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Abstract

Computer vision for animals holds great promise for wildlife research but often
depends on large-scale data, while existing collection methods rely on controlled
capture setups. Recent data-driven approaches show the potential of single-view,
non-invasive analysis, yet current animal video datasets are limited—offering as
few as 2.4K 15-frame clips and lacking key processing for animal-centric 3D/4D
tasks. We introduce an automated pipeline that mines YouTube videos and pro-
cesses them into object-centric clips, along with auxiliary annotations valuable
for downstream tasks like pose estimation, tracking, and 3D/4D reconstruction.
Using this pipeline, we amass 30K videos (2M frames)—an order of magnitude
more than prior works. To demonstrate its utility, we focus on the 4D quadruped
animal reconstruction task. To support this task, we present Animal-in-Motion
(AiM), a benchmark of 230 manually filtered sequences with 11K frames show-
casing clean, diverse animal motions. We evaluate state-of-the-art model-based
and model-free methods on Animal-in-Motion, finding that 2D metrics favor the
former despite unrealistic 3D shapes, while the latter yields more natural recon-
structions but scores lower—revealing a gap in current evaluation. To address
this, we enhance a recent model-free approach with sequence-level optimization,
establishing the first 4D animal reconstruction baseline. Together, our pipeline,
benchmark, and baseline aim to advance large-scale, markerless 4D animal recon-
struction and related tasks from in-the-wild videos. Code and datasets are available
at https://github.com/briannlongzhao/Animal-in-Motion.

1 Introduction

The study of animals has long fascinated scientists across fields—from wildlife conservation to
biomechanics and robotics. Traditionally, capturing visual data of animal shape and motion requires
sophisticated, often expensive, marker-based systems [32, 71]. Modern computer vision techniques
offer an alternative approach of purely image-based, markerless motion capture [77, 40, 19, 26].
However, many of these methods depend on multi-view images captured in controlled settings,
limiting their applicability to real-world, in-the-wild animal behavior. Recent advancements in tasks
such as pose estimation, tracking, and, most challengingly, 3D/4D reconstruction, have enabled
efficient analysis of animals from single-view images or videos. Data-driven approaches for animal
shape and motion analysis and reconstruction have shown robust performance by leveraging 3D
priors, either from scanned models [74, 42, 8, 9] or from optimization over feature correspondences
[61, 35, 66]. This opens the door to scalable, non-invasive capture of animal behavior using monocular
images and videos collected in the wild. Similar to other areas of machine learning, the progress
depends heavily on the availability of large-scale data. Yet, even the largest available animal-centric
video datasets remain inadequate, as they contain only 2.4K short clips of 15 frames each, lack object-
centric views, and omit crucial data needed for challenging tasks such as 4D animal reconstruction
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Animal Video Data
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Figure 1: We propose a fully automated data pipeline to collect and process data from scratch, making
it ready for downstream tasks such as 4D animal reconstruction.

[68]. The only existing dataset truly suitable for 4D animal reconstruction is even more limited, with
only 11 videos in total [8].

In this paper, we introduce a scalable, automated pipeline that enables large-scale video collection and
processing for animal shape and motion analysis, with a particular focus on the downstream task of
4D quadruped reconstruction. Our pipeline scrapes raw video from YouTube, exploiting its vast scale
and diversity. The videos are then processed into object-centric video clips, along with additional
processed features, including instance masks, keypoints, optical flow, and occlusion boundaries, all
in a fully automatic manner. These features can be used to aid the downstream task of reconstructing
3D shape and motion of animals, without requiring any explicit 3D annotation. With this pipeline,
we obtained an object-centric video dataset of 30K clips, consisting of 2 million frames.

Furthermore, we introduce Animal-in-Motion (AiM), the first benchmark dataset specifically designed
for 4D quadruped pose and shape reconstruction. Our dataset contains 230 carefully curated animal
motion sequences, totaling 11,061 frames, all collected by our proposed framework. We ensure
that each selected sequence has accurate silhouettes and keypoints. We adopt metrics widely used
in prior 3D animal reconstruction research. Since no existing methods explicitly target 4D animal
reconstruction, we benchmark state-of-the-art 3D approaches—covering both model-based and
model-free methods—by evaluating their per-frame performance on Animal-in-Motion. We find that
model-based methods often achieve higher scores, yet may produce unrealistic shapes and poses,
while model-free methods generate more natural and temporally coherent 3D reconstructions but
score lower, revealing a mismatch between evaluation and perceptual quality. This exposes the
limitations of 2D-based metrics that are commonly used by the community and underscores the
importance of qualitative assessment in 3D and the need for better 3D-aware metrics.

Based on these findings, we also enhance the reconstruction quality of the model-free approach,
improving its 2D metrics while retaining natural, consistent 3D poses, shapes, and motion. Specifi-
cally, we build upon 3D-Fauna [35], a model-free quadruped reconstruction method that operates in
a feed-forward manner across various animal categories. To boost its performance, we incorporate
additional keypoint supervision for more precise pose estimation and introduce several optimizations,
including smoothness losses, that facilitate effective per-sequence refinement. Our benchmarking and
qualitative assessments demonstrate that these modifications yield improvements on all quantitative
metrics, while concurrently producing more natural and temporally coherent 3D shapes and motions
that better resemble the input videos.

In summary, our contributions are as follows:

• We introduce a unified, automated data pipeline that can collect and process noisy YouTube videos
into object-centric clips prepared for downstream tasks such as 4D animal reconstruction.
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• We present Animal-in-Motion (Animal-in-Motion), the first benchmark evaluation dataset for 4D
quadruped reconstruction.

• We propose 4D-Fauna, a new model-free 4D animal reconstruction baseline that adapts 3D-Fauna
with extra guidance and losses to enable more accurate reconstruction on video.

• We present analyses of the benchmarking results for current model-based and model-free ap-
proaches, revealing gaps in current metrics and suggesting directions for future evaluation design.

2 Related Works

2.1 Animal Reconstruction from Image

The task of 4D animal reconstruction extends from 3D animal reconstruction, which focuses on
estimating 3D pose and shape of an animal from a 2D image, and 4D reconstruction results can be
obtained by applying 3D reconstruction methods independently to each video frame. Numerous
studies have explored the 3d animal reconstruction task, primarily using either a model-based or
model-free approach. Typical model-based approaches include ABM [4], SMAL [74], and their
variations and extensions [58, 75, 76, 9, 48, 49, 31, 8, 38]. These methods start with a prior 3D mesh
and optimize a set of predefined pose and deformation parameters to fit the 2D ground truth labels,
such as silhouettes and keypoints. These approaches guarantee a consistent 3D shape, however, the
predefined shape covers only a limited number of animal categories, and the deformation space is
constrained. On the other hand, model-free approaches, including [29, 30, 66, 9, 61, 60, 69, 24,
33, 2, 16, 65], learn a category-specific canonical shape from large-scale image datasets containing
different instances of the same category. General-domain 4D reconstruction methods [16, 65] can
also be applied to animals, but their reconstructed results lack part- or joint-level information, making
them less flexible than animal-specific reconstruction approaches. At test time, they predict instance-
specific pose and deformation parameters in a feed-forward manner. Additionally, 3D-Fauna [35]
learns a generalizable prior shape bank from pan-category image data, aiming to predict category-
agnostic prior shapes at test time. Model-free methods generally accommodate a more diverse range
of shapes, however, their feed-forward nature at test time limits the accuracy of shape and pose
reconstruction. In this work, we propose a new baseline method that combines the advantages of
model-based and model-free approaches by directly optimizing per-frame parameters of a pretrained
model-free model at test time, incorporating additional geometric and temporal loss terms on video
data.

2.2 Web Data Collection

As machine learning models continue to scale rapidly, the demand for larger-scale datasets has
become increasingly critical for effective training. The most effective approach to data collection
is leveraging the vast amount of information available on the web, processing it into structured
datasets tailored for specific tasks. The training of state-of-the-art language models [3, 22, 52]
often relies on large-scale text datasets scraped from the web, such as Common Crawl. Large-scale
image datasets sourced from the web [50, 17] have also served as foundational resources for modern
computer vision research. In the domain of video, many datasets obtain video data from online
video-sharing platforms such as YouTube, Flickr, and Tumblr. Datasets such as ActivityNet [20],
Kinetics [25], and YouTube-8M [1] utilize online videos as sources for classification tasks. Other
datasets, such as HD-VG-130M [57], HD-VILA-100M [64], TGIF [34], MiraData [23], HowTo100M
[39], WebVid-2M [5], collect text-video paired data from online sources for tasks including video
captioning, retrieval, and generation. For more specialized tasks, however, specific approaches
or processing pipelines are required to process and filter video data, often incorporating human
annotations. Instructional datasets such as COIN [53] and IKEA Video Manuals [37] require human
annotators to use annotation tools to create labels for the data. VoxConverse [15] and VGG-Sound
[14] propose carefully designed automatic pipelines for audio-visual data annotation, only requiring
minimal human effort for verification. Similarly, for the specific task of 4D animal reconstruction,
we aim to develop a scalable automated pipeline for data preparation and processing, eliminating the
need for human annotation while minimizing human effort for verification.
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2.3 Animal Datasets

Many vision datasets focus specifically on animals, primarily designed for the task of animal pose
estimation, where models are expected to predict the spatial configuration of animals given an image
or other modality data. Some datasets focus on specific animal categories such as dogs, birds, and
monkeys [18, 27, 56, 70]. Others encompass a diverse range of animal species but are limited to
images without video data [72, 11, 41, 62]. There are some video-based animal datasets, such as
BADJA [8] and APT-36K [68], EgoPet [6]. However, they suffer from two key limitations. First,
they remain small in scale—the largest among them, APT-36K, contains only 2.4k videos, each with
15 frames. Second, these datasets consist of unprocessed in-the-wild videos, where typical frames
may include multiple overlapping animals, lack center-cropping, and omit essential data such as
masks. As a result, these datasets are not fully prepared for the task of 4D animal reconstruction,
making them unsuitable for direct use by 4D animal reconstruction methods. To develop a scalable
solution that produces ready-to-use data for animal reconstruction, we leverage large-scale online
video data and design an automatic pipeline to collect and process structured datasets ready for 4D
animal reconstruction task.

3 Data Collection

We propose a multi-stage data engine that can automatically collect and process data for 4D animal
reconstruction task. The process follows a pipeline that searches for video candidates, applies tracking
algorithms for object-centric video crops, filters out unwanted tracks, and leverages off-the-shelf
pretrained vision models to extract all necessary image features for animal reconstruction. At the core
of our data engine lies a database that stores metadata of intermediate results collected or processed
at different stages, enabling parallel execution of multiple processes running same or different stages.
An overview of our data engine is shown in Figure 2.
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Figure 2: Overview of our proposed data pipeline. Data is automatically scraped from YouTube in
stage 1, and then preprocessed into clips in stage 2. Stage 3 detects and tracks the instances, and the
final stage extracts additional image features for 4D animal reconstruction.

3.1 Raw Video Collection

In this stage, we scrape and download raw videos from YouTube. We start with an arbitrary animal
category or family, for example, horse, and leverage GPT to generate text search queries. To make
search queries as diverse as possible, we first ask GPT to generate a set of more specific sub-category
breeds, for example, Clydesdale and Mustang. Separately, GPT is asked to generate a set of context
phrases that are related to the category of interests, for instance, racing competition and in a farm for
horse. Finally, we randomly combine two sets to form a list of diverse search texts to query YouTube
for raw videos. Our downloading pipeline is implemented based on Selenium Webdriver [51] for
querying and retrieving video ID results and pytube [10] for downloading the videos.
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3.2 Video Preprocessing

This stage aims to preprocess and prefilter the downloaded raw videos so that they are prepared for
object tracking in the next stage. The final data we want should be object-centric crops of animals, but
raw videos are typically noisy with many frames that do not have any animal of interest presented in
the frame. We therefore split the video into video clips based on shot changes using PySceneDetect
[13], which detects large values of weighted average pixel change across frames. Splitting videos by
shot change also helps tracking as we observe that tracking algorithms may falsely associate objects
in different shots. Next, we apply CLIP [45] and compute an average CLIPScore [21] between a
randomly sampled batch of frames from the video clip and a text caption, for example, a photo of
a horse, and discard video clips with low CLIPScore. This step filters out video clips that do not
clearly depict the target animals, thereby eliminating the need for further tracking. All video clips are
downsampled to 10 frames per second to enhance processing efficiency in later stages.

3.3 Animal Tracking

To obtain object-centric video cropping of an animal across frames, it is essential to track the same
instance consistently over multiple frames. We employ Grounded-SAM-2 [47], which utilizes
GroundingDINO [36] to detect object bounding boxes in each frame, serving as prompt inputs for
SAM-2 [46] tracking. An iterative grounding-tracking process is applied to enable long-term tracking
while also allowing the detection and tracking of newly appearing objects. After tracking, we obtain
a set of object track proposals represented by their corresponding mask silhouettes from a video clip.
We filter out any tracks that are potentially unsuitable for animal reconstruction task by applying the
following filters and postprocessings.

Overlapping Instances. When multiple animals are present in a frame, off-the-shelf keypoint
estimators may become confused and incorrectly assign keypoints to different instances, especially
when significant overlap occurs. To mitigate this, we remove frames from tracks where two or more
animals overlap substantially. We achieve this by thresholding the Intersection over Union (IoU)
between each pair of animals in the same frame and removing both mask silhouettes from the tracks
if their IoU exceeds the threshold.

Low Resolution Instances. If the animal is too small in the frame, subsequent operations such as
keypoints and feature extraction may have degraded performance due to low resolution after resizing.
Therefore we discard any frames from the track where the bounding box area of the animal is less
than 1/4 of the final crop size, e.g. 256× 256 if the final crop size is 512× 512.

Truncated Instances. In many cases, an animal’s full body is not visible within the video frame.
Since animal reconstruction methods rely on mask silhouettes as shape supervision, truncated
silhouettes can lead to inaccurate reconstructions with unnatural poses and shapes. We remove frames
from the tracks if the bounding box is too close to the frame border, as these typically indicate a
truncated animal.

Inconsistent Tracks. Tracking algorithms may fail when videos contain ambiguous cases or
unnatural artifacts. A common failure occurs when multiple animals with similar appearances
are present, causing the algorithm to switch identities and track different animals inconsistently.
Another failure case arises from video fading effects, which are difficult to detect using shot detection
algorithms in earlier stages. In some instances, the tracking algorithm may fail to stop even after a
shot change or fade-out, continuing to track a different object or background in the new shot. To
mitigate these issues, we apply a threshold on the bounding box IoU between adjacent frames of the
same track and remove all frames following a detected low IoU.

Temporal Postprocessing. At this stage, some unqualified frames have been filtered from the
tracking results, creating discontinuities. To address this, we apply a post-processing step based on
predefined parameters for minimal track length, maximal track length, and the allowed gap within a
track. By iterating through all frames in a track, we identify gaps exceeding the allowed threshold or
instances where the track reaches the maximal length; in such cases, the subsequent frames are split
into a new track. If a gap falls within the allowed threshold, we resegment missing mask silhouette

5



cowho
rse
rab

bit
she

ep

ele
ph

an
t
be

ar
de

er
rhi

nowolf

rac
oo

n
go

at pig
moo

se
hip

po cat foxdo
g
zeb

ra

leo
pa

rd
bo

ar
tig

er

cou
ga

r

pa
nth

er

Category

0

50,000

100,000

150,000

200,000

250,000
N

um
be

r 
of

 F
ra

m
es

28
0,3

97

18
8,3

11

17
7,4

82

16
6,6

69

14
4,8

91

95
,21

9

89
,41

5

87
,12

5
86

,48
2

86
,13

1

74
,20

6
73

,31
0

72
,91

6

65
,93

3

62
,54

6

56
,39

4

54
,25

3

46
,76

7

38
,73

5
37

,47
8

35
,28

1

21
,55

5

4,9
18

Figure 3: A detailed breakdown of the number of
frames collected for each animal category in full
dataset.
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using SAM-2, interpolating bounding boxes from both sides as input prompts. Any tracks shorter
than the minimal track length are discarded.

Object-centric Cropping. To obtain the final object-centric video crops for animal reconstruction,
we generate square crop boxes centered on the bounding box of the animal in each frame. The size of
each crop box is determined by a predefined ratio relative to the mask area. We further apply moving
average smoothing to the crop boxes before cropping and resizing all frames to a standardized size.
As a final filtering step, we randomly select a cropped RGB image for each track and input it into
GPT to identify and remove instances of false detection or heavily occluded animals.

3.4 Feature Extraction

Animal reconstruction methods typically rely on additional preprocessed features beyond RGB
images to guide optimization. Most model-based approaches optimize shape and pose parameters
to fit animal silhouettes and keypoints. Some methods [28] may also use optical flow as additional
guidance. Model-free methods further incorporate precomputed image features such as DINO features
[69, 61, 35]. While animal silhouettes are already obtained in a previous stage, our data pipeline
modularly integrates off-the-shelf vision models to automatically infer animal keypoints, PCA DINO
features, optical flow, and depth. Specifically, we integrate ViTPose++ [63] for animal keypoints
estimation, DINOv2 [43] for image feature, SEA-RAFT [59] for optical flow estimation, and Depth
Anything V2 [67] for depth estimation. Additionally, we compute occlusion boundaries for each
animal crop based on the estimated depth and mask silhouette. Specifically, we extract depth values at
the dilated and eroded mask boundaries, respectively. For each pixel on the original mask boundary,
we calculate the depth difference between the nearest pixel on the dilated boundary and the nearest
pixel on the eroded boundary. This depth difference helps determine whether the pixels outside the
animal silhouette belong to the foreground, indicating occlusion, or the background, indicating no
occlusion at that region. Using the estimated optical flow and occlusion boundaries, we can optionally
further filter the processed data to retain instances with greater motion and minimal occlusion.

3.5 Dataset Statistics

Using the proposed automated data pipeline, we can efficiently collect a large volume of structured
video data suitable for 4D animal reconstruction. We have successfully collected and processed
29,979 animal video data, totaling 2,046,414 frames. Specifically, we begin with 23 common animal
categories as input to our data engine, and we present category statistics in Figure 9. A typical data
sample collected is shown in Figure 5.
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4 4D Animal Reconstruction

Using our proposed data engine, we can generate large-scale datasets for 4D animal reconstruction.
To demonstrate its effectiveness, we establish a benchmark dataset, Animal-in-Motion, for evaluating
4D animal reconstruction methods. In this section, we detail the task of 4D animal reconstruction, the
construction process of the benchmark dataset, and the evaluation metrics. Additionally, we propose
a novel baseline method, 4D-Fauna, that adapts 3D-Fauna [35] with additional loss terms, enhancing
its suitability for direct sequence optimization while combining the strengths of both traditional
model-based and model-free approaches. Finally, we present benchmarking results comparing a
typical model-based method, a model-free method, and our proposed baseline method.

4.1 Task Formulation

Similar to the 3D animal reconstruction task, which aims to estimate an animal’s 3D pose and shape
from a single image, the 4D animal reconstruction task seeks to estimate a sequence of 3D poses and
shapes from a sequence of frames of the same animal. Beside RGB image input, typical methods also
requires other 2D auxiliary data as guidance, such as mask silhouettes and 2D keypoints, obtained
either from manual labeling or from pretrained vision models. Formally, given an RGB video input
VT = {vt}Tt=1 ∈ RT×3×H×W of an animal, along with any required auxiliary input AT = {at}Tt=1,
in {0, 1}T×H×W in the case of 2D mask or in RT×K×2 in the case of 2D keypoints for instance, a
function fθ : {V, [A]} 7→ S is expected to output a sequence of posed 3D shapes ST = {st}Tt=1 that
naturally resembles the shape and pose sequence shown in the input video VT , where T is number
of frames in sequence, H and W are spatial dimensions of the frames, K is number of defined
keypoints. Function fθ can operate either as a feed-forward model using pretrained parameter θ, or
by optimizing θ at test time. Since different methods operate differently—some requiring large-scale
training data [35] while others only perform test-time optimization [74, 7]—our benchmark dataset is
designed for evaluation only to ensure fair comparisons.

4.2 Benchmark Dataset

Using the data pipeline proposed in Section 3, we can effortlessly collect large-scale data for the 4D
animal reconstruction task from scratch. However, to establish a benchmark, it is crucial to ensure the
accuracy of all annotations. This is achieved through human validation, requiring minimal effort from
annotators, who simply accept or reject a data sample by reviewing three auxiliary visualizations
generated by the data pipeline: the RGB video, RGB video applied with per frame mask silhouette,
and RGB video overlayed with per frame keypoints visualization. The criteria for accepting a data
sample are as follows:

• The RGB video does not exhibit heavy occlusion of the animal by other objects, particularly
on the legs, though self-occlusion is allowed.
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• The RGB video displays recognizable and smooth motion in animal body parts.
• The RGB video displays smooth camera movement.
• The RGB video applied with per frame mask silhouettes correctly segments the animal

without significant missing body parts.
• The RGB video overlayed with per frame keypoints accurately and smoothly approximates

the animal’s joint positions across frames.

As a result, we curate 10 videos per category, yielding a total of 230 videos comprising 11,061 frames.
A detailed breakdown of the frame statistics is presented in Figure 4.

4.3 Metrics

It is non-trivial to evaluate a 2D-to-3D lifiting task since there is no 3D ground truth data. However,
literatures have used different proxies to evaluate.

Silhoutte Intersetion-over-union (IoU). We follow previous works [9, 76, 4, 58, 49, 69] to employ
silhouette intersection-over-union (IoU). Silhoutte IoU measure the IoU between the ground truth
silhouette mask and the silhouette mask rendered by the reconstructed 3D shape. Although a high 2D
IoU does not necessarily correspond to a natural 3D shape due to potential ambiguities, a low IoU
reliably indicates that the reconstruction is underperforming.

Percentage of Correct Keypoint (PCK). Following previous works [24, 33, 30, 60, 61, 35], we
use the Percentage of Correct Keypoints (PCK) metric, which measures the percentage of projected
keypoints that fall within a fixed multiple of a normalizing distance threshold. Studies have defined
different distance thresholds. Following [9, 31, 8], we use the square root of the ground-truth mask
silhouette area as the normalizing distance threshold.

Keypoint Transfer (KT). Since no ground-truth 3D keypoint or shape annotations exist, pre-
vious works [61, 35, 29, 30, 69, 33, 8, 28] use Keypoint Transfer (KT) as a proxy for evaluating
reconstructed 3D shapes. Specifically, a set of ground-truth 2D keypoints from a source image is
projected onto the reconstructed 3D shape surface to establish a mapping with surface vertices. The
corresponding vertices are then reprojected from the 3D shape onto a target image with novel view
and pose. PCK is computed using the reprojected keypoints and the ground-truth keypoints in the
target image. A well-reconstructed 3D shape should exhibit consistency, producing low errors after
undergoing this 2D-to-3D-to-2D mapping.

Mean Per-Joint Velocity Error (MPJVE). As our work is the first to specifically focus on the task
of 4D animal reconstruction, there are no established metrics for evaluating reconstructed motion
in the temporal dimension. Following related works in human motion estimation [44, 54, 73], we
adopt Mean Per-Joint Velocity Error (MPJVE) to quantify the discrepancy in joint velocity within
the projected, normalized pixel space. Specifically, for each joint across two consecutive frames, we
compute the magnitude of the vector difference between the ground-truth velocity and the predicted
velocity. The final MPJVE is obtained by averaging the error over all joints and all frames.

4.4 4D-Fauna

We propose 4D-Fauna, a new baseline for 4D animal reconstruction, which adapts 3D-Fauna [35], a
model-free reconstruction approach designed for pan-category quadruped 3D reconstruction. Figure 6
gives an overview of our method.

Preliminary. 3D-Fauna builds upon MagicPony [61], which learns a prior shape for a specific
animal category from diverse images of that category by leveraging self-supervised DINO-ViT [12]
features. It then applies instance-specific predicted parameters, such as deformation and articulation,
for inverse rendering supervision. Building on this, 3D-Fauna introduces a learnable prior shape bank,
which functions as a dictionary of features capable of dynamically combining basis shapes during
training and inference to generate diverse instance-specific prior 3D shapes. As a result, 3D-Fauna
removes the constraint of training and inference on a single category, enabling it to learn a rich prior
shape bank from pan-category images and produce diverse prior shapes at inference time.
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Method IoU↑ PCK@0.1↑ PCK@0.05↑ KT-PCK@0.1↑ KT-PCK@0.05↑ MPJVE↓
SMALify [7] 0.867 0.954 0.787 0.623 0.372 0.023
AniMer [38] 0.677 0.537 0.199 0.566 0.256 0.038
3D-Fauna [35] 0.670 0.470 0.177 0.329 0.130 0.058
4D-Fauna 0.814 0.664 0.317 0.418 0.193 0.044

Table 1: Benchmark results comparison of different 4D animal reconstruction methods. blue
represents model-based approach and red indicates model-free approach.
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Figure 7: Comparison of 3D reconstruction results
highlighting failure cases of SMALify.
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Figure 8: Comparison of 4D reconstruction re-
sults highlighting failure cases of 3D-Fauna.

Sequence Optimization. 3D-Fauna operates in a feed-forward manner, differing from traditional
model-based approaches that iteratively optimize a predefined shape to fit a single image through
inverse rendering. Consequently, it may yield suboptimal shape and pose fitting compared to model-
based methods that overfit to the 2D supervision. To address this, we leverage the pretrained 3D-Fauna
and perform per-sequence optimization for 4D reconstruction. However, directly optimizing on a
sequence presents several challenges as follows.

Pose Ambiguity. Since 3D-Fauna relies solely on 2D mask supervision for the entire projected
silhouette without any part-level constraints, the reconstructed results often fail to accurately preserve
the correct leg ordering in the image. This error becomes more pronounced in video reconstruction,
leading to unnatural gait cycles where the legs fail to switch properly when the animal is walking or
running, particularly in side-view perspectives. To address this issue, we explicitly incorporate 2D
keypoint annotations as part-level supervision during sequence optimization, similar to how keypoint
reprojection loss is utilized in model-based approaches.

Temporal Smoothness. We apply temporal smoothness loss terms on both the camera pose and
animal pose. Specifically, we regularize the magnitude of change in camera pose parameters and
velocity of animal pose articulation.

Efficient Overfitting. 3D-Fauna uses neural network predictors to predict camera pose and articula-
tion parameters from input image features. To efficiently overfit camera pose and articulation for the
sequence, we directly optimize the camera pose and articulation parameters for each frame, taking
the output from pretrained neural network predictors as initialization.

4.5 Results and Analysis

We show benchmark results of 4D-Fauna, 3D-Fauna [35], SMALify [7], which is a model-base
reconstruction approach that implements [8] and [9], and AniMer [38], which is a model-base
feedforward reconstruction method. The quantitative results are reported in Table 1.

As a model-based method, SMALify achieves the best results across all metrics. This is because
model-based methods explicitly optimize pose and shape deformation to align with 2D ground truth,
leading to superior performance on 2D metrics. However, this optimization process is not inherently
3D-aware—i.e., it does not learn general animal pose and shape representations from diverse data.
As a result, when fitting to 2D supervision, the method often produces unnatural poses and shapes
due to ambiguities in the depth dimension. Some failure cases of SMALify are illustrated in Figure 7.
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The first column from the left illustrates an incorrect pose prediction. Since both the correct and
incorrect poses can perfectly fit the 2D mask silhouette and keypoints, the model fails to differentiate
between them in this case. The second column demonstrates that in the depth dimension, SMALify
may arbitrarily elongate body parts, as such distortions are not apparent in the projected 2D shape.
The third column presents a similar failure due to depth ambiguity, where the legs unnaturally bend
sideways in 3D space to conform to the 2D supervision. The last column highlights how SMALify
drastically deforms the shape into an unnatural configuration to perfectly fit a frontal-view image.
In contrast, both 3D-Fauna and 4D-Fauna effectively infer plausible 3D shapes and natural poses.
Moreover, 4D-Fauna generally achieves more accurate camera and animal pose fitting than 3D-Fauna,
thanks to further sequence-level optimization.

From quantitative results and qualitative assements shown in Figures 7 and 8 4D-Fauna achieves better
performance on all metrics than 3D-Fauna while maintaining plausible and natural 3D shape and
pose. Specifically, further optimization using mask silhouette supervision contributes to a higher IoU,
promoting improved per-frame pose estimation and more accurate shape deformation for individual
instances. Although the joint definitions are not fully aligned, direct keypoint supervision on joints
with overlapping definitions is sufficient to reconstruct a more accurate animal pose, leading to a
higher PCK score. Furthermore, improved camera and animal pose estimation together enhance
Keypoint Transfer accuracy in the 2D-to-3D-to-2D mapping process. Additionally, loss terms for
motion smoothness help reduce jitter and sudden large movements, producing a more stable and
realistic motion that closely resembles the ground truth. A comparison of 4D reconstruction result
is shown in Figure 8. Comparing the two model-free approaches, 3D-Fauna exhibits sudden leg
switching between frames 2 and 4 in Figure 8, whereas 4D-Fauna successfully resolves this issue,
highlighting the necessity of further sequence optimization with keypoint supervision and smoothness
loss terms.

5 Conclusion

We present a fully automated, scalable data pipeline for 4D quadruped animal reconstruction. We
introduce Animal-in-Motion, the first benchmark for 4D animal shape and pose estimation, and
establish a thorough evaluation framework for existing 3D reconstruction approaches. Additionally,
we propose 4D-Fauna, a baseline that boosts model-free reconstruction accuracy. Our results show
the pipeline’s ability to generate high-quality data, also highlighting the importance of 3D-aware
evaluation and visualization on the animal reconstruction task, opening avenues for further advances
in shape and motion understanding of animals.

Limitation. While our pipeline significantly reduces the human effort required for large-scale
animal video collection and annotation, the automatically processed data is not perfectly clean and
still requires manual validation for reliable benchmarking. Our benchmark dataset, though curated,
relies on 2D projection-based metrics, which are limited by inherent view ambiguities and do not
fully capture 3D reconstruction quality—highlighting the need for more robust, 3D-aware evaluation
metrics. Finally, our baseline builds on an existing model-free method with temporal refinements, but
it demonstrates only limited understanding of temporal coherence; future approaches may benefit from
more expressive paradigms, such as autoregressive models, to better capture inter-frame dynamics.

Accessibility. The source code and instructions to download dataset are available on GitHub:
https://github.com/briannlongzhao/Animal-in-Motion.

Our dataset includes annotations derived from publicly available YouTube videos. We acknowledge
that YouTube content is subject to copyright protection and governed by YouTube’s Terms of Service.
To respect these terms and mitigate copyright and privacy concerns, we do not release the original
RGB video frames. Instead, we publicly release only derived data, such as mask, depth, keypoints,
etc., which do not contain any raw video content. All derived data is non-identifiable and used solely
for research purposes. We also provide scripts to re-derive necessary data and visualizations locally,
ensuring reproducibility for research purpose.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Each of our main claims including automated pipeline, curated benchmark,
evaluation of existing methods and improved baseline are directly discussed in Section 3
and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in main paper Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiments results are reproducible using the submitted code and dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is publicly available. Due to licensing concerns around redistributing
RGB video frames from YouTube, the dataset is currently provided via a private preview
link for review purposes only. In the public release, we will exclude raw RGB frames and
instead provide all processed annotations (e.g., keypoints, masks, depth maps) along with
scripts and instructions for users to recover the necessary data locally. This approach ensures
legal compliance while still supporting reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss necessary details in the supplementary sections. Other details
follows the setting of [35].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Running inference and evaluation is computationally expensive due to op-
timization on each single instance, making statistical significance analysis impractical in
typical academic settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss necessary details in the supplementary sections. Other details
follows the setting of [35].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We collect data from publicly available data in accordance with platform terms,
and avoid redistributing raw video content directly to respect copyright and privacy. We plan
to release only derived annotations along with tools to regenerate necessary data locally. No
personally identifiable information or real animal is involved in this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: As described in the introduction, our work aims to advance non-invasive
research on animal motion and behavior. We also acknowledge the potential copyright and
privacy concerns associated with releasing raw video data, which we discuss further in the
supplementary material. To address these concerns, we publicly release only the derived
annotations and processed data, excluding the original RGB video frames.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: In supplementary, we discuss the copyright considerations and the potential for
unintended privacy issues. We release only the derived data without original RGB frames.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all methods and models used in our data pipeline and
experiments.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide code and dataset along with instructions of running the code and
dataset specifications.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the role of LLM in our data pipeline and provide the prompts we
use in supplementary materials.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Data Pipeline Implementation Detail

A.1 Database

We incorporate SQLite, a lightweight local file-based database system, to store metadata generated
during processing and enable parallel execution of multiple processes across the same or different
stages. Specifically, each intermediate result after Stage 1 and Stage 2 contains a status field that
records whether a video or clip is unprocessed, being processed, completed, or discarded. These
statuses are dynamically checked and updated by the processing pipeline, ensuring efficient parallel
execution on large-scale data. Additionally, we store metadata such as video titles, query phrases,
and keywords, which may facilitate the development of multimodal animal motion studies, such as
motion retrieval and generation.

A.2 Video Scraping

We leverage GPT for automatic search query generation. To make search queries as diverse as
possible, we first ask GPT to generate a set of more specific sub-category breeds, for example,
Clydesdale and Mustang. Separately, GPT is asked to generate a set of context phrases that are related
to the category of interests, for instance, racing competition and in a farm for horse. Finally, we
randomly combine two sets to form a list of diverse search texts to query YouTube for raw videos.
Specifically, given a category name of an animal, we use the following prompt to generate diverse
sub-category or breed, where n is set to 10, and category is the name of category of interests, e.g.
horse:

List {n} types of {category}. Only show the list in python list format without using a code
block.

Similarly, we generate query phrases with the following prompt, with n set to 10 as well:

List {n} search phrases or autocompletions for searching {category} videos on a video sharing
website. Assume user already input the word category, only show the trailing phrases. Only
show the list in python list format without using a code block.

We then combine them in a set-product manner to generate search queries for YouTube.

Since the YouTube API imposes rate and usage limits, we employ a web automation framework to
simulate human searches via a web browser, which bypasses these restrictions.

After this stage, each downloaded video is stored in the database with a unique YouTube video ID.

Our downloading pipeline is implemented based on Selenium Webdriver [51] for querying and
retrieving video ID results and pytube [10] for downloading the videos.

A.3 Preprocessing

This stage preprocesses raw videos for object tracking, aiming to create animal-centric crops. Raw
videos are filtered to remove frames lacking the target animal.

At this stage, downloaded videos are first retrieved from the database. The videos are then cut into
clips based on shot changes using pyscenedetect [13].

Specifically, we compute the average pixel difference between consecutive frames in the HSV color
space and set a threshold of 25 to determine shot boundaries. Clips shorter than 30 frames are
discarded. While this algorithm is effective in most cases, it fails to detect fading effects, which we
address in Stage 3. Using a similar pixel-difference-based approach, we also remove clips consisting
solely of still frames with no pixel changes. Additionally, we compute an average CLIPScore for each
clip by randomly sampling 10 frames and comparing them against the prompt: "A photo of category."
All video clips are downsampled to 10 frames per second to enhance processing efficiency in later
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stages. Similar to the first stage, the status of the source video and processed clips is dynamically
monitored and updated throughout this process.

A.4 Tracking

At this stage, processed clips are retrieved from the database, and tracking with segmentation is
performed.

Specifically, we apply grounding results on the first frame as a visual prompt to SAM, then track
for 50 consecutive frames. This process is iterated for the next 50 frames, using location-based
association to link tracks between the end of the current interval and the beginning of the next.

This enables long-term tracking while also allowing the detection and tracking of newly appearing
objects.

After obtaining the initial tracking results with segmentation, we sequentially apply the filtering steps.

Overlapping Instances. When multiple animals are present in a frame, off-the-shelf keypoint
estimators may become confused and incorrectly assign keypoints to different instances, especially
when significant overlap occurs. To mitigate this, we remove frames from tracks where two or more
animals overlap substantially. We achieve this by thresholding the Intersection over Union (IoU)
between each pair of animals in the same frame and removing both mask silhouettes from the tracks
if their IoU exceeds the threshold.

Low Resolution Instances. If the animal is too small in the frame, subsequent operations such as
keypoints and feature extraction may have degraded performance due to low resolution after resizing.
Therefore we discard any frames from the track where the bounding box area of the animal is less
than 1/4 of the final crop size, e.g. 256× 256 if the final crop size is 512× 512.

Truncated Instances. In many cases, an animal’s full body is not visible within the video frame.
Since animal reconstruction methods rely on mask silhouettes as shape supervision, truncated
silhouettes can lead to inaccurate reconstructions with unnatural poses and shapes. We remove frames
from the tracks if the bounding box is too close to the frame border, as these typically indicate a
truncated animal.

Inconsistent Tracks. Tracking algorithms may fail when videos contain ambiguous cases or
unnatural artifacts. A common failure occurs when multiple animals with similar appearances
are present, causing the algorithm to switch identities and track different animals inconsistently.
Another failure case arises from video fading effects, which are difficult to detect using shot detection
algorithms in earlier stages. In some instances, the tracking algorithm may fail to stop even after a
shot change or fade-out, continuing to track a different object or background in the new shot. To
mitigate these issues, we apply a threshold on the bounding box IoU between adjacent frames of the
same track and remove all frames following a detected low IoU.

Temporal Postprocessing. At this stage, some unqualified frames have been filtered from the
tracking results, creating discontinuities. To address this, we apply a post-processing step based on
predefined parameters for minimal track length, maximal track length, and the allowed gap within a
track. By iterating through all frames in a track, we identify gaps exceeding the allowed threshold or
instances where the track reaches the maximal length; in such cases, the subsequent frames are split
into a new track. If a gap falls within the allowed threshold, we resegment missing mask silhouette
using SAM-2, interpolating bounding boxes from both sides as input prompts. Any tracks shorter
than the minimal track length are discarded.

Object-centric Cropping. To obtain the final object-centric video crops for animal reconstruction,
we generate square crop boxes centered on the bounding box of the animal in each frame. The size of
each crop box is determined by a predefined ratio relative to the mask area. We further apply moving
average smoothing to the crop boxes before cropping and resizing all frames to a standardized size.
As a final filtering step, we randomly select a cropped RGB image for each track and input it into
GPT to identify and remove instances of false detection or heavily occluded animals.
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To determine the crop box for each frame in the track, we align the centers of the bounding box and
crop box, then extract a square with an area equal to 2× the bounding box area.

We smooth the crop box centers using a moving average with a window size of 10 frames to reduce
jitter in the tracking results. Finally, we apply gpt-4o-mini to filter tracks using one sampled frame
from each track with the prompt:

Does this image show a realistic photo of a {category} without any occlusion? Answer yes or
no only.

A.5 Features and Auxiliaries Processing

Immediately after each track is saved, we post-process the cropped tracks to generate auxiliary
data. Specifically, we integrate ViTPose++ [63] for animal keypoints estimation, DINOv2 [43]
for image feature, SEA-RAFT [59] for optical flow estimation, and Depth Anything V2 [67] for
depth estimation. For occlusion boundary, we extract depth values at the dilated and eroded mask
boundaries, respectively. Then for each pixel on the original mask boundary, we calculate the depth
difference between the nearest pixel on the dilated boundary and the nearest pixel on the eroded
boundary. This depth difference helps determine whether the pixels outside the animal silhouette
belong to the foreground, indicating occlusion, or the background, indicating no occlusion at that
region. At this stage, all tracks are stored in the database with computed mean occlusion and optical
flow values. If needed, users can further filter the data based on occlusion proportion and optical flow
thresholds.

B Details of Benchmark

B.1 Task Formulation

Similar to the 3D animal reconstruction task, which aims to estimate an animal’s 3D pose and shape
from a single image, the 4D animal reconstruction task seeks to estimate a sequence of 3D poses and
shapes from a sequence of frames of the same animal. Beside RGB image input, typical methods also
requires other 2D auxiliary data as guidance, such as mask silhouettes and 2D keypoints, obtained
either from manual labeling or from pretrained vision models. Formally, given an RGB video input
VT = {vt}Tt=1 ∈ RT×3×H×W of an animal, along with any required auxiliary input AT = {at}Tt=1,
in {0, 1}T×H×W in the case of 2D mask or in RT×K×2 in the case of 2D keypoints for instance, a
function fθ : {V, [A]} 7→ S is expected to output a sequence of posed 3D shapes ST = {st}Tt=1 that
naturally resembles the shape and pose sequence shown in the input video VT , where T is number
of frames in sequence, H and W are spatial dimensions of the frames, K is number of defined
keypoints. Function fθ can operate either as a feed-forward model using pretrained parameter θ, or
by optimizing θ at test time. Since different methods operate differently—some requiring large-scale
training data [35] while others only perform test-time optimization [74, 7]—our benchmark dataset is
designed for evaluation only to ensure fair comparisons.

B.2 Metrics

Silhouette Intersection-over-union (IoU). We follow previous works [9, 76, 4, 58, 49, 69] to employ
silhouette intersection-over-union (IoU). Silhouette IoU measures the IoU between the ground truth
silhouette mask and the silhouette mask rendered by the reconstructed 3D shape. Although a high 2D
IoU does not necessarily correspond to a natural 3D shape due to potential ambiguities, a low IoU
reliably indicates that the reconstruction is underperforming.

Percentage of Correct Keypoint (PCK). Following previous works [24, 33, 30, 60, 61, 35], we
use the Percentage of Correct Keypoints (PCK) metric, which measures the percentage of projected
keypoints that fall within a fixed multiple of a normalizing distance threshold. Studies have defined
different distance thresholds. Following [9, 31, 8], we use the square root of the ground-truth mask
silhouette area as the normalizing distance threshold.
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Keypoint Transfer (KT). Since no ground-truth 3D keypoint or shape annotations exist, pre-
vious works [61, 35, 29, 30, 69, 33, 8, 28] use Keypoint Transfer (KT) as a proxy for evaluating
reconstructed 3D shapes. Specifically, a set of ground-truth 2D keypoints from a source image is
projected onto the reconstructed 3D shape surface to establish a mapping with surface vertices. The
corresponding vertices are then reprojected from the 3D shape onto a target image with novel view
and pose. PCK is computed using the reprojected keypoints and the ground-truth keypoints in the
target image. A well-reconstructed 3D shape should exhibit consistency, producing low errors after
undergoing this 2D-to-3D-to-2D mapping.

Mean Per-Joint Velocity Error (MPJVE). As our work is the first to specifically address the task
of 4D animal reconstruction, there are no established metrics for evaluating temporal aspects such as
motion smoothness or consistency over time in animal domain. Following related works in human
motion estimation [44, 54, 73], we adopt Mean Per-Joint Velocity Error (MPJVE) to quantify the
discrepancy in joint velocity within the projected, normalized pixel space. Specifically, for each
joint across two consecutive frames, we compute the magnitude of the vector difference between the
ground-truth velocity and the predicted velocity. The final MPJVE is obtained by averaging the error
over all joints and all frames.

C 4D-Fauna Implementation Detail

Preliminary. 3D-Fauna builds upon MagicPony [61], which learns a prior shape for a specific
animal category from diverse images of that category by leveraging self-supervised DINO-ViT [12]
features. It then applies instance-specific predicted parameters, such as deformation and articulation,
for inverse rendering supervision. Building on this, 3D-Fauna introduces a learnable prior shape bank,
which functions as a dictionary of features capable of dynamically combining basis shapes during
training and inference to generate diverse instance-specific prior 3D shapes. As a result, 3D-Fauna
removes the constraint of training and inference on a single category, enabling it to learn a rich prior
shape bank from pan-category images and produce diverse prior shapes at inference time.

C.1 Canonical Shape Prediction

We use the pretrained 3D-Fauna model as initialization and optimize only the deformation predictor
along with the newly introduced per-frame camera and articulation parameters Given a sequence
of video frame input VT , the frozen image encoder will return a sequence of image features ϕT .
To ensure a consistent shape across different frames, we compute a mean feature ϕ̄ = 1

T

∑T
t=1 ϕt,

used for predict a prior shape for all frames. We also use the mean feature to input the deformation
predictor, guiding it to learn a consistent deformation field that better fit the shape to the masks of the
sequence. Specifically, a prior shape predictor fprior will predict a mesh (V, F ) = fprior(ϕ̄), where V
and F are mesh vertices and faces, and a deformation predictor fdeform will predict a deformation
∆V = fdeform(V, ϕ̄), resulting in a canonical shape (V +∆V, F ).

C.2 Per Frame Pose Prediction

The inaccurate reconstruction results from 3D-Fauna stem from the fact that its original predictor net-
works for camera pose and animal articulation are trained on diverse data, making them generalizable
but not precise enough for individual instances. To refine the camera pose and animal articulation
for a single sequence, we introduce per-frame parameters that are directly optimized, rather than
fine-tuning the predictor networks. The outputs from the pretrained networks serve as initialization
for this process. Specifically, we introduce per-frame articulation parameters {ξt}Tt=1 and camera
pose parameters {Rt}t=1T . For initialization, ξt = fart(ϕt) and Rt = fcam(ϕt), where fart and fcam
are pretrained articulation and camera pose predictors, respectively. The canonical shape is first
applied with per-frame articulation parameters, following a predefined kinematic tree and skinning
function, to transform it into a posed shape. Together with the optimized camera pose parameters
and a pretrained texture predictor, the final shape is rendered into an image, mask, and projected
keypoints for direct supervision.
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C.3 Keypoints supervision

Since the joints are defined differently between 3D-Fauna framework and output from off-the-shelf
keypoint predictor, we identify joints with overlapping defining s for supervision. Specifically, we
align node, tail base, and the bottom two joints on four legs, totaling 10 keypoints to calculate
keypoint reprojection loss:

Lkp = ∥J − Ĵ∥22 (1)

where J ∈ R10×2 is the ground truth 2D keypoint and Ĵ ∈ R10×2 is the predicted keypoints projected
onto 2D.

C.4 Temporal Smoothness Loss

We apply smoothness constraints on articulation angles, posed bones, and camera pose within
a batch of frames. Specifically, we minimize both the difference of parameter values between
consecutive frames and the difference of changes between consecutive intervals. For smoothness loss
on articulation parameter:

Rsmooth,art =
T−1∑
t=1

∥ξt+1 − ξt∥22 +
T−2∑
t=1

∥(ξt+2 − ξt+1)− (ξt+1 − ξt)∥22 (2)

The losses are same for posed bone 3D coordinate and camera pose parameters, and overall:

Rsmooth = Rsmooth,art +Rsmooth,bone +Rsmooth,cam (3)

C.5 Training Objective

The training objective is essentially the training objective of 3D-Fauna plus the newly added supervi-
sions. From 3D-Fauna:

L3D-Fauna = Lrec + λhypLhyp + λadvLadv +R
(4)

where,
Lrec = λmLm + λimLim + λfeatLfeat (5)

and
R = λEikREik + λartRart + λdefRdef (6)

where Lm is mask reconstruction loss, Lim is image reconstruction loss, Lfeat is feature reconstruction
loss, Lhyp is viewpoint hypothesis loss, Ladv is mask shape adversarial loss, REik is the Eikonal
constraint on SDF network for prior shape prediction, Rart is regularization on articulation parameters,
Rdef is regularization on deformations, and λs are corresponding balancing loss weights. Adding the
new loss terms:

L = L3D-Fauna + λkpLkp + λkpRsmooth (7)

We set λkp = λsmooth = 50. Since our prior shape is fixed, we set λfeat = λEik = 0. All other losses
weights follow the implementation in 3D-Fauna.

C.6 Optimization

We use Adam optimizer with 0.1 learning rate. For each sequence, we construct data into batches
of 8 consecutive frames in a sliding window manner. We optimize for 25 epochs for each sequence,
starting from the pretrained 3D-Fauna model weights. We run on single L40 GPU with 48 GPU
memory.

D Dataset Statistics

We show number of frames and number of videos per category of the collected full dataset in Figure 10
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Figure 9: A detailed breakdown of the number of
frames collected in full dataset for each animal
category.
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Figure 10: A detailed breakdown of the number
of videos collected in full dataset for each animal
category.

E Motion Type Analysis

We leverage Gemini [55] to annotate each motion video for further motion type analysis. Specifically,
we choose a subset of 28 motion type labels defined in AnimalKingdom dataset [41] that are
reasonable for quadrupeds. We use gemini-2.5-flash model and let it choose 1-3 motion type labels
that best represent the given video. The statistics of the motion type is shown in
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Figure 11: Distribution of motion types across the full dataset. Each video is assigned one to three
labels.

F Visualization of Collected Data

We present a visualization of the video data collected using our proposed data pipeline, consisting of
randomly sampled, uncurated object-centric videos with silhouettes applied. More sample data are
included in the supplementary materials.
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Figure 12: Visualization of random uncurated data collected by out data pipeline.

G Visualization of 4D Reconstruction Results

We show some additional visual results of 4D reconstruction results using different methods. Video
results on sample data are included in supplementary materials.

29



SMALify

SMALify

SMALify

3D Fauna

3D Fauna

3D Fauna

4D Fauna

4D Fauna

4D Fauna

Image

Image

Image

Figure 13: 4D reconstruction results comparison.
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Figure 14: 4D reconstruction results comparison.
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