
Consistency Is the Key: Detecting Hallucinations in LLM Generated Text
By Checking Inconsistencies About Key Facts

Anonymous ACL submission

Abstract

Large language models (LLMs), despite their001
remarkable text generation capabilities, often002
hallucinate and generate text that is factually003
incorrect and not grounded in real-world knowl-004
edge. This poses serious risks in domains like005
healthcare, finance, and customer support.A006
typical way to use LLMs is via the APIs pro-007
vided by LLM vendors where there is no ac-008
cess to model weights or options to fine-tune009
the model.Existing methods to detect halluci-010
nations in such settings where the model ac-011
cess is restricted or constrained by resources012
typically require making multiple LLM API013
calls, increasing latency and API cost. We in-014
troduce CONFACTCHECK, an efficient halluci-015
nation detection approach that does not lever-016
age any external knowledge base and works on017
the simple intuition that responses to factual018
probes within the generated text should be con-019
sistent within a single LLM and across different020
LLMs. Rigorous empirical evaluation on mul-021
tiple datasets that cover both the generation of022
factual texts and the open generation shows that023
CONFACTCHECK can detect hallucinated facts024
efficiently using fewer resources and achieves025
significantly higher accuracy scores compared026
to existing baselines that operate under similar027
conditions. Our code is available here.028

1 Introduction029

Large Language Models (LLMs) are the go-to tools030

for NLP applications given their excellent text031

generation capabilities (Zhao et al., 2023). How-032

ever, despite recent developments in model archi-033

tecture and training, even state-of-the-art models034

such as GPT-4 (Achiam et al., 2023) and PALM-035

540B (Chowdhery et al., 2023) often generate text036

that appears plausible, but is factually incorrect or037

non-sensical – a phenomenon termed hallucina-038

tion (Huang et al., 2023). A formal analysis by039

Xu et al. (2024) shows that LLMs cannot learn all040

possible computational functions, and hence, by041

design, will always hallucinate, albeit to different 042

degrees. Consequently, detecting when the LLM 043

hallucinates is imperative to take corrective action 044

and minimize misinformation from reaching users. 045

Such model hallucinations can be either intrinsic 046

or extrinsic (Ji et al., 2023). Intrinsic hallucinations 047

arise when model outputs contradict the input or 048

in-context instructions and can often be detected 049

by checking input-output consistency(Huang et al., 050

2023). Extrinsic hallucinations, on the other hand, 051

occur when the model output is factually incorrect 052

and is not grounded on the pre-training data (Huang 053

et al., 2023). Given the volume of pre-training data 054

and that it is typically inaccessible by the users, 055

extrinsic hallucinations pose a greater challenge 056

due to their unverifiable nature (Ji et al., 2023). 057

Hallucinations in LLMs are typically addressed 058

by either (i) improving factual accuracy via train- 059

ing or fine-tuning (Tian et al., 2023; Azaria and 060

Mitchell, 2023a; Chuang et al., 2023), or (ii) ver- 061

ifying model outputs using external knowledge 062

sources (Cheng et al., 2024). However, in many 063

practical cases, end-users or developers lack access 064

to model weights or external verification sources. 065

Recent approaches circumvent this by repeatedly 066

querying the LLM (Manakul et al., 2023; Zhang 067

et al., 2023a; Liu et al., 2022)to thoroughly verify 068

responses or sample large number of outputs to 069

estimate output probability distributions, leading to 070

significantly increased cost and latency. To address 071

these limitations, we propose CONFACTCHECK, 072

a lightweight method for hallucination detection 073

that relies solely on the LLM’s internal knowl- 074

edge. CONFACTCHECK is based on a simple idea: 075

an LLM’s understanding of a topic can be eval- 076

uated by asking related questions and measuring 077

consistency. This recursive probing strategy has 078

also been used in testing question-answering sys- 079

tems (Chen et al., 2021). As illustrated in Fig- 080

ure 1, CONFACTCHECK identifies key entities/tags 081

(using NER/POS tagging) in the generated output 082

1

https://anonymous.4open.science/r/ConFactCheck-41C4/README.md

Figure 1: Key fact-based hallucination detec-
tion through the Fact Alignment check of our
CONFACTCHECK pipeline. Each fact is used to gener-
ate a question, and the fact is regenerated by prompting
the question to the LLM. The regenerated facts are com-
pared with the original extracted key facts to check for
their consistency.

and then formulates contextually relevant questions083

around these entities. We term these entities/tags as084

’key facts’, as these contain essential factual infor-085

mation in sentences. The LLM’s answers to these086

questions are checked for consistency with the orig-087

inal response, with high consistency indicating that088

the output is grounded in the model’s pre-training089

data (reflective of the world knowledge).090

We evaluate CONFACTCHECK on four dif-091

ferent datasets spanning question-answering092

(NQ_Open (Kwiatkowski et al., 2019), Hot-093

potQA (Yang et al., 2018), WebQA (Berant et al.,094

2013)) and open-ended generation tasks where095

inputs to the LLM lack any additional context (Wik-096

iBio (Manakul et al., 2023)). CONFACTCHECK097

outperforms recent state-of-the-art self-check or098

self-consistency-based baselines (Manakul et al.,099

2023; Zhang et al., 2023a; Liu et al., 2022) along100

with baselines relying on the internal states of101

models (Chen et al., 2024) for LLMs of different102

model families. CONFACTCHECK achieves this103

outperformance while being significantly faster104

and requiring a lower number of LLM calls (c.f.,105

Table 2). We also report the results of various106

ablation studies guiding our design choices107

and conclude by discussing the strengths and108

limitations of CONFACTCHECK.109

2 Related Work110

LLMs are inherently prone to hallucinations (Xu111

et al., 2024; Ji et al., 2023), a phenomenon also112

observed in visual and multi-modal models (Bai113

et al., 2024; Liu et al., 2024). This has led to ex-114

tensive research on hallucination detection and mit- 115

igation (Huang et al., 2023; Zhang et al., 2023b; 116

Tonmoy et al., 2024). Existing methods fall broadly 117

into two categories: self-checking, prompt-based 118

approaches and those that require access to model 119

weights or external knowledge sources. 120

Methods Requiring Access to Model Weights 121

and External Sources: Tian et al. (2023) demon- 122

strate that fine-tuning with factuality preferences 123

improves output correctness. Azaria and Mitchell 124

(2023b) use internal LLM activations passed 125

through a classifier to estimate truthfulness. IN- 126

SIDE (Chen et al., 2024) uses internal sentence em- 127

beddings and analyzes their covariance eigenvalues 128

to detect hallucinations. Various decoding strate- 129

gies (Chuang et al., 2023; Shi et al., 2024) have 130

also been developed that utilize token probabilites 131

at various layers to detect and mitigate hallucina- 132

tions. Some approaches such as HaluAgent (Cheng 133

et al., 2024) use additional tools such web search 134

engines, code interpreters etc for text, code-based 135

detection of hallucinations. 136

Self-Checking and Prompt-Based Methods: 137

Zhang et al. (2023a) propose Semantic-Aware 138

Cross-Check Consistency (SAC3), a sampling- 139

based method that checks for self-consistency 140

across multiple generations. Similarly, SelfCheck- 141

GPT (Manakul et al., 2023) samples diverse out- 142

puts and scores their similarity to the original to es- 143

timate confidence. InterrogateLLM (Yehuda et al., 144

2024), focuses on regenerating the original query 145

for a generated answer by reversing few-shot QA 146

pairs to few-shot AQ pairs to self-check for model 147

confidence during regeneration. These self-refining 148

approaches often rely on the target LMs them- 149

selves, which is also demonstrated in Self-Refine 150

(Madaan et al., 2023), an iterative mitigation-based 151

approach for hallucinations. Mündler et al. (2023) 152

explore self-contradictions using two LLMs – one 153

for generation and one for contradiction analysis. 154

TRUE (Honovich et al., 2022),evaluates factual 155

consistency using a range of metrics (n-gram, NLI, 156

model-based) on the FEVER dataset (Thorne et al., 157

2018). Liu et al. (2022) propose a reference-free, 158

token-level method for detecting hallucinations and 159

also present the Hallucination Detection dataset 160

(HaDes), with raw web text being perturbed and 161

then annotated by humans to design it for halluci- 162

nation detection as a classification task. FactScore 163

(Min et al., 2023) breaks outputs into atomic facts, 164

and verifies them using reliable external knowledge 165

sources. We also utilize the notion of atomic facts 166

2

in CONFACTCHECK , however, instead of leverag-167

ing external sources, we check for consistency in168

LLM outputs about the atomic facts.169

3 The CONFACTCHECK Approach170

Figure 2 summarizes our proposed hallucination171

detection approach comprising of two main steps172

– (i) a fact alignment check where key facts in the173

output are compared with facts obtained by targeted174

probing of the LLM; and (ii) a uniform distribution175

check that filters out the low confidence predictions.176

We now describe the overall pipeline in detail.177

3.1 Fact Alignment Check178

Extracting Key Facts: To check whether a piece179

of text,A, generated by an LLMM is hallucinated,180

we start with the assumption that the generated text181

is correct. We then generate questions targeting182

each key fact in A, such that they can be answered183

solely using the content of A. Subsequently, we184

employ the LLM to answer the questions and see185

if the answers match the information in A, a mis-186

match indicating hallucinations. The initial step187

is to identify the factual components within a sen-188

tence. According to Kai et al. (2024), factual infor-189

mation in a sentence is typically conveyed through190

specific parts of speech, viz., nouns, pronouns, car-191

dinal numbers, and adjectives. We highlight tags192

with such information as key facts that are to be193

extracted. Min et al. (2023) use a similar concept,194

where they classify short sentences in text (obtained195

by InstructGPT generation and human annotation)196

as atomic facts. However, the key facts we discuss197

are extracted NER/POS tags containing factual in-198

formation, and hence are different. Key facts can be199

extracted by performing part-of-speech (POS) tag-200

ging or Named Entity Recognition (NER) on the201

sentence. Given an LLM output A, we perform202

coreferencing and decompose A into sentences203

S1, S2, . . . , SN , where N is the total number of204

sentences, such that A = {S1, S2 . . . , SN}. Each205

sentence is tagged to extract key facts aij , where206

i ∈ {1, . . . , N}, and j depends on the number207

of tagged entities in a sentence. The tagging can208

be either POS-based or NER-based, as discussed209

in Section 5.4.3. For example, given the origi-210

nal sentence “Argentina won the World Cup in the211

years, 1978, 1986 and 2006.”, in Figure 1, the212

key facts consist of a = [a11 = Argentina, a12 =213

World Cup, a21 = 1978, 1986 and 2006].214

Targeted Question Generation: After identify-215

ing key facts, the next step involves verifying 216

whether each fact is hallucinated within the context 217

of the sentence. Unlike previous methodologies 218

that assign a hallucination score to each sentence, 219

CONFACTCHECK focuses on key facts, thereby 220

enhancing explainability by pinpointing the ex- 221

act parts of a sentence that are hallucinated and 222

providing reasons for this determination, as de- 223

tailed in Section 5.5. Specifically, for each key 224

fact aij given sentence Si, a corresponding ques- 225

tion qij is generated (using a T5-based model that 226

is specifically finetuned for this task of question 227

regeneration), with aij as the target answer and 228

Si as the context, expressed as qij = Q(aij |Si), 229

whereQ represents the question generation module. 230

In Figure 1, each key fact provides one question 231

q = [q11 = Question 1, q12 = Question 2, q13 = 232

Question 3]. LLM M′ is then used to evaluate 233

these questions at a low temperature to ensure re- 234

sponse consistency, as it enables the LLM to gen- 235

erate high-quality and deterministic outputs. Each 236

individual key fact-based question is answered by 237

the LLM with greater precision and therefore helps 238

to better identify whether the fact is correct or incor- 239

rect (Dhuliawala et al., 2024). Note thatM′ may 240

or may not be the same asM, as another LLM can 241

be used to evaluate the responses of LLMM. 242

Consistency Checking The responses from M′ 243

yield regenerated facts fij , which are subsequently 244

checked for consistency with aij . To check for 245

the similarity between fij and aij , we follow the 246

LLM-as-a-judge paradigm (Zheng et al., 2023), 247

by querying GPT4.1-mini using few-shot prompt- 248

ing to assess whether each pair is aligned or not. 249

For instance, the set f for Figure 1 being f = 250

[f11 = Argentina, f12 = FIFA World Cup, f21 = 251

1978, 1986 and 2022.], and original key facts be- 252

ing a = [a11 = Argentina, a12 = World Cup, a21 253

= 1978, 1986 and 2006]. In this case, facts 254

f21 and a21 are non-aligned; whereas, the pairs 255

< f11, a11 > and < f12, a12 > are aligned as 256

per the judge’s output. For each aligned and non- 257

aligned pairs, we assign the score of 0 and 1 re- 258

spectively. Note that since the number of extracted 259

facts varies based on the sentence, the number of 260

questions generated per sentence also varies. The 261

consistency checking step, thus, enables the de- 262

composition of sentence-level information into dis- 263

crete factual elements and leverages and operates 264

under the assumption that the LLM’s responses 265

will remain consistent for factual information when 266

sampled at a low temperature. 267

3

Figure 2: Pipeline of the CONFACTCHECK approach, with NER tagging of outputs followed by the first comparison-
based check (Fact Alignment Check) and the secondary KS test-based probability check (Uniform Distribution
Check) for rechecking the classfied non-hallucinations, result in the final tagging of hallucinations.

3.2 Uniform Distribution Check268

After the fact-alignment step, we perform a subse-269

quent step to check if the facts were regenerated270

with high confidence. The underlying intuition be-271

hind this step is that if the LLM is confident in272

regenerating a fact correctly, the probability dis-273

tribution of the generated tokens will be skewed,274

with the selected tokens having significantly higher275

probabilities than the other possible tokens. This276

results in a non-uniform distribution of token prob-277

abilities. Conversely, if the LLM is uncertain, even278

though the generated tokens may have the highest279

relative probability, their values will be closer to280

those of alternative tokens (closer to a uniform dis-281

tribution) and indicating less confidence in LLM282

prediction. To quantify this effect, we apply the283

Kolmogorov–Smirnov (K–S) test to the top five to-284

kens associated with each regenerated fact fij . The285

test is conducted using a standard significance level286

of 0.05. A p-value below this threshold leads to the287

rejection of the null hypothesis (i.e., the top tokens288

are drawn from a uniform distribution) implying289

that the LLM exhibits confidence in its genera-290

tion.If the test indicates a non-uniform distribution,291

the LLM is deemed confident in regeneration, and292

original fact aij is classified as non-hallucinated.293

However, if the token probabilities follow a uni-294

form distribution, it is concluded that the particular295

fact is hallucinated, reflecting the LLM’s lack of296

confidence. The final hallucination score for a sen-297

tence Si is calculated by averaging the individual298

scores of aij present in it to give a probability of299

how likely a sentence has been hallucinated.300

4 Experimental Protocol 301

4.1 Task and Datasets 302

We consider two common task settings – question 303

answering (QA) and text summarization. In the QA 304

setting, LLMs are particularly susceptible to factual 305

hallucinations, especially when no external context 306

or information is provided with the input questions. 307

The summarization task is a representative of the 308

long-form text generation tasks where the output 309

is not limited to be a short answer (a phrase or a 310

sentence), and hence enables us to evaluate the abil- 311

ity of various methods to detect hallucinations in 312

longer pieces of text. Further, this setting also tests 313

the ability of the LLM to generate text that is faith- 314

ful to the input context (text to be summarized). 315

We use the following datasets for evaluation, en- 316

compassing both QA and summarization settings: 317

1. Natural Questions (NQ)-open (Kwiatkowski 318

et al., 2019) is an open-domain QA benchmark 319

derived from the Natural Questions dataset (Lee 320

et al., 2019).We use these questions as input for the 321

LLM to generate answers, which are then checked 322

for hallucination by various methods. 323

2. HotpotQA (Yang et al., 2018) is a QA dataset 324

that features complex questions requiring multi- 325

hop reasoning. 326

3. WebQA (Berant et al., 2013) dataset is a factoid 327

QA dataset where the questions are derived from 328

the Freebase knowledge base. 329

4. WikiBio (Manakul et al., 2023) is a halluci- 330

nation detection dataset derived from Wikipedia 331

biographies. It consists of 238 randomly selected 332

articles from among the longest 20% Wikipedia 333

4

articles. It also provides synthetic text generated by334

GPT-3 for each of the original articles, along with335

labels for factual correctness of the sentences.336

4.2 Baselines337

We use following four representative self-check338

and self-consistency based hallucination detection339

methods as baselines.340

HaDes (Liu et al., 2022) is an external reference-341

free method that leverages various token-level fea-342

tures such as POS tags, average word probability,343

mutual information, and TF-IDF scores to identify344

if a token is hallucinated or not.345

SelfCheckGPT (Manakul et al., 2023) is a sam-346

pling based approach built upon the intuition that347

for hallucinated responses, stochastically sampled348

responses for the same input are likely to diverge.349

SAC3 (Zhang et al., 2023a), another sampling-350

based approach that generates responses to multiple351

semantically similar inputs to the original input and352

checks for consistency in the generated outputs.353

INSIDE (Chen et al., 2024) detects hallucina-354

tions using the EigenScore metric, calculated us-355

ing the eigenvalues of the covariance matrix of356

the responses to measure the semantic consis-357

tency/diversity in the dense embedding space of358

the generated outputs.359

4.3 Implementation details360

Models Used. We use LLaMA3.1-8B-Instruct361

and Qwen2.5-7B-Instruct as the base LLMs for362

comparing CONFACTCHECK and various base-363

lines. Further, we use different models of Phi-3364

family to study how well CONFACTCHECK per-365

forms with LLMs of varying scale (Section 5.3).366

We present ablations that guided our design choices367

in Sections 5.4.2 and 5.4.3. We use the official368

implementation of HaDes1 for our experiments.369

For SAC3 (Zhang et al., 2023a), we compute the370

question-level consistency SAC3-Q score and em-371

ploy predetermined thresholds to discern the pres-372

ence of hallucinated outputs.373

Metrics for Analysis: We consider hallucina-374

tion detection as a binary classification task where375

the text generated by the LLM is either halluci-376

nated or not. For QA datasets, we assign labels of377

1 for hallucination and 0 for non-hallucination to378

the original outputs by comparing them with the379

golden answers in the QA datasets using GPT4.1-380

mini as a judge LLM. For WikiBio, each sentence-381

1https://github.com/microsoft/HaDes

level golden label is provided in the dataset itself. 382

We compare the baselines with our approach (see 383

Table 1) and report the AUC-PR scores on the 3 384

open-domain QA datasets, as well as the WikiBio 385

summarization dataset. Note that the SelfCheck- 386

GPT baseline is applicable on the WikiBio dataset, 387

as the others deal with only the QA task and require 388

questions as part of their input. 389

5 Empirical Results 390

5.1 CONFACTCHECK for Hallucination 391

Detection 392

Table 1 summarizes the results of different methods 393

for the four datasets and across two LLM back- 394

bones (LLaMA3.1-8b and Qwen2.5-7B). We ob- 395

serve that CONFACTCHECK outperforms all four 396

baselines for all the datasets and the two LM back- 397

bones. The second-best performing method in 398

each column (LLM backbone and dataset com- 399

bination) is underlined. We note that no base- 400

line model achieves consistently high performance 401

across all the settings. While INSIDE achieves 402

the second-best performance on NQ-Open (with 403

LLaMA3.1) and WebQA (with Qwen2.5), Self- 404

CheckGPT achieves the second-best performance 405

on three other QA settings. Further, only Self- 406

CheckGPT can be used for detecting hallucinations 407

in free-form text (WikiBio dataset), as the other 408

baselines are designed for detecting hallucinations 409

in QA tasks and need questions as part of their 410

input. CONFACTCHECK, on the other hand, can 411

detect hallucinations in QA as well as free-form 412

text settings and achieves strong outperformance 413

across all settings, with decent relative percentage 414

gains in four of the eight settings (from 7% to 20%). 415

Such strong performance of CONFACTCHECK can 416

be attributed to the fact that it identifies the key 417

factual tokens in the generated text and probes the 418

LLM regarding its knowledge around these tokens. 419

5.2 Computational Efficiency of Different 420

Methods 421

Recall from discussions in Section 1 that self-check 422

or self-refinement style methods suffer from high 423

latencies due to the need to query the LLM repeat- 424

edly to estimate the output probability distributions 425

or for a thorough verification of the generated out- 426

put. CONFACTCHECK, on the other hand, identi- 427

fies key facts in the generated output and gener- 428

ates targeted questions around these facts, thereby 429

greatly reducing the number of LLM calls. Fur- 430

5

https://github.com/microsoft/HaDes

Model NQ Open HotpotQA WebQA WikiBio

LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5

HaDes (Liu et al., 2022) 0.54 0.67 0.68 0.69 0.46 0.48 N/A N/A
SAC3 (Zhang et al., 2023a) 0.59 0.71 0.68 0.59 0.63 0.55 N/A N/A
SelfCheckGPT (Manakul et al., 2023) 0.56 0.75 0.76 0.77 0.51 0.63 0.82 0.83
INSIDE (Chen et al., 2024) 0.61 0.54 0.56 0.60 0.58 0.68 N/A N/A

CONFACTCHECK 0.73 0.80 0.83 0.84 0.66 0.71 0.86 0.85
% gain over best baseline +20% +7% +9% +9% +5% +4% +5% +2%

Table 1: AUC-PR scores for NQ Open, HotpotQA, WebQA, and WikiBio datasets. We compare ConFactCheck in
the same settings as the baselines, using LLaMA3.1-8B-Inst and Qwen2.5-7B-Inst as the base models. Settings
for CONFACTCHECK results use beam decoding on the whole pipeline (this yields best possible scores). The best
performing method in a given column is in bold and the second best performing model is underlined.

ther, CONFACTCHECK relies on lightweight com-431

parisons and statistical operations (Section 3) to432

check if the answers to targeted questions align433

with the original output. Table 2 presents the434

average number of LLM calls made and the av-435

erage inference time for different methods. We436

note from the table that CONFACTCHECK achieves437

fast inference times for both the LLaMA3.1 and438

Qwen2.5 backbones. INSIDE is slightly faster439

than CONFACTCHECK, however our pipeline of-440

fers up to≈3.5x speedup compared to SelfCheck-441

GPT (Manakul et al., 2023) (9.51s vs. 33.69s for442

LLaMA3.1) and ≈3x when compared to SAC3 (on443

Qwen2.5 model). Note also that in the case of444

CONFACTCHECK the number of calls being made445

to the LLM is equivalent to the average number of446

key facts extracted per input in the dataset plus one447

additional call to the judge-LLM for Fact Align-448

ment. On the other hand, SelfCheckGPT and SAC3449

need to repeatedly query the LLM to compute their450

respective scores and the accuracies increase with451

increasing number of queries to the LLM. In Ta-452

ble 2), we report the latency numbers for Self-453

CheckGPT and SAC3 with 5 LLM calls per ques-454

tion, and INSIDE with 10 LLM calls per question455

as recommended by the respective papers. Also456

note that the performance numbers for SelfCheck-457

GPT and SAC3 in Table 1 are with these higher458

number of LLM calls (5 each, while they can be459

lower) to exhibit their best performance with effi-460

ciency. All experiments on CONFACTCHECK and461

the baselines as reported were run using NVIDIA462

A6000 GPUs, using the mentioned open-source463

LLMs for querying and execution.464

5.3 CONFACTCHECKwith LLMs of Varying465

Scale466

We now study how the performance of467

CONFACTCHECK varies with the scale of468

Method # LLM calls LLaMA3.1 Qwen2.5

SelfCheckGPT 5 33.69 s 24.81 s
SAC3 5 15.46 s 29.37 s
INSIDE 10 4.89 s 5.68 s
CONFACTCHECK 3.8 9.51 s 9.03 s

Table 2: Average inference time (in seconds) for
CONFACTCHECK and the baselines (which have con-
figurable amount of LLM calls) over the samples of the
NQ_Open dataset while using LLaMA3.1 and Qwen2.5
models. CONFACTCHECK offers significant speedups
over the self-check baselines.

the underlying LLM. We use the Phi-3-Instruct 469

family (Abdin et al., 2024) of models for this 470

purpose and chose models of 3 sizes – 3.8B, 7B, 471

and 13B. Table 3 summarizes the results for the 472

three Phi-3 models on the three QA datasets. In 473

addition to the AUC-PR of hallucination detection, 474

we also report the percentage of hallucinated 475

outputs in each setting to understand the severity 476

of hallucinations at different model scales. We 477

note from the table that for these datasets, there 478

is a decent amount of hallucinated outputs, 479

which wavers from the 3.8B to 13B models. 480

This shows that just increasing the model size 481

may not eliminate hallucinations. We also note 482

that the ability of CONFACTCHECK to detect 483

hallucinations is similar and consistent across 484

different model sizes. While the Phi3-7B slightly 485

outperforms on NQ-open, the increasing model 486

sizes show moderate gains for the HotpotQA and 487

WebQA datasets. 488

5.4 Ablation Studies 489

We now describe different ablation stud- 490

ies that guided different design choices for 491

CONFACTCHECK. We report the impact of 492

fact-alignment and uniform distribution check 493

6

Model NQ Open HotpotQA WebQA
AUC %Hall. AUC %Hall. AUC %Hall.

Phi-3-4b 0.69 0.65 0.74 0.69 0.63 0.49
Phi-3-7b 0.73 0.58 0.74 0.60 0.62 0.46
Phi-3-13b 0.71 0.54 0.76 0.64 0.65 0.50

Table 3: Performance of CONFACTCHECK for different
size models of the Phi-3 family. We report AUC-PR of
hallucination detection and percentage of hallucinated
outputs (Hall.) for the 3.8B, 7b, and 13B models for the
three QA datasets.

steps in the pipeline (Section 3). We also describe494

the effects of different decoding strategies and495

methods for detecting key facts in the input.496

5.4.1 Role of Different Components in497

CONFACTCHECK498

Recall that there are two main steps in499

CONFACTCHECK – fact alignment and uniform500

distribution check. The fact alignment step at-501

tempts to regenerate the key facts in the generated502

output by querying the LLM with targeted ques-503

tions. The regenerated facts are then compared504

with the original output for consistency. The sub-505

sequent uniform distribution check acts as another506

verification layer by relying on the model’s confi-507

dence in the generation of regenerated key facts. Ta-508

ble 4 summarizes the hallucination detection scores509

achieved by just the fact-alignment step along with510

the improvements achieved by performing the sub-511

sequent uniform distribution check (the complete512

pipeline). We note from the table that the uniform513

distribution step plays a crucial role in the overall514

performance of CONFACTCHECK with maximum515

gains of up to 18%.516

Component LLM NQ Open HotpotQA WebQA

Fact Alignment LLaMA3.1 0.66 0.79 0.56
+ Distribution Check LLaMA3.1 0.73 0.83 0.66
% gain 11% 5% 18%

Fact Alignment Qwen2.5 0.79 0.82 0.68
+ Distribution Check Qwen2.5 0.8 0.84 0.71
% gain 1% 2% 5%

Table 4: AUC-PR scores achieved by the two major com-
ponents of CONFACTCHECK. A uniform distribution
check after the fact alignment step leads to significant
performance gains.

5.4.2 Effect of Decoding Strategies517

Regardless of how the original response, subject to518

hallucination assessment, was generated, we exam-519

ine the variations in regenerated factual responses520

when decoding strategies are varied. The following 521

decoding strategies were utilized: 522

• Greedy Decoding: Greedy decoding involves 523

selecting the token from the vocabulary V 524

with the highest conditional probability. This 525

suggests prioritizing key facts for which the 526

model has the highest immediate confidence. 527

• Beam Decoding: Beam decoding repre- 528

sents an enhancement over greedy decoding. 529

In Beam decoding, a parameter known as 530

beam_size determines the number of tokens 531

with the highest conditional probabilities con- 532

sidered at each time step t. For our experi- 533

ments, we considered the beam size to be 5. 534

Model NQ Open HotpotQA WebQA WikiBio

LLaMA3.1 (Greedy) 0.70 0.81 0.62 0.86
LLaMA3.1 (Beam) 0.73 0.83 0.66 0.86

Qwen2.5 (Greedy) 0.79 0.82 0.66 0.85
Qwen2.5 (Beam) 0.80 0.84 0.71 0.85

Table 5: The AUC-PR scores of CONFACTCHECK with
LLaMA3.1-8B-Inst and Qwen2.5-7b-Inst models us-
ing different decoding strategies for fact regeneration
on the QA datasets. Beam decoding (beam size = 5)
outperforms Greedy Decoding in most of the settings.

Beam decoding improves the detection of hal- 535

lucinations during fact regeneration compared to 536

greedy search. This advantage likely arises because 537

beam decoding explores multiple possible answer 538

paths before selecting the most likely one. Beam 539

decoding also implicitly mitigates hallucinations 540

by preferring sequences with higher cumulative 541

confidence, which are more likely to reflect con- 542

sistent factual patterns across generations. As a 543

result, when regenerating key facts, beam decoding 544

ensures a more informed selection of entities, and 545

the results in Table 5 show its improvements. Chen 546

et al. (2018) further corroborate this by indicating 547

that beam decoding generally outperforms greedy 548

decoding. By maintaining multiple candidate gen- 549

erations, beam decoding reduces the likelihood of 550

factual errors, ensuring the correct regeneration of 551

facts. However, this decoding strategy does involve 552

a trade-off with computational efficiency compared 553

to greedy decoding. 554

5.4.3 Tagging of key-facts 555

Identifying of key facts in the generated text is a 556

crucial step in CONFACTCHECK as they are used 557

to probe the LLM in a targeted fashion. Hence, 558

7

the choice of method used for identifying key facts559

in the generated text can have significant impact560

on the overall performance. Kai et al. (2024) sug-561

gests that factual information in a sentence can be562

identified using POS tagging, specifically ’NNP’563

or ’NNPS’. Building on this, we selected the tags564

’NNP’, ’NNPS’, ’CD’, and ’RB’ to be considered565

key facts. As an alternative, we also evaluated us-566

ing NER tagging and considering identified named567

entities as key facts. We used Stanford’s Stanza (Qi568

et al., 2020) library for NER and POS tagging. Ad-569

ditionally, we also sampled random tokens from570

the sentence and used them as key facts, ensur-571

ing that the number of sampled tokens equaled the572

number of NER tags present. Table 6 summarizes573

the results for the three strategies and reveals that574

though the results are similar, NER outperforms575

both POS tagging and random token sampling in576

more settings to identify which tokens contribute577

to the factuality of a sentence or paragraph.

Tagging NQ Open HotpotQA WebQA

LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5 LLaMA3.1 Qwen2.5

Random 0.72 0.78 0.82 0.83 0.68 0.69
POS 0.71 0.81 0.82 0.83 0.66 0.7
NER 0.73 0.8 0.83 0.84 0.66 0.71

Table 6: The AUC-PR scores while using different tag-
ging strategies on LLaMA3.1-8B-Inst and Qwen2.5-7B-
Inst for identifying key facts in the sentence. NER is
observed to perform slightly better in more cases over
these three QA datasets.

578

5.5 Key Strengths of CONFACTCHECK579

We now discuss the major strengths of580

CONFACTCHECK which are summarized as581

follows.582

Training-Free Operation: Our generic approach583

requires only the LLM-generated output for fact-584

alignment check stage of the pipeline and does not585

necessitate dataset- or task-specific training. The586

number of generated questions is determined by587

the factual content within the generated sentence,588

avoiding heuristic selection.In the uniform distribu-589

tion check, when the original output has been gen-590

erated using an API where the internal states of the591

model are not available for accessing the probabil-592

ity distribution, CONFACTCHECK can leverage an593

open-source LLM compatible with the user’s hard-594

ware in the fact-alignment check to cross-verify595

facts and compute token probabilities.596

Ease of Implementation: CONFACTCHECK does597

not require access to model weights or underlying598

training data. Requiring only the model’s output 599

and the LLM used for response generation, our 600

method can be deployed on the same device as 601

the response generation process, whether through 602

a web interface, API, or a locally executed model. 603

Even for the use of KS test, we require only the 604

output token probabilities of the top-5 generations, 605

which can be directly stored during LLM genera- 606

tion. 607

Consistent Sample Scoring: Unlike previ- 608

ous stochastic hallucination detection methods, 609

such as SelfCheckGPT (Manakul et al., 2023), 610

CONFACTCHECK does not rely on multiple LLM 611

outputs as CONFACTCHECK probes factual tokens 612

at 0 temperature. This ensures score consistency 613

across repeated evaluations of the same sample. 614

Furthermore, by avoiding multiple LLM calls for 615

a single query, CONFACTCHECK reduces the com- 616

putational overhead compared to methods requiring 617

multiple LLM generations. 618

Interpretability: CONFACTCHECK provides key- 619

fact-level scoring, enabling users to identify 620

specific hallucinated facts. For instance, in 621

the running example of Figure 1, in addition 622

to classifying the output text as hallucinated, 623

CONFACTCHECK explicitly identifies that the fact 624

a21 = {1978, 1986 and 2006} is hallucinated 625

(non-aligned). Operating on fine-grained facts 626

rather than entire sentences, our pipeline offers 627

a greater degree of explainability than previous ap- 628

proaches like SAC (Zhang et al., 2023a), clarifying 629

the rationale behind a hallucination classification. 630

6 Conclusions 631

In this work, we propose CONFACTCHECK, a 632

novel fact-based hallucination detection pipeline, 633

and compare it to existing approaches. We eval- 634

uate our method on four factuality measurement 635

datasets, providing the first comparison between 636

existing factual hallucination detection methods. 637

Our findings reveal that despite being less compu- 638

tationally expensive and not requiring any training, 639

our method performs on par with other approaches 640

while being significantly faster. 641

7 Limitations 642

Despite the high performance, ease of use, and 643

efficiency offered by CONFACTCHECK, it is not 644

without limitations. We analyze and present repre- 645

sentative examples of failure cases to highlight its 646

shortcomings and possible future areas of improve- 647

8

ment.648

Effect of incorrect tags on correct outputs:649

Consider the following example from HotpotQA:650

Which of the office buildings used to staff the White651

House used to be known as the State, War, and Navy652

Building? For this question, the answer provided653

by an LLM is the following. The office building654

used to staff the White House that was once known655

as the State, War, and Navy Building is now known656

as the Eisenhower Executive Office Building. This657

building was constructed in 1952 and was named658

after President Dwight D. Eisenhower.659

Although Eisenhower Executive Office Building660

is factually correct, our pipeline categorizes the661

paragraph as hallucinated. This discrepancy arises662

because our model identifies the fact ‘1952’ as hal-663

lucinated because of the building’s actual construc-664

tion period between 1871 and 1888. This contrasts665

with the golden output from HotpotQA, which does666

not flag the answer as hallucinated (when the judge667

LLM is used on the original output and golden an-668

swer to get the golden label). However, due to the669

presence of other hallucinated facts, our pipeline as-670

signs a hallucinated tag to the paragraph. Summar-671

ily, while the model correctly identifies the building672

as the Eisenhower Executive Office Building, it er-673

roneously states the construction year as 1952 (ac-674

tual: 1871–1888). As a result, CONFACTCHECK675

tags this factual mismatch, leading to a hallucina-676

tion score for the entire paragraph.677

Inefficiency in question generation:678

The generated questions extracted key facts are679

done by the T5-based finetuned model. While it is680

efficient in generating pinpointing questions with681

the extracted fact as answer with original output as682

context, some ambigious questions such as “Who683

was the building named after?” can be generated.684

This ambiguity can result in inaccuracies when re-685

generating facts. For this, using a much larger LLM686

can be useful, however it would be computationally687

expensive and time-inefficient while not providing688

significant improvements.689

Language-based limited usecases:690

In addition, we also note that the proposed691

CONFACTCHECK has only been tested for English692

language and LLMs trained mostly on English data.693

Although the framework is theoretically language-694

agnostic, its reliance on NER/POS tools constrains695

applicability in low-resource languages lacking ro-696

bust NLP pipelines. Further, the performance of697

CONFACTCHECK depends crucially on intermedi-698

ate steps requiring NER and POS tagging, which699

may not always be available for low-resource lan- 700

guages. 701

References 702

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad 703
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has- 704
san Awadalla, Nguyen Bach, Amit Bahree, Arash 705
Bakhtiari, Harkirat Behl, Alon Benhaim, Misha 706
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin 707
Cai, Caio César Teodoro Mendes, Weizhu Chen, 708
Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, 709
Gustavo de Rosa, Matthew Dixon, Ronen Eldan, 710
Dan Iter, Abhishek Goswami, Suriya Gunasekar, Em- 711
man Haider, Junheng Hao, Russell J. Hewett, Jamie 712
Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, 713
Nikos Karampatziakis, Dongwoo Kim, Mahmoud 714
Khademi, Lev Kurilenko, James R. Lee, Yin Tat 715
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Xi- 716
hui (Eric) Lin, Zeqi Lin, Piyush Madan, Arindam 717
Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, 718
Barun Patra, Daniel Perez-Becker, Thomas Portet, 719
Reid Pryzant, Heyang Qin, Marko Radmilac, Corby 720
Rosset, Sambudha Roy, Olli Saarikivi, Amin Saied, 721
Adil Salim, Michael Santacroce, Shital Shah, Ning 722
Shang, Hiteshi Sharma, Xia Song, Olatunji Ruwase, 723
Xin Wang, Rachel Ward, Guanhua Wang, Philipp 724
Witte, Michael Wyatt, Can Xu, Jiahang Xu, Weijian 725
Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, 726
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, 727
Li Lyna Zhang, Yi Zhang, Yunan Zhang, and Xiren 728
Zhou. 2024. Phi-3 technical report: A highly capable 729
language model locally on your phone. Technical 730
Report MSR-TR-2024-12, Microsoft. 731

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 732
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 733
Diogo Almeida, Janko Altenschmidt, Sam Altman, 734
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 735
ArXiv preprint, abs/2303.08774. 736

Amos Azaria and Tom Mitchell. 2023a. The internal 737
state of an LLM knows when it’s lying. In Find- 738
ings of the Association for Computational Linguistics: 739
EMNLP 2023, pages 967–976, Singapore. Associa- 740
tion for Computational Linguistics. 741

Amos Azaria and Tom Mitchell. 2023b. The internal 742
state of an LLM knows when it’s lying. In Find- 743
ings of the Association for Computational Linguistics: 744
EMNLP 2023, pages 967–976, Singapore. Associa- 745
tion for Computational Linguistics. 746

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, 747
Zongbo Han, Zheng Zhang, and Mike Zheng Shou. 748
2024. Hallucination of multimodal large language 749
models: A survey. ArXiv preprint, abs/2404.18930. 750

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy 751
Liang. 2013. Semantic parsing on Freebase from 752
question-answer pairs. In Proceedings of the 2013 753
Conference on Empirical Methods in Natural Lan- 754
guage Processing, pages 1533–1544, Seattle, Wash- 755

9

https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160

ington, USA. Association for Computational Linguis-756
tics.757

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu,758
Mingyuan Tao, Zhihang Fu, and Jieping Ye. 2024.759
INSIDE: llms’ internal states retain the power of hal-760
lucination detection. In The Twelfth International761
Conference on Learning Representations, ICLR 2024,762
Vienna, Austria, May 7-11, 2024. OpenReview.net.763

Songqiang Chen, Shuo Jin, and Xiaoyuan Xie. 2021.764
Testing your question answering software via ask-765
ing recursively. In 2021 36th IEEE/ACM Interna-766
tional Conference on Automated Software Engineer-767
ing (ASE), pages 104–116.768

Yun Chen, Victor O.K. Li, Kyunghyun Cho, and Samuel769
Bowman. 2018. A stable and effective learning strat-770
egy for trainable greedy decoding. In Proceedings of771
the 2018 Conference on Empirical Methods in Natu-772
ral Language Processing, pages 380–390, Brussels,773
Belgium. Association for Computational Linguistics.774

Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, Hongzhi775
Zhang, Fuzheng Zhang, Di Zhang, Kun Gai, and776
Ji-Rong Wen. 2024. Small agent can also rock! em-777
powering small language models as hallucination778
detector. ArXiv preprint, abs/2406.11277.779

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,780
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul781
Barham, Hyung Won Chung, Charles Sutton, Sebas-782
tian Gehrmann, et al. 2023. Palm: Scaling language783
modeling with pathways. Journal of Machine Learn-784
ing Research, 24(240):1–113.785

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon786
Kim, James Glass, and Pengcheng He. 2023. Dola:787
Decoding by contrasting layers improves factual-788
ity in large language models. ArXiv preprint,789
abs/2309.03883.790

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,791
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and792
Jason Weston. 2024. Chain-of-verification reduces793
hallucination in large language models. In Findings794
of the Association for Computational Linguistics ACL795
2024, pages 3563–3578, Bangkok, Thailand and vir-796
tual meeting. Association for Computational Linguis-797
tics.798

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai799
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas800
Scialom, Idan Szpektor, Avinatan Hassidim, and801
Yossi Matias. 2022. TRUE: Re-evaluating factual802
consistency evaluation. In Proceedings of the Second803
DialDoc Workshop on Document-grounded Dialogue804
and Conversational Question Answering, pages 161–805
175, Dublin, Ireland. Association for Computational806
Linguistics.807

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,808
Zhangyin Feng, Haotian Wang, Qianglong Chen,809
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.810
A survey on hallucination in large language models:811
Principles, taxonomy, challenges, and open questions.812
ArXiv preprint, abs/2311.05232.813

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 814
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 815
Madotto, and Pascale Fung. 2023. Survey of halluci- 816
nation in natural language generation. ACM Comput- 817
ing Surveys, 55(12). 818

Jushi Kai, Tianhang Zhang, Hai Hu, and Zhouhan 819
Lin. 2024. Sh2: Self-highlighted hesitation helps 820
you decode more truthfully. ArXiv preprint, 821
abs/2401.05930. 822

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 823
field, Michael Collins, Ankur Parikh, Chris Alberti, 824
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 825
ton Lee, Kristina Toutanova, Llion Jones, Matthew 826
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob 827
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 828
ral questions: A benchmark for question answering 829
research. Transactions of the Association for Compu- 830
tational Linguistics, 7:452–466. 831

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 832
2019. Latent retrieval for weakly supervised open 833
domain question answering. In Proceedings of the 834
57th Annual Meeting of the Association for Computa- 835
tional Linguistics, pages 6086–6096, Florence, Italy. 836
Association for Computational Linguistics. 837

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, 838
Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li, 839
and Wei Peng. 2024. A survey on hallucination 840
in large vision-language models. ArXiv preprint, 841
abs/2402.00253. 842

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, 843
Zhifang Sui, Weizhu Chen, and Bill Dolan. 2022. 844
A token-level reference-free hallucination detection 845
benchmark for free-form text generation. In Proceed- 846
ings of the 60th Annual Meeting of the Association 847
for Computational Linguistics (Volume 1: Long Pa- 848
pers), pages 6723–6737, Dublin, Ireland. Association 849
for Computational Linguistics. 850

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 851
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 852
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 853
Shashank Gupta, Bodhisattwa Prasad Majumder, 854
Katherine Hermann, Sean Welleck, Amir Yazdan- 855
bakhsh, and Peter Clark. 2023. Self-refine: Itera- 856
tive refinement with self-feedback. In Advances in 857
Neural Information Processing Systems 36: Annual 858
Conference on Neural Information Processing Sys- 859
tems 2023, NeurIPS 2023, New Orleans, LA, USA, 860
December 10 - 16, 2023. 861

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023. 862
SelfCheckGPT: Zero-resource black-box hallucina- 863
tion detection for generative large language models. 864
In Proceedings of the 2023 Conference on Empiri- 865
cal Methods in Natural Language Processing, pages 866
9004–9017, Singapore. Association for Computa- 867
tional Linguistics. 868

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, 869
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle- 870
moyer, and Hannaneh Hajishirzi. 2023. FActScore: 871

10

https://openreview.net/forum?id=Zj12nzlQbz
https://openreview.net/forum?id=Zj12nzlQbz
https://openreview.net/forum?id=Zj12nzlQbz
https://doi.org/10.1109/ASE51524.2021.9678670
https://doi.org/10.1109/ASE51524.2021.9678670
https://doi.org/10.1109/ASE51524.2021.9678670
https://doi.org/10.18653/v1/D18-1035
https://doi.org/10.18653/v1/D18-1035
https://doi.org/10.18653/v1/D18-1035
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2406.11277
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://arxiv.org/abs/2309.03883
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://doi.org/10.18653/v1/2022.dialdoc-1.19
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2401.05930
https://arxiv.org/abs/2401.05930
https://arxiv.org/abs/2401.05930
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://doi.org/10.18653/v1/2022.acl-long.464
https://doi.org/10.18653/v1/2022.acl-long.464
https://doi.org/10.18653/v1/2022.acl-long.464
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741

Fine-grained atomic evaluation of factual precision872
in long form text generation. In Proceedings of the873
2023 Conference on Empirical Methods in Natural874
Language Processing, pages 12076–12100, Singa-875
pore. Association for Computational Linguistics.876

Niels Mündler, Jingxuan He, Slobodan Jenko, and Mar-877
tin Vechev. 2023. Self-contradictory hallucinations878
of large language models: Evaluation, detection and879
mitigation. ArXiv preprint, abs/2305.15852.880

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and881
Christopher D. Manning. 2020. Stanza: A Python882
natural language processing toolkit for many human883
languages. In Proceedings of the 58th Annual Meet-884
ing of the Association for Computational Linguistics:885
System Demonstrations.886

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia887
Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih. 2024.888
Trusting your evidence: Hallucinate less with context-889
aware decoding. In Proceedings of the 2024 Confer-890
ence of the North American Chapter of the Associ-891
ation for Computational Linguistics: Human Lan-892
guage Technologies (Volume 2: Short Papers), pages893
783–791, Mexico City, Mexico. Association for Com-894
putational Linguistics.895

James Thorne, Andreas Vlachos, Christos896
Christodoulopoulos, and Arpit Mittal. 2018.897
FEVER: a large-scale dataset for fact extraction898
and VERification. In Proceedings of the 2018899
Conference of the North American Chapter of900
the Association for Computational Linguistics:901
Human Language Technologies, Volume 1 (Long902
Papers), pages 809–819, New Orleans, Louisiana.903
Association for Computational Linguistics.904

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-905
pher D Manning, and Chelsea Finn. 2023. Fine-906
tuning language models for factuality. ArXiv907
preprint, abs/2311.08401.908

S. M Towhidul Islam Tonmoy, S M Mehedi Zaman,909
Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha,910
and Amitava Das. 2024. A comprehensive survey of911
hallucination mitigation techniques in large language912
models. Preprint, arXiv:2401.01313.913

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.914
2024. Hallucination is inevitable: An innate lim-915
itation of large language models. ArXiv preprint,916
abs/2401.11817.917

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,918
William Cohen, Ruslan Salakhutdinov, and Christo-919
pher D. Manning. 2018. HotpotQA: A dataset for920
diverse, explainable multi-hop question answering.921
In Proceedings of the 2018 Conference on Empiri-922
cal Methods in Natural Language Processing, pages923
2369–2380, Brussels, Belgium. Association for Com-924
putational Linguistics.925

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan926
Weill, Royi Ronen, and Noam Koenigstein. 2024.927

InterrogateLLM: Zero-resource hallucination detec- 928
tion in LLM-generated answers. In Proceedings 929
of the 62nd Annual Meeting of the Association for 930
Computational Linguistics (Volume 1: Long Papers), 931
pages 9333–9347, Bangkok, Thailand. Association 932
for Computational Linguistics. 933

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Ma- 934
lin, and Sricharan Kumar. 2023a. SAC3: Reliable 935
hallucination detection in black-box language models 936
via semantic-aware cross-check consistency. In Find- 937
ings of the Association for Computational Linguis- 938
tics: EMNLP 2023, pages 15445–15458, Singapore. 939
Association for Computational Linguistics. 940

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 941
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 942
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei 943
Bi, Freda Shi, and Shuming Shi. 2023b. Siren’s song 944
in the ai ocean: A survey on hallucination in large 945
language models. Preprint, arXiv:2309.01219. 946

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 947
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be- 948
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, 949
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao 950
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang 951
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 952
2023. A survey of large language models. Preprint, 953
arXiv:2303.18223. 954

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 955
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 956
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 957
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 958
llm-as-a-judge with mt-bench and chatbot arena. 959

A Models and Implementations 960

A.1 SelfCheckGPT (Manakul et al., 2023) 961

One of the first papers to counter zero-resource hal- 962

lucination detection, we compare SelfCheckGPT 963

MQAG scores present in Table 1. We set the num- 964

ber of questions per sentence to be 5. The scoring 965

method selected was Bayes with Alpha. Both β1 966

and β2 were set to 0.95. 967

A.2 SAC3 (Zhang et al., 2023a) 968

As discussed above, for using SAC3 as one of 969

the baselines, we evaluate it using the instruc- 970

tion finetuned model version of LLaMA3.1-8B and 971

Qwen2.5-7B. We calculate the question-level con- 972

sistency score (SAC3-Q) which is highlighted in 973

the original study as a score describing the cross- 974

check consistency between 2 types of QA pairs, 975

i) the original question and generated answer as a 976

pair and ii) a number of semantically similar gen- 977

erated questions along with their answers as pairs. 978

For feasibility in accordance with our available 979

computational resources, we experimented with 980

11

https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://arxiv.org/abs/2305.15852
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://aclanthology.org/2024.naacl-short.69
https://aclanthology.org/2024.naacl-short.69
https://aclanthology.org/2024.naacl-short.69
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2311.08401
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.acl-long.506
https://doi.org/10.18653/v1/2024.acl-long.506
https://doi.org/10.18653/v1/2024.acl-long.506
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://doi.org/10.18653/v1/2023.findings-emnlp.1032
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2303.18223

2 generated perturbated QA pairs. This number981

can be increased or varied to check for different982

comparisons, but Zhang et al. (2023a) suggest that983

using between 2 to 5 perturbed questions per data984

sample yields similar quantitative results.985

A.3 HaDes (Liu et al., 2022)986

HaDeS is a novel token-free hallucination detec-987

tion dataset for free-form text generation. For the988

dataset creation, raw text from web data is per-989

turbed with out-of-box BERT model. Human an-990

notators are then employed to assess whether the991

perturbed text spans are hallucinations given the992

original text. The final model is a binary classifier993

for detecting hallucinated/non-hallucinated text.994

A.4 INSIDE995

(Chen et al., 2024) INSIDE is a hallucination de-996

tection method which deals with the interal states997

of LLMs during generation to detect for hallucina-998

tions in outputs. Their approach utilizes the layer999

of sentence embedding outputs and exploits the1000

eigenvalues of the covariance matrix of outputs to1001

measure consistency in the dense embedding space.1002

The define a particular score known as EigenScore,1003

which is the logarithmic determinant of the covari-1004

ance matrix between a certain K number of outputs’1005

sentence embeddings (to check for the consistency1006

in the relationship of those K outputs’ embeddings).1007

Using it as a baseline, we implement it with our1008

settings with LLaMA3.1-8B and Qwen2.5-7B as the1009

LLMs on the 3 QA datasets and calculate the AUC-1010

PR scores.1011

B Usage of ConFactCheck on datasets1012

B.1 Open-Domain Question Answering1013

Three datasets are used for this particular task, as1014

shown above. We use ConFactCheck on the origi-1015

nally generated outputs for each of the questions in1016

the datasets, to check for whether the LLMs gen-1017

erating the original answers have hallucinated or1018

not. ConFactCheck is applied on a sentence-level1019

basis, where the outputs are split into sentences,1020

following which key facts are extracted and Con-1021

FactCheck begins the checking mechanism.1022

B.2 Text-based Summarization1023

For this particular task, we use the WikiBio dataset1024

which contains summaries of individuals collected1025

from Wikipedia, along with synthetic GPT3 gen-1026

erated summaries of the same. ConFactCheck is1027

applied as a sentence-level detector on the respec- 1028

tive sentences of each of the provided synthetic 1029

summaries, which have be annotated with their hal- 1030

lucination labels at the said sentence-level as part 1031

of the dataset. We obtain sentence level halluci- 1032

nation scores and compare those with the golden 1033

annotate labels per sentence, and for passage-level 1034

hallucinations, we average over the sentence-level 1035

scores to get overall scores for passages. 1036

C F1-Score based Matching 1037

In our primary pipeline, factual alignment is deter- 1038

mined using an LLM-as-a-judge approach. Specif- 1039

ically, we query OpenAI’s GPT-4.1-mini via the 1040

API to compare extracted and regenerated facts and 1041

assign binary alignment labels. While this method 1042

yields strong performance, it requires reliable ac- 1043

cess to the OpenAI API and incurs associated com- 1044

putational and cost overheads. 1045

To support use cases where API access is restricted 1046

or an external LLM judge is unavailable, we also 1047

explore an alternative matching strategy based on 1048

simple lexical overlap using F1-score. In this vari- 1049

ant, alignment between fact pairs is determined by 1050

computing the F1-score of their token overlap, and 1051

pairs exceeding a predefined threshold are marked 1052

as aligned. The table below presents the AUC- 1053

PR scores across three datasets using this heuristic 1054

method at various F1-score thresholds, where the 1055

M′ is LLaMA3.1-8B-Instruct (used for the fact 1056

regeneration). For this scoring, we split the extract 1057

and regenerated facts into lists of individual words, 1058

and compute the F1-scores on these lists. Different 1059

thresholds are used (as shown in Table 7 below) to 1060

assign 0/1 labels for similar/dissimilar facts. 1061

Although this approach is less semantically robust 1062

than LLM-based judgment, it offers a lightweight, 1063

fully offline alternative that still provides reason- 1064

able scores that are close to the main scores in 1065

our pipeline, especially in resource-constrained set- 1066

tings. 1067

F1-score LLaMA3-NQopen LLaMA3-Hotpot LLaMA3-WebQA

0.4 0.640 0.791 0.550
0.5 0.648 0.795 0.556
0.6 0.659 0.796 0.556
0.7 0.662 0.798 0.562
0.8 0.664 0.800 0.570

Table 7: F1-score based matching with different thresh-
olds in fact alignment (ranging from 0.4 to 0.8)

1068

12

D Pseudocode for the algorithm proposed1069

The hallucination detection algorithm is designed1070

as a two-step process applied at the sentence level1071

for a generated answer. Given a generated answer1072

A and a modelM′, the goal is to produce a score1073

for each sentence indicating the likelihood of hal-1074

lucination.1075

In the first step as highlighted in Algorithm 1, the1076

generated answer is split into sentences, and each1077

sentence is analyzed to extract atomic facts using1078

Named Entity Recognition (NER). For each key1079

fact aij in sentence Si, a corresponding question qij1080

is generated. The modelM′ then provides an an-1081

swer fij to this question. A separate Align function1082

(which uses a judge LLM for fact pair comparison)1083

evaluates whether the fact aij is consistent with the1084

answer fij . If aligned, the fact is marked as consis-1085

tent (score 0), otherwise as hallucinated (score 1).1086

This step yields an initial binary score list for all1087

facts.1088

In Algorithm 2, for each fact marked as consistent1089

(score 0) in Step 1, we compute the logit scores of1090

the top k tokens in the model’s answer fij . These1091

scores are converted into a probability distribution.1092

We then perform a Kolmogorov–Smirnov (KS) test1093

to statistically compare this empirical distribution1094

against a uniform distribution. If the KS test yields1095

a p-value less than a significance threshold (typ-1096

ically 0.05), the null hypothesis — that the two1097

distributions are the same — is rejected. This indi-1098

cates that the distribution is significantly different1099

from uniform, and the fact remains marked as con-1100

sistent (score 0). However, if the p-value is greater1101

than or equal to 0.05, the distribution is consid-1102

ered close to uniform, signaling high uncertainty1103

in the model’s response. In this case, the fact is re-1104

classified as hallucinated (score 1). Sentence-level1105

hallucination scores are then calculated by averag-1106

ing the final scores of all facts in the sentence.1107

Algorithm 1 Fact Alignment Check
Input: Generated Answer A, ModelM′

Output: Initial Score List [sij] for all facts aij
▷ Step 1: Sentence splitting and fact
extraction

1 Perform coreference resolution on A and split into
sentences {S1, S2, . . . , SN}

2 foreach sentence Si in A do
3 Extract atomic facts {aij} from Si using NER
4 foreach fact aij do
5 Generate question qij ← Q(aij | Si) Get

answer fij ←M′(qij)
6 if Align(fij , aij) then
7 Set sij ← 0 ▷ Fact is consistent
8 else
9 Set sij ← 1 ▷ Fact is

hallucinated

10 return [sij]

Algorithm 2 Uniformity Check Phase (via KS
Test)
Input: Initial Score List [sij], Corresponding An-

swer Logits sijk
Output: Final Sentence Scores

[Score(S1), . . . , Score(SN)]
11 foreach sentence Si do
12 Initialize Score(Si)← 0
13 foreach fact aij in Si do
14 if sij == 0 then
15 Compute normalized probabilities:

p(wijk) =
esijk∑k

m=1 e
sijm

▷ Compare with uniform
distribution

16 Perform KS test between p(wijk) and
uniform distribution

17 if p-value ≥ 0.05 then
18 Set sij ← 1 ▷ Mark as

hallucinated

19 Add sij to Score(Si)

20 Normalize: Score(Si)← Score(Si)
#facts in Si

21 return [Score(S1), . . . , Score(SN)]

E Prompting Format 1108

13

Prompt Templates Used in the Pipeline

1. Fact Regeneration Prompt (Manually Constructed Chat Format):
This prompt is used to generate fact-based questions from the given sentence. The prompt follows a
constructed chat format, to be manually customized for the model in use (e.g., LLaMA3.1, Qwen2.5).
It is used for each of the questions generated by the T5-finetuned model on the extract key facts.

i) Example format for LLaMA3-8B-Instruct:

'''<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a Question-answering assistant, only answer the question.
<|eot_id|><|start_header_id|>user<|end_header_id|>
Question: <insert question here>
<|eot_id|><|start_header_id|>assistant<|end_header_id|>'''

2. Fact Alignment Prompt (used with the judge LLM):

Few-Shot prompt used to check for alignment between extract and regenerated facts using LLM-as-
a-judge. This prompt is well-structured to give the judge LLM complete understanding of how to
generate the alignment output for the pairs of facts that it is applied on.

”’You are a fact comparison expert. Your task is to determine whether pairs of extracted and
regenerated facts refer to the same real-world entity, concept, or meaning.
For each pair:
- Return ‘0‘ if the two facts refer to the same thing, even if the wording, specificity, or structure
is different.
- Return ‘1‘ if the two facts do not refer to the same thing, or if their meanings conflict.
Guidelines:
- Minor differences in wording, grammar, or capitalization should be ignored.
- Partial vs full names (e.g., "Vancouver" vs "Vancouver, British Columbia") should match if they
refer to the same entity.
- Aliases and synonyms (e.g., "Roger Pirates" vs "Roger crew") should count as a match.
- Abbreviations (e.g., "UCLA" vs "University of California, Los Angeles") are also matches.
- Return ‘1‘ only if clearly unrelated or ambiguous.
Format:
Return a Python-style list of exactly {n} binary values (0 or 1), corresponding to each fact pair
in order.
Do not output anything else. If unsure, still return a complete list.
Examples:

• "President Donald J. Trump" vs "Donald Trump" → 0

• "Vancouver, British Columbia" vs "Vancouver" → 0

• "five" vs "5 seasons" → 0

• "UCLA" vs "University of California, Los Angeles" → 0

• "Microsoft" vs "Apple" → 1

Now judge the following fact pairs: {pairs}

Output: ”’

1109

14

F Step-by-Step CONFACTCHECK1110

Example1111

15

Example: Question and Answer Processing Step-by-Step

Input:
Question: Who won the FIFA World Cup in 2018?
Answer: The FIFA World Cup 2018 was won by France.

Step 1: Extract sentences from the original answer

• The sentence splitter extracts:

"The FIFA World Cup in 2022 was won by Argentina."

Step 2: Extract Key facts using NER

• Named entities detected: “FIFA World Cup”, “Argentina”, “2022”.

• Generated questions using T5-finetuned model for each key fact:
FIFA World Cup → Q1: Which tournament did Argentina win in 2022?
Argentina → Q2: Who won the FIFA World Cup in 2022?
2022 → Q2: When did Argentina win the FIFA World Cup?

Step 3: Generate pinpointed answers

• Using the LM to answer the generated questions:

Answers = ["FIFA World Cup", "Argentina", “1978, 1986 and 2022”]

Step 4: Compare original and regenerated answers

• Use Huggingface QA pipeline to extract shortened pinpointed answers from
original and regenerated contexts.

• Judge if answers match (0 = match, 1 = hallucination):
Initial hallucination flags = [0, 0, 1]

Step 5: Final hallucination check with probability

• Use token-level probabilities and KS-test to confirm hallucination.

• Final hallucination flags remain: [0, 1, 1]

Figure 3: Step-by-step example explaining the methodology of CONFACTCHECK

16

	Introduction
	Related Work
	The ConFactCheck Approach
	Fact Alignment Check
	Uniform Distribution Check

	Experimental Protocol
	Task and Datasets
	Baselines
	Implementation details

	Empirical Results
	ConFactCheck for Hallucination Detection
	Computational Efficiency of Different Methods
	ConFactCheckwith LLMs of Varying Scale
	Ablation Studies
	Role of Different Components in ConFactCheck
	Effect of Decoding Strategies
	Tagging of key-facts

	Key Strengths of ConFactCheck

	Conclusions
	Limitations
	Models and Implementations
	SelfCheckGPT manakul2023selfcheckgpt
	SAC3 zhang2023sac3
	HaDes liu2021token
	INSIDE

	Usage of ConFactCheck on datasets
	Open-Domain Question Answering
	Text-based Summarization

	F1-Score based Matching
	Pseudocode for the algorithm proposed
	Prompting Format
	Step-by-Step ConFactCheck Example

