Under review as a conference paper at ICLR 2026

JACKAL: A REAL-WORLD EXECUTION-BASED BENCHMARK
EVALUATING LARGE LANGUAGE MODELS ON TEXT-TO-JQL
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Enterprise teams rely on the Jira Query Language (JQL) to retrieve and filter issues from Jira.
Yet, to our knowledge, there is no open, real-world, execution-based benchmark for mapping
natural language queries to JQL. We introduce Jackal, a novel, large-scale text-to-JQL
benchmark comprising 100,000 natural language (NL) requests paired with validated JQL
queries and execution-based results on a live Jira instance with over 200,000 issues. To reflect
real-world usage, each JQL query is associated with four types of user requests: (i) Long NL,
(ii) Short NL, (iii) Semantically Similar, and (iv) Semantically Exact. We release Jackal, a
corpus of 100,000 text-to-JQL pairs, together with an execution-based scoring toolkit, and
a static snapshot of the evaluated Jira instance for reproducibility. We report text-to-JQL
results on 23 Large Language Models (LLMs) spanning parameter sizes, open and closed
source models, across execution accuracy, exact match, and canonical exact match. In this
paper, we report results on Jackal-5K, a 5,000-pair subset of Jackal. On Jackal-5K, the best
overall model (Gemini 2.5 Pro) achieves only 60.3% execution accuracy averaged equally
across four user request types. Performance varies significantly across user request types:
(i) Long NL (86.0%), (ii) Short NL (35.7%), (iii) Semantically Similar (22.7%), and (iv)
Semantically Exact (99.3%). By benchmarking LLMs on their ability to produce correct and
executable JQL queries, Jackal exposes the limitations of current state-of-the-art LLMs and
sets a new, execution-based challenge for future research in Jira enterprise data.

1 INTRODUCTION

Retrieving structured information from enterprise systems is essential for triage, planning, governance, and
reporting, yet end-users often struggle with the steep learning curve of formal query languages. Atlassian
Jira, one of the most widely used issue tracking project management platforms, exemplifies this challenge. Its
Jira Query Language (JQL), a domain-specific language (DSL), is expressive, supporting complex Boolean
logic, custom fields, and temporal predicates, but its terse syntax and operator precedence present significant
barriers for its 300,000+ users (Atlassian Support, [2025b]). This motivates the development of LLM-powered
natural language interfaces that map realistic, everyday user requests into executable JQL, saving users time
and adding value to complex query logic.

Mapping natural language to executable programs is the central goal of semantic parsing (Liang, [2016)). A
common approach is learning from denotations, where models are supervised by execution results rather
than gold programs (Guu et al, 2017)). Progress in the text-to-DSL space has been driven largely by open,
real-world Text-to-SQL benchmarks. WikiSQL established execution-based evaluation by checking whether
predicted SQL yields the correct table answer (Zhong et al., |2017)). Spider advanced the text-to-SQL field by
testing cross-domain generalization with non-overlapping train and test schemas, where early exact match
was only 12.4%, catalyzing research on compositional generalization (Yu et al., [2018). Later work showed that
string match alone can miscount semantically correct programs and recommended execution-based scoring
(Finegan-Dollak et al., 2018; Rajkumar et all 2022)). Complementary methods such as test-suite accuracy
(Zhong et al.l |2020]) and constrained decoding (Scholak et al., |2021)) further improved realistic assessment.

Natural language queries that mirror enterprise settings correlates with lower reported accuracy (Lei et al.,
2025). Benchmarks that approximate production conditions, including richer schemas, multi-step interactions,
and external context, consistently yield markedly lower scores than single-turn academic setups. Recent
evaluations on enterprise-style Text-to-SQL (e.g., Spider 2.0) typically use multi-step or agentic procedures

Under review as a conference paper at ICLR 2026

Jackal Dataset: ~ ~
100,000 JQL-NL Pairs Primary Metric
(validated, with 4 user query - Execution Accuracy
variations) Secondary Metrics
- Exact Match (EM)

T

-Canonical Exact Match (CEM)

Run Golden and
LLM Generated

4 Evaluation Setup JOL against Jira
Jackal-5k: Evaluation Subset 20+ LLMs (GPT-5, Claude Snapshot Findings
(5,000 pairs, stratified by Opus 4.1, Llama 4, etc.) (200k+ issues) - Proprietary vs open-weight gap
prompt type and clause count) - SOTA models struggle to write
_ enterprise-grade JQL

- Prompt sensitivity
- String match limitations

JOL -> Short NL Example
updated<=-90d AND issuetype in ("New Feature") -> Stale new features

Figure 1: Overview of the Jackal benchmark. Jackal contains 100,000 real-world validated JQL-NL pairs
with four user query variants. We evaluate 23 LLMs by running golden and generated queries against a live
Jira instance (200K+ issues), using execution accuracy as the primary metric.

and report substantially lower success than classic single-turn datasets (e.g., Spider 1.0) or large but less
interactive suites (e.g., BIRD), highlighting the evaluation gap between lab settings and production use (Lei
et al., [2025; [Yu et al., 2018} [Li et al.l |2023). JQL also presents distinct challenges relative to SQL, besides
a fundamentally different syntax, it includes project- and instance-specific custom fields, permissions and
visibility constraints, linked-issue traversals, and date functions, which further motivates execution-based
evaluation.

Industry momentum also confirms the demand for natural language-to-JQL research. Atlassian Intelligence
exposes natural language search that is translated into JQL in Jira, and several Marketplace applications
advertise similar capabilities (Atlassian Support), 2025a; |Clovity}, 2025). However, these offerings are propri-
etary, with training data, prompts, and evaluation suites not publicly available, preventing open, independent
research and execution-based assessment of LLMs. Only two public community datasets exist, Text2JQL and
Text2JQL_ v2 (Kulkarni, [2023ajb), but they are extremely limited in size (269 and 1,222 rows respectively),
not real-world, do not mimic realistic user question complexity variations (short, long, semantics), do not
provide an execution-based result of the Jira instance for evaluation, and are not reproducible.

To address the significant gap in text-to-JQL research, we introduce Jackal, the first open, large-scale,
execution-based benchmark for mapping natural language queries to real-world JQL queries. Jackal contains
100,000 natural language user queries with validated JQL queries and verified execution results on a live Jira
instance with more than 200,000 issues. To mimic diversity in user query phrasing, each natural language
request is expressed via four NL query variants: (i) Long NL, an expanded sentence or short paragraph with
context or reasoning; (ii) Short NL, a concise phrase that names the intent; (iii) Semantically Similar, a
paraphrase that preserves intent without reusing JQL field names or values; and (iv) Semantically Exact,
an easy literal translation that mirrors the JQL structure and order. Alongside the dataset, we release an
evaluation toolkit that reports execution accuracy as the primary metric, which compares the live execution
result predicted JQL match to the golden JQL execution result in Jackal, plus a static data dump of the
evaluated instance to preserve reproducibility despite instance specificity. This paper evaluates 23 LLMs,
both proprietary and open-source models, on Jackal-5K, a 5,000-pair subset of the 100,000 user-JQL pairs
in Jackal. By filling the evaluation gap for natural language to JQL, we aim to accelerate open research
on domain-specific language translation and lower the barrier for all Jira users to harness advanced search
through LLMs.

In this paper we make three contributions:
« Benchmark: We release Jackal, the first real-world, open, execution-based dataset for natural

language to JQL with four user query variants, validated queries on a live Jira instance, evaluation
toolkit, and a reproducibility package.

Under review as a conference paper at ICLR 2026

e Empirical Study: We evaluate 23 language models on Jackal-5K across parameter scales and
open/proprietary releases, reporting execution accuracy, exact match, and canonical exact match.

e Analysis: We provide a fine-grained error study, identifying frequent failure modes and suggesting
directions such as grammar-constrained decoding and schema-aware retrieval.

2 RELATED WORKS

2.1 NATURAL LANGUAGE INTERFACE TO DATABASE AND EARLY SEMANTIC PARSING

Natural Language Interface to Database (NLIDB) and semantic parsing established the problem of mapping
natural language to executable queries or programs. Early datasets include ATIS for spoken flight queries
(Pricel |1990; Hemphill et al., [1990) and GeoQuery for U.S. geography (Zelle & Mooneyl, [1996). Overnight
showed rapid domain bootstrapping via grammar-induced logical forms (Wang et al.,|2015). Surveys synthesize
techniques and evaluation practices in modern NLIDB (Affolter et al., [2019). These works motivate domain-
specific Text-to-DSL tasks and emphasize the importance of execution-based evaluation, setting the stage for
large-scale Text-to-SQL benchmarks.

2.2 TEXT-TO-SQL BENCHMARKS AND CONVERSATIONAL EXTENSIONS

WikiSQL popularized large-scale, execution-based evaluation on single tables (Zhong et al., |2017)). Spider
shifted to cross-domain, multi-table, unseen-schema generalization with far lower early accuracy (Yu et al.l
2018). Conversational and context-dependent parsing further stress realism via SParC and CoSQL (Yu et al.,
2019bsa)). Schema-aware encoders such as RAT-SQL improved Spider by better linking natural language
mentions to schema elements (Wang et al., |2020). The BIRD benchmark scales content and database size,
underscoring database-grounded, execution-based difficulty (Li et al.l[2023). Most recently, Spider 2.0 reframes
evaluation around enterprise workflows with very large schemas, multiple dialects, code and documentation
context, and multi-step interactions, with markedly lower success than Spider 1.0 (Lei et al., [2025). This gap
between lab settings and production use motivates domain-specific, execution-based benchmarks. Reported
scores vary with metric and evaluation setup; Spider 2.0 under multi-step agentic evaluation is around 21.3%,
Spider 1.0 under exact-match evaluation (non-agentic) is near 91.2%, and BIRD reports execution accuracy
around 73.0%, so cross-benchmark figures are not directly comparable (Lei et all 2025} |[Yu et al.l |2018; [Li
et al., 2023).

2.3 EVALUATION METHODOLOGY BEYOND STRING MATCH

Exact string match can undercount or overcount semantically correct programs. The community converged
on execution accuracy and variants like test-suite accuracy (Finegan-Dollak et al., |2018; |Zhong et al., [2020)).
On the decoding side, execution-guided decoding prunes partial programs that fail at runtime (Wang et al.,
2018)), while constrained decoding such as PICARD enforces syntactic validity during generation (Scholak
et al., 2021)). Jackal follows this standard by centering execution-based scoring for Text-to-JQL, ensuring
real-world validation against a live Jira instance, avoiding limitations in non-real-world evaluation methods.

2.4 TEXT-TO-DSL BEYOND SQL

Generalization to other formal languages reinforces our benchmark design choices. In Text-to-SPARQL
for KBQA, LC-QuAD and LC-QuAD 2.0 pair natural language queries with SPARQL over DBpedia or
Wikidata at larger scales (Trivedi et al., [2017; Dubey et al., |2019)), and the QALD shared tasks standardize
evaluation (Usbeck et al., [2017)). For compositional generalization, CFQ offers a rigorous split construction
used widely in semantic parsing (Keysers et al.2020)). In graph databases, recent Text2Cypher resources study
Text-to-Cypher for Neodj (Neodjl |2024bsa). Program-as-state paradigms such as SMCalFlow in task-oriented
dialogue demonstrate that execution-based supervision scales to other workflow-like languages (Andreas et al.,
2020). Together, these lines show the breadth of Text-to-DSL mappings and the importance of execution-first
evaluation.

2.5 TEXT-TO-JQL AND THE GAP TO OPEN, EXECUTION-BASED EVALUATION

JQL is a domain-specific language for querying issues in Jira. It supports Boolean logic, relational operators,
field-based filtering, temporal predicates, and linked-issue traversals, but its terse syntax and operator

Under review as a conference paper at ICLR 2026

precedence can be a barrier for non-expert users. Unlike SQL, JQL operates over a structured yet non-
relational data model in which issues, users, and projects are connected through fields, workflows, and
permissions rather than normalized tables. Because each Jira instance may define custom fields, statuses,
and workflows, and apply permission- and visibility-based access controls, the effective vocabulary and even
the observable results of a query are instance- and user-specific. These characteristics make execution-based
evaluation a necessity for Text-to-JQL (to measure practical utility) but also difficult to reproduce across
environments.

Despite industry activity, open research in Text-to-JQL resources are significantly limited. Commercially,
Atlassian provides natural language to JQL in Jira, and Marketplace apps promise similar features, but
current evaluations are proprietary, closed-source, and not reproducible by the broader public (Atlassian
Supportl, [2025a; (Clovity}, [2025). An enterprise-oriented study reports a small Text-to-JQL task with 218
prompts where GPT-40 achieved 54% exact match, but neither data nor scripts were released, which limits
comparability and error analysis (Wang et al. [2025). Two public community datasets exist, Text2JQL (1,220
pairs) and Text2JQL_ v2 (269 pairs), yet are extremely limited in size (269 and 1,222 rows respectively),
not real-world, do not mimic realistic user question complexity variations (short, long, semantics), do not
provide an execution-based result of the Jira instance for evaluation, and are not reproducible (Kulkarni,
2023ab)). This omission is particularly problematic for JQL, where instance-specific schemas, permissions, and
linked-issue traversals can cause semantically valid predictions to be miscounted and non-executable strings
to be scored as correct. JACKAL is the first benchmark to overcome these limitation by validating queries
against a live real-world Jira instance of 200,000+ issues and releasing an execution-based evaluation toolkit
tailored to JQL’s idiosyncrasies, including custom fields, permissions and visibility, linked-issue traversals,
and date functions.

3 THE JACKAL BENCHMARK

3.1 DATASET CONSTRUCTION

Jackal has a rigorous construction process, prioritizing real-world validation of JQL queries on a live jira
instance, and user query variation to address diverse ways users ask queries in enterprise environments. Firstly,
we generate candidate JQL queries by combining schema fields from a live Jira instance into compound
filters with 2-5 clauses. Compound filters in Jira are common to "WHERE" conditions in SQL, in which
more conditions lead to larger complexity. To avoid trivial or unrealistic queries for enterprise settings, we
applied hand-crafted validity constraints, including rules that prevent contradictory field combinations (e.g.,
unassigned issues marked as fixed) or semantically incoherent pairs (e.g., low-priority bugs with blocker-level
severity). Finally, to address a real-world limitation of live real-world benchmarks, each query was executed
against a Jira instance with over 200,000 issues, and only those returning non-empty results were retained.

As stated previously, to increase diversity in queries, we sampled from multi-value groups, or clauses, for
categorical fields such as issue type, priority, and resolution, and incorporated constraints to ensure broad
coverage across date fields, text fields, and core schema elements. Larger clause count directly correlate
to more complex JQL queries. This procedure yielded 100,000 valid, executable JQL queries. The overall
dataset construction pipeline is illustrated in Figure [2]

3.1.1 PROMPT VARIANTS

Once 100,000 validated JQL queries were programmatically generated, we used an LLM to generate the
matching 100,000 user queries. To address a limitation of previous benchmarks, we design four natural
language variations to mimic diverse usage in real-world enterprise settings:

e« Long NL: Extended sentences with context or reasoning.
e Short NL: Concise phrases naming the intent.

e Semantically Similar: Paraphrases that preserve meaning without reusing JQL field names or
values.

o Semantically Exact: Literal, field-by-field mappings that mirror JQL structure.
These variants were generated using a large language model with carefully designed prompts that enforce

style consistency and ensure diversity across the four categories. See section for examples of each user
query variation.

Under review as a conference paper at ICLR 2026

Live Jira Instance Long NL (25%) } ..
(200k+ issues) e
Short NL (25% Fo--
~ 1 < Real-Time o () h Jackal Dataset:
- N Validation 7| 100,000 JOL-NL Pairs

NL Variants

Semantically Similar (25%) } -7 o

JOL Generation
(2-5 clauses)

Semantically Exact (25%) }'

Figure 2: Jackal dataset construction pipeline. Candidate JQL queries are generated from a live Jira instance,
validated through execution to filter out empty or invalid results, and then paired with four natural language
variants before inclusion in the final 100K-pair dataset. In addition to execution filtering, we conducted
human spot-checks to confirm the semantic fidelity of natural language variants and ensure dataset quality.

3.2 STATISTICS AND EXAMPLES

Jackal contains 100,000 JQL-NL Query pairs, distributed evenly across clause counts (2-5) and 4 prompt
variants. The average JQL query length is 3.5 clauses, with a vocabulary covering 15 Jira fields including
project metadata, temporal filters, text search and custom fields. The average natural language request is
42.8 words for Long NL, 6.7 words for Short NL, 20.2 words for Semantically Similar, and 22.6 words for
Semantically Exact. By combining validated executable queries with multiple variations of user queries that
mimic real-world enterprise usage, Jackal provides a challenging, diverse, and reproducible benchmark for
evaluating text-to-JQL systems.

Figure [2] illustrates the dataset construction pipeline for prompt variations. For instance, the JQL query:
updated<=-90d AND issuetype in ("New Feature") is paired with the following variants:

e Long NL: “I’'m checking for any new feature requests that haven’t been updated in the last 90 days,
just to see if there are items that might have stalled or need attention.”

e Short NL: “Stale new features”

e Semantically Similar: “Requests for new capabilities that haven’t been changed in the last three
months”

o Semantically Exact: ‘Updated is less than or equal to 90 days ago and issue type is New Feature”

4 EVALUATION SETTINGS

4.1 EVALUATION DATASET

We evaluate 23 open and closed-source LLM models against Jackal-5K, a 5,000-pair subset of the full
benchmark. Jackal-5K is stratified by clause count and prompt variant to preserve balance across query
complexity and linguistic styles. All results reported in this paper are computed on Jackal-5K, while the full
100,000 dataset supports large-scale training, analysis, and future research for the open community.

4.2 METRICS
We evaluate model outputs against gold JQL queries using three criteria:

o Execution Accuracy: Queries are executed against a snapshot of the Jira instance. A prediction
is correct if it returns the same set of issue keys as the gold query. This is the primary measure of
correctness, since multiple queries can be semantically equivalent even if their string forms differ.

o Exact Match (EM): Strict byte-level equality between generated and gold JQL after trimming
whitespace.

o Canonical Exact Match (CEM): Equality after canonical normalization, which collapses whites-
pace and normalizes operators/keywords (e.g., AND, OR, IN). This captures formatting variation while
preserving semantics.

Under review as a conference paper at ICLR 2026

Model Overall Long NL Short NL Semantically Sem.ani.slcally
Exact Similar
Average
Gemini 2.5 Pro 0.603 0.860 0.345 0.991 0.215
OpenAl 04-Mini 0.595 0.848 0.357 0.974 0.200
GPT-40 0.589 0.851 0.326 0.971 0.209
Claude Sonnet 4 0.587 0.855 0.341 0.963 0.191
OpenAl 03 0.586 0.856 0.357 0.923 0.206
GPT-5 0.583 0.841 0.330 0.935 0.227
Claude Opus 4.1 0.583 0.843 0.344 0.926 0.219
Gemini 2.5 Flash 0.581 0.823 0.311 0.993 0.197
GPT-4.1 0.580 0.846 0.334 0.940 0.199
GPT-5 Mini 0.578 0.829 0.315 0.969 0.198
Claude Opus 4 0.576 0.838 0.335 0.915 0.215
OpenAl 03-Mini 0.576 0.841 0.330 0.957 0.175
Claude Sonnet 3.7 0.572 0.814 0.299 0.986 0.190
Llama 4 Maverick (17B) 0.563 0.798 0.310 0.953 0.193
GPT-4.1 Mini 0.562 0.834 0.285 0.936 0.193
Llama 3.3 (70B) 0.545 0.799 0.236 0.981 0.163
GPT-40 Mini 0.531 0.776 0.219 0.965 0.164
Nova Pro 0.489 0.714 0.215 0.867 0.160
Gemini 2.5 Flash-Lite 0.465 0.625 0.129 0.935 0.170
Llama 3 (70B) 0.450 0.648 0.177 0.843 0.130
Llama 3 (8B) 0.301 0.433 0.086 0.627 0.057
Mistral 7B 0.215 0.224 0.026 0.580 0.030
Mixtral 8x7B 0.191 0.277 0.055 0.401 0.031
LLM Model Average | 0.517 | 0.742 0.264 0.893 0.171

Table 1: LLM execution accuracy on Jackal-5K (5,000 text-to-JQL pairs), sorted by Overall Average. The
first column reports each model’s overall average (equal dataset weight, 0.25 each) across four request types;
subsequent columns show Long Natural Language (NL), Short Natural Language (NL), Semantically Exact,
and Semantically Similar, with the bottom row giving macro-averages across models.

4.3 EVALUATION SETUP

For each model and prompt variant, we pair the generated JQL with its gold query and evaluate along
these three axes. Both predicted and gold queries are executed against the same Jira snapshot via the
/rest/api/2/search endpoint. We stratify analysis by prompt type (Long NL, Short NL, Semantically
Similar, Semantically Exact) and also report aggregate performance.

Results are presented per model, per prompt type, and overall. We show execution accuracy breakdowns
(match, mismatch), mean EM and CEM by model and prompt type, and comparative visualizations highlight-
ing variation across LLMs. All reported results use Jackal-5K, ensuring reproducibility and comparability,
while the full 100K dataset supports large-scale training.

5 EXPERIMENTS

5.1 SETUP

We evaluate 23 proprietary and open-weight LLMs on Jackal-5K, the standardized 5,000-pair evaluation
subset of Jackal. Each model is tested across all four user query variants (Long NL, Short NL, Semantically
Similar, Exact Match). For each prediction, we compute (i) execution accuracy, (ii) exact match (EM), and
(iii) canonical exact match (CEM), as described in Section All queries are executed against the same
snapshot of the Jira instance to ensure reproducibility.

Under review as a conference paper at ICLR 2026

0.8

0.6

0.4
0.

Score

[

Gemini 2.5 Pro OpenAl 04-Mini OpenAl 03 GPT-5 Gemini 2.5 Flash
W Execution Accuracy Model
Exact Match

B Canonical Exact Match

Figure 3: Execution Accuracy, Exact Match (EM), and Canonical Exact Match (CEM) on Jackal-5K for
the five leading LLMs by overall average user query variant performance. While top models achieve strong
execution accuracy, EM and CEM remain near zero, highlighting the insufficiency of string-level metrics.

5.2 OVERALL RESULTS

Table [T] summarizes model performance. Across all models, the average execution accuracy is 0.517, with large
variation across user query variations: 0.742 for Long NL, 0.264 for Short NL, 0.893 for Semantically Exact,
and 0.171 for Semantically Similar. The best-performing model is Gemini 2.5 Pro, reaching 0.603 overall
execution accuracy, with particularly strong results on Long NL (0.860) and Semantically Exact (0.991).
Proprietary models such as GPT-40 (0.589 execution accuracy) and Claude-4 (0.588 execution accuracy)
perform consistently well, though their accuracy on Semantically Similar variation remains below 0.21. In
contrast, open-weight models lag significantly: Llama 3 (70B) averages 0.450 execution accuracy, while smaller
variants such as Llama 3 (8B) and Mistral-7B achieve only 0.301 and 0.215 execution accuracy, respectively.
These results confirm a persistent performance gap between frontier proprietary and open-weight models.

5.3 EXACT AND CANONICAL MATCH

Figures [3| reports exact match (EM) and canonical exact match (CEM). As expected, raw EM is nearly zero
across all models, with a global average of 0.0008. Even the highest EM values (OpenAl 03-mini at 0.006 and
Claude Opus 4.1 at 0.005) are negligible compared to execution accuracy. Canonical normalization provides
modest improvements: the average CEM is 0.099, with top models (e.g., Llama 4 Maverick 17B and GPT-40
Mini) reaching 0.136. Still, these values remain far below execution accuracy, reinforcing that string-level
metrics fail to capture semantic correctness in text-to-JQL tasks.

5.4 FINDINGS
Our evaluation highlights three key observations:

e User Query Variation: Performance varies drastically across user query variations types. While
models excel on Semantically Exact variation (average execution accuracy 0.893), accuracy collapses
for Short NL (0.264) and Semantically Similar (0.171), underscoring the challenge of linguistic
variability.

¢ Proprietary vs open-weight gap: Proprietary models consistently outperform open-weight ones.
For example, Gemini 2.5 Pro (0.603 execution accuracy) and GPT-4o (0.589 execution accuracy)

surpass Llama 4 Maverick (17B) at 0.563 execution accuracy, while small open-weight models fall
below 0.31 execution accuracy.

Under review as a conference paper at ICLR 2026

100%

80%

60%

40% |

20%-

0% T T

T T T T T T T T
T, T, G G %, T, % o, o O B % B B % % % % %, %, % %
RGN > %y Ok % v, g O g 7 % % 5 % % %, % % %, % $
®, >, & > o Y o, & % 7 “o 4, o v o
s, Sy RS %Y, % >, o 2, > s Se. %
% % >, %, Z 4 ~ S, (2 (2
S %, Se ” D T, R 1, Dee & 2%, o Ta %
RO Y % % %, v, % v % Ry,
%, 4 % > K i
M Correct Results (’?‘5, (J)
I Empty Results &
Different Results Model

Execution Error

Figure 4: Error analysis on Jackal-5K across 23 LLMs. Each bar shows the proportion of predictions falling
into four categories: Correct Results (generated JQL returning the same issue set as the golden JQL), Empty
Results (generated JQL returning no issues), Different Results (generated JQL returning an issue set different
than the golden JQL), and Execution Errors (invalid JQL that fails to run). s Smaller open-weight models
(e.g., Mistral 8x7B, Mistral 7B, Llama 3 8B) are dominated by execution errors, whereas stronger proprietary
models are mostly limited by different or empty results.

e String match limitations: EM and CEM remain near zero, providing little evaluative value
compared to execution accuracy. This validates the critical limitation of non-real-world benchmarks
that do not use execution-based evaluation as the primary metric. In Jackal, we solve this limitation
by using execution-based evaluation.

6 ANALYSIS

6.1 USER QUERY VARIATION SENSITIVITY

Performance varies sharply across user query variations. Models achieve their highest scores on the Semantically
Exact variation, with an average execution accuracy of 0.893. In contrast, accuracy falls to 0.742 for Long
NL, 0.264 for Short NL, and only 0.171 for Semantically Similar variation. These results indicate that while
models can reliably handle literal, field-by-field translations into JQL, they struggle with under-specified
(Short NL) or paraphrased (Semantically Similar) inputs. This gap underscores the brittleness of current
approaches to linguistic variability and paraphrase resolution.

6.2 PROPRIETARY VS. OPEN-WEIGHT MODELS

Frontier proprietary models consistently outperform open-weight alternatives. Gemini 2.5 Pro leads overall
with 0.603 execution accuracy, followed by OpenAl o4-mini (0.595), GPT-40 (0.580), and Claude Sonnet 4
(0.587). By contrast, the strongest open-weight model, Llama 4 Maverick (17B), reaches 0.563 execution
average, while smaller open models such as Llama 3 (8B) and Mistral-7B drop to 0.301 and 0.218 execution
accuracy, respectively. Even the best proprietary models, however, fall below 0.23 execution accuracy on
Semantically Similar prompts, showing that robustness to natural variation remains unresolved.

6.3 STRING MATCH LIMITATIONS

Exact string match (EM) and canonical exact match (CEM) provide little signal compared to execution
accuracy. The global average EM is only 0.0008, effectively zero across models, with the highest single score
being 0.005 (Claude Opus 4.1). Canonical normalization recovers modest alignment, raising the average

Under review as a conference paper at ICLR 2026

CEM to 0.099, with top scores of 0.136 (Llama 4 Maverick 17B and GPT-40 Mini). These values remain far
below execution accuracy (average 0.517), demonstrating that string-based metrics systematically undercount
semantically correct predictions. Execution-based evaluation is therefore essential for realistic assessment.

6.4 ERROR CATEGORIES

To better understand where models fail, we analyzed predictions across user query variants and grouped
them into the same four categories reported in Figure [

e Correct Results: Generated JQL queries whose returned issue set exactly matches the gold query.
Frontier proprietary models achieve the highest rates of correct results.

e Empty Results: Generated JQL queries that return no issues. These typically arise from over-
specified constraints or misaligned filters, and are especially common on Short NL prompts.

o Different Results: Generated JQL queries that execute but return a different set of issues than the
gold query. These reflect semantic mismatches in field or value selection, often seen in Semantically
Similar prompts.

o Execution Errors: Invalid JQL queries that fail to run due to syntax or schema errors. Smaller
open-weight models (e.g., Mistral 8x7B, Mistral 7B, Llama 3 8B) are dominated by execution errors,
while proprietary models largely avoid them.

Overall, the error distribution highlights distinct failure modes: weaker open-weight models struggle primarily
with execution errors, while stronger proprietary models are mostly limited by producing queries that return
empty or mismatched result sets.

Together, these categories illustrate that both surface-level errors and deeper semantic mismatches contribute
to the performance gap across prompt types.

7 CONCLUSION

We introduce Jackal, the first open, real-world, execution-based benchmark for mapping natural language to
Jira Query Language (JQL), directly addressing the limitations of prior work: open-source, small or fictional
dataset, string-match evaluations in place of live execution-based, a lack of realistic user query phrasing,
and no reproducibility. Jackal consists of 100,000 natural language (NL) user requests with validated JQL
and recorded execution results on a live Jira instance with 200,000+ issues. Each user query is varied
across four diverse methods: (i) Long Natural Language Queries (Long NL), (ii) Short Natural Language
Queries (Short NL), (iii) Semantically Similar, and (iv) Semantically Exact. We release the Jackal dataset,
an execution-based evaluation toolkit, and a static snapshot of the evaluated instance to ensure reproducible,
open evaluation for research. Furthermore, we evaluate 23 LLMs on Jackal-5K, a 5,000 subset of Jackal
100,000, and report the highest overall model (Gemini 2.5 Pro) attains only 60.3% execution accuracy when
averaging equally across request types. User query variant contributes to a significant disparity in results,
with 86.0% (Long NL), 35.7% (Short NL), 22.7% (Semantically Similar), and 99.3% (Semantically Exact). By
centering execution accuracy rather than string match and grounding evaluation in real-world Jira data with
reproducible artifacts, Jackal exposes the limitations of current state-of-the-art LLM models and establishes
a rigorous, scalable foundation for future research on text-to-JQL.

UskeE or LLMs

Large Language Models (LLMs) were not used significantly in writing the paper. LLMs were used to aid or
polish writing. Details of their use for the dataset are described in the paper.

ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics).
This research does not involve human subjects, sensitive personal data, or interventions, and no datasets
released contain confidential or proprietary information. The benchmark and evaluation procedures are
designed to promote reproducibility and open research. The use of LLMs for text generation was limited to

https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2026

writing support and dataset paraphrasing, and human validation was conducted to ensure fidelity. We believe
there are no foreseeable harms arising from this work beyond the ordinary risks associated with releasing
benchmarks and evaluation code in machine learning research.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. The benchmark dataset (Jackal) and evaluation toolkit
will be released with full documentation, including the schema generation process, execution validation
pipeline, and natural language variant creation procedure (see Section . A reproducible subset (Jackal-5K)
is provided for evaluation. To address the limitation of the live Jira instance, we release a static data dump of
the 200,000+ instances that can be used in future evaluations. A reproducible subset (Jackal-5K) is provided
for evaluation, along with execution results against a static snapshot of the Jira instance. All model outputs
reported in this paper were evaluated against this fixed benchmark. Additional details, including dataset
construction steps, examples, and evaluation code, are provided in the appendix and supplementary materials.

REFERENCES

Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. A comparative survey of recent natural language
interfaces for databases. The VLDB Journal, 28(5):793-819, 2019. doi: 10.1007/s00778-019-00567-8. URL
https://link.springer.com/article/10.1007/s00778-019-00567-8.

Jacob Andreas et al. Task-oriented dialogue as dataflow synthesis. Transactions of the Association for
Computational Linguistics, 8:556-571, 2020. doi: 10.1162/tacl_a_00333. URL https://aclanthology!|
org/2020.tacl-1.36/|

Atlassian Support. Use atlassian intelligence to search for work items. https://support.atlassian.com/
jira-software-cloud/docs/use-atlassian-intelligence-to-search-for-work-items/, 2025a. Ac-

cessed: 2025-09-16.

Atlassian Support. Use advanced search with jira query language (jql). https://support.atlassian.com/
jira-software-cloud/docs/use-advanced-search-with-jira-query-language-jql/, 2025b. Ac-
cessed: 2025-09-16.

Clovity. Jql ai. Atlassian Marketplace, 2025. URL https://marketplace.atlassian.com/apps/1237395/
jql-ail Accessed: 2025-09-16.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann. Lc-quad 2.0: A large
dataset for complex question answering over wikidata and dbpedia. In The Semantic Web — ISWC' 2019,
volume 11779 of Lecture Notes in Computer Science, pp. 69-78, 2019. doi: 10.1007/978-3-030-30796-7_5.
URL https://jens-lehmann.org/files/2019/iswc_lcquad?2.pdf.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. Improving text-to-sql evaluation methodology. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
351-360. Association for Computational Linguistics, 2018. doi: 10.18653/v1/P18-1033. URL https:
//aclanthology.org/P18-1033/.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy Liang. From language to programs: Bridging
reinforcement learning and maximum marginal likelihood. In Regina Barzilay and Min-Yen Kan (eds.),
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1051-1062, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1097. URL https://aclanthology.org/P17-1097/.

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. The atis spoken language systems pilot
corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania,
June 24-27, 1990. DARPA, 1990. URL https://aclanthology.org/H90-1021.pdf|

Daniel Keysers, Nathanael Schérli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergey Kashubin, Nikolaus
Newman, Slav Petrov, Francesco Piccinno, Yuval Pinter, Tal Schuster, Ian Tenney, Reut Tsarfaty, Hui
Wang, and et al. Measuring compositional generalization: A comprehensive method on realistic data. In
International Conference on Learning Representations (ICLR), 2020. URL https://openreview.net/
forum?id=SygcCnNKwrl

10

https://link.springer.com/article/10.1007/s00778-019-00567-8
https://aclanthology.org/2020.tacl-1.36/
https://aclanthology.org/2020.tacl-1.36/
https://support.atlassian.com/jira-software-cloud/docs/use-atlassian-intelligence-to-search-for-work-items/
https://support.atlassian.com/jira-software-cloud/docs/use-atlassian-intelligence-to-search-for-work-items/
https://support.atlassian.com/jira-software-cloud/docs/use-advanced-search-with-jira-query-language-jql/
https://support.atlassian.com/jira-software-cloud/docs/use-advanced-search-with-jira-query-language-jql/
https://marketplace.atlassian.com/apps/1237395/jql-ai
https://marketplace.atlassian.com/apps/1237395/jql-ai
https://jens-lehmann.org/files/2019/iswc_lcquad2.pdf
https://aclanthology.org/P18-1033/
https://aclanthology.org/P18-1033/
https://aclanthology.org/P17-1097/
https://aclanthology.org/H90-1021.pdf
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr

Under review as a conference paper at ICLR 2026

Manthan Kulkarni. Text2jql. Hugging Face, 2023a. URL https://huggingface.co/datasets/
ManthanKulkarni/Text2JQL. License: BSD; ~1,216 rows; Accessed: 2025-09-16.

Manthan Kulkarni. Text2jql _v2. Hugging Face, 2023b. URL https://huggingface.co/datasets/
ManthanKulkarni/Text2JQL_v2. License: BSD; 269 rows; Accessed: 2025-09-16.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo, Hongcheng
Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida Wang, and
Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise text-to-sql workflows, 2025. URL
https://openreview.net/forum?id=XmProj9cPs.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold
Cheng, and Yongbin Li. Can llm already serve as a database interface? a big-bench for large-scale database
grounded text-to-sqls. CoRR, abs/2305.03111, 2023. URL https://arxiv.org/abs/2305.03111.

Percy Liang. Learning executable semantic parsers for natural language understanding, 2016. URL https:
//arxiv.org/abs/1603.06677.

Neodj. Introducing the neodj text2cypher (2024) dataset. Neodj Developer Blog, 2024a. URL https:
//neo4j.com/blog/developer/introducing-neo4j-text2cypher-dataset/. Accessed: 2025-09-16.

Neodj. Neodj-text2cypher (2024) dataset. Hugging Face, 2024b. URL https://huggingface.co/datasets/
neo4j/text2cypher-2024vil Accessed: 2025-09-16.

P. J. Price. Evaluation of spoken language systems: the atis domain. In Speech and Natural Language:

Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990. DARPA, 1990. URL
https://aclanthology.org/H90-1020.pdfl

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of large
language models, 2022. URL https://arxiv.org/abs/2204.00498.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. Picard: Parsing incrementally for constrained
auto-regressive decoding from language models. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 9895-9901. Association for Computational Linguistics, 2021.
doi: 10.18653/v1/2021.emnlp-main.779. URL https://aclanthology.org/2021.emnlp-main.779/.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. Le-quad: A corpus for complex
question answering over knowledge graphs. In Proceedings of the 16th International Semantic Web
Conference (ISWC), Part II, volume 10588 of Lecture Notes in Computer Science, pp. 210-218, 2017. doi:
10.1007/978-3-319-68204-4_22. URL https://jens-lehmann.org/files/2017/iswc_lcquad.pdf.

Ricardo Usbeck, Axel-Cyrille Ngomo, José M. Conejero, et al. 7th open challenge on question answering
over linked data (qald-7). In Semantic Web Challenges at ESWC 2017, volume 769 of Lecture Notes in
Computer Science, pp. 59-69, 2017. doi: 10.1007/978-3-319-69146-6_ 6. URL https://svn.aksw.org/
papers/2017/ESWC_QALD7/public.pdfl

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. Rat-sql: Relation-
aware schema encoding and linking for text-to-sql parsers. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 7567-7578, 2020. URL https://aclanthology,
org/2020.acl-main.677/.

Chenglong Wang, Guoliang Xiong, Philip Yu, et al. Execution-guided decoding for text-to-sql neural semantic
parsing, 2018. URL https://arxiv.org/abs/1807.03100.

Liya Wang, David Yi, Damien Jose, John Passarelli, James Gao, Jordan Leventis, and Kang Li. Enterprise
large language model evaluation benchmark, 2025. URL https://arxiv.org/abs/2506.20274.

Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1332-1342, 2015. URL
https://aclanthology.org/P15-1129/.

11

https://huggingface.co/datasets/ManthanKulkarni/Text2JQL
https://huggingface.co/datasets/ManthanKulkarni/Text2JQL
https://huggingface.co/datasets/ManthanKulkarni/Text2JQL_v2
https://huggingface.co/datasets/ManthanKulkarni/Text2JQL_v2
https://openreview.net/forum?id=XmProj9cPs
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/1603.06677
https://arxiv.org/abs/1603.06677
https://neo4j.com/blog/developer/introducing-neo4j-text2cypher-dataset/
https://neo4j.com/blog/developer/introducing-neo4j-text2cypher-dataset/
https://huggingface.co/datasets/neo4j/text2cypher-2024v1
https://huggingface.co/datasets/neo4j/text2cypher-2024v1
https://aclanthology.org/H90-1020.pdf
https://arxiv.org/abs/2204.00498
https://aclanthology.org/2021.emnlp-main.779/
https://jens-lehmann.org/files/2017/iswc_lcquad.pdf
https://svn.aksw.org/papers/2017/ESWC_QALD7/public.pdf
https://svn.aksw.org/papers/2017/ESWC_QALD7/public.pdf
https://aclanthology.org/2020.acl-main.677/
https://aclanthology.org/2020.acl-main.677/
https://arxiv.org/abs/1807.03100
https://arxiv.org/abs/2506.20274
https://aclanthology.org/P15-1129/

Under review as a conference paper at ICLR 2026

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning
Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 3911-3921, 2018. URL https:
//aclanthology.org/D18-1425/|

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. Cosql: A conversational text-to-sql challenge towards cross-domain natural
language interfaces to databases. In Proceedings of EMNLP-IJCNLP 2019, pp. 1962-1979, 2019a. URL
https://aclanthology.org/D19-1204/.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan Kraft, Vincent Zhang,
Caiming Xiong, Richard Socher, and Dragomir Radev. Sparc: Cross-domain semantic parsing in context.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), pp.
4511-4523, 2019b. doi: 10.18653/v1/P19-1443. URL https://aclanthology.org/P19-1443/.

John M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive logic programming.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), AAAT96, pp.
1050-1055, Portland, Oregon, 1996. AAAT Press.

Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp- 3966-3979. Association for Computational Linguistics, 2020. URL https://aclanthology.org/2020)
emnlp-main.326/.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from natural
language using reinforcement learning, 2017. URL https://arxiv.org/abs/1709.00103.

12

https://aclanthology.org/D18-1425/
https://aclanthology.org/D18-1425/
https://aclanthology.org/D19-1204/
https://aclanthology.org/P19-1443/
https://aclanthology.org/2020.emnlp-main.326/
https://aclanthology.org/2020.emnlp-main.326/
https://arxiv.org/abs/1709.00103

Under review as a conference paper at ICLR 2026

A FurL JQL QUERY EXAMPLES

Table 2: Examples of JQL queries with increasing clause complexity,
each paired with four natural-language request types.

No. JQL Long NL Semantically Semantically Short NL
of Exact Similar
Clauses
2 updated <= -90d I'm checking for epics Updated is less Large-scale tasks Epics
AND issuetype that haven’t been than or equal to that haven’t been inactive for
in ("Epic") updated in the last 90 90 days ago, and changed in the 90+ days
days, so we can identify issue type is Epic last three months
any long-standing items
that might need attention
or could potentially be
closed.
3 created >= -4w I'm checking for any user Created is within Stories added in Unassigned
AND assignee is stories that have been the last 4 weeks, the last month user stories
EMPTY AND created in the last four assignee is empty, that haven’t been created in
issuetype in weeks but haven’t been and issue type is assigned to last 4 weeks
("User Story") assigned to anyone yet, so User Story anyone yet
we can make sure nothing
important is slipping
through the cracks.
4 updated >= I’'m searching for bug Updated is on or Problems flagged Bugs with
"2025-01-01" reports that have been after 2025-01-01, as bugs, with a priority
AND issuetype updated since the start of issue type is Bug, set urgency level, and crash
in ("Bug") AND 2025, specifically those priority is not mentioning in
priority is not that mention a crash in empty, and crashes, and description
EMPTY AND their description and have description modified after updated
description a priority set. This helps contains crash the start of 2025 since 2025
"crash" me focus on recent and
prioritized crash-related
issues that might need
urgent attention.
5 updated <= I'm looking for any Epics, Updated is on or Items that Unresolved
"2025-01-01" User Stories, Tasks, or before 2025-01-01, mention an error, issues with
AND description Sub-tasks that mention description haven’t been error in
"error" AND ’error’ in their description, contains error, resolved yet, are description

affectedVersion
is not EMPTY
AND resolution
is EMPTY AND
issuetype in
("Epic", "User
Story", "Task",
"Sub-task")

have at least one affected
version specified, haven’t
been resolved yet, and
were last updated on or
before January 1st, 2025.
This helps me identify
older, unresolved issues
related to errors that
might need attention or
follow-up.

affected version is
not empty,
resolution is
empty, and issue
type is Epic, User
Story, Task, or
Sub-task

linked to a
specific version,
and were last
changed before
January 2025,
covering all
major and minor
work categories.

Note: Each JQL query is paired with four natural-language request types — Long NL (extended description with
context), Semantically Ezact (literal mapping to JQL), Semantically Similar (paraphrased intent), and Short NL
(concise label).

B USER QUERY VARIATION PROMPTS

This appendix provides the four prompt templates used to generate natural language queries from JQL. Each
template enforces a distinct variation: Long NL, Short NL, Semantically Similar, and Semantically Exact.

13

Under review as a conference paper at ICLR 2026

B.1 LonG NATURAL LANGUAGE (LonG NL)

Task: Convert a JQL query into a longer natural language sentence or paragraph.
Include context or reasoning that someone might give when discussing the query aloud.
Vary the style, making some responses conversational or explanatory.

Examples:
1. JQL: project = QTBUG AND issuetype = Bug AND status = "Open"
NL: I’m reviewing all open bugs in the QTBUG project so we can track unresolved
issues before the next sprint.

2. JQL: created >= -5d AND project = PYSIDE
NL: I want to look at issues reported in the last 5 days in the PYSIDE project
to see what’s newly come in.

Given this JQL: {jql}

OUTPUT FORMAT:

Only respond with the natural language.

Example: "I’m reviewing all open bugs in the (TBUG project so we can track unresolved
issues before the next sprint."

Do not include any additional text or explanatiomns.

B.2 SHORT NATURAL LANGUAGE (SHORT NL)

Task: Convert a JQL query into a concise natural language phrase, just a few words.
Prefer minimal and direct expressions.

Examples:
1. JQL: project = QDS AND priority = "PO: Blocker"
NL: QDS blockers

2. JQL: resolution = Duplicate
NL: Duplicate issues

Given this JQL: {jql}

OUTPUT FORMAT:

Only respond with the natural language.

Example: "Duplicate issues"

Do not include any additional text or explanations.

B.3 SEMANTICALLY SIMILAR
Task: Convert the following JQL query into a natural language sentence that expresses
the same intent, but uses different wording. Do not directly reuse JQL field names or

values. Instead, rephrase using synonyms, conversational language, or implied meaning.
Be creative, but maintain accuracy.

Examples:
1. JQL: status = "Open"
NL: Tickets that are still in progress

2. JQL: resolution = Duplicate
NL: Issues already reported before

Given this JQL: {jql}

OUTPUT FORMAT:

14

Under review as a conference paper at ICLR 2026

Only respond with the natural language.
Example: "Issues already reported before"
Do not include any additional text or explanatiomns.

B.4 SEMANTICALLY EXACT

Task: Translate a JQL query into a natural language sentence that mirrors the JQL
structure and wording as closely as possible. Do not paraphrase or add unnecessary
context. Use literal conversions of fields and values, preserving the order and logic.

Examples:
1. JQL: project = QTBUG AND issuetype = Bug AND status = "Open"
NL: Project is QTBUG, issue type is Bug, and status is Open

2. JQL: priority = "P1: Critical"
NL: Priority is P1: Critical

Given this JQL: {jql}

OUTPUT FORMAT:

Only respond with the natural language.

Example: "Project is QTBUG, issue type is Bug, and status is Open"
Do not include any additional text or explanations.

C ProMPT TEMPLATE FOR JQL GENERATION

This prompt template was used to generate JQL queries from natural language inputs with schema grounding.
The schema provides the allowed fields (‘jqlName* keys), ensuring that model outputs remain valid within
the target Jira instance.

PROMPT_TEMPLATE_with_schema = """

Given the following natural language description of a Jira search query,
generate the corresponding valid JQL (Jira Query Language) query.

Use only fields from the SCHEMA below (‘jqlName‘ as the field key).

SCHEMA :
{schema}

Natural language:
"{natural_languagel}"

Output only valid JSON in this format:

"jql": "<the generated JQL query>"
}

D SumMMARIZED JQL SCHEMA

This appendix provides a summarized version of the Jira schema used to ground JQL generation. It lists the
major fields, their JQL keys, supported operator types, and representative value categories. All project-specific
or proprietary values have been omitted.

o Issue Type (issuetype) — categorical; operators: =, !=, IN, NOT IN; example values: Bug, Epic,
User Story, Task, Sub-task.

o Project (project) — categorical; operators: =, !'=, IN, NOT IN; values omitted for confidentiality.

15

Under review as a conference paper at ICLR 2026

e Components (component) — categorical; operators: =, !=, IN, NOT IN, IS EMPTY, IS NOT
EMPTY; large enum set (not listed).

o Platforms (custom field) — categorical; operators: =, !'=, IN, NOT IN, IS EMPTY, IS NOT
EMPTY; example values: Windows, Linux, macOS, Android, iOS.

o Labels (labels) — categorical; operators: =, !'=, IN, NOT IN, IS EMPTY, IS NOT EMPTY; values
drawn from natural language mentions.

o Fix Version/s (fixVersion) — categorical; operators: same as Labels; values omitted due to size.

o Affects Version/s (affectedVersion) — categorical; operators: same as Labels; values omitted due
to size.

o Resolution (resolution) — categorical; operators: =, !=, IN, NOT IN, IS EMPTY, IS NOT
EMPTY; example values: Fixed, Duplicate, Invalid, Won’t Do.

o Priority (priority) — categorical; operators: =, !'=, IN, NOT IN;example values: Blocker, Critical,
Important, Low.

o Summary (summary) — text search; operators: ~, !~

o Description (description) — text search; operators: ~, !~.

» Assignee (assignee) — categorical /special; operators: =, !=, IS EMPTY, IS NOT EMPTY.

e Created (created) — date; operators: >=, <=, >, <, =; supports absolute dates (YYYY-MM-DD),
relative dates (e.g., -5d, -4w), and functions (e.g., startOfMonth()).

o Updated (updated) — date; same operators and hints as Created.

o Resolved (resolutiondate) — date; same operators and hints as Created.

Aliases. Common natural language mentions were normalized to schema keys. For example: “issue type”
— issuetype, “fix version/s” — fixVersion, “affects version/s” — affectedVersion, “components” —
component, “platforms” — custom field.

16

	Introduction
	Related Works
	Natural Language Interface to Database and Early Semantic Parsing
	Text-to-SQL benchmarks and conversational extensions
	Evaluation methodology beyond string match
	Text-to-DSL beyond SQL
	Text-to-JQL and the Gap to Open, Execution-based Evaluation

	The Jackal Benchmark
	Dataset Construction
	Prompt Variants

	Statistics and Examples

	Evaluation Settings
	Evaluation Dataset
	Metrics
	Evaluation Setup

	Experiments
	Setup
	Overall Results
	Exact and Canonical Match
	Findings

	Analysis
	User Query Variation Sensitivity
	Proprietary vs. Open-Weight Models
	String Match Limitations
	Error Categories

	Conclusion
	Full JQL Query Examples
	User Query Variation Prompts
	Long Natural Language (Long NL)
	Short Natural Language (Short NL)
	Semantically Similar
	Semantically Exact

	Prompt Template for JQL Generation
	Summarized JQL Schema

