
Inv-Entropy: A Fully Probabilistic Framework for
Uncertainty Quantification in Language Models

Haoyi Song
University of Michigan
haoyiso@umich.edu

Ruihan Ji
University of Minnesota
ji000234@umn.edu

Naichen Shi
Northwestern University

naichen.shi@northwestern.edu

Fan Lai
University of Illinois Urbana-Champaign

fanlai@illinois.edu

Raed Al Kontar∗
University of Michigan
alkontar@umich.edu

Abstract

Large language models (LLMs) have transformed natural language processing,
but their reliable deployment requires effective uncertainty quantification (UQ).
Existing UQ methods are often heuristic and lack a probabilistic interpretation.
This paper begins by providing a theoretical justification for the role of pertur-
bations in UQ for LLMs. We then introduce a dual random walk perspective,
modeling input–output pairs as two Markov chains with transition probabilities
defined by semantic similarity. Building on this, we propose a fully probabilistic
framework based on an inverse model, which quantifies uncertainty by evaluating
the diversity of the input space conditioned on a given output through system-
atic perturbations. Within this framework, we define a new uncertainty measure,
Inv-Entropy. A key strength of our framework is its flexibility: it supports vari-
ous definitions of uncertainty measures, embeddings, perturbation strategies, and
similarity metrics. We also propose GAAP, a perturbation algorithm based on
genetic algorithms, which enhances the diversity of sampled inputs. In addition, we
introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU),
which directly assesses uncertainty without relying on correctness as a proxy. Ex-
tensive experiments demonstrate that Inv-Entropy outperforms existing semantic
UQ methods. The code to reproduce the results can be found at https://github.
com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.

1 Introduction

Large language models (LLMs) have demonstrated remarkable success in various natural language
processing tasks, such as text generation, question answering, and summarization [Brown et al., 2020,
Chowdhery et al., 2023, Touvron et al., 2023]. These models have pushed the boundaries of what is
achievable in language understanding and generation [Chung et al., 2024, OpenAI, 2023]. However,
despite their impressive capabilities, a significant challenge remains: LLMs tend to hallucinate, or
generate confidently wrong predictions [Maynez et al., 2020, Zhang et al., 2024b]. This is a serious
concern in applications where reliability is paramount, such as healthcare, autonomous systems, and
legal domains, where incorrect outputs can have dire consequences [Ji et al., 2023]. Addressing
these challenges is essential for ensuring the reliable and responsible deployment of LLMs at scale,
ultimately unlocking their full potential in real-world applications.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs
https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs

A central step in addressing these limitations is developing effective measures for UQ, enabling LLMs
to acknowledge their confidence in a generated output. Existing UQ approaches rely predominantly
on heuristic consistency checks. Most commonly, they use the model’s own generation likelihood or
perplexity as a proxy for confidence, or they measure dispersion across multiple sampled continuations
(e.g. via n-gram overlap or embedding-space variance) [Mudumbai and Bell, 2024]. Such likelihood-
based and sampling-based measures, however, lack a grounded probabilistic justification. Also,
token-level probabilities are known to dramatically under-estimate uncertainty as models can be
“confidently wrong” [Jiang et al., 2021], and they are often inaccessible in black-box LLMs.

To probe deeper LLM brittleness, recent work has turned to input-perturbation UQ methods. Variant
prompts are created through paraphrasing, adversarial token insertion, or temperature shifts. Output
sensitivity is then quantified as an uncertainty signal [Gao et al., 2024, Tuna et al., 2022, Seeböck
et al., 2019]. For instance, Gao et al. [2024] randomly perturb both prompt wording and sampling
temperature, then aggregate variation across outputs to flag unstable predictions. Tuna et al. [2022]
applies adversarial paraphrases to uncover “blind spots” where small semantic-preserving edits trigger
large output changes, while Seeböck et al. [2019] uses systematic character-level and word-level
corruptions to map regions of high model vulnerability.

Despite these advances, an ab initio probabilistic framework has not been established, as existing
methods mainly rely on heuristic score functions for UQ. To address this, we introduce Inv-Entropy,
a fully probabilistic framework built on random-walk theory that offers a new perspective: it learns
the statistical connections between LLM inputs and outputs. This is accomplished through structured
perturbations, which simultaneously capture input variability and the influence of different inputs on
model predictions. Our contributions are summarized as follows:

1. We present the first work in UQ for LLMs that adopts a fully probabilistic framework,
grounded in random walk theory. This framework is highly flexible, and its probabilistic
nature allows for the use of various UQ measures. It is also intrinsically capable of handling
black-box models, as it does not rely on token probabilities.

2. We introduce an inverse perspective that quantifies input diversity given an output, inspired
by “Asymmetry in Semantic Variability” (defined later). Extensive simulations highlight its
advantages, especially for short-form answers where traditional methods often struggle.

3. Theoretically, our work provides a principled foundation for using perturbation-based
methods for UQ, justifying the recent momentum behind such approaches.

4. We propose GAAP, a novel perturbation algorithm that enhances input sampling diversity.
Empirical results show that GAAP significantly improves perturbation-based UQ.

5. Finally, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty
(TSU) capable of evaluating uncertainty without relying on correctness as a proxy. This
enables evaluation of UQ on any dataset, even when labels are unavailable.

For the remainder of the paper, we use E[·] to denote expectation and V[·] to denote variance. We
note that a more detailed related work section can be found in Appendix A.

Figure 1: Toy example highlighting the importance of perturbations. The original question is
from TriviaQA [Joshi et al., 2017], and the correct answer is “bras.” The responses are generated
by ChatGPT-3.5-Turbo. Input perturbations reveal hidden variability that multiple sampling (i.e.,
replications) alone fails to capture, as replication alone can be confidently wrong.

2

2 Perturb-then-Quantify

2.1 Why perturb the input?

We begin with a simple illustrative example in Fig. 1 to highlight the importance of input perturbations.
In this example, when the input question is simply replicated (as is common in much of the existing
literature [Lin et al., 2024]) all generated responses are identical. This misleadingly suggests low
uncertainty even though all answers are incorrect, thus providing false confidence. Replication alone
is therefore insufficient to capture the underlying variability. In contrast, applying input perturbations
yields a diverse set of responses across semantically equivalent prompts, enabling a more faithful
characterization of uncertainty. The importance of such perturbations is not only evident from this
example but also supported by simplified theoretical argument in what follows.

To build theoretical insight into the importance of perturbations, we leverage a key property specific
to language: semantic equivalence. An ideal LLM should respond consistently to semantically
equivalent inputs. We use this property, in a simplified setting, to construct input perturbations
within equivalence classes, which allows us to expose inconsistencies in model behavior and formally
reason about uncertainty. We start from a proof-of-concept example where the target function f⋆ is
a single output function f⋆ : Rd → R. We lack access to f⋆, but have access to an approximation
f̂ : Rd → R, such as a pre-trained model. At first sight, it seems hopeless to quantify the alignment
between f̂ and f⋆ without knowing f⋆. However, the semantic equivalence class relative to an input
x0 provides a set I(x0) ⊆ Rd, such that f⋆(x′) = f⋆(x0), ∀x′ ∈ I(x0). The equivalence class
provides valuable information for UQ as shown in the subsequent argument and Figure 2.

The shape of I(x0) could be complex for general f⋆. However, in a small neighborhood of x0
where ∇f⋆(x0) ̸= 0, I(x0) should be locally close to the tangent space of f⋆. More specifically,
we define a tangent invariance set as Itangent(x0) = {x0 + (I − η∇f⋆) z; z ∈ Rd}, where η∇f⋆ =
∇f⋆(x0)∇f⋆(x0)

⊤

∥∇f⋆(x0)∥2 . Intuitively, I − η∇f⋆ acts as the orthogonal projector onto the subspace orthogonal
to∇f⋆(x0). Taylor expansion shows Itangent(x0) ≈ I(x0) when restricted to the small neighborhood
of x0. To generate algorithmic insight, we further define a probability density on Itangent(x0): we
use P (x′;x0, σ) to denote the probability density function of x′ = x0 + (I − η∇f⋆) z where z is
sampled from a d-dimensional isotropic Gaussian distribution N (0, σ2). It is easy to verify that
P (·;x0, σ) is a Gaussian distribution supported on Itangent(x0) whose mean is x0.

The following Lemma shows that we can estimate the angle between ∇f̂(x) and ∇f⋆(x) by examin-
ing the variance of f̂(x′), where x′ is sampled from P (x′;x, σ).

Figure 2: Left: Conceptual illustration of level sets of the ground truth f⋆. We perturb the input x0
to x1, x2, . . . along a schematic isocontour such that f⋆(x0) = f⋆(x1) = · · ·. Right: Conceptual
illustration of level sets of the model f̂ . The deviations of f̂(xi) for i ≥ 1 from f̂(x0) reflect the
model’s uncertainty around x0.

Lemma 2.1 Assume (1) f̂ is twice differentiable, and both ∥∇f̂(x)∥ and ∥∇2f̂(x)∥op are bounded
for all x ∈ Rd, and (2) ∇f̂(x0) ̸= 0 and ∇f⋆(x0) ̸= 0. Then, for sufficiently small σ, we have

1

σ2
Vx′∼P(·;x0,σ2)[f̂(x

′)] = ∥∇f̂(x0)∥2 sin2 θ
(
∇f̂(x0),∇f⋆(x0)

)
+O(σ), (1)

where θ(v1, v2) = arccos
(

v⊤
1 v2

∥v1∥∥v2∥

)
denotes the angle between two vectors v1 and v2.

Equation (1) shows that the variance of function values of f̂ on the invariance set is indicative of the
alignment between ∇f̂ and ∇f⋆. When the variance is larger, f̂ respects the invariance of f⋆ less,

3

which in turn implies larger misalignment between ∇f̂ and ∇f⋆ and larger uncertainty. The full
proof of Lemma 2.1 is relegated to the Appendix B.

Despite its simplicity, Lemma 2.1 demonstrates two important elements of perturbation-based UQ:
input perturbation and output variance evaluation. In what follows, we introduce concrete designs
that implement these elements in the LLM context to effectively characterize uncertainty.

2.2 A probabilistic framework via dual random walks

The variance estimate in Lemma 2.1 presents useful insights yet is oversimplified to realistically
model LLMs, whose outputs are token sequences rather than a single scalar. Also, it is difficult
to sample exactly from a semantic equivalence class. To tackle these challenges, we introduce a
probabilistic approach inspired by Markov chains.

We use Sx0
to denote a semantic input to a LLM f , and Sy0

← f(Sx0
) to denote one of its possible

corresponding outputs. Because f is typically stochastic, the output Sy0
is a random variable. Next,

consider a semantic embedding function ψ that maps both inputs and outputs into a continuous space
X , such that (x0, y0) = (ψ(Sx0

), ψ(Sy0
)). We also assume a perturbation algorithm Per(Sx0

) that
produces a finite set of perturbed inputs:

Per(Sx0
) = {Sx0

, Sx1
, . . . , Sxn

},

whose detailed implementation will be described in Sec. 2.6.

Applying the embedding function ψ(Sxi
), we obtain the embeddings:

Xn = {x0, x1, . . . , xn}, where xi = ψ(Sxi
).

One corresponding output embedding set is hence given as

Yn = {y0, y1, . . . , yn}, where yi = ψ(Syi
) = ψ(f(Sxi

)).

Samples in Xn and Yn are one-to-one correspondent. We can thus estimate the structural similarity
of the samples in the two sets. In the following, we propose a probabilistic approach to characterize
the structural similarity through the lens of a random walk.

We define two Markov chains,Mx andMy , over the same state set S = {0, 1, . . . , n}, where each
state i corresponds to a perturbed instance Sxi

. The chains differ in their transition dynamics:Mx

is built from similarities among input embeddings Xn, and My from similarities among output
embeddings Yn. Let aSimilarity(x, x

′) : X × X → R+
0 denote a non-negative similarity function that

measures the closeness between embeddings in X . Using this function, we define the transition
matrices Px,Py ∈ R(n+1)×(n+1) forMx andMy elementwise as:

Px[i, j] ≜
aSimilarity(xi, xj)∑n
k=0 aSimilarity(xi, xk)

, Py[i, j] ≜
aSimilarity(yi, yj)∑n
k=0 aSimilarity(yi, yk)

. (2)

The two transition probability matrices characterize two random walks in the space of n+ 1 pairs
{xi, yi}ni=0, where the transition probability from i to j is higher if their input or output semantic
features are closer. Notice that a variety of well-established methods have been proposed for aSimilarity,
some of which are deployed in our numerical studies (see Sec. 3).

At its core, (2) defines stochastic dynamics on the set S, capturing the similarity structures in both
the input and output spaces. These dual dynamics uncover meaningful semantic patterns that can be
leveraged for UQ. There are various ways to characterize uncertainty by examining the alignment
between the two induced graphs [Vishwanathan et al., 2010]. In what follows, we construct a
framework tailored for discrete input and output spaces to rigorously define uncertainty.

2.3 Constructing the distributions

We use X and Y to denote discrete random variables whose supports are Xn and Yn, respectively.
There are many possible ways to define possible distributions of X and Y . In the following, we will
introduce one design of P (Y) and P (X|Y) based on (2). For notational simplicity, we denote the uni-
form distribution over all states S by πUniform, which is given by πUniform =

[
1

n+1
1

n+1 . . . 1
n+1

]
.

4

The marginal distribution The random variable Y corresponds to the LLM’s response to a
question that is perturbed from the original question x0. We define the marginal distribution of Y as:

P (Y = yj) ≜ (πUniform Py)[j] =
1

n+ 1

n∑
i=0

aSimilarity(yi, yj)∑
k aSimilarity(yi, yk)

, (3)

where notation [j] denotes the j-th element of a vector.

The distribution (3) has an intuitive interpretation: we randomly sample a point uniformly from
the state space S, then randomly transit the sample with Py for one step. After the transit step,
nodes whose corresponding output samples are surrounded by many similar outputs are assigned a
higher probability, while isolated nodes with fewer similar neighbors are assigned a lower probability.
Therefore, the mass is concentrated on regions of high semantic density in the output space.

The conditional distribution Now, we introduce the conditional probability P (X = xi | Y = yj)

P (X = xi|Y = yj) = (PyPx)[j, i] =
∑
k

aSimilarity(xi, xk)∑
m aSimilarity(xm, xk)

aSimilarity(yj , yk)∑
l aSimilarity(yj , yl)

, (4)

where notation [j, i] denotes the (j, i)-th entry of the matrix PyPx ∈ R(n+1)×(n+1).

Figure 3: Random-walk transitions under-
lying P (X | Y) = PyPx. Highlighted blue
paths show two representative transitions (one
through k and one through n), each following

yj
Py−→ yk

LLM−−−→ xk
Px−→ xi.

Essentially, (4) defines the conditional probability
through composite transition dynamics on the state
space S. We design a two-stage random walk: first,
states transition under Py, capturing output similar-
ities; then, they transition under Px, capturing in-
put similarities. Since both Px and Py operate on
the same state space S linked by the LLM, (4) es-
tablishes a probabilistic bridge connecting similarity
structures in the output and input spaces (see Fig. 3).

We explicitly model the conditional distribution of
inputs X rather than outputs Y for two main rea-
sons. First, the perturbed samples generated by
Per(Sx0

) may differ semantically from the original
input. Reweighting these samples using both input-
and output-space similarities ensures that semanti-
cally consistent perturbations are emphasized while
spurious ones are down-weighted. Second, LLMs
exhibit an inherent semantic asymmetry between in-
puts and outputs: many distinct prompts can lead to similar responses, whereas small input changes
typically cause only small to modest output variations. Modeling P (X | Y) therefore provides a
more stable and informative view of uncertainty by capturing the diversity of possible inputs that
could relate to a given output.

Our goal is to use the information encoded in Y to guide the conditional distribution of X . This
coupling between input and output similarities allows the model to assign higher probability to
inputs supported by multiple semantically consistent input-output pairs, yielding a more faithful
representation of uncertainty. Based on the defined P (Y) and P (X | Y), we can then derive
P (X) ≜ πUniformPyPx and P (Y | X) via Bayes’ theorem. Such formulation provides a flexible
foundation for defining diverse uncertainty measures, including divergence-based metrics (e.g., KL
or Wasserstein distances), entropy-based quantities, and other probabilistic constructs. In the next
section, we introduce an entropy-based metric as a concrete example.

2.4 Inv-Entropy via bootstrapping and Monte Carlo

We next introduce how to leverage the probabilistic framework described above to define our UQ
measure, denoted as Inverse-Entropy (Inv-Entropy).

5

Algorithm 1 Inv-Entropy overall framework
1: Input: (Sx0

, Sy0
), f , ψ, Per, and aSimilarity

2: Perturb: Use Per(Sx0
) and ψ to obtain Xn, Compute Px using (2)

3: LLM Generation: Input each question in Per(Sx0
), r times into f and obtain {Ri}ni=0.

4: for b = 1 to B do
5: Sample Y (b)

n = {y(b)0 , . . . , y
(b)
n }

6: Compute P(b)
y using (2)

7: Compute P (b)(xi|yi) = (P(b)
y · Px)[i, i] (from (4)) for ∀ i

8: Compute H(Xn | Y (b)
n) using (5)

9: end for
10: Compute Ĥ(X|Y) using (6)

Inv-Entropy A natural measure of uncertainty is the conditional sample entropy H(Xn | Yn),
which connects the similarity of the input set Xn to the similarity of the corresponding output set Yn:

H(Xn | Yn) ≜ − trace
(
PyPx ⊙ log(PyPx)

)
= −

n∑
i=0

P (xi | yi) logP (xi | yi), (5)

where ⊙ denotes the Hadamard product. This quantity captures the degree of alignment between
Py and Px. High entropy indicates that semantically similar inputs yield divergent outputs, or that
semantically distinct outputs correspond to similar inputs, both revealing uncertainty in the model’s
behavior. Note that Inv-Entropy represents an unnormalized entropy measure, designed to capture not
only the dispersion of P (xi | yi) but also its magnitude, thereby jointly modeling these two sources
of uncertainty.

That said, it is important to realize that Xn does not map to a unique Yn due to the inherent stochas-
ticity of f as LLMs can produce different outputs for the same input. Thus, beyond perturbations that
capture epistemic uncertainty, replications can help account for aleatoric uncertainty arising from
sampling randomness. To this end, each perturbed input Sxi

∈ Per(Sx0
) can be queried r times,

yielding a replicated output setRi = {yi,1, . . . , yi,r} for each question xi, where yi,· = ψ(f(Sxi
)).

Bootstrapping & Monte Carlo With this setup, we are able to generate B bootstrap samples
Y

(b)
n = {y(b)0 , . . . , y

(b)
n } for b ∈ {1, . . . , B}, each corresponding to Xn, where y(b)i ∼ Ri is drawn

with replacement for i ∈ {0, . . . , n}, yielding a transition matrix P(b)
y . Each bootstrapped output

embedding set Y (b)
n , together with the input embeddings Xn, defines a probabilistic instance of our

uncertainty measure, Inv-Entropy. The final UQ estimate is obtained by averaging Inv-Entropy over
the B bootstrap replicates:

Ĥ(X | Y) ≜
1

B

B∑
b=1

H(Xn | Y (b)
n). (6)

Our overall framework in given in Algorithm 1. It is important to emphasize that a key strength of
our framework lies in its flexibility: it accommodates arbitrary choices of embedding function ψ,
perturbation strategy Per, and similarity metric aSimilarity, allowing it to adapt to different tasks and
model architectures. Moreover, Ĥ(X | Y) represents just one possible uncertainty measure; many
others can be defined within our probabilistic framework. For instance, our numerical studies evaluate
alternatives such as the Wasserstein distance between the marginal distributions P (X) and P (Y).

2.5 Insights into Inv-Entropy

To provide some insights into our UQ measure, we introduce two parameters: ϵx ∈ (0, 1], which
controls the input perturbation level, and ϵy ∈ [0, 1], which controls the output dispersion level
(defined via aSimilarity below). The corresponding transition matrices are then readily derived as:

aSimilarity(zi, zj) =

{
1, i = j,

1− ϵz, i ̸= j,
→ Pz(ϵz)[i, j] =


1

(n+ 1)− nϵz
, i = j,

1− ϵz
(n+ 1)− nϵz

, i ̸= j,

6

where z ∈ {x, y}. With this, the joint conditional probability can be written as: P (xi | yi; ϵx, ϵy) =
Py(ϵy)Px(ϵx)[i, i] =

1+n−nϵx−nϵy+nϵxϵy
(n+1−nϵx)(n+1−nϵy)

. We can then show that for the same input perturbation
level ϵx, a larger output dispersion ϵy corresponds to higher uncertainty, consistent with the definition
of Inv-Entropy. To see this, notice that the derivative of P (xi | yi; ϵx, ϵy) with respect to ϵy is
∂P (xi|yi;ϵx,ϵy)

∂ϵy
= nϵx

(n+1−nϵx)(n+1−nϵy)2
> 0. Now, if we assume all P (xi | yi; ϵx, ϵy) are smaller

than 1
e (a condition generally satisfied for large n), then the Inv-Entropy function H in (5) becomes

also increasing in P (xi | yi; ϵx, ϵy) and hence in ϵy .

2.6 GAAP

In this section, we present a genetic algorithm-based adversarial perturbation (GAAP) that progres-
sively modifies the semantic input Sx0

to generate controlled perturbations, Per(Sx0
). Below we

highlight our overarching framework, while algorithmic details are relegated to Appendix C. As
shown in Fig. 4, the process consists of an initialization step and multiple iterative procedures. In
the initialization step, we construct a population Pop0(Sx0) consisting of perturbed versions of Sx0 .
More specifically, each text in Pop0(Sx0) is derived from Sx0 by replacing one keyword with a
synonym, hypernym, hyponym from WordNet [Miller, 1995], or a deletion.

Figure 4: Illustration of GAAP on a TriviaQA [Joshi et al., 2017] question.

With an initial Pop0(Sx0
), GAAP updates the Popt(Sx0

) through subsequent steps of crossovers and
mutations. In the crossover step, we first select a random subset of Popt(Sx0

) based on aSimilarity(x0,·),
such that samples are chosen with higher probability if they are closer to x0. Next, we randomly
segment each selected sentence. These sentence segments are then randomly concatenated to generate
new sentences, as illustrated in Crossover of Fig. 4.

In the mutation step, we perturb the recombined sentences with further key word substitutions and
deletions, which introduce additional variations to the cross-pollinated texts. We construct the next
generation population Popt+1(Sx0

) as the union of the selected, crossovered, and mutated texts.

GAAP proceeds by iteratively updating Popt(Sx0
) with crossovers and mutations for T iterations or

until all texts in Popt(Sx0
) have similarity to Sx0

smaller than a predefined constant δ. Finally, we
construct Per(Sx0

) by sampling from populations at different generations {Popt(Sx0
)}t=0,τ,2τ,···,

where τ ∈ Z is a fixed gap. Since texts in Popt(Sx0) tend to deviate from Sx0 further with larger t,
such construction of Per(Sx0) ensures diverse representation of perturbed texts with different levels
of similarity to Sx0 .

3 Experiments

Models and tasks We conducted experiments using two language models: GPT-3.5-Turbo, a
black-box model accessed via API, and LLaMA-3.1-8B-Instruct, a grey-box model. We evaluated
our framework on datasets spanning three categories: question answering (TriviaQA [Joshi et al.,
2017], SciQ [Welbl et al., 2017], Natural Questions [Kwiatkowski et al., 2019] (NQ, long-answer
questions with details in Appendix D.3)), multiple choice (MMLU [Hendrycks et al., 2020]), and
mathematical reasoning (GSM8K [Cobbe et al., 2021]).

7

Table 1: Comparison of AUROC, PRR, and Brier scores across all the 5 datasets. We use GPT-3.5-
Turbo with ChatGPT-based paraphrasing, and DeBERTa-v2-xlarge-MNLI embedding function. Bold
and underline denote the best and second-best performers, respectively.

Metric Method
Datasets

TriviaQA SciQ NQ MMLU GSM8K

AUROC (↑)

Semantic Entropy 0.579 ± 0.044 0.679 ± 0.045 0.521 ± 0.034 0.518 ± 0.048 0.589 ± 0.052

Kernel Entropy 0.687 ± 0.062 0.685 ± 0.063 0.556 ± 0.055 0.653 ± 0.059 0.560 ± 0.060

VU 0.695 ± 0.060 0.480 ± 0.060 0.533 ± 0.056 0.523 ± 0.054 0.557 ± 0.057

P(True) 0.604 ± 0.050 0.522 ± 0.026 0.519 ± 0.020 0.474 ± 0.027 0.571 ± 0.056

LexSim 0.649 ± 0.055 0.681 ± 0.046 0.518 ± 0.055 0.643 ± 0.054 0.598 ± 0.060

DegMat 0.734 ± 0.056 0.672 ± 0.059 0.551 ± 0.052 0.608 ± 0.058 0.678 ± 0.059

LUQ 0.637 ± 0.067 0.726 ± 0.048 0.627 ± 0.055 0.648 ± 0.057 0.662 ± 0.064

KLE 0.333 ± 0.054 0.341 ± 0.056 0.410 ± 0.060 0.360 ± 0.064 0.338 ± 0.061

Inv-Entropy 0.788 ± 0.054 0.740 ± 0.050 0.661 ± 0.052 0.780 ± 0.041 0.695 ± 0.051

NI-Entropy 0.786 ± 0.057 0.681 ± 0.056 0.637 ± 0.053 0.710 ± 0.052 0.650 ± 0.069

NR-Inv-Entropy 0.743 ± 0.061 0.720 ± 0.049 0.627 ± 0.054 0.604 ± 0.059 0.677 ± 0.064

WD-px-py 0.518 ± 0.060 0.303 ± 0.060 0.558 ± 0.055 0.573 ± 0.061 0.605 ± 0.069

MAX-py-x 0.723 ± 0.054 0.674 ± 0.054 0.547 ± 0.051 0.585 ± 0.059 0.618 ± 0.059

PRR (↑)

Semantic Entropy 0.517 ± 0.060 0.763 ± 0.044 0.505 ± 0.049 0.690 ± 0.058 0.335 ± 0.056

Kernel Entropy 0.794 ± 0.052 0.812 ± 0.039 0.573 ± 0.068 0.768 ± 0.057 0.333 ± 0.054

VU 0.723 ± 0.053 0.677 ± 0.053 0.537 ± 0.053 0.654 ± 0.055 0.328 ± 0.057

P(True) 0.797 ± 0.042 0.679 ± 0.050 0.502 ± 0.050 0.671 ± 0.041 0.303 ± 0.056

LexSim 0.810 ± 0.045 0.770 ± 0.051 0.563 ± 0.064 0.767 ± 0.053 0.356 ± 0.076

DegMat 0.882 ± 0.041 0.802 ± 0.046 0.549 ± 0.069 0.771 ± 0.058 0.462 ± 0.091

LUQ 0.854 ± 0.043 0.840 ± 0.045 0.595 ± 0.066 0.787 ± 0.052 0.504 ± 0.094

KLE 0.704 ± 0.048 0.592 ± 0.059 0.449 ± 0.059 0.612 ± 0.061 0.224 ± 0.043

Inv-Entropy 0.885 ± 0.044 0.853 ± 0.042 0.614 ± 0.067 0.898 ± 0.030 0.521 ± 0.094

NI-Entropy 0.883 ± 0.043 0.781 ± 0.053 0.592 ± 0.064 0.823 ± 0.055 0.501 ± 0.098

NR-Inv-Entropy 0.840 ± 0.054 0.844 ± 0.045 0.576 ± 0.069 0.743 ± 0.064 0.518 ± 0.087

WD-px-py 0.763 ± 0.051 0.587 ± 0.056 0.586 ± 0.065 0.777 ± 0.054 0.420 ± 0.085

MAX-py-x 0.875 ± 0.038 0.821 ± 0.048 0.536 ± 0.066 0.749 ± 0.062 0.413 ± 0.081

Brier (↓)

Semantic Entropy 0.166 ± 0.023 0.173 ± 0.020 0.242 ± 0.006 0.208 ± 0.020 0.188 ± 0.018

Kernel Entropy 0.160 ± 0.025 0.153 ± 0.022 0.221 ± 0.011 0.179 ± 0.018 0.190 ± 0.017

VU 0.160 ± 0.022 0.196 ± 0.017 0.223 ± 0.014 0.219 ± 0.017 0.188 ± 0.020

P(True) 0.172 ± 0.022 0.215 ± 0.017 0.244 ± 0.005 0.215 ± 0.015 0.189 ± 0.021

LexSim 0.151 ± 0.024 0.179 ± 0.020 0.225 ± 0.010 0.187 ± 0.020 0.174 ± 0.019

DegMat 0.140 ± 0.021 0.164 ± 0.018 0.229 ± 0.012 0.191 ± 0.018 0.156 ± 0.019

LUQ 0.148 ± 0.020 0.159 ± 0.016 0.208 ± 0.014 0.180 ± 0.019 0.151 ± 0.019

KLE 0.188 ± 0.021 0.218 ± 0.016 0.244 ± 0.006 0.213 ± 0.018 0.193 ± 0.021

Inv-Entropy 0.128 ± 0.020 0.157 ± 0.018 0.201 ± 0.014 0.147 ± 0.017 0.152 ± 0.020

NI-Entropy 0.124 ± 0.020 0.164 ± 0.017 0.204 ± 0.014 0.168 ± 0.021 0.156 ± 0.022

NR-Inv-Entropy 0.138 ± 0.021 0.159 ± 0.015 0.208 ± 0.013 0.188 ± 0.021 0.165 ± 0.021

WD-px-py 0.184 ± 0.019 0.212 ± 0.016 0.225 ± 0.010 0.188 ± 0.018 0.169 ± 0.021

MAX-py-x 0.148 ± 0.019 0.177 ± 0.017 0.229 ± 0.011 0.189 ± 0.020 0.169 ± 0.018

Baselines We compared our method with various state-of-the-art benchmarks highlighted in Sec. 1,
Appendix A and a recent paper [Vashurin et al., 2024] identifying them as top-performers. These
include: Semantic Entropy [Farquhar et al., 2024], Kernel Entropy [Gruber and Buettner, 2023],
Verbalized Uncertainty (VU) [Tian et al., 2023], P(True) [Kadavath et al., 2022], Lexical Similarity
(LexSim) [Fomicheva et al., 2020], Degree Matrix(DegMat) [Lin et al., 2024], Long-text Uncertainty
Quantification (LUQ) [Zhang et al., 2024a], Kernel Language Entropy (KLE) [Nikitin et al., 2024].
We also include additional UQ measures based on our framework: (i) NI-Entropy: Non-inverse
entropy which uses P (Y | X) derived in Sec. 2.3 instead of P (X | Y); the rest remains the same.
(ii) NR-Inv-Entropy: entropy in (5) without replications. (iii) WD-px-py: Wasserstein distance
WD(P (X), P (Y)) ; (iv) MAX-py-x: maxi P (yi|xi).

Evaluation metrics We evaluate performance using four metrics grouped into correctness-based
and uncertainty-based categories. Correctness-based metrics: AUROC, PRR [Malinin and Gales,
2021], and Brier Score [Brier, 1950], measure how well confidence aligns with correctness. For
MMLU, correctness is defined via exact match, while for other datasets we use GPT-3.5-Turbo to

8

assess whether a generated response is semantically equivalent to the reference (ground-truth) answer.
Confidence is taken as the negative of the UQ measure (i.e. Inv-Entropy) for AUROC and PRR. For
the Brier Score, we apply isotonic normalization [Zadrozny and Elkan, 2002] to map uncertainty
scores to the [0,1] range. Correctness-based metrics, however, rely on ground truth and may fail in
open-ended or weakly supervised settings. To address this, we propose the Temperature Sensitivity of
Uncertainty (TSU), which quantifies how often uncertainty increases with temperature. Since higher
temperatures flatten the softmax distribution, they should yield greater randomness and uncertainty
[Hinton et al., 2015]. Formally, given a sequence of temperature values T1 < T2 < · · · < Tn, TSU
is defined as:

TSU(T1,T2, . . . ,Tn) =
1

|D|
∑
Sx∈D

I
(
UQ(Sx,T1) < UQ(Sx,T2) < · · · < UQ(Sx,Tn)

)
, (7)

where D is the dataset, Sx is a question in this dataset, UQ(Sx,T) represents a UQ subroutine (such
as Inv-Entropy) for input Sx at temperature T, and I(·) is the indicator functionA salient feature
in the definition of TSU in (7) is that it only depends on Sx, thus is agnostic to the “ground truth”
output y. In addition, TSU extends beyond conventional correctness-based metrics by evaluating the
granularity of uncertainty estimation. By leveraging temperature scaling as a probing mechanism,
TSU assesses how effectively a method distinguishes between gradations of uncertainty.

Implementation details Our framework requires three inputs: ψ, Per, and aSimilarity. For Per,
we apply two strategies: (1) ChatGPT-based paraphrasing, generating nine perturbed versions per
question, (2) GAAP introduced in Sec. 2.6 with a similarity threshold of δ = 0.7. For ψ, we employ
three state-of-the-art approaches: (i) SBERT-small (paraphrase-MiniLM-L6-v2), (ii) SBERT-large
(all-mpnet-base-v2) [Reimers and Gurevych, 2019], and (iii) DeBERTa-v2-xlarge-MNLI [He et al.,
2021]. For (i) and (ii), we use cosine similarity aSimilarity(x, x

′) = (1 + cos(x, x′))/2. While, (iii)
generates an entailment score; however, this score is not symmetric. To address this, we take the
average (aSimilarity(x, x

′) + aSimilarity(x
′, x))/2. All experiments were conducted with an NVIDIA

A100 GPU. Detailed experimental set up including prompts and parameters used are detailed in
Appendix D. Appendix D also includes additional simulation results; we present only the core
findings in the main paper for clarity and focus.

Table 2: Comparison of TSU across different temperature ranges for TriviaQA and MMLU.
Method TriviaQA MMLU

TSU(1.0,1.4) TSU(0.7,1.4) TSU(0.7–1.4) TSU(0.3–1.4) TSU(1.0,1.4) TSU(0.7,1.4) TSU(0.7–1.4) TSU(0.3–1.4)

Semantic Entropy 17.35 20.64 5.35 3.94 33.20 39.80 4.93 2.09
Kernel Entropy 43.92 55.56 18.23 9.64 59.48 69.10 37.32 12.63
VU 38.78 42.86 4.92 0.00 37.62 38.73 2.59 0.00
P(True) 3.85 3.49 0.00 0.00 5.87 5.79 0.00 0.00
LexSim 46.94 53.54 12.38 8.16 55.06 61.22 30.61 15.28
DegMat 45.37 47.96 20.02 13.27 69.39 77.55 32.58 14.34
LUQ 48.06 50.00 27.63 10.20 61.22 62.24 27.55 10.80
KLE 13.45 6.42 1.31 0.00 26.53 12.23 2.67 0.00

Inv-Entropy 77.55 88.78 47.21 19.05 73.47 86.73 43.88 18.37
NI-Entropy 61.22 60.20 19.32 11.73 50.00 59.38 18.37 7.14
WD-px-py 57.62 69.39 36.73 12.06 66.38 69.39 22.54 11.22
MAX-py-x 74.49 81.63 32.58 16.03 65.41 80.61 25.51 14.42

3.1 Results

Correctness-based As shown in Table 1, Inv-Entropy achieves consistently strong and stable
performance across all five datasets and all three metrics. It attains state-of-the-art results in both
AUROC and PRR. The improvement is particularly clear on MMLU, where Inv-Entropy reaches
0.780 AUROC and 0.898 PRR, noticeably higher than all baselines, reflecting the advantage of
our probabilistic framework with inverse design when the output information is limited. It also
achieves leading performance on the long-answer dataset NQ, indicating that its effectiveness is not
constrained by answer length (a detailed sensitivity analysis with respect to answer length is provided
in Table 6 of the Appendix). It also ranks among the top two in Brier score, indicating well-calibrated
confidence estimates. We intentionally use ChatGPT-based paraphrasing to highlight the advantages
of our method independent of GAAP.

TSU Table 2 reports TSU results TriviaQA and MMLU. These results align with the correctness-
based UQ metrics in Table 1: methods defined by our probabilistic framework consistently achieve

9

Figure 5: AUROC of Inv-Entropy under different perturbation methods (GAAP or ChatGPT-based
paraphrasing) and embedding functions, on both ChatGPT and LLaMA models.

top performance, while LexSim, DegMat and LUQ exhibit highly inconsistent results, occasionally
leading in specific cases but underperforming in others. Methods like P(True) perform poorly in TSU
due to their binary nature, which fundamentally lacks granularity. Similarly, Semantic Entropy shows
limited discriminatory power as its values often cluster around few discrete points. In contrast to these
coarse-grained approaches, Inv-Entropy is fine-grained with superior ability to reflect uncertainty
variations, demonstrated by consistent top TSU performance across all datasets and temperature
settings. This result highlights the probabilistic framework’s ability to capture uncertainty trends
beyond labeled datasets. The complete TSU results are presented in Table 5 in the Appendix.

Performance breakdown (i) Impact of replications: The comparison between NR-Inv-Entropy
and Inv-Entropy in Tables 1 and 2 highlights the impact of replication and bootstrapping. Notably,
NR-Inv-Entropy often performs competitively, showcasing the strength of our framework even
without replication. This suggests that one can trade off a small loss in accuracy for fewer queries.
Appendix D includes an ablation over S and r, further confirming this finding. (ii) Impact of
inversion: The comparison between NI-Entropy and Inv-Entropy further confirms the advantages
of our inverse approach, which examines the diversity of inputs that could have led to a specific
output. Although NI-Entropy consistently underperforms Inv-Entropy, it still often ranks second,
highlighting the strength of our defined probabilistic framework even without the inversion. (iii)
Framework generality: The often competitive performance of WD-px-py and MAX-py-x highlights
the robustness of our framework and its flexibility in defining a wide range of UQ measures. (iv)
Impact of perturbations: Fig. 5 shows that GAAP consistently improves AUROC across all three
datasets and both LLMs compared to ChatGPT-based paraphrasing. By enhancing input diversity
in a principled way, GAAP better tests model robustness and improves uncertainty quantification.
These results underscore the importance of meaningful perturbations. (v) Impact of embedding
function: Our framework delivers consistently strong uncertainty estimates with every encoder we
tested, including SBERT (paraphrase-MiniLM-L6-v2), SBERT (all-mpnet-base-v2), and DeBERTa.
Although the larger encoders provide slightly higher scores on several tasks, the overall gap is modest,
showing that even lightweight models can support reliable UQ when paired with our method. The
close alignment between results from SBERT (all-mpnet-base-v2) and DeBERTa further suggests that
entailment and similarity signals extracted by the two architectures contain overlapping information.

4 Conclusion

We present a fully probabilistic framework for uncertainty quantification that models the conditional
distribution of inputs given outputs through a dual random walk formulation. This inverse modeling
perspective enables a principled characterization of uncertainty by capturing the semantic diversity
of inputs associated with a given output. A key strength of our framework is its flexibility, allowing
researchers to freely combine embedding functions, perturbation strategies, and similarity metrics to
define customized uncertainty measures. As an instantiation of this idea, we introduce Inv-Entropy,
a novel uncertainty metric derived from the framework. Together with the proposed perturbation
algorithm GAAP and evaluation metric TSU, our method achieves state-of-the-art performance
across multiple datasets. We believe this framework opens up broad opportunities for future research,
providing a general foundation upon which new uncertainty measures, tailored to different purposes,
can be systematically developed. We acknowledge that, like other perturbation and replication-based
UQ methods, our approach may face practical limitations due to computational cost. A promising
direction is to adaptively determine when further perturbation is unnecessary. We hope GAAP’s
sequential design can provide a step towards this goal.

10

References
Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,

78(1):1–3, 1950.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. Evaluation metrics for language models.
1998.

Zizhang Chen, Pengyu Hong, and Sandeep Madireddy. Question rephrasing for quantifying uncer-
tainty in large language models: Applications in molecular chemistry tasks. CoRR, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Guanting Dong, Jinxu Zhao, Tingfeng Hui, Daichi Guo, Wenlong Wang, Boqi Feng, Yueyan Qiu,
Zhuoma Gongque, Keqing He, Zechen Wang, et al. Revisit input perturbation problems for
llms: A unified robustness evaluation framework for noisy slot filling task. In CCF International
Conference on Natural Language Processing and Chinese Computing, pages 682–694. Springer,
2023.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for neural
machine translation. Transactions of the Association for Computational Linguistics, 8:539–555,
2020. doi: 10.1162/tacl_a_00330. URL https://aclanthology.org/2020.tacl-1.35/.

Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. Spuq: Perturbation-based uncertainty
quantification for large language models. In Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2336–
2346, 2024.

Yashvir S Grewal, Edwin V Bonilla, and Thang D Bui. Improving uncertainty quantification in large
language models via semantic embeddings. arXiv preprint arXiv:2410.22685, 2024.

Maarten Grootendorst. Keybert: Minimalist keyword extraction with bert, 2024. URL https:
//maartengr.github.io/KeyBERT/. Accessed: 2025-02-09.

Sebastian G Gruber and Florian Buettner. A bias-variance-covariance decomposition of kernel scores
for generative models. arXiv preprint arXiv:2310.05833, 2023.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. CoRR, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

11

https://aclanthology.org/2020.tacl-1.35/
https://maartengr.github.io/KeyBERT/
https://maartengr.github.io/KeyBERT/

Hsiu-Yuan Huang, Yutong Yang, Zhaoxi Zhang, Sanwoo Lee, and Yunfang Wu. A survey of
uncertainty estimation in llms: Theory meets practice. arXiv preprint arXiv:2410.15326, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we know when language
models know? on the calibration of language models for question answering. Transactions of the
Association for Computational Linguistics, 9:962–977, 2021. doi: 10.1162/tacl_a_00407. URL
https://aclanthology.org/2021.tacl-1.57/.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–
1611, 2017.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. CoRR, 2022.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. In The Eleventh International Conference
on Learning Representations, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research, 2022.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
cation for black-box large language models. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=DWkJCSxKU5.

Adam Lipowski and Dorota Lipowska. Roulette-wheel selection via stochastic acceptance. Physica
A: Statistical Mechanics and its Applications, 391(6):2193–2196, 2012.

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=jN5y-zb5Q7m.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,
editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 1906–1919, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.acl-main.173. URL https://aclanthology.org/2020.acl-main.173/.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–41, November
1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL https://doi.org/10.1145/
219717.219748.

Raghu Mudumbai and Tyler Bell. Slaves to the law of large numbers: An asymptotic equipartition
property for perplexity in generative language models. arXiv preprint arXiv:2405.13798, 2024.

Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy:
Fine-grained uncertainty quantification for llms from semantic similarities. Advances in Neural
Information Processing Systems, 37:8901–8929, 2024.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

12

https://aclanthology.org/2021.tacl-1.57/
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://aclanthology.org/2020.acl-main.173/
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, 2019.

Philipp Seeböck, José Ignacio Orlando, Thomas Schlegl, Sebastian M Waldstein, Hrvoje Bogunović,
Sophie Klimscha, Georg Langs, and Ursula Schmidt-Erfurth. Exploiting epistemic uncertainty of
anatomy segmentation for anomaly detection in retinal oct. IEEE transactions on medical imaging,
39(1):87–98, 2019.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
confidence scores from language models fine-tuned with human feedback. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Omer Faruk Tuna, Ferhat Ozgur Catak, and M Taner Eskil. Exploiting epistemic uncertainty of the
deep learning models to generate adversarial samples. Multimedia Tools and Applications, 81(8):
11479–11500, 2022.

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Akim Tsvigun, Daniil Vasilev, Rui Xing,
Abdelrahman Boda Sadallah, Lyudmila Rvanova, Sergey Petrakov, Alexander Panchenko, Timothy
Baldwin, Preslav Nakov, Maxim Panov, and Artem Shelmanov. Benchmarking uncertainty
quantification methods for large language models with lm-polygraph. CoRR, abs/2406.15627,
2024. URL https://doi.org/10.48550/arXiv.2406.15627.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. The Journal of Machine Learning Research, 11:1201–1242, 2010.

Nico Wagner, Michael Desmond, Rahul Nair, Zahra Ashktorab, Elizabeth M Daly, Qian Pan,
Martín Santillán Cooper, James M Johnson, and Werner Geyer. Black-box uncertainty quan-
tification method for llm-as-a-judge. arXiv preprint arXiv:2410.11594, 2024.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin, editors, Proceedings of the
3rd Workshop on Noisy User-generated Text, pages 94–106, Copenhagen, Denmark, Septem-
ber 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL
https://aclanthology.org/W17-4413/.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probabil-
ity estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 694–699, 2002.

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. LUQ: Long-text uncertainty quantifi-
cation for LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 5244–5262,
Miami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.299. URL https://aclanthology.org/2024.emnlp-main.299/.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley A Malin, and Sricharan Kumar. Sac3: Reliable
hallucination detection in black-box language models via semantic-aware cross-check consistency.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A Smith. How language model
hallucinations can snowball. In International Conference on Machine Learning, pages 59670–
59684. PMLR, 2024b.

13

https://doi.org/10.48550/arXiv.2406.15627
https://aclanthology.org/W17-4413/
https://aclanthology.org/2024.emnlp-main.299/

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, Red Hook, NY, USA, 2023. Curran
Associates Inc.

14

Appendix Outline

• Appendix A: Related Work
• Appendix B: Proof of Lemma 2.1
• Appendix C: GAAP 2.6 Implementation Details
• Appendix D: Settings & Additional Experimental Results:

– Experimental setting D.1
– Computational cost comparison D.2
– Additional experimental results D.3

* Table 5: Complete TSU results.
* Table 6: Sensitivity Analysis to answer lengths in NQ.
* Table 7: Abalation study on the number of bootstrapping iterations S.
* Table 8: Abalation study on the number of replications r.
* Table 9: Abalation study on the embedding functions ψ.
* Table 10: Abalation study on temperatures T on TriviaQA.
* Table 11: Abalation study on temperatures T on SciQ.

A Related Work

UQ in LLMs has been gaining increasing interest recently [Huang et al., 2024]. The existing, albeit
limited, literature can generally be categorized into three perspectives.

Self-evaluation-based UQ: Self-evaluation techniques for LLMs [Chen et al., 2024] and the verbal
expression of uncertainty [Lin et al., 2022] have recently been explored to enhance interpretability
and reliability. For instance, recent approaches for evaluating free-form generation tasks frequently
utilize LLMs as evaluators [Zheng et al., 2023]. Additionally, for gray-box models, where the internal
workings are partially known, perplexity [Chen et al., 1998] and entropy [Shannon, 1948] can be
directly computed from the output logits, providing a natural UQ measure.

Replication-based UQ: These methods generate multiple outputs for a given input and measure
the deviation between them to estimate uncertainty [Grewal et al., 2024, Wagner et al., 2024, Kuhn
et al., 2023]. Perhaps most prevalent is semantic entropy [Farquhar et al., 2024], which computes
uncertainty by clustering semantically equivalent answers from multiple responses and calculating the
entropy of the resulting clusters. While effective in capturing aleatoric uncertainty, these approaches
struggle with confidently wrong predictions, as resampling often yields similar incorrect results,
leading to overconfidence and poor calibration. This issue exacerbates the challenges of handling
hallucinations in LLMs [Grewal et al., 2024].

Perturbation-based UQ: This is a more recent approach that involves systematic perturbations
of inputs or latent representations to evaluate output variability [Zhang et al., 2023]. While Dong
et al. [2023] systematically evaluates LLM robustness for noisy slot-filling tasks under diverse input
perturbations, SPUQ [Gao et al., 2024] provides a UQ metric by analyzing response variations to
perturbed inputs. Notably, SPUQ achieves significant improvements in model uncertainty calibration,
reducing Expected Calibration Error (ECE) by an average of 50%. Indeed, our theoretical argument
in Sec. 2.1 provides a theoretical justification for the need for perturbation in effective UQ.

In light of existing literature, our method unifies replication-based and perturbation-based UQ
while introducing a Bayesian perspective to LLM uncertainty estimation by modeling the posterior
distribution of inputs conditioned on outputs. This Bayesian inverse design approach provides a new
framework and perspective for UQ of semantic models.

15

B Proof of Lemma 2.1

In this section, we present the proof of Lemma 2.1. the proof is based on Taylor expansion of f̂(x′).

The order-2 Taylor expansion for f̂(x0 + (I − η∇f⋆)z) is,

f̂(x0 + (I − η∇f⋆)z) = f̂(x0) +∇f̂(x0)⊤(I − η∇f⋆)z +R(z), (8)

where R(z) is the remainder term defined as,

R(z) =
1

2
z⊤(I − η∇f⋆)∇2f̂(x0 + ξ(z)(I − η∇f⋆)z)(I − η∇f⋆)z, (9)

where ξ(z) ∈ [0, 1] is a constant dependent on z.

By assumption, there exists a constant G > 0 such that ∥∇2f̂(x)∥op ≤ G, ∀x ∈ Rd. Therefore,

R(z) ≤ G∥(I − η∇f⋆)z∥2/2 ≤ G∥z∥2/2 (10)

Since z admits a d-dimensional isotropic Gaussian distribution N (0, σ2), we can provide an upper
bound for E(R(z)) and E(R2(z)) as

E(R(z)) ≤ Gdσ2/2, (11)

and

E(R(z)2) ≤ G2

4
E[∥z∥4]

≤ G2

4
d2E[z4i] =

G2

4
d23σ4.

(12)

We can also calculate the expectation of f̂(x0 + (I − η∇f⋆)z) as

E[f̂(x0 + (I − η∇f⋆)z)] = f̂(x0) + E(R(z)). (13)

Then, the variance of f̂(x0 + (I − η∇f⋆)z) is,

V[f̂(x0 + (I − η∇f⋆)z)] = E
[(
f̂(x0 + (I − η∇f⋆)z)− E[f̂(x0 + (I − η∇f⋆)z)]

)2
]

= E
[(
∇f̂(x0)⊤(I − η∇f⋆)z

)2
]
+ 2E

[(
∇f̂(x0)⊤(I − η∇f⋆)z

)
ζ(z)

]
+ E

[
ζ(z)2

]
,

(14)

where ζ(z) is defined as
ζ(z) = R(z)− E(R(z)). (15)

Notice that the first term in (14) is,

E
[(
∇f̂(x0)⊤(I − η∇f⋆)z

)2
]

= E
[
∇f̂(x0)⊤(I − η∇f⋆)zz⊤(I − η∇f⋆)∇f̂(x0)

]
= σ2∇f̂(x0)⊤(I − η∇f⋆)∇f̂(x0)

= σ2

∥∇f̂(x0)∥2 −
(
∇f⋆(x0)⊤∇f̂(x0)

)2

∥∇f⋆(x0)∥2


= σ2∥∇f̂(x0)∥2 sin2 θ(∇f⋆(x0),∇f̂(x0)).

(16)

The third term in (14) is upper bounded by

E
[
ζ(z)2

]
≤ 2E[R(z)2] + 2E[R(z)]2

≤ 2G2d2σ4 = O(σ4),

(17)

16

where we used (11) and (12) in the third inequality.

The second term in (14) is upper bounded by the Holder inequality,

E
[(
∇f̂(x0)⊤(I − η∇f⋆)z

)
ζ(z)

]
≤

√
E
[(
∇f̂(x0)⊤(I − η∇f⋆)z

)2
]√

E [ζ(z)2]

≤ σ∥∇f̂(x0)∥ sin θ(∇f⋆(x0),∇f̂(x0))
√
2Gdσ2

= O(σ3),

(18)

where we used the inequality (17) in the second inequality, and the assumption that ∥∇f̂(x0)∥ is
upper bounded in the last theorem.

We complete the proof by combining (16), (18), and (17).

C GAAP Implementation Details

In this section, we first introduce an example of the perturbation set Per(S0), then introduce the
details of our GAAP algorithm that is used for the perturbation function Per(·).

C.1 An example

We show an example of Per(Sx0
) in Table 3. The original input is a question from TriviaQA

Sx0
=“Which golfer became only the fifth in history to get both the British and US Open champi-

onships in the same year, in 1982? ”.

Sx0
Which golfer became only the fifth in history to get both the British and US Open championships in the same year, in 1982?

Sx1
Which golfer became only the fifth in history to get both the British and US Open in the same year, in 1982?

Sx2
Which driver became only the fifth in history to get both the British and US Open triple_crown in the same year, in 1982?

Sx3 Which medalist became only the fifth in history to get both the British and US Open high_status in the same year, in 1982?
Sx4

Which golfer became only the fifth in history to win both the British and US Open championships in the same year, in 1982?
Sx5

Which golfer became only the fifth in history to win both the British and US Open in the same year, in 1982?
Sx6 Which driver became only the fifth in history to win both the British and US Open triple_crown in the same year, in 1982?
Sx7

Which medalist became only the fifth in history to win both the British and US Open title in the same year, in 1982?
Sx8

Which driver became only the fifth in history to win both the British and US Open championships in the same year, in 1982?
Sx9 Which driver became only the fifth in history to win both the British and US Open in the same year, in 1982?
Sx10

Which linksman became only the fifth in history to win both the British and US Open in the same year, in 1982?

Table 3: A question Sx0
and 10 perturbed versions of Sx0

as the output of GAAP.

C.2 Algorithm details

We first introduce some notations. For an input sentence Sx0
, we can denote it in the form of a token

(word) series,
Sx0

= (t1, t2, . . . , tp),

where t1, t2, . . . , tp denote the sequence of tokens that constitute the input text Sx0
, arranged in their

original order. We will then elaborate on each step of GAAP.

C.2.1 Key words selection

For better sampling efficiency, GAAP does not perturb all tokens equally. Instead, we identify the key
tokens in Sx0

first and only perturb these tokens. As a result, we could explore the semantic space
more efficiently under the perturbation budget constraint.

We define a function k(·, ·) that identifies key tokens within a given text. The function takes two
inputs: the first is a text and the second is a ratio indicating the proportion of key tokens to all tokens
in this text. k(Sx0

, r) returns a subset of tokens:

k(Sx0
, r) = {tj1 , tj2 , . . . , tjq},

where the indices {j1, j2, . . . , jq} ⊆ {1, . . . , p}, and the number of selected key tokens are: q =
int[r · p]. In GAAP, we use KeyBERT [Grootendorst, 2024] to implement k(·, ·).

17

C.2.2 Initial population generation

Next, we define a replacement function re(·, ·, ·) that substitutes a specific token in the sequence. The
function is defined as follows:

re(Sx0
, tji , t

′
ji) = (t1, . . . , tji−1, t

′
ji , tji+1, . . . , tp). (19)

In GAAP, we choose t′ji from a substitution set SUB(tji). And the substitution set is defined as the
union of all possible hypernyms, hyponyms, synonyms, and an empty set denoting word deletion,
SUB(tji) = hypernyms(tji) ∪ hyponyms(tji) ∪ synonyms(tji) ∪ {∅}.
The initial population of GAAP for the input Sx0 is defined as the union of the outcomes of all
possible single-key token perturbations,

Pop0(Sx0) =
⋃

tji∈k(Sx0
,r)

⋃
t′ji

∈SUB(tji)

re(Sx0 , tji , t
′
ji).

C.2.3 Iterative population update

Then, we introduce an iterative scheme for the perturbed population to evolve. In each iteration, we
must follow the next three steps in sequence.

1. Selection: The selection step aims to choose a subset of individuals from the population
as parents for subsequent procedures. In GAAP, we design a random selection mechanism
where individuals whose semantic meanings are closer to those of the original text Sx0

will
be selected with higher probability.
In the terminology of genetic algorithms, we define our fitness function as the semantic
similarity to x0, aSimilarity(x0, ·). Then, we compute the fitness value aSimilarity(x0, xi) for
∀Sxi ∈ Popt(Sx0), and use roulette wheel selection [Lipowski and Lipowska, 2012] to
choose parents. More specifically, the probability of selecting Sxi is:

P (Sxi
) =

aSimilarity(x0, xi)∑
Sxj

∈Popt(Sx0
) aSimilarity(x0, xj)

The set of all selected parent individuals is denoted as Pat(Sx0).
2. Crossover: The crossover step aims to generate new offspring by recombining the segments

(i.e., token sub-sequences) of parent individuals.
The inputs of the crossover operation are two randomly selected parent individuals SxA

and SxB
from Pat(Sx0

). Then, we uniformly randomly sample a crossover point h from
{1, 2, . . . , p− 1}), where p is the length of the shorter one between SxA

and SxB
. Next, we

generate two offspring individuals SxA′ and SxB′ as

SxA′ = (tA1 , . . . , t
A
h , t

B
h+1, . . . , t

B
p),

SxB′ = (tB1 , . . . , t
B
h , t

A
h+1, . . . , t

A
p).

where tAi and tBi represent the i-th token of parents SxA
and SxB

, respectively. The set of
all generated offspring individuals is denoted as Offt(Sx0

).
3. Mutation: The mutation operation aims to augment population diversity again by randomly

replacing certain tokens in the offspring individuals. For each offspring individual Sxi
∈

Offt(Sx0
), we randomly select a token tji for replacement. Then, we uniformly randomly

choose a new token t′ji from the substitution set SUB(tji):

t′ji ∈ SUB(tji) = hypernyms(tji) ∪ hyponyms(tji) ∪ synonyms(tji) ∪ {∅}.

Finally, we generate the mutated individual as

Sx′
i
= re(Sxi

, tji , t
′
ji),

where re(·, ·, ·) is the replacement function defined in (19). The set of all mutated offspring
individuals is denoted as Mut(Sx0

).

18

The new population is formed by combining all the 3 sets above,

Popt+1(Sx0
) = Pat(Sx0

) ∪ Offt(Sx0
) ∪Mut(Sx0

). (20)

Equation (20) defines an iterative algorithm to update the population for t = 0, 1, 2, · · · . The iterative
process terminates when either of the following conditions is met: (1) The number of generations t
exceeds a predefined maximum value Num: t ≥ Num, (2) the maximum of fitness values in the
population is smaller than a threshold δ: maxi aSimilarity(x0, xi) < δ.

C.2.4 Perturbation set construction

Unlike standard genetic algorithms that aim to optimize the fitness function to its extreme value, the
objective for GAAP is to use populations Popt at different generations t to construct a perturbation
set Per(Sx0

). The ideal perturbation set should be diverse and contain texts with varying degrees of
similarity to Sx0

. Since earlier generations contain fewer perturbations and later generations involve
more perturbations, the generation index t is a natural indicator of similarity. As a result, we generate
Per(Sx0

) by random sampling from populations at different generations.

More specifically, Per(Sx0) consists of random samples from populations at generations t =
0, τ, 2τ, ..., where τ ∈ Z is the sample interval:

Per(Sx0
) =

int(T
τ)⋃

q=0

Uniform(Popqτ (Sx0
)) (21)

where Uniform(·) is a function that uniformly randomly selects a subset of individuals from the
population. The construction rule (21) ensures that Per(Sx0) contains texts with progressively
decreasing similarity to Sx0 , as the genetic algorithm evolves toward lower fitness values (i.e., lower
similarity).

After the termination condition is met, the perturbation set Per(Sx0
) is returned as the final out-

put. This set represents a collection of perturbed versions of Sx0
, each with a different degree of

perturbation.

D Settings & Additional Experimental Results

D.1 Experimental setting

Dataset Preprocessing No preprocessing was required except for MMLU, due to its heterogeneous
and often non-standard question formats, which are incompatible with our perturbation-based frame-
work. We excluded items that lacked self-contained semantic meaning and thus were unsuitable for
perturbation (e.g., “Which of the following statements is true?”), purely mathematical expressions
without contextual meaning (e.g., “If A = (1, 2, 3, 4), let B = {(1, 2), (1, 3), (4, 2)}. Then B is”), or
other irregular or ambiguous phrasing. Only questions with clearly worded, self-contained statements
were retained.

The following are all the prompts used in our experiments.

ChatGPT-based paraphrasing

Please Provide {number of perturbations} paraphrases for this sentence:
{sentence}

Generating Responses

For TriviaQA, SciQ, and NQ:

{question} Answer concisely and return only the name.

For MMLU:

{question + choices} Answer concisely and return only the name.

For GSM8K:

19

{question} Answer concisely and return only the result itself.

We design our prompts to align closely with the highly concise reference answers in the datasets. The
same prompts are used for both our method and all baseline models, across both GPT-3.5-Turbo and
LLaMA-3.1-8B-Instruct.

Correctness Evaluation

Are the following two answers to my question Q semantically equivalent?
Q: {question}
A1: {standard answer}
A2: {answer}
Please answer with a single word, either Yes or No.

VU Derivation (used as one of our benchmarks)

After the previous prompt of generating responses, we append the following prompt to elicit verbalized
uncertainty:

And use a percentage to tell me your confidence in your answer.

The parameters used in our experiments are listed below.

Perturbation Configuration

As detailed in the main manuscript, we generate nine perturbations per question using ChatGPT-based
paraphrasing, resulting in ten variants per question including the original. For GAAP, we set the
threshold δ = 0.7 and also fix the number of perturbations at nine. This uniformity is crucial for
our probabilistic framework, where each question induces a distribution over variants. To ensure
that these distributions are comparable and defined on the same scale, we require the same number
of perturbations per question across the dataset. When fewer than nine are generated, we randomly
duplicate existing perturbations; when more than nine are produced, we randomly sample nine.

Replication and Bootstrapping

Our model incorporates bootstrapping to utilize replicated responses. Unless otherwise specified
(notably in the ablation studies analyzing the impact of S and r), all reported results are based on
experiments with S = 30 bootstrapping iterations and r = 5 replications.

Calculation of Mean and Variance

All reported evaluation metrics represent means with associated standard deviations computed via
bootstrapping. Using 40 bootstrap samples generated with replacement, we: (i) Calculate the target
metric for each sample, (ii) Aggregate results by taking the mean of sample-level metrics as the final
estimate, (iii) Compute the standard deviation across the 40 values as a dispersion measure.

LLM Configuration

For ChatGPT-based paraphrasing, we set the temperature to 0.7. For correctness evaluation, a
temperature of 0 is used. For LLaMA, due to LLaMA’s lack of automatic response termination
and occasional output corruption, this may lead to incomplete or malformed answers. To mitigate
this, we adopt a multi-attempt generation protocol with the following cleaning steps to ensure
concise and valid outputs: (i) remove the echoed question if present, (ii) delete formatting tokens
(e.g., [INST], [/INST], #) and any trailing text, and (iii) retain only the first non-empty line after
trimming whitespace. The following is an example.

Question:

What is the capital of France?

Response before cleaning:

What is the capital of France?
Paris [/INST]#
It is a major European city and a global

Response after cleaning:

Paris

20

D.2 Computational cost comparison

For non-locally hosted LLMs, uncertainty quantification methods generally involve two stages:
obtaining responses from the model via API calls and computing the uncertainty scores based on
those responses. This applies to both our method and all baselines; the only exception is Verbalized
Uncertainty (VU), which directly returns a score from the API without requiring post-processing. As
discussed in the paper, any method that relies on perturbations and/or replications incurs additional
computational cost. However, a major advantage is that responses for perturbed inputs can be
generated in parallel, making the process more scalable in practice.

With this in mind, we divide the computational cost into two components:

(A) Computation time after responses are collected, and
(B) Total cost, which includes (i) along with API call time and perturbation generation.

Regarding API cost: Our method introduces n perturbations per question and generates r response
replications for each version, resulting in a total of (n + 1) × r API calls per input. Thus, the
cost scales linearly with both the number of perturbations and replications. That said, while our
method introduces perturbations, it requires far fewer replications than several existing baselines. For
instance, Semantic Entropy relies heavily on large r values (with n = 0); prior work recommends
r > 10 for stable performance [Farquhar et al., 2024] In contrast, we demonstrate that even without
replication (r = 1), our method remains effective. This is evidenced by the strong performance of
NR-Inv-Entropy, which uses perturbation alone and still consistently outperforms many baselines.

Regarding computation after responses are collected: Below, we present the compute results in
Table 4 without parallelization. The reported numbers are averaged over all sampled questions in
TriviaQA. As shown, our method is highly efficient in the post-processing stage when computing
Inv-Entropy scores. Furthermore, in settings where response generation time is negligible, such as
when LLMs are deployed locally and perturbations are processed in parallel, our total computational
cost is often lower than that of existing baselines.

Table 4: Computation efficiency comparison across methods.

Method Peak GPU Memory (MB) Time A (s) Time B (s)
Semantic Entropy 3575.31 13.985 20.183
VU 0 0 0.620
P(True) 0 0.001 2.201
LexSim 0 0.022 3.189
DegMat 1610.29 6.143 15.905
LUQ 1580.21 3.821 4.432
KLE 1608.52 1.323 6.725
Inv-Entropy (Ours) 86.65 1.990 10.323
NR-Inv-Entropy (Ours) 86.65 1.769 6.358

21

D.3 Additional experimental results

Table 5 presents the complete TSU results across all five datasets.

Table 5: Comparison of average TSU values across all five datasets and temperatures T =
{0.3, 0.7, 1.0, 1.4}, using GPT-3.5-Turbo with ChatGPT-based paraphrasing and SBERT-small
(paraphrase-MiniLM-L6-v2) embeddings. TSU(a, b, . . . , c) is abbreviated as TSU(a–c) (e.g.,
TSU(0.3, 0.7, 1.0) becomes TSU(0.3–1.0)). All values are reported as percentages.

Method
TS

U
(0

.3
, 0

.7
)

TS
U

(0
.7

, 1
.0

)

TS
U

(1
.0

, 1
.4

)

TS
U

(0
.3

, 1
.0

)

TS
U

(0
.3

, 1
.4

)

TS
U

(0
.7

, 1
.4

)

TS
U

(0
.3

-1
.0

)

TS
U

(0
.7

-1
.4

)

TS
U

(0
.3

-1
.4

)

TriviaQA
Semantic Entropy 11.57 14.26 17.35 21.56 25.51 20.64 5.18 5.35 3.94
VU 22.45 27.55 38.78 25.51 41.84 42.86 0.00 4.92 0.00
P(True) 1.02 2.13 3.85 1.38 0.98 3.49 0.00 0.00 0.00
LexSim 22.39 22.95 46.94 30.61 53.36 53.54 9.18 12.38 8.16
DegMat 24.58 33.21 45.37 31.77 48.98 47.96 18.37 20.02 13.27
LUQ 20.41 31.08 48.06 33.67 52.34 50.00 14.78 27.63 10.20
KLE 7.14 17.35 13.45 4.57 1.28 6.42 2.79 1.31 0.00

Inv-Entropy 52.42 66.33 77.55 76.53 92.86 88.78 30.49 47.21 19.05
NI-Entropy 55.14 47.96 61.22 59.35 67.35 60.20 21.43 19.32 11.73
WD-px-py 44.81 67.35 57.62 60.20 64.49 69.39 23.11 36.73 12.06
MAX-py-x 65.31 50.83 74.49 67.35 85.71 81.63 27.42 32.65 16.03

SciQ
Semantic Entropy 11.09 15.48 21.55 17.35 27.62 25.51 6.73 4.31 2.65
VU 21.43 33.67 28.57 35.71 31.42 32.65 1.55 6.12 0.00
P(True) 0.00 3.42 3.14 0.00 1.33 0.79 0.00 0.00 0.00
LexSim 31.73 29.49 47.96 40.82 61.22 59.18 19.39 13.27 11.22
DegMat 39.80 47.96 57.14 52.04 64.28 64.46 23.47 23.99 13.04
LUQ 38.45 43.88 41.84 44.90 57.14 44.95 18.37 17.35 6.12
KLE 6.12 39.54 19.32 4.98 5.67 18.37 2.30 5.10 0.00

Inv-Entropy 46.70 62.24 72.38 66.72 75.84 80.61 22.45 35.71 14.31
NI-Entropy 42.30 59.18 55.19 48.98 54.77 63.27 21.43 22.65 9.18
WD-px-py 50.00 59.16 63.25 59.37 71.40 69.39 22.13 28.59 11.22
MAX-py-x 51.02 61.22 67.35 61.22 69.86 73.25 24.73 34.69 15.29

NQ
Semantic Entropy 22.53 20.41 35.71 27.55 39.80 30.78 4.08 10.20 2.04
VU 23.71 22.68 40.21 21.65 36.08 36.08 4.12 3.09 0.00
P(True) 4.08 3.06 2.04 1.02 2.04 1.02 0.00 0.00 0.00
LexSim 51.55 54.64 59.79 63.73 79.38 74.23 36.08 32.99 17.44
DegMat 51.04 51.04 59.38 65.62 76.04 71.88 32.29 33.33 21.42
LUQ 43.16 49.47 67.37 57.89 76.84 74.74 24.21 30.41 13.68
KLE 6.38 28.72 21.28 6.38 4.26 12.77 2.13 4.26 0.00

Inv-Entropy 61.86 59.79 78.35 74.23 91.75 85.57 30.93 41.24 22.43
NI-Entropy 47.42 60.82 59.79 58.76 70.10 70.10 23.71 29.81 10.31
WD-px-py 63.55 50.52 70.10 67.01 76.29 72.16 27.84 25.77 16.92
MAX-py-x 55.67 62.89 73.20 66.30 84.54 82.47 28.87 39.18 18.56

MMLU
Semantic Entropy 21.43 17.35 33.20 21.83 42.08 39.80 7.14 4.93 2.09
VU 23.56 19.01 37.62 30.18 32.50 38.73 1.37 2.59 0.00
P(True) 1.92 4.56 5.87 4.92 5.02 5.79 0.00 0.00 0.00
LexSim 33.94 41.17 55.06 50.00 68.37 61.22 24.78 30.61 15.28
DegMat 41.84 54.08 69.39 53.76 78.57 77.55 21.46 32.58 14.34
LUQ 53.46 47.96 61.22 58.92 68.37 62.24 27.55 27.55 10.80
KLE 10.20 25.51 26.53 7.14 4.76 12.23 2.93 2.67 0.00

Inv-Entropy 60.08 67.35 73.47 79.59 90.82 86.73 34.31 43.88 18.37
NI-Entropy 56.12 54.63 50.00 67.35 52.45 59.38 19.39 18.37 7.14
WD-px-py 50.00 59.16 66.38 59.37 70.41 69.39 25.60 21.65 11.22
MAX-py-x 62.24 62.35 65.41 73.47 81.73 80.61 31.62 25.51 14.42

GSM8K
Semantic Entropy 44.90 56.12 35.71 71.43 77.55 62.24 20.41 13.27 4.08
VU 11.34 39.18 29.90 35.05 35.05 38.14 2.06 6.19 1.03
P(True) 5.10 17.35 6.12 3.32 3.98 11.22 0.00 0.00 0.00
LexSim 54.17 63.54 54.17 65.62 64.58 63.54 30.31 23.96 10.42
DegMat 55.79 64.21 55.79 72.63 75.79 70.53 29.47 29.47 10.53
LUQ 64.95 74.23 72.16 83.51 89.69 81.44 44.33 54.64 37.11
KLE 17.02 35.11 27.66 4.23 3.72 23.40 0.00 3.19 0.00

Inv-Entropy 73.68 67.33 68.42 86.32 93.68 72.63 45.81 44.21 30.53
NI-Entropy 53.61 58.76 51.55 61.16 57.73 59.79 25.77 20.62 6.19
WD-px-py 54.08 53.06 68.37 55.10 64.29 60.20 20.41 27.43 7.14
MAX-py-x 71.88 65.62 62.50 89.58 91.67 77.08 42.71 37.50 28.12

22

Table 6 shows the performance across different answer lengths in Natural Question
(NQ) [Kwiatkowski et al., 2019] dataset. NQ dataset includes both short and long-form answers.
We selected questions that contain only long-form answers. The reference answers in this subset
range from 34 to 350 tokens in length. To analyze the sensitivity of different answer lengths, we
further divided the dataset into three subsets based on the number of tokens in the reference answers:
Short (< 80 tokens), Medium (80–120 tokens) and Long (≥ 120 tokens). We evaluated both baseline
methods and our proposed method on each of these subsets as well as the full sample set.

Our method achieves state-of-the-art performance on the full dataset, ranking first across all three
metrics. We also observe some sensitivity to answer length: it shows a clear and substantial advantage
on the short-answer subset, highlighting the effectiveness of the inverse-design mechanism when
responses are more concise. On the medium-length subset, it continues to outperform all baselines,
though with a smaller margin. On the long-answer subset, while not the top performer, our method
remains competitive and yields reasonable results compared to strong baselines such as LUQ.

Intuitively, these results align with expectations under the inverse perspective: the shorter the answer,
the more important it becomes to explore the diversity of the input space. Nevertheless, our approach
consistently ranks among the top two methods even in the long-form QA setting. We end by noting
that our probabilistic framework is also generic by nature and can accommodate a forward perspective
or alternative uncertainty metrics beyond entropy computed over P (X | Y). Exploring such metrics
across different answer lengths is a promising direction we leave for future work.

Table 6: Comparison of AUROC, PRR, and Brier scores across Short, Medium, Long, and Full
subsets on NQ. Bold indicates the best performer. Underline indicates the second-best.

Metric (↑/↓) Method Short Medium Long Full

AUROC (↑)

Semantic Entropy 0.509 0.461 0.584 0.521
VU 0.531 0.495 0.508 0.533
P(True) 0.529 0.473 0.548 0.519
LexSim 0.624 0.438 0.555 0.518
DegMat 0.547 0.621 0.484 0.551
LUQ 0.662 0.508 0.612 0.627
KLE 0.265 0.456 0.445 0.410
Inv-Entropy (Ours) 0.794 0.634 0.589 0.661

PRR (↑)

Semantic Entropy 0.420 0.584 0.507 0.505
VU 0.489 0.615 0.495 0.537
P(True) 0.427 0.584 0.478 0.502
LexSim 0.628 0.684 0.544 0.563
DegMat 0.543 0.682 0.548 0.549
LUQ 0.649 0.655 0.523 0.595
KLE 0.354 0.649 0.444 0.449
Inv-Entropy (Ours) 0.747 0.742 0.508 0.614

Brier (↓)

Semantic Entropy 0.227 0.230 0.221 0.242
VU 0.209 0.218 0.216 0.223
P(True) 0.225 0.232 0.230 0.244
LexSim 0.169 0.199 0.207 0.225
DegMat 0.187 0.181 0.213 0.229
LUQ 0.164 0.209 0.179 0.208
KLE 0.228 0.203 0.225 0.244
Inv-Entropy (Ours) 0.125 0.175 0.193 0.201

23

Table 7 shows how the experimental results vary with the number of bootstrapping iterations S. We
observe that increasing S initially enhances the performance of our method, Inv-Entropy. However,
beyond a certain threshold, further increases yield diminishing or no significant returns. Therefore,
using more than 10 iterations appears to provide limited additional benefit.

Table 7: Comparison of Inv-Entropy performance across all the 5 datasets with varying numbers of
bootstrapping iterations S. We use GPT-3.5-Turbo with ChatGPT-based paraphrasing and DeBERTa-
v2-xlarge-MNLI embedding function.

Dataset Metric S=1 S=5 S=10 S=30 S=50 S=100

TriviaQA
AUROC 0.743±0.061 0.781±0.057 0.785±0.056 0.788±0.054 0.780±0.054 0.788±0.054

PRR 0.840±0.054 0.881±0.043 0.882±0.043 0.885±0.044 0.882±0.044 0.885±0.044

Brier 0.138±0.021 0.127±0.020 0.125±0.020 0.128±0.020 0.131±0.021 0.128±0.020

SciQ
AUROC 0.724±0.052 0.733±0.050 0.740±0.049 0.740±0.050 0.739±0.050 0.743±0.049

PRR 0.821±0.052 0.840±0.046 0.844±0.045 0.843±0.042 0.842±0.046 0.845±0.046

Brier 0.163±0.016 0.160±0.015 0.159±0.015 0.157±0.018 0.160±0.015 0.159±0.015

NQ
AUROC 0.659±0.063 0.686±0.060 0.699±0.057 0.703±0.060 0.702±0.058 0.705±0.059

PRR 0.709±0.068 0.730±0.071 0.760±0.065 0.764±0.064 0.764±0.063 0.766±0.064

Brier 0.199±0.019 0.194±0.020 0.184±0.019 0.182±0.020 0.183±0.020 0.182±0.021

MMLU
AUROC 0.604±0.059 0.762±0.042 0.777±0.042 0.780±0.041 0.790±0.041 0.789±0.040

PRR 0.743±0.064 0.863±0.046 0.897±0.031 0.898±0.030 0.905±0.028 0.902±0.030

Brier 0.188±0.021 0.152±0.017 0.148±0.017 0.147±0.017 0.142±0.017 0.143±0.017

GSM8K
AUROC 0.674±0.054 0.684±0.056 0.685±0.054 0.695±0.051 0.690±0.055 0.695±0.055

PRR 0.487±0.090 0.530±0.096 0.527±0.095 0.521±0.094 0.520±0.094 0.527±0.095

Brier 0.159±0.021 0.151±0.022 0.150±0.021 0.152±0.020 0.152±0.020 0.146±0.021

Table 8 shows the variation of several proposed UQ measures (Inv-Entropy, NI-Entropy, WD-px-py,
MAX-py-x) as the number of replications r increases. Performance improves consistently with larger
r, as additional replications help better capture aleatoric uncertainty. However, this improvement
comes at the expense of increased computational cost.

Table 8: Comparison of UQ methods on the TriviaQA and SciQ datasets with varying numbers of
replications r. We use GPT-3.5-Turbo with ChatGPT-based paraphrasing and SBERT-large (all-
mpnet-base-v2) embedding function.

Dataset TriviaQA SciQ
Metric r = 2 r = 4 r = 6 r = 2 r = 4 r = 6

Inv-Entropy
AUROC 0.812±0.044 0.815±0.044 0.820±0.044 0.794±0.044 0.801±0.043 0.806±0.042

PRR 0.916±0.028 0.915±0.029 0.915±0.029 0.888±0.038 0.888±0.039 0.892±0.038

Brier 0.128±0.020 0.121±0.020 0.123±0.020 0.143±0.019 0.140±0.019 0.136±0.019

NI-Entropy
AUROC 0.702±0.072 0.631±0.081 0.617±0.083 0.729±0.056 0.731±0.058 0.746±0.055

PRR 0.813±0.054 0.765±0.060 0.751±0.059 0.805±0.055 0.805±0.056 0.809±0.054

Brier 0.133±0.024 0.152±0.023 0.150±0.024 0.147±0.021 0.146±0.021 0.144±0.021

WD-px-py
AUROC 0.762±0.058 0.771±0.058 0.772±0.057 0.684±0.052 0.688±0.058 0.685±0.057

PRR 0.866±0.046 0.875±0.044 0.876±0.044 0.825±0.050 0.818±0.054 0.819±0.051

Brier 0.134±0.021 0.131±0.021 0.130±0.021 0.173±0.017 0.169±0.020 0.172±0.019

MAX-py-x
AUROC 0.782±0.047 0.794±0.045 0.804±0.044 0.754±0.049 0.760±0.051 0.757±0.049

PRR 0.904±0.028 0.910±0.027 0.915±0.026 0.864±0.047 0.862±0.049 0.861±0.048

Brier 0.134±0.019 0.130±0.019 0.124±0.019 0.154±0.018 0.155±0.019 0.154±0.017

24

Table 9 demonstrates the robustness of our framework across different embedding functions. On
all three datasets (TriviaQA, SciQ, and MMLU), Inv-Entropy performs strongly with SBERT-small,
SBERT-large, and DeBERTa. This consistency allows practitioners to select an encoder based on
available computational resources or domain-specific requirements without compromising the quality
of uncertainty estimation.

Table 9: Comparison of AUROC, PRR, and Brier scores across the TriviaQA, SciQ, and MMLU
datasets using different embedding functions. We use GPT-3.5-Turbo and ChatGPT-based paraphras-
ing.

Dataset Metric Embedding Inv-Entropy NI-Entropy WD-px-py MAX-py-x

TriviaQA

AUROC
SBERT-small 0.792±0.051 0.666±0.072 0.833±0.050 0.835±0.046

SBERT-large 0.772±0.057 0.617±0.083 0.804±0.044 0.816±0.044

DeBERTa 0.788±0.054 0.786±0.057 0.518±0.060 0.723±0.054

PRR
SBERT-small 0.899±0.037 0.803±0.053 0.920±0.029 0.920±0.029

SBERT-large 0.876±0.044 0.751±0.059 0.915±0.026 0.915±0.030

DeBERTa 0.885±0.044 0.883±0.043 0.763±0.051 0.875±0.038

Brier
SBERT-small 0.127±0.021 0.151±0.022 0.106±0.021 0.114±0.021

SBERT-large 0.130±0.021 0.150±0.024 0.124±0.019 0.124±0.020

DeBERTa 0.128±0.020 0.124±0.020 0.184±0.019 0.148±0.019

SciQ

AUROC
SBERT-small 0.774±0.049 0.750±0.054 0.655±0.058 0.742±0.050

SBERT-large 0.806±0.042 0.746±0.055 0.685±0.057 0.757±0.049

DeBERTa 0.740±0.050 0.681±0.056 0.303±0.060 0.674±0.054

PRR
SBERT-small 0.874±0.044 0.820±0.059 0.796±0.054 0.852±0.049

SBERT-large 0.892±0.038 0.809±0.054 0.819±0.051 0.861±0.048

DeBERTa 0.843±0.042 0.781±0.053 0.587±0.056 0.821±0.048

Brier
SBERT-small 0.147±0.021 0.150±0.021 0.181±0.019 0.160±0.018

SBERT-large 0.136±0.019 0.144±0.021 0.172±0.019 0.154±0.017

DeBERTa 0.157±0.018 0.164±0.017 0.212±0.016 0.177±0.017

MMLU

AUROC
SBERT-small 0.689±0.060 0.576±0.063 0.723±0.049 0.704±0.056

SBERT-large 0.634±0.058 0.532±0.057 0.670±0.055 0.676±0.057

DeBERTa 0.780±0.041 0.710±0.052 0.573±0.061 0.585±0.059

PRR
SBERT-small 0.812±0.064 0.719±0.069 0.869±0.035 0.832±0.057

SBERT-large 0.790±0.059 0.695±0.068 0.834±0.049 0.820±0.056

DeBERTa 0.898±0.030 0.823±0.055 0.777±0.054 0.749±0.062

Brier
SBERT-small 0.170±0.019 0.192±0.020 0.163±0.018 0.165±0.019

SBERT-large 0.185±0.020 0.200±0.020 0.177±0.019 0.173±0.020

DeBERTa 0.147±0.017 0.168±0.021 0.188±0.018 0.189±0.020

25

Table 10 and Table 11 present how various uncertainty measures respond to temperature changes
on the TriviaQA and SciQ datasets, respectively. Our probabilistic methods consistently outperform
baseline models across all temperature settings, highlighting their robustness to decoding variability.

Table 10: Comparison of AUROC, PRR, and Brier scores on the TriviaQA dataset under varying
temperatures (T = 0.3, 0.7, 1.0, 1.4). We use GPT-3.5-Turbo with ChatGPT-based paraphrasing
and the SBERT-small (paraphrase-MiniLM-L6-v2) embedding function. Bold and underline indicate
the best and second-best performers, respectively.

Metric Method Temperature
T=0.3 T=0.7 T=1.0 T=1.4

AUROC(↑)

Semantic Entropy 0.579±0.044 0.679±0.052 0.700±0.062 0.732±0.051

VU 0.695±0.060 0.625±0.058 0.629±0.063 0.578±0.067

P(True) 0.604±0.050 0.592±0.046 0.571±0.043 0.583±0.038

LexSim 0.649±0.055 0.715±0.051 0.775±0.055 0.792±0.051

DegMat 0.734±0.056 0.688±0.067 0.794±0.049 0.730±0.059

LUQ 0.637±0.067 0.712±0.059 0.748±0.063 0.817±0.044

KLE 0.333±0.054 0.327±0.059 0.221±0.056 0.155±0.042

Inv-Entropy 0.870±0.044 0.795±0.051 0.827±0.043 0.810±0.042

NI-Entropy 0.762±0.063 0.666±0.073 0.634±0.083 0.673±0.055

WD-px-py 0.829±0.044 0.827±0.051 0.816±0.054 0.829±0.039

MAX-py-x 0.854±0.043 0.832±0.046 0.856±0.040 0.846±0.041

PRR(↑)

Semantic Entropy 0.787±0.044 0.803±0.046 0.834±0.043 0.811±0.045

VU 0.836±0.044 0.791±0.041 0.798±0.053 0.727±0.051

P(True) 0.797±0.042 0.760±0.044 0.776±0.042 0.726±0.046

LexSim 0.810±0.045 0.824±0.040 0.877±0.043 0.854±0.043

DegMat 0.882±0.041 0.816±0.053 0.895±0.037 0.812±0.054

LUQ 0.854±0.043 0.856±0.042 0.874±0.048 0.893±0.039

KLE 0.704±0.048 0.646±0.050 0.623±0.051 0.516±0.049

Inv-Entropy 0.939±0.028 0.900±0.037 0.936±0.022 0.903±0.037

NI-Entropy 0.862±0.043 0.799±0.054 0.777±0.060 0.765±0.055

WD-px-py 0.938±0.021 0.918±0.029 0.912±0.043 0.923±0.025

MAX-py-x 0.932±0.029 0.920±0.030 0.946±0.021 0.913±0.039

Brier(↓)

Semantic Entropy 0.166±0.023 0.150±0.026 0.141±0.023 0.156±0.023

VU 0.160±0.022 0.178±0.017 0.175±0.023 0.203±0.016

P(True) 0.172±0.022 0.188±0.020 0.179±0.021 0.198±0.020

LexSim 0.151±0.024 0.146±0.021 0.128±0.024 0.127±0.021

DegMat 0.140±0.021 0.149±0.022 0.115±0.018 0.145±0.023

LUQ 0.148±0.020 0.142±0.021 0.121±0.023 0.121±0.018

KLE 0.188±0.021 0.199±0.020 0.192±0.021 0.218±0.014

Inv-Entropy 0.085±0.019 0.127±0.021 0.117±0.019 0.132±0.017

NI-Entropy 0.104±0.021 0.151±0.022 0.142±0.024 0.164±0.018

WD-px-py 0.115±0.018 0.102±0.022 0.117±0.021 0.121±0.017

MAX-py-x 0.103±0.019 0.116±0.021 0.108±0.019 0.114±0.016

26

Table 11: Comparison of AUROC, PRR, and Brier scores on the SciQ dataset under varying tem-
peratures (T = 0.3, 0.7, 1.0, 1.4). We use GPT-3.5-Turbo with ChatGPT-based paraphrasing and
the SBERT-large (all-mpnet-base-v2) embedding function. Bold and underline indicate the best and
second-best performers, respectively.

Metric Method Temperature
T=0.3 T=0.7 T=1.0 T=1.4

AUROC(↑)

Semantic Entropy 0.548±0.040 0.679±0.045 0.699±0.046 0.773±0.043

VU 0.625±0.061 0.480±0.060 0.625±0.050 0.607±0.065

P(True) 0.566±0.037 0.522±0.026 0.531±0.026 0.545±0.026

LexSim 0.552±0.041 0.681±0.046 0.713±0.049 0.770±0.051

DegMat 0.569±0.065 0.672±0.059 0.730±0.055 0.816±0.040

LUQ 0.565±0.062 0.740±0.050 0.650±0.060 0.772±0.051

KLE 0.386±0.054 0.341±0.056 0.277±0.059 0.184±0.051

Inv-Entropy 0.767±0.047 0.800±0.044 0.754±0.046 0.795±0.046

NI-Entropy 0.682±0.062 0.755±0.055 0.596±0.065 0.649±0.063

WD-px-py 0.711±0.053 0.689±0.056 0.795±0.047 0.771±0.045

MAX-py-x 0.766±0.048 0.760±0.048 0.796±0.046 0.793±0.044

PRR(↑)

Semantic Entropy 0.705±0.045 0.763±0.044 0.780±0.043 0.798±0.046

VU 0.739±0.062 0.677±0.053 0.736±0.053 0.678±0.061

P(True) 0.713±0.044 0.679±0.050 0.687±0.045 0.634±0.045

LexSim 0.701±0.052 0.770±0.051 0.794±0.047 0.796±0.056

DegMat 0.739±0.060 0.802±0.046 0.834±0.046 0.864±0.040

LUQ 0.709±0.058 0.843±0.042 0.734±0.061 0.813±0.061

KLE 0.632±0.048 0.592±0.059 0.554±0.052 0.479±0.051

Inv-Entropy 0.900±0.029 0.888±0.039 0.864±0.044 0.870±0.035

NI-Entropy 0.814±0.047 0.820±0.055 0.707±0.059 0.693±0.064

WD-px-py 0.858±0.040 0.820±0.052 0.868±0.050 0.851±0.037

MAX-py-x 0.893±0.029 0.862±0.048 0.887±0.037 0.867±0.034

Brier(↓)

Semantic Entropy 0.203±0.018 0.173±0.020 0.171±0.021 0.159±0.022

VU 0.191±0.022 0.196±0.017 0.202±0.018 0.212±0.016

P(True) 0.204±0.017 0.215±0.017 0.212±0.016 0.225±0.013

LexSim 0.207±0.020 0.179±0.020 0.169±0.022 0.156±0.019

DegMat 0.198±0.017 0.164±0.018 0.149±0.020 0.135±0.020

LUQ 0.195±0.020 0.157±0.018 0.173±0.021 0.159±0.020

KLE 0.216±0.016 0.218±0.016 0.219±0.016 0.233±0.011

Inv-Entropy 0.151±0.018 0.139±0.020 0.153±0.020 0.146±0.020

NI-Entropy 0.164±0.021 0.140±0.022 0.188±0.020 0.186±0.020

WD-px-py 0.167±0.018 0.175±0.019 0.140±0.020 0.156±0.015

MAX-py-x 0.151±0.019 0.155±0.018 0.143±0.020 0.153±0.018

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction reflect the results in the main
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

28

Justification: The assumptions and theorems are all included in the main paper and Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All settings are includes in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

Answer: [Yes]
Justification: Data is publically available and we provide code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings are provided in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide confidence intervals for our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Thiis is discussed in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have abided by NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: They are no expected social impact for our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

31

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the existing assets are welly cited and credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

32

paperswithcode.com/datasets

Answer: [Yes]

Justification: Details are documented in the main paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such issue involved in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No such issue involved in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

33

Justification: LLMs are not used to generate important and original components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Perturb-then-Quantify
	Why perturb the input?
	A probabilistic framework via dual random walks
	Constructing the distributions
	Inv-Entropy via bootstrapping and Monte Carlo
	Insights into Inv-Entropy
	GAAP

	Experiments
	Results

	Conclusion
	Related Work
	Proof of Lemma 2.1
	GAAP Implementation Details
	An example
	Algorithm details
	Key words selection
	Initial population generation
	Iterative population update
	Perturbation set construction

	Settings & Additional Experimental Results
	Experimental setting
	Computational cost comparison
	Additional experimental results

