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Abstract001

Chinese Spell Checking (CSC) aims to de-002
tect and correct spelling errors in sentences.003
Despite Large Language Models (LLMs) ex-004
hibit robust capabilities and are widely applied005
in various tasks, their performance on CSC006
is often unsatisfactory. We find that LLMs007
fail to meet the Chinese character-level con-008
straints of the CSC task, namely equal length009
and phonetic similarity, leading to a perfor-010
mance bottleneck. Further analysis reveal that011
this issue stems from the granularity of tok-012
enization, as current mixed character-word tok-013
enization struggles to satisfy these character-014
level constraints. To address this issue, we015
propose C-LLM, a Large Language Model-016
based Chinese Spell Checking method that017
learns to check errors Character by Character.018
Character-level tokenization enables the model019
to learn character-level alignment, effectively020
mitigating issues related to character-level021
constraints. Furthermore, CSC is simpli-022
fied to replication-dominated and substitution-023
supplemented tasks. Experiments on two CSC024
benchmarks demonstrate that C-LLM achieves025
a 2.1% enhancement in general scenarios and026
a significant 12% improvement in vertical do-027
main scenarios compared to existing methods,028
establishing state-of-the-art performance.029

1 Introduction030

Chinese Spell Checking (CSC) involves detecting031

and correcting erroneous characters in Chinese sen-032

tences, playing a vital role in applications (Gao033

et al., 2010; Yu and Li, 2014). Although Large Lan-034

guage Models (LLMs) exhibit potent capabilities035

and are increasingly being applied to a variety of036

tasks (Wang et al., 2023; He and Garner, 2023; Wu037

et al., 2023a), previous studies (Li and Shi, 2021)038

showed that generative models, such as LLM (Li039

et al., 2023a), do not perform well on CSC.040

The CSC task inherently involves character-level041

length and phonetic constraints. The character-042

level length constraint requires that the predicted043

有 胆(dan) 量 的 图片 曝光

有 大(da)量的 图片 曝光

Pictures with courage exposed

There are a lot of pictures exposed

Tokens of Source
(6 tokens)

有 胆 量 的 图 片 曝 光

有 大 量 的 图 片 曝 光

Tokens of Source
(8 tokens)

Tokens of Reference
(4 tokens)

Tokens of Reference
(8 tokens)

Character-by-Character (C-LLM)

Mixed Character-Word (Original LLM)
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Pictures with courage exposed

There are a lot of pictures exposed

Semantic Inference

Figure 1: Encoding differences between the original
LLMs and C-LLM.

sentence maintain the same number of characters 044

as the source sentence. Additionally, the phonetic 045

constraint necessitates that the predicted characters 046

closely match the phonetics of the source charac- 047

ters, as approximately 83% of spelling errors are 048

phonetically identical or similar to the correct ones 049

(Liu et al., 2010). We find that LLMs often fail 050

to meet these character-level length and phonetic 051

constraints in the CSC task. 052

Using GPT-4 (Achiam et al., 2023) as an ex- 053

ample, we observed that under few-shot prompt- 054

ing, 10% of the model’s predicted sentences did 055

not match the character count of the source sen- 056

tences. In contrast, this issue was entirely ab- 057

sent in BERT-style models. Additionally, 35% of 058

predicted characters were phonetically dissimilar 059

to the source characters, and errors due to non- 060

homophone predictions account for approximately 061

70% of all prediction errors. These deficiencies in 062

character length and phonetic similarity result in 063

outputs that fail to meet task requirements, leading 064

to suboptimal correction performance. 065
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We find that the underlying issues lies in the066

granularity of the LLM’s tokenization. The cur-067

rent mixed character-word tokenization results in a068

character-to-word mapping. This prevents LLMs069

from learning character-level alignment and tends070

to produce predictions that do not satisfy character-071

level constraints. As shown in Figure 1, under the072

mixed character-word tokenization, the LLM needs073

to infer that multiple tokens corresponds to a single074

token (e.g., "胆(bold)","大(large)","的(of)"->"大075

量的(large amount)") and deduce implicit char-076

acter alignment (e.g., "胆(bold)"->"大(large)").077

These complicate the CSC, as the majority of CSC078

cases involve simply replicating characters. For ex-079

ample, the correct character "量(amount)" is copied080

directly from the source. Despite the continuous081

advancements in the semantic understanding ca-082

pabilities of LLMs across various tasks, unclear083

character mappings can still lead to mis-corrections084

and over-corrections. Therefore, it is important to085

establish explicit character-level alignment.086

Under the premise that the source and reference087

sentences are of equal character-level length, train-088

ing LLMs by mapping each character to a token089

can significantly simplify the task. Building on this090

concept, we propose C-LLM, a Large Language091

Model-based Chinese Spell Checking method that092

learns to check errors Character by Character. Our093

motivation is to encode at the character level and094

establish character-level alignment for training sen-095

tence pairs, thereby alleviating the issues related096

to character-level constraints. As illustrated in Fig-097

ure1, this approach ensures that the number of to-098

kens in sentence pairs remains consistent, making099

it easier for LLMs to learn the phonetic mappings100

between Chinese characters. Furthermore, CSC is101

simplified to the tasks of replicating correct charac-102

ters and replacing incorrect ones, without the need103

for complex reasoning.104

Specifically, we construct the character-level to-105

kenization for LLMs to ensure that tokens are en-106

coded according to individual Chinese characters.107

To adapt the model to the new vocabulary, we also108

perform continued training on a large dataset. Fur-109

thermore, to enable the LLMs to learn CSC, we110

conduct supervised fine-tuning on the CSC datasets.111

Experiments on the general dataset CSCD-NS (Hu112

et al., 2022) and the multi-domain dataset LEMON113

(Wu et al., 2023b) show that C-LLM achieves an114

improvement of approximately 2.1% on the gen-115

eral and a significant 12% increase on the vertical116

domain, achieving state-of-the-art performance.117

The contributions of this work can be summa- 118

rized in three aspects: (1) We analyze the per- 119

formance of LLM in error correction and find 120

that mixed character-word tokenization hinders 121

LLM from effectively understanding the character- 122

level constraints in CSC. (2) We propose the C- 123

LLM, which learns character-to-character align- 124

ment and can check errors character by character. 125

(3) Through testing on general and multi-domain 126

datasets, we found that C-LLM achieves state-of- 127

the-art performance, providing insights for the de- 128

sign of future error correction models. 129

2 Related Work 130

BERT-style CSC Models With the emergence of 131

pre-trained language models, the dominant method 132

for CSC has shifted to BERT-style models (Devlin 133

et al., 2019), which treat CSC as a sequence label- 134

ing task. These models map each character in a sen- 135

tence to its correct counterpart and are fine-tuned 136

on pairs of sourece and reference sentences. Addi- 137

tionally, some studies have integrated phonological 138

and morphological knowledge to improve the label- 139

ing process (Cheng et al., 2020; Guo et al., 2021; 140

Huang et al., 2021; Zhang et al., 2021). However, 141

due to parameter constraints, these models under- 142

perform in low-frequency and complex semantic 143

scenarios compared to LLMs. 144

Autoregressive CSC models Unlike BERT-style 145

models, which can infer each token in parallel, au- 146

toregressive CSC models process tokens sequen- 147

tially. Previous research (Li and Shi, 2021) indi- 148

cates that autoregressive models like GPT-2 (Rad- 149

ford et al., 2019) may underperform on CSC. With 150

the advancement of LLMs, several studies have 151

investigated their text correction capabilities. The 152

study (Li et al., 2023b) found that while ChatGPT 153
1 can identify the pinyin of Chinese characters, it 154

struggles with pronunciation, making phonetic er- 155

ror correction challenging. Other studies (Fang 156

et al., 2023; Wu et al., 2023a) noted that ChatGPT 157

often produces very fluent corrections but also in- 158

troduces more over-corrections. These findings 159

align with our observations, underscoring the need 160

to enhance LLMs’ performance on CSC tasks. 161

3 Motivation 162

3.1 Problem Formulation 163

The CSC task aims to detect and correct all erro- 164

neous characters in Chinese sentence. Consider 165

1https://chat.openai.com
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Model
Sentence Level Character Level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

ChatGPT 63.29 49.94 55.83 58.34 46.03 51.46 64.08 53.64 58.40 57.61 48.22 52.50
GPT-4 58.50 60.23 59.35 53.35 54.93 54.13 58.52 65.78 61.94 51.41 57.79 54.41
BERT 78.55 62.48 69.60 69.16 55.02 61.28 82.76 63.41 71.80 72.02 55.18 62.49

SMBERT 81.46 62.40 70.67 73.58 56.36 63.83 85.40 62.70 72.31 76.72 56.33 64.96
SCOPE 80.75 61.57 69.87 77.11 58.79 66.72 84.17 62.03 71.42 79.98 58.94 67.87

Table 1: The performance of GPT-4 and BERT-style models (Devlin et al., 2019; Zhang et al., 2020; Li et al., 2022)
on the CSCD-NS test set is evaluated at both the sentence and character levels, with precision (P), recall (R), and F1
score (F1) reported (%) for both detection (D) and correction (C) tasks.

a source sentence 𝑋𝑐 = {𝑥1 , 𝑥2 , .., 𝑥𝑛} consisting166

of 𝑛 characters, which may contain spelling er-167

rors. The corresponding reference sentence 𝑌𝑐 =168

{𝑦1 , 𝑦2 , .., 𝑦𝑛} contains the same number of char-169

acters as 𝑋𝑐 , and with all errors corrected. Notably,170

a significant proportion of the corrected characters171

𝑦𝑖 are phonetically identical or similar to erroneous172

character 𝑥𝑖 . The CSC model identifies character-173

level spelling mistakes in the input 𝑋𝑐 and gener-174

ates the predicted sentence 𝑌
′
𝑐 =

{
𝑦
′
1 , 𝑦

′
2 , .., 𝑦

′
𝑚

}
,175

where 𝑦
′
𝑖

is the character predicted for 𝑥𝑖 and 𝑚176

should be equal to 𝑛 according to the CSC. In177

this process, the tokens of the source sentence178

and the reference sentence after tokenization can179

be represented as 𝑋𝑡 = {𝑥𝑡1 , 𝑥𝑡2 , ..., 𝑥𝑡𝑛 } and180

𝑌𝑡 = {𝑦𝑡1 , 𝑦𝑡2 , ..., 𝑦𝑡𝑚 }, respectively.181

3.2 Analysis of LLMs in CSC182

LLMs now exhibit powerful language processing183

capabilities and are widely used (Zhao et al., 2023).184

Similar to previous studies (Wang et al., 2023; Wu185

et al., 2023a), we conduct a preliminary analy-186

sis of LLM performance on the CSC using GPT-187

4 (Achiam et al., 2023) with in-context learning188

(Brown et al., 2020). Our experiments leverage the189

GPT-4 API and employ few-shot prompt (see Ap-190

pendix A.2) on the CSCD-NS (Hu et al., 2022) test191

set for spelling correction. The prompt comprised192

five positive and five negative examples, randomly193

selected from the CSCD-NS training set.194

As shown in Table 1, GPT-4’s performance in195

spelling correction is inferior to that of BERT-style196

models. Our analysis indicates that GPT-4 strug-197

gles to meet two key constraints of the CSC task:198

character-level length and phonetic similarity. This199

misalignment results in a significant portion of200

the predictions that do not meet task requirements,201

leading to suboptimal correction performance.202

Statistics reveal that 10% of GPT-4’s predicted203

35%

phonetically dissimilar
phonetically similar

70%

phonetically dissimilar
phonetically similar

97%

correct
wrong

Predicted Characters Wrong Predicted Characters

Figure 2: Statistical analysis GPT-4 from a phonetic
perspective.

sentences fail to meet the character-level length 204

constraint, adversely affecting both precision and 205

recall. Additionally, as illustrated in Figure 2, GPT- 206

4 generates 35% of characters that are not phonet- 207

ically similar to the source ones. Among these, 208

97% are incorrect, and these incorrect phonologi- 209

cally dissimilar characters constitute a significant 210

portion (70%) of all prediction errors, severely im- 211

pacting the model’s performance. Therefore, iden- 212

tifying the root causes of LLMs’ inability to satisfy 213

character-level length and phonetic constraints is 214

crucial for improving their performance. 215

3.3 Mixed Character-Word Tokenization 216

By analyzing the tokenization used by the LLMs 217

for CSC, we found that the current mixed character- 218

word tokenization is the primary reason why LLMs 219

struggle to meet the character-level length and pho- 220

netics constraints. Under this tokenization, sen- 221

tences with spelling errors will exhibit a character- 222

to-word mapping. This mapping can be categorized 223

into two main cases, represented by the following 224

formulas, where 𝑥𝑒 and 𝑦𝑒 denotes the erroneous 225

character and the corresponding reference charac- 226

ter, respectively, "=" denotes the correspondence 227
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Step1: Character-Level Tokenization Step2: Continued Pre-training 

Step3: Supervised Fine-tuning Step4: Prediction Generation

vocabulary, V

merge rules, M

vocabulary, V’

merge rules, M’

len(word) > 1 
is_chinese (word)

delete rules

Chinese books, 
internet content, 
encyclopedias

Next token 
Prediction

x1 x2 … xn

y1 y2 … yn

Correct 
character-by-character

delete words

Inference
Train with LoRA 

Next token 
Prediction

Mask the condition to calculate the loss

Train with 
LoRA 

LLM

general CSC dataset,
pseudo CSC dataset

Figure 3: Overview of C-LLM. With an LLM (e.g., QWEN (Bai et al., 2023)) as the core, the implementation
process of C-LLM consists of multiple steps as illustrated in the figure.

between the tokens and characters:228

𝑥𝑡𝑖 = {𝑥𝑒−1} , 𝑥𝑡𝑖+1 = {𝑥𝑒 , 𝑥𝑒+1} (1)229

𝑦𝑡𝑖 = {𝑦𝑒−1 , 𝑦𝑒 , 𝑦𝑒+1} (2)230

(1) Comparing Equation 1~ 2, the number of tokens231

in the source sentence does not match the reference232

sentence, resulting in multiple tokens correspond-233

ing to a single token.234

𝑥𝑡𝑖 = {𝑥𝑒−1} , 𝑥𝑡𝑖+1 = {𝑥𝑒 , 𝑥𝑒+1} (3)235

𝑦𝑡𝑖 = {𝑦𝑒−1 , 𝑦𝑒} , 𝑦𝑡𝑖+1 = {𝑦𝑒+1} (4)236

(2) In Equation 3~ 4, even if the token counts are237

consistent, the characters may not align clearly due238

to erroneous characters and reference characters239

being placed in mismatched tokens.240

In both cases, the mixed character-word tok-241

enization complicates the direct alignment of 𝑥𝑒242

and 𝑦𝑒 , necessitating inference by the model to243

learn the correct mappings. This transforms the244

CSC task into a semantic inference problem. Fur-245

thermore, inconsistencies in token counts and un-246

clear character mappings hinder the model’s ability247

to effectively learn character-level length and pho-248

netic constraints.249

However, in the CSC task, most correct charac-250

ters in the source sentence can be directly copied251

during prediction, with only a small proportion252

of misspelled characters requiring replacement.253

Therefore, establishing a clear alignment between254

characters is crucial for this task.255

4 Methodology256

The CSC task requires a character-level map-257

ping, necessitating character-by-character correc-258

tion rather than token-by-token. Since current259

LLMs process sentences at the token level, map- 260

ping each character to a token can intuitively re- 261

duce the complexity of CSC for LLMs. Based on 262

this concept, we propose C-LLM (as shown in Fig- 263

ure 3), a Large Language Model-based Chinese 264

Spell Checking method that learns to check errors 265

Character by character. This approach consists of 266

three main steps, as detailed below. 267

4.1 Character-Level Tokenization 268

The vocabulary of LLMs is typically multilingual. 269

However, since CSC primarily addresses errors in 270

Chinese, we only focus on the Chinese portion of 271

the vocabulary. As shown in Equations 1∼4, LLMs 272

often map multiple characters to a single token 273

during tokenization, complicating the CSC task by 274

preventing a direct alignment between characters. 275

To mitigate this issue, we construct character-level 276

tokenization to ensure that each Chinese character 277

is mapped to a single token. This approach facil- 278

itates a clear alignment between characters in the 279

tokenized sentences, as represented by the follow- 280

ing equation: 281

𝑥𝑡𝑖 = {𝑥𝑒−1} , 𝑥𝑡𝑖+1 = {𝑥𝑒} , 𝑥𝑡𝑖+2 = {𝑥𝑒+1} (5) 282

𝑦𝑡𝑖 = {𝑦𝑒−1} , 𝑦𝑡𝑖+1 = {𝑦𝑒} , 𝑦𝑡𝑖+2 = {𝑦𝑒+1} (6) 283

Specifically, the approach for constructing the 284

character-level tokenization of LLM (e.g., QWEN 285

(Bai et al., 2023)), is detailed in Algorithm 1. For 286

the BPE (Gage, 1994) tokenization, we refine the 287

vocabulary and the merging rules. With the new 288

vocabulary, the model is unable to recognize words 289

composed of multiple Chinese characters, result- 290

ing in each Chinese character being mapped to a 291

separate token according to the revised merging 292

rules. Experimental results indicate that the new 293

vocabulary size is reduced to 89.2% of the original. 294
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Models Government Movie General Game Tech Finance Avg
7B-Original 8.84 50.27 12.57 37.19 28.16 10.18 24.53

7B-Char 164.12 931.99 170.02 641.76 560.99 120.99 431.65
7B-Char-PT 11.80 64.48 14.92 48.90 34.99 11.89 31.16
14B-Original 8.25 46.67 11.75 34.60 25.57 9.49 22.72

14B-Char 131.31 758.01 130.71 506.21 410.33 95.40 338.66
14B-Char-PT 10.51 58.76 14.13 44.04 32.20 11.63 28.55

Table 2: The perplexity of LLMs (e.g., QWEN1.5-14B and QWEN1.5-7B) were evaluated using the Chinese domain
modeling dataset (from Skywork (Wei et al., 2023)). "Original" refers to the original LLMs, "Char" denotes LLMs
with character-level tokenization, and "Char-PT" indicates the model that was further pre-trained.

Algorithm 1 Methods for Constructing Our
Character-Level Tokenization.
Input:

The vocabulary of LLMs, 𝑉; The merge rules
applied during tokenization, 𝑀.

Output:
The updated vocabulary 𝑉

′
and merge rules

𝑀
′

for the LLMs;
1: Initialization: The list of word 𝐷𝑤 and the list

of merging rules 𝐷𝑚 to be filtered.
2: for 𝑤𝑜𝑟𝑑 in 𝑉 do
3: if len(𝑤𝑜𝑟𝑑) > 1 and 𝑤𝑜𝑟𝑑 is chinese string

then
4: add 𝑤𝑜𝑟𝑑 in 𝐷𝑤; update 𝐷𝑤;
5: end if
6: end for
7: for 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒 in 𝑀 do

𝑎, 𝑏 = 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒[0], 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒[1]
if decode(𝑎 + 𝑏) in 𝐷𝑤 or decode(𝑎) in
𝐷𝑤 or decode(𝑣) in 𝐷𝑤 then

8:9: add 𝑚𝑒𝑟𝑔𝑒_𝑟𝑢𝑙𝑒 in 𝐷𝑚; update 𝐷𝑚;
10: end if
11: end for
12: Update 𝑉 and 𝑀 by removing the words and

merge rules recorded in 𝐷𝑤 and 𝐷𝑚 , resulting
in 𝑉

′
and 𝑀

′
.

13: return 𝑉
′

and 𝑀
′
.

14: Update the model’s input and output embed-
ding according to the new vocabulary 𝑉

′
.

4.2 Continued Pre-training295

To mitigate the potential impact on the LLM’s296

language modeling ability due to vocabulary con-297

straints, we continued pre-training LLM (based on298

QWEN (Bai et al., 2023)) to adapt it to the new299

vocabulary. Specifically, we performed continued300

pre-training with LoRA (Hu et al., 2021) on the301

Chinese open-source pre-training dataset provided302

by Tigerbot (Chen et al., 2023b), which includes303

Chinese books, internet content, and encyclope-304

dias. The training data comprised approximately 305

19B tokens, but we trained for 30,000 steps, cover- 306

ing about 2B tokens. More implementation details 307

are provided in the Appendix A.1. The training 308

objective was to predict the next token: 309

ℒ(𝒯 ) =
𝑁∑
𝑖=1

log(ℙ (𝑡𝑖 | 𝑡0 , . . . , 𝑡𝑖−1 ,Θ )) (7) 310

where loss is calculated as conditional probability 311

of the 𝑖-th token 𝑡𝑖 given the model parameters Θ. 312

To evaluate the impact of the character-level tok- 313

enization and continued pre-training on the LLM’s 314

language modeling ability, we measure the per- 315

plexity of LLMs using the Chinese domain model- 316

ing competency assessment dataset from Skywork 317

(Wei et al., 2023). As shown in Table 2, the perplex- 318

ity increased significantly after applying character- 319

level tokenization, indicating a substantial impact 320

on language modeling ability. However, this effect 321

was mitigated after continued pre-training, bring- 322

ing the language modeling ability close to that of 323

the original LLM. This demonstrates that the model 324

effectively adapted to the new vocabulary. 325

4.3 Supervised Fine-tuning 326

After continue pre-training, LLM only learns gen- 327

eral language features and does not understand the 328

specific requirements of the CSC. Therefore, su- 329

pervised fine-tuning is necessary for the LLM to 330

learn the CSC task. We utilize LoRA (Hu et al., 331

2021) for the fine-tuning. The training loss is de- 332

fined as follows and the implementation details are 333

provided in Appendix A.1 and Section 5. 334

ℒ(𝒯 )=
𝑁∑
𝑖=1

log(ℙ
(
𝑌

′
𝑐 | 𝐼 , 𝑋𝑐 )) (8) 335

where loss is calculated as the conditional proba- 336

bility of the predicted sentence 𝑌
′
𝑐 given the task 337

description of the CSC 𝐼 and source sentence 𝑋𝑐 . 338
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5 Experiments339

In this section, we present the details of fine-tuning340

and the evaluation results of models on the two341

CSC benchmarks: the general dataset CSCD-NS342

and the multi-domain dataset LEMON.343

5.1 Fine-tuning Datasets and Metrics344

Datasets Previous studies (Liu et al., 2021; Xu345

et al., 2021) chose SIGHAN (Wu et al., 2013; Yu346

et al., 2014; Tseng et al., 2015) as the benchmark.347

However, an increasing number of studies (Hu348

et al., 2022; Yin and Wan, 2023; Li et al., 2022)349

have identified numerous issues with this dataset,350

such as semantically incoherent and annotation er-351

rors. Consequently, in our study, we chose two new352

CSC benchmarks, namely CSCD-NS and LEMON:353

(1) CSCD-NS (Hu et al., 2022): CSCD-NS supe-354

rior in quality to SIGHAN, is the first CSC dataset355

where the primary source of character errors stems356

from pinyin input methods, containing a significant357

amount of homophonic and word-level errors. (2)358

LEMON (Wu et al., 2023b): LEMON is a novel,359

large-scale, multi-domain CSC dataset featuring360

various real-world spelling errors. It spans seven361

different sub-domains, typically testing the model’s362

domain correction capabilities in a zero-shot set-363

ting. Appendix A.3 shows the data statistics.364

Following the fine-tuning approach of previous365

work (Li et al., 2022; Liang et al., 2023), we com-366

bined the training data from CSCD-NS and 271K367

pseudo-data generated by ASR or OCR (denoted368

as Wang271K) (Wang et al., 2018) as our training369

set. The validation data from CSCD-NS was used370

as our validation set, and we test the models on the371

CSCD-NS test data and LEMON, respectively.372

Evaluation Metrics We report sentence-level373

and character-level precision, recall, and F1 scores374

to evaluate different models. These metrics are375

reported separately for detection and correction376

tasks. We calculate metrics using the script from377

CSCD-NS (Hu et al., 2022). For predictions from378

LLMs that do not match the source sentence length,379

we first employ ChERRANT (Zhang et al., 2022)380

to extract non-equal length operations, then replace381

these with the source before calculating the metrics.382

5.2 Baselines383

We use the following CSC models for compari-384

son. BERT-style models. (1) BERT (Devlin et al.,385

2019): BERT approaches CSC as a sequence label-386

ing task, encoding the input sentence and employ-387

ing a classifier to select the appropriate characters 388

from the vocabulary. (2) Soft-Masked BERT (SM- 389

BERT) (Zhang et al., 2020): SMBERT composed 390

of a detection and correction network, enhances 391

BERT’s error detection capabilities. (3) SCOPE 392

(Li et al., 2022): SCOPE incorporates an auxiliary 393

pronunciation prediction task with an adaptive task 394

weighting scheme to improve CSC performance. 395

For the selection of LLMs, we carry out a se- 396

ries of experiments using QWEN1.5 (Bai et al., 397

2023). As one of the most potent open-source 398

LLMs in China, QWEN exhibits robust Chinese 399

processing capabilities and has released model pa- 400

rameters of multiple scales. We evaluate the perfor- 401

mance of LLMs under the following two settings, 402

and the prompts for LLMs are detailed in the Ap- 403

pendix A.2. 404

Fine-tuned LLM (LLM-SFT): The original 405

LLMs (Original), the LLMs with character-level 406

tokenization (Char), and the further pre-trained 407

character-level LLMs (Char-PT) are each fine- 408

tuned on the aforementioned dataset. 409

LLM with In-Context Learning (LLM-ICL): 410

The original LLMs (Original), ChatGPT and GPT-4 411

are adapted to perform the CSC task using prompts. 412

5.3 Main Results 413

The main results on the CSCD-NS and LEMON 414

test sets are presented in Table 3, revealing several 415

observations: (1) Despite the robustness of both 416

ChatGPT and GPT-4, their error correction perfor- 417

mance is suboptimal under few-shot prompts, un- 418

derscoring the critical importance of fine-tuning. 419

(2) The LLM with character-level tokenization 420

and without continued pre-training shows an av- 421

erage performance drop of approximately 1.6% 422

compared to C-LLM (with 14B parameters). This 423

highlights the importance of continued pre-training, 424

which allows the model to better adapt to the new 425

vocabulary and achieve improved performance. 426

This is also evident from the perplexity compar- 427

ison in Section 4.2. (3) C-LLM outperforms the 428

original LLMs in error correction. For instance, the 429

14B parameter C-LLM shows a 1.2% improvement 430

on general data and an average 3.7% improvement 431

on multi-domain data, demonstrating the effective- 432

ness of character-level correction. (4) Compared to 433

BERT-style models, C-LLM shows superior over- 434

all performance. Specifically, the 14B parame- 435

ter C-LLM surpasses the best BERT-style model, 436

SCOPE, with an average performance improve- 437

ment of 10%. It achieved a 2.1% increase in general 438
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Models CAR COT ENC GAM MEC NEW NOV CSCD-NS Avg
BERT (Devlin et al., 2019) 46.87 52.61 45.74 23.41 42.73 46.63 32.35 65.49 44.48

SMBERT (Zhang et al., 2020) 49.91 54.85 49.33 26.18 46.91 49.16 34.56 67.22 47.26
SCOPE (Li et al., 2022) 50.71 54.89 45.23 24.74 44.44 48.72 33.17 71.70 46.70

ChatGPT 44.88 57.11 51.46 28.78 49.85 44.40 31.77 52.50 45.09
GPT-4 (Achiam et al., 2023) 54.44 62.82 55.12 36.27 56.36 56.09 45.64 54.41 52.64

7B-Original-SFT 53.38 56.55 54.44 37.33 59.21 58.96 39.12 68.66 53.46
7B-Char-SFT 52.10 57.02 52.55 39.00 59.85 59.01 40.34 70.41 53.78

7B-Char-PT-SFT (C-LLM) 53.87 58.04 54.57 37.43 61.16 60.07 41.42 71.64 54.77
14B-Original-SFT 54.56 56.82 53.44 32.59 58.89 63.32 40.58 72.63 54.10

14B-Char-SFT 55.36 59.11 54.30 37.21 60.43 65.28 42.33 72.78 55.85
14B-Char-PT-SFT (C-LLM) 57.54 60.40 56.48 38.02 65.31 64.49 43.92 73.80 57.49

Table 3: Overall results of C-LLM and baseline models, are presented as character-level correction F1 scores. The
best results are highlighted in bold. All the results of the BERT-style models are reproduced by us.

data and a significant 12% improvement in multi-439

domain data, reaching state-of-the-art results. This440

highlights the enhanced contextual understanding441

of C-LLM, particularly in vertical domain.442

6 Analysis and Discussion443

6.1 Scaling Trends444

To further investigate the impact of model size on445

correction performance for LLMs, we also conduct446

experiments under 4B, 1.8B, and 0.5B parameters,447

while keeping the fine-tuning dataset and training448

hyperparameters consistent. As shown in Figure 4,449

the correction performance of the LLMs decreases450

on both test sets as the parameter size reduces.451

Comparing C-LLM with BERT-style models,452

C-LLM outperforms BERT-style models at both453

14B and 7B parameter sizes on the CSCD-NS and454

LEMON, particularly excelling in vertical domain455

tasks. However, smaller models exhibit weaker456

performance. We believe that despite the simplifi-457

cation of the CSC through character-level tokeniza-458

tion, smaller models still struggle to understand the459

task adequately, resulting in poor performance.460

Comparing C-LLM with the original LLM, C-461

LLM consistently outperforms the original LLM462

across various parameter sizes on the CSCD463

dataset, although the performance gap narrows at464

1.8B. This indicates that C-LLM has superior er-465

ror correction capabilities compared to the original466

LLM. However, on the LEMON dataset, C-LLM467

underperforms the original LLM at sizes of 4B and468

smaller. We attribute this to the substantial amount469

of domain-specific data included in the pre-training470

of original LLM (Bai et al., 2023), whereas our471

continued pre-training for C-LLM only includes472

general Chinese data. This may lead to the forget-473

ting of some domain knowledge in LLM. Larger 474

C-LLM models (14B and 7B) suffer less from this 475

forgetting due to their larger parameter sizes. De- 476

spite some domain knowledge being forgotten, the 477

character-level correction approach allows larger C- 478

LLM models to achieve better performance, while 479

smaller models are more affected by knowledge 480

forgetting, resulting in poorer performance. 481

6.2 Analysis of Length and Phonetic 482

Perspective C-LLM Original-SFT Original-ICL
Char-to-token 98.19% 56.48% /
Token-level 98.84% 80.54% /
Character-level 99.78% 96.92% 22.86%

Table 4: Statistical results from the length perspective.

C-LLM alleviates issues related to character- 483

level length constraints. To evaluate whether C- 484

LLM effectively addresses the issue of LLMs fail- 485

ing to meet character-level length constraints, we 486

analyzed from following perspectives, with results 487

presented in Table 4. 488

(1) Token-Level: Our analysis shows that 489

98.19% of the tokens generated by C-LLM corre- 490

spond one-to-one with Chinese characters. This re- 491

sults in approximately 18% more sentences where 492

the token count of the source sentence matches that 493

of the reference, compared to the original LLM. 494

(2) Character-Level: We select sentence pairs 495

from CSCD-NS test set that exhibit a character- 496

to-word mapping when tokenized by the original 497

LLM. We then compare whether the model’s output 498

maintains the same character count as the source 499

sentence. The results indicate that compared to 500

Original-ICL, Original-SFT increases the propor- 501

tion of maintaining character length to 96.9%, indi- 502

7



Figure 4: Overview of C-LLM. With an LLM (e.g., QWEN (Bai et al., 2023)) as the core, the implementation
process of C-LLM consists of four steps as illustrated in the figure.

cating that fine-tuning helps LLM adhere to length503

constraints. Under C-LLM, the consistency in char-504

acter length further improves to 99.8%.505

These findings demonstrate that the one-to-one506

correspondence between tokens and Chinese char-507

acters enables LLMs to more easily generate sen-508

tences that meet character-level length constraints,509

resulting in superior performance.510

C-LLM can reduce phonologically dissimilar511

predictions. We calculate the proportion of non-512

homophone characters in all predictions and the513

proportion of non-homophone errors in all incor-514

rect predictions. As shown in Table 5, C-LLM515

produces fewer non-homophone prediction errors,516

and the ratio of these errors to the total prediction517

errors is reduced by 20% compared to the origi-518

nal LLM. This indicates that although C-LLM still519

generates a small number of non-homophone pre-520

dictions, the impact of these errors on correction521

performance is significantly diminished.522

Original-SFT C-LLM
Non-homophon Predict 8.63% 3.83%
Ratio of Wrong Predict 38.52% 18.43%

Table 5: Statistical Results for non-homophone pre-
dicted characters (under 14B model parameters).

Models #Tokens #Characters AR Time (s)
C-LLM 127057 128801 93.88% 2481.97
Original-SFT 83530 128676 86.50% 2028.77

Table 6: Analysis of Inference Speed. "AR" indicates
the acceptance rate generated by draft model.

6.3 Inference Speed Analysis 523

Using a character-level tokenizer can decrease the 524

model’s inference speed. In this study, we perform 525

a quantitative analysis of this impact by employ- 526

ing speculative decoding (Chen et al., 2023a). Our 527

evaluation uses samples containing spelling errors 528

from the CSCD-NS test set. The target model has 529

7B parameters, while the draft model has 1.8B pa- 530

rameters, with draft tokens set to 4. As shown in 531

Table 6, under C-LLM, the number of decoded 532

tokens increased by 52% compared to the origi- 533

nal LLM, but the overall time consumption only 534

increased by 22.33%. This is because the task com- 535

plexity was reduced by C-LLM, leading to a higher 536

acceptance rate for speculative decoding compared 537

to the original LLM. 538

7 Conclusion 539

This paper indicates that LLMs fail to meet the Chi- 540

nese character-level constraints of the CSC task, 541

namely equal length and phonetic similarity, which 542

hinders their correction performance. We find that 543

the root cause lies in the granularity of tokeniza- 544

tion, which mixes characters and words, making it 545

difficult to satisfy these character-level constraints. 546

To address this issue, we propose C-LLM, which 547

establishes mappings between Chinese characters, 548

enabling the model to learn correction relationships 549

and phonetic similarities. This approach simplifies 550

the CSC task to character replication and substitu- 551

tion. Experimental results demonstrate that C-LLM 552

outperforms previous methods on both general and 553

multi-domain benchmarks, achieving state-of-the- 554

art performance. 555
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8 Limitations556

Our work has three main limitations. First,557

our method is specifically designed for Chinese558

spelling checking and may not effectively address559

sentences with English errors, as we did not pro-560

cess English words in the vocabulary. Second, our561

model has room for improvement, especially in562

handling new and trending words, which may re-563

quire integrating methods such as RAG. Finally,564

our model’s inference time is longer compared to565

the original model, indicating a need for further566

optimization for practical applications.567
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A Appendix787

A.1 Implementation Details788

Hyparameters of Continued Pre-training We789

provide a overview of the hyperparameter settings790

used in continued pre-training with LoRA (Hu791

et al., 2021), as illustrated in Table 7. Our imple-792

mentation is based on Huggingface’s Transformers793

(Wolf et al., 2020) in PyTorch.794

Configuration value
Learing_rate 1e-5
Adam_beta1 0.9
Adam_beta2 0.999
Adam_epsilon 1e-8
tokens/batch 216

steps 30000
lora_r 16
lora_alpha 32
lora_dropout 0.1

Table 7: Hyparameters used in continued pre-training.

Hyparameters of Supervised Fine-tuning We795

also provide the overview of the hyperparameter796

settings used in fine-tuning with LoRA (Hu et al.,797

2021), as illustrated in Table 8.798

Configuration value
Learing_rate 1e-4
Adam_beta1 0.9
Adam_beta2 0.999
Adam_epsilon 1e-8
num_train_epochs 10
lora_r 16
lora_alpha 32
lora_dropout 0.1

Table 8: Hyparameters used in fine-tuning.

A.2 Prompts Setting799

Table 9 presents the prompts used to evaluate the er-800

ror correction performance of the fine-tuned LLM,801

along with the few-shot prompts for ChatGPT, GPT-802

4 and Original-ICL. The few-shot prompt consists803

of 10 examples: 5 sentence pairs without typos and804

5 with typos. These positive and negative examples805

are randomly selected from CSCD-NS, and their806

positions within the prompt are also randomized.807

A.3 Data Statistics808

The statistical results for the Wang271K, CSCD-809

NS and LEMON datasets are presented in Table 10.810

The LEMON spans seven different sub-domains, 811

including game (GAM), encyclopedia (ENC), con- 812

tract (COT), medical care (MEC), car (CAR), novel 813

(NOV), and news (NEW). To better evaluate model 814

performance, we filtered out sentences from the 815

LEMON dataset where the source and reference 816

sentences had unequal character-level lengths or 817

where the source sentence exceeded 1000 charac- 818

ters. 819

A.4 Case Study 820

Table 11 compares the performance of C-LLM and 821

the original LLM in handling character-to-word 822

mappings. In the first example, the original LLM 823

should map the characters "详(comprehensive)" 824

and "析(analyze)" to the word "详细(detail)". 825

However, it incorrectly maps "详(comprehensive)" 826

to "实(accurate)", with the predicted characters not 827

being phonetically similar to the source ones. 828

In the second example, although the correct map- 829

ping is from "这也(as well)" to "这一(this)", the 830

model fails to understand the relationship between 831

the incorrect characters. It splits "这也(as well)" 832

into two tokens and predicts characters that do not 833

meet phonetic constraints. These errors indicate 834

that the original LLM lacks a clear understand- 835

ing of characters and words, making it unable to 836

accurately correct misspelled words. In contrast, 837

C-LLM can correctly correct misspelled characters 838

within words through character-level tokenization. 839

However, the third case shows that C-LLM may 840

also make errors when correcting single incorrect 841

characters, indicating that there is still room for 842

improvement in our model. For some new popular 843

words it may be necessary to combine the RAG 844

(Lewis et al., 2020) method to do error correction. 845
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Models Prompts

Fine-tuned LLM
任务: 纠错文本,输入: "原句",输出:
(Task: Correct the text, Input: {𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒} , 𝑂𝑢𝑡𝑝𝑢𝑡 :)

ChatGPT, GPT-4 and Original-ICL
纠正句子中的错别字，并返回纠正后的句子。(Identify and
correct the spelling errors in the sentence, then provide the cor-
rected version.)
{𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1}=> {𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1} ... {𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒10} =>
{𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒10} => {𝑠𝑜𝑢𝑟𝑐𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒} =>

Table 9: Prompts used for testing.

Train #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 29,999 15,142 14,804 57.39
Wang271K 301,328 397,104 172,711 44.03

Dev #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 5,000 2,554 2,497 57.45

Test #Sent #Errors #Phonetically Similar Errors Avg.Length
CSCD-NS 5,000 2,528 2,484 57.63

CAR 3245 1,911 1,500 43.44
COT 993 486 341 40.11
ENC 3271 1,787 1,401 38.30
GAM 393 164 130 32.81
MEC 1942 1,032 827 39.18
NEW 5887 3,260 2,698 25.15
NOV 6000 3,415 2,585 36.24

Table 10: Statistics of the training, development and test datasets.

Models Cases in CSCD-NS test set

Original
Src: 可/查询/详/析 /数据/信息 Can query analyzied data information
Ref: 可/查询/详细/数据/信息 Can query detailed data information
Pre: 可/查询/详/实 /数据/信息 Can query accurate data information

C-LLM
Src: 可/查/询/详/析 /数/据/信/息 Can query analyzied data information
Ref: 可/查/询/详/细 /数/据/信/息 Can query detailed data information
Pre: 可/查/询/详/细 /数/据/信/息 Can query detailed data information

Original
Src: 这也 /更新/，/让... This also update allows ...
Ref: 这一 /更新/，/让... This update allows ...
Pre: 这/此 /更新/，/让... This this update allows ...

C-LLM
Src: 这/也 /更/新/，/让... This also update allows ...
Ref: 这/一 /更新/，/让... This update allows ...
Pre: 这/一 /更/新/，/让... This update allows ...

Original
Src: 关注/微信/火 /下载/都有/机会 Follow WeChat fire download for a chance
Ref: 关注/微信/或 /下载/都有/机会 Follow WeChat or download for a chance
Pre: 关注/微信/或 /下载/都有/机会 Follow WeChat or download for a chance

C-LLM
Src: 关/注/微/信/火 /下/载/都/有/机/会 Follow WeChat fire download for a chance
Ref: 关/注/微/信/或 /下/载/都/有/机/会 Follow WeChat or download for a chance
Pre: 关/注/微/信/号 /下/载/都/有/机/会 Follow WeChat account download for a chance

Table 11: Case study of correction results between models C-LLM and Original LLM (with 14B parameters) on the
CSCD-NS test set. We mark the wrong/correct characters.
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