 6, and continuous
policy parameters 6;

3: Parameters for the reward and cost state-value ¢, ;
4: for each epoch do
5. Run the policy 7y, for T" timesteps, collecting the buffer D = {(s, aq, a.,r, Ci)t b os
6:  for each batch do
7: Sample a batch of (s, ag,¢, Ge,¢, T, ¢i,¢) from buffer D;
8: Estimate reward and cost advantages /1{ and /1?";
9: /I State-value update step:
10: Update the cost state-value ¢, via the Eq. (6);
11: Update the reward state-value ¢,. via the Eq. (7));
12: /I Policy update step:
13: Compute the cost return without the discount factor «y
Le, (770’;) = E‘r'wr@;g [Zfio Ci7t];
14: if Z,., (g1 ) < ¢; then
15: The policy 7, is updated by maximizing the reward as described in Eq. (I2),
16: else
17: The policy 7, is updated by minimizing the cost through Eq. (T3)),
18: end if
19:  end for
20: end for

D Experimental Details

D.1 Task

Task. To evaluate the performance of the CHPO algorithm in various safety tasks with hybrid action
spaces across different domains, we select three widely adopted tasks including Moving [2} 122} 133} 160]],
Sliding [2,160], and HardMove (22} 33,,160]] from DI-engine [60] and create a Parking task requiring
safety considerations as the experimental tasks in this work. To the best of our knowledge, these tasks
in the DI-engine are not well-suited for constrained hybrid-action RL tasks. Therefore, to support
the further study of constrained hybrid-action RL algorithms, we incorporate danger areas and costs
into these tasks of DI-engine. Additionally, to enhance the comprehensiveness of the experiments,
we design a custom Parking task that involves selecting both discrete and continuous actions while
ensuring collision avoidance. The detailed descriptions of tasks are provided below:

Moving. In this task, the goal of the agent is to navigate to the target area while avoiding dangerous
areas. The agent can choose from discrete actions such as turn, accel, or break, which are combined
with two continuous parameters—acceleration value and steering angle—to determine its movement.
The movement of the agent is always in the direction of its current direction. An episode ends if
the agent reaches the target area, moves out of the field, or exceeds the maximum step 200. The
reward is calculated based on the reduction in distance to the target area between consecutive steps.
Additionally, the agent receives a bonus reward if it successfully stops within the target area. A cost
is incurred each time the agent enters the dangerous areas. The task parameters are as follows: the
field is a square with a side length of 2, the target area is a circle with a radius of 0.1, and the danger
zones are multiple circles, each with a radius of 0.07.

Sliding. In this scenario, the parameterized action spaces available to the agent and the objective
of the agent are identical to those of the Moving task. The underlying physics in the Sliding task
differs, as it considers the conservation of inertia, whereas the Moving task does not account for
inertia conservation. That is to say, the movement of the agent is determined by the vector sum of
two polar vectors, influenced by the current action and the previous movement of the agent. In this
task, the agent incurs a cost each time it enters a dangerous area. Aside from this, all parameters and
rewards are same between the two tasks.
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Figure 4: The figure depicts the reward and cost curves of CHPO and the baseline algorithms in the
comparison experiment on different cost limits to showcase the performance of each algorithm. The
shaded areas on the curves represent the variance obtained from online testing conducted with three
random seeds. The cost limit of the four tasks is set at ¢; = 1.5.
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comparison experiment on different cost limits to showcase the performance of each algorithm. The
shaded areas on the curves represent the variance obtained from online testing conducted with three
random seeds. The cost limit of the four tasks is set at ¢; = 2.
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HardMove. The task is a discrete-continuous hybrid action space RL task designed to evaluate
the performance of RL algorithms in high-dimensional hybrid action spaces. In this task, the
agent controls n uniformly distributed actuators with the objective of using their actions to move
the agent to the target area while avoiding dangerous areas. Each actuator has two options—on
and off—resulting in 2" discrete actions. For actuators that are turned on, the agent must select
continuous parameters specifying the distance to move. As the dimensionality of the discrete action
space increases exponentially with n, and each discrete action is intricately linked to its corresponding
continuous parameter, the task presents significant challenges for the scalability and adaptability of
constrained hybrid-action RL algorithms. The reward comprises two components: the first is based
on the reduction in distance to the target area, and the second is an additional bonus awarded upon
reaching the target area. The agent receives a cost for entering the dangerous areas. The episode
terminates if one of the three conditions is filled: the agent stops inside the target area, the agent
leaves the field, or the step count is higher than the limit 25. In this task, the field is a square with a
side length of 2, the target area is a circle with a radius of 0.1, and the dangerous areas are represented
by multiple circles with a radius of 0.1.

Parking. The task simulates an RS-curve parking scheme, a commonly used parking method in
confined spaces. In the RS-curve parking scheme, discrete actions correspond to the selection
of specific curve types, while continuous actions represent the distance traveled along the chosen
curve. The scheme effectively models the decomposition of actions required for the parking process.
The RS-curve parking trajectory is composed of a series of standardized curves including straight
segments and arc segments. Based on the current position of the vehicle and the target parking
spot, an appropriate curve combination is selected and these curve types form the discrete action
spaces. After selecting a curve type, the movement distance of the vehicle along the curve needs to be
determined, which constitutes the continuous action spaces. The objective is to park the vehicle in the
target area and avoid collisions with barriers. The rewards in the Parking task include the reduction
in distance to the target area, the reduction in heading deviation, and a reward for successful parking.
The costs include the distance between the vehicle and the barriers, along with a penalty incurred for
collisions with barriers. An episode terminates when the vehicle either successfully completes the
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Figure 6: The figure depicts the reward and cost curves in ablation experiments regarding the
constraint module. The HPO represents CHPO without the constraint module. The shadowed areas
represent the variance of the test results for three random seeds and the cost limit is set at ¢; = 1.
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Figure 7: The line chart with variance representations illustrates the performance of CHPO under
different ratios of cost minimization policy update counts to all policy update counts (C/A ratio). The
results are averaged 120 episodes from 3 random seeds and the cost limit of the four tasks is set at
¢; = 1. Each task is set with four different C/A ratios based on the actual training conditions.
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Figure 8: The figure depicts the reward and cost curves of CHPO under different ratios of cost
minimization policy update counts to all policy update counts (C/A ratio). Each task is set with
four different C/A ratios based on the actual training conditions. The shadowed areas represent the
variance of the test results for three different random seeds and the cost limit is set at ¢; = 1.

task, goes out of bounds, or exceeds the maximum step limit of 50. In this task, the dimensions of the
vehicle are specified as follows: a width of 2, a length of 4.3, and a front-to-rear axle distance of 2.7.
The turning radius of curves is set to 5, while the parking area has a width of 2.5 and a length of 5.3.

D.2 Experimental Results

To facilitate the analysis of various performance trends during the algorithm training process, we
record the reward and cost curves for CHPO and baseline algorithms throughout the training process.
These experimental results serve as a supplement to the comparative and ablation experiments in the
manuscript, offering a clear understanding of the CHPO’s performance during the training process.

Performance on different cost limits. Fig.[dand Fig.5]illustrate the testing curves of the CHPO
algorithm and the baseline algorithms for the four constrained hybrid-action RL tasks under different
cost limits. As shown in the figures, the test curves of CHPO during training demonstrate stable
behavior, with the cost curves under different cost limits consistently remaining within the safety
constraints. Additionally, compared with the baseline algorithms, the cost curves of CHPO are
positioned near their respective cost limits, indicating that the CHPO algorithm effectively adapts
to the various constraints without overfitting. At the same time, as the cost limit ¢; increases from
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Table 2: The hyper-parameters of the CHPO algorithm model. Where s, a4, and a. denote the
dimensions of the state, discrete action, and continuous action respectively. The batch size is set to
320 for the Moving and Sliding tasks, and 64 for the HardMove and Parking tasks.

Sort Hyper-parameters Setting
Number of neurons §X 256X 128 x64x 64 x64x 1
Activation function ReLu
State-value(r) Number of networks 1
Learning rate 3.00e-04
Optimizer Adam
Number of neurons §X 256X 128 x64x 64 x64x 1
Activation function ReLu
State-value(c;) Number of networks 1
Learning rate 3.00e-04
Optimizer Adam
Number of neurons(encoder) $X 256 x 128 x 64 x 64
Number of neurons(my) encoder X 64 X aq
Number of neurons(7.) encoder X 64 X a,,
Policy(m,) Activation function ReLu
Number of networks 2
Learning rate 3.00e-04
Optimizer Adam
Batch size 320 or 64
Others Discount factor y 0.99
Clip ratio € 0.2

1 to 2, the reward curves of the CHPO algorithm exhibit a noticeable improvement across all four
tasks compared to the baseline algorithms. The above results demonstrate that CHPO can address
constrained hybrid-action RL tasks under various cost constraints, delivering competitive rewards
while ensuring compliance with safety constraints.

Performance with and without the constraint module. Fig. [6]illustrates the reward and cost curves
for the CHPO algorithm and the CHPO algorithm without the constraint module in the Sliding and
Parking tasks. From the results in the figure, it can be observed that HPO achieves higher rewards
in tasks with parameterized action spaces by disregarding safety constraints, leading to significant
violations. In contrast, the CHPO algorithm effectively learns policies that adhere to safety constraints
while maintaining a reasonable trade-off in reward. The above analysis of results shows that CHPO
successfully handles safety constraints in hybrid action spaces and provides acceptable rewards.

Performance on different C/A ratios. Fig. [§]illustrates the testing curves of the CHPO algorithm for
the four constrained hybrid-action RL tasks under different ratios of cost minimization policy update
counts to all policy update counts (C/A ratio). The results shown in the figure reveal that smaller C/A
ratios often fail to satisfy safety constraints, while larger C/A ratios, although effective in meeting
safety constraints, tend to induce significant fluctuations in the reward curves. Furthermore, we
observe that across all four tasks, the CHPO algorithm can learn policies that satisfy safety constraints
and deliver satisfactory rewards under a wide range of C/A ratios. In addition, the mean and standard
deviation results presented in Fig. [/|also illustrate that CHPO can achieve satisfactory rewards while
ensuring that the average cost satisfies the safety constraint within a broad range of C/A ratios.

D.3 Experimental Setting

Experiments are run on machines that consist of AMD Ryzen Threadripper 3960X cores and RTX
3090. We provide a detailed explanation of the experimental tasks in Section Table [2|displays
the parameters of the neural network model utilized in our CHPO algorithm. Additionally, detailed
configuration information for the testing environment is provided in the code appendix. You can refer
to the README file in the appendix code for instructions on installing and configuring the training
and testing environment for the CHPO model.

E Impact and Limitation Statements

Impact Statements: This paper presents work aiming to advance the field of hybrid-action RL,
and we believe the study can significantly benefit constrained hybrid-action policy optimization
for RL. Moreover, this work can provide a theoretical foundation for certain applications, such as
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parameterized safe path planning in autonomous driving and parameterized safe planning and control
for robots (agents). To the best of our knowledge, our work cannot be misused in any way to cause
any form of negative social impact.

Limitation Statements: The study currently focuses on online interactions within simulation
experiments, which often suffer from low data sampling efficiency. In the future, we aim to deploy
our method in real-world applications and explore offline RL methods for constrained hybrid-action
policy optimization.
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