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ABSTRACT

Visible-thermal (RGB-T) object detection is a crucial technology for applications
such as autonomous driving, where multimodal fusion enhances performance in
challenging conditions like low light. However, the security of RGB-T detec-
tors, particularly in the physical world, has been largely overlooked. This paper
proposes a novel approach to RGB-T physical attacks using adversarial clothing
with a non-overlapping RGB-T pattern (NORP). To simulate full-view (0◦–360◦)
RGB-T attacks, we construct 3D RGB-T models for human and adversarial cloth-
ing. NORP is a new adversarial pattern design using distinct visible and thermal
materials without overlap, avoiding the light reduction in overlapping RGB-T pat-
terns (ORP). To optimize the NORP on adversarial clothing, we propose a spatial
discrete-continuous optimization (SDCO) method. We systematically evaluated
our method on RGB-T detectors with different fusion architectures, demonstrat-
ing high attack success rates both in the digital and physical worlds. Additionally,
we introduce a fusion-stage ensemble method that enhances the transferability of
adversarial attacks across unseen RGB-T detectors with different fusion architec-
tures.

1 INTRODUCTION

Visible-thermal (RGB-T) object detection is a type of multimodal object detection with important
applications in fields such as autonomous driving and medical AI (Nawaz et al., 2025; Lai et al.,
2024; Dasgupta et al., 2022). For example, in challenging conditions such as adverse weather or
nighttime, RGB-T object detection leverages thermal imaging to compensate for the performance
degradation of visible-only detectors while producing clearer predictions than thermal-only detec-
tors by preserving more details from visible-light images. This advantage significantly enhances
the robustness of autonomous driving systems across diverse scenarios. Based on different fusion
strategies for multimodal information, RGB-T object detectors can be classified into four categories:
early-fusion, mid-fusion, late-fusion, and independent visible and thermal detectors.

Despite the widespread applications of RGB-T detectors, their security has received little attention
because multimodal detectors are commonly assumed to be relatively robust. However, this is very
important for the safety of AI systems in real-world applications, such as autonomous driving. To
address this issue, physical adversarial examples (Wei et al., 2024) offer an effective approach to
identifying vulnerabilities in AI systems deployed in the physical world and inspiring novel defense
strategies. Currently, most physical adversarial examples focuses either solely on the visible modal-
ity (Thys et al., 2019; Xu et al., 2020; Wu et al., 2020; Hu et al., 2021; 2022; 2023; Wei et al., 2022)
or the thermal modality (Zhu et al., 2021; 2022; 2024; Wei et al., 2023a;c). Due to the significant
differences in imaging mechanisms between these two modalities, adversarial examples crafted for
one modality cannot be effectively transferred to the other. As a result, these physical adversarial
examples lack the ability to attack multimodal detectors.

To the best of our knowledge, only three methods have been proposed for physical adversarial attacks
in visible-thermal settings, including MAP (Kim et al., 2022), UAP (Wei et al., 2023b), and MIC
(Kim et al., 2023). However, they have two major limitations. First, MAP and UAP are realized as
2D patches, which can only attack detectors at a narrow range of viewing angles (e.g., -30◦ to 30◦).
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Second, MIC deploys an overlapping RGB-T pattern (ORP) by attaching multiple special low-E
films onto a printed fabric, which diminishes the visibility of the printed adversarial pattern and
increases production costs. These limitations result in the vulnerability of RGB-T detectors across
different physical settings not being fully explored.

Figure 1: Demonstration of physical attacks
against RGB-T detectors with different
fusion architectures. (a) early-fusion detector,
(b) mid-fusion detector, (c) late-fusion detector,
and (d) independent RGB-T detectors at
multiple views. The individual wearing
adversarial clothes remained undetected in both
modalities, while the individual wearing
ordinary clothes was detected (indicated by a
bounding box). See Supplementary Material
for the Demo Video.

To address the first limitation, we construct
aligned 3D RGB-T models of the human body
and clothing to simulate full-view (0◦–360◦)
attacks in the digital world, and manufacture
corresponding 3D RGB-T adversarial cloth-
ing to enable full-view attacks in the physi-
cal world. To address the second limitation,
we propose a non-overlapping RGB-T pattern
(NORP) design for RGB-T adversarial cloth-
ing. NORP not only leverages the visible and
thermal properties of different materials simul-
taneously but also ensures that these materials
do not overlap, thereby avoiding the light re-
duction problem inherent to ORP. Moreover,
we use commonly available materials (fabric
and aluminum film) to deploy NORP, which
offers the advantage of low cost.

A key challenge of optimizing NORP lies in
the spatial dependency between the optimiza-
tion variables of the visible and thermal pat-
terns. For example, when a pixel is chosen to
be aluminum film, its RGB values are fixed and
cannot be simultaneously optimized as con-
tinuous variables, and vice versa. To address
this challenge, we propose a spatial discrete-
continuous optimization (SDCO) method that enables simultaneous optimization of continuous
RGB pixels and discrete thermal pixels within NORP.

Different from previous methods (Kim et al., 2022; Wei et al., 2023b; Kim et al., 2023) that validate
on only one type of (e.g., mid-fusion) RGB-T detector, we systematically evaluate our approach
on RGB-T detectors with various fusion architectures, both in the digital and physical world. Ex-
periments show that our RGB-T adversarial clothes effectively attacked RGB-T detectors across
multiple fusion architectures, with average ASR of 99.6% and 71.0% in the digital and physical
worlds, respectively. Fig. 1 shows several visualized examples. Furthermore, we propose a fusion-
stage ensemble method that enables a piece of adversarial clothing to simultaneously attack RGB-T
detectors with multiple fusion architectures. Our work comprehensively reveals the vulnerabilities
of RGB-T detectors across different fusion architectures, viewing angles, and distances, which is
important for building more robust detectors in the future.

2 RELATED WORK

2.1 RGB-T OBJECT DETECTION

RGB-T object detectors are multimodal object detectors that integrate visible-light and thermal
imaging modalities.(El Ahmar et al., 2023; Zhang et al., 2024) which integrate multimodal infor-
mation at the image level, mid-fusion detectors (Chen et al., 2022; Guo et al., 2024) which focus
on feature-level fusion, late-fusion detectors (Liu et al., 2016; Ni et al., 2022) which merge multi-
modal information at the prediction stage, and independent visible and thermal detectors (Khanam
& Hussain, 2024; Zhu et al., 2020),

where each modality operates independently.

2.2 PHYSICAL ATTACKS IN VISIBLE-THERMAL MODALITY

To the best of our knowledge, only a limited number of works focus on visible-thermal physical
attacks. Such works require not only the simultaneous optimization of visible and thermal variables

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Loss

+

+

+

Optimizing visible and thermal adversarial patterns of shirt simultaneously using SDCO method

D
ig
ita
lA
tta
ck

Ph
ys
ic
al
At
ta
ck

Detect

Visual
camera

…

+

+

+
…

+

RGB-T 
detectors

Thermal
camera

+

+

Visible field

Thermal field

Optimizing visible and thermal adversarial patterns of  trousers simultaneously using SDCO method

Figure 2: The overall pipeline of the proposed method.

but also the physical implementation of both modalities. Kim et al. (Kim et al., 2022) proposed a
multispectral adversarial patch (MAP) to attack a mid-fusion RGB-T person detector. Later, they
(Kim et al., 2023) introduced a low-E film–based clothing, named MIC, to attack the same RGB-
T detector. Wei et al. (Wei et al., 2023b) developed a unified adversarial patch (UAP) to evade
independent RGB-T detectors. However, due to their limitations either in attack angles or physical
settings, the vulnerability of RGB-T detectors across different physical settings has not been fully
explored.

3 METHOD

3.1 PROBLEM FORMULATION

For a given target x, its visible image is denoted as xvis, while its thermal image is denoted as xthm.
After adding adversarial perturbations, the adversarial images in both modalities are represented as
xadv
vis and xadv

thm, respectively. The objective of an RGB-T attack is to ensure that the RGB-T detector
f fails to detect the target x. Given a detection threshold q, the optimization objective is:

f(xadv
vis , x

adv
thm) < q. (1)

Our RGB-T attack pipeline is shown in Fig. 2. First, we construct aligned 3D RGB-T models for
both the human body and clothing. Then we design the non-overlapping RGB-T pattern (NORP)
and apply our SDCO method to optimize the visible and thermal adversarial patterns simultaneously.
Finally, based on the optimization results, we manufacture the multimodal physical clothes and
evaluate their performance in the physical world.

3.2 BUILDING 3D RGB-T MODELS

To simulate full-view RGB-T attacks, we need to construct an aligned 3D RGB-T model. Since
most existing 3D models are RGB models, we develop a method for extending an 3D RGB model
into an aligned 3D RGB-T model based on a previous thermal 3D modeling approach (Zhu et al.,
2024). Initially, we utilized publicly available 3D RGB human and clothing models (Hu et al., 2023)
as the foundation. Next, we take a clothing model as an example to illustrate our method.

The challenge in building an aligned 3D RGB-T model lies in generating an thermal “skin” that
aligns with the 3D mesh model. To address this, we first unfold the faces of the 3D mesh model
into a 2D faces map and organize it into different regions, such as the back and arms, using Maya
software. Next, we capture real thermal images of clothing using an thermal camera and process
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them to align with the faces map, producing an aligned thermal texture map. See App. A for how
these photos were captured and processed. This process ensures that the real thermal texture is
properly aligned with the 3D mesh model.

3.3 DESIGNING NON-OVERLAPPING RGB-T PATTERN

Step  t

Step t + 1

…

SRD Masks

…

Trainable Continuous🔥
Frozen Discrete ❄
Frozen Continuous ❄ 

Final Step 
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Figure 3: Illustration of the SDCO method. In
SRD, black pixels represent discretizing p̃ and
updating r(V), g(V), b(V), while gray pixels
represent freezing r(V), g(V), b(V) and updating
p̃. At final step, all p̃ are discretized, and NORP
optimization is finished.

After constructing the 3D model of the cloth-
ing, we propose to design non-overlapping
RGB-T pattern (NORP) for the multimodal
adversarial clothing. Since we use printable
fabric and aluminum film to deploy NORP
onto adversarial clothing, each location on
the clothing is either printed with RGB col-
ors or covered with aluminum film, but not
both. We parameterize the NORP, so that it
can be represented by N pixels. Let X =
[Xi] = [ri, gi, bi, ti]i=1,2,...,N represent the
NORP, where [ri, gi, bi] denotes the RGB
value of visible light and ti denotes the ther-
mal emission intensity.

If the clothing at the pixel i is covered with an
aluminum film, its RGB-T value is fixed by
[r(T), g(T), b(T), t(film)], which is determined
by the characteristic of the aluminum film.
Otherwise, the fabric can be printed with any
RGB color, and the body temperature deter-
mines the thermal intensity. Therefore, its
RGB-T value can be represented by [r

(V)
i , g

(V)
i , b

(V)
i , t

(body)
i ], where t

(body)
i is sampled from the

thermal texture. Furthermore, we use an additional variable pi = 0 to represent that a pixel i is
covered with an aluminum film, and pi = 1 otherwise. The RGB-T pixel Xi = [ri, gi, bi, ti] thus
can be represented by

Xi = H(Yi) = pi · [r(V)
i , g

(V)
i , b

(V)
i , t

(body)
i ] + (1− pi) · [r(T), g(T), b(T), t(film)], (2)

where Yi = [r
(V)
i , g

(V)
i , b

(V)
i , pi] is a collection of learnable variables. Please note that the values of

r(T), g(T), b(T), t(body)i , t(film) are measured values (constants).

3.4 OPTIMIZING THE ADVERSARIAL RGB-T PATTERN

We develop a gradient-based algorithm to optimize the variables of NORP. Since pi is discrete in
2, we optimize a continuous variable p̃i instead, and discretize p̃i as pi = ⊮(p̃i ≥ 0.5) after the
optimization. However, a naive method to optimize the variables [r(V)

i , g
(V)
i , b

(V)
i , p̃i] directly led to

suboptimal results (see 4.6 for details). This is because the continuous variables r(V)
i , g(V)

i , b(V)
i and

the discrete variable pi are entangled, thus the approximation of pi affects other variables as well.

Therefore, we propose a spatial discrete-continuous optimization (SDCO) method based on
Spatially-Random Discretization (SRD). The core idea of SRD is to discretize some pixels during
the gradient optimization process, while computing gradients for other pixels that remain continu-
ous. As shown in Fig. 3, during each iteration, we apply a random mask to discretize a portion of
the thermal adversarial pattern’s pixels and freeze these variables. The random discretization ratio is
denoted as α, with the corresponding visible variables in these regions being optimized. Conversely,
the remaining 1−α portion of the thermal adversarial pattern’s pixels is set to be trainable, while the
corresponding visible pixels are frozen. As the mask changes randomly throughout the iterations,
each pixel has an equal probability of being in the trainable state, allowing for iterative updates.

This method balances the optimization of visible and thermal adversarial patterns while satisfying
the spatial interdependency constraints between these two patterns specified in Equation 2, ensuring
that the multimodal adversarial pattern is physically realizable. The process of the algorithm is
outlined in Algorithm 1.
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Algorithm 1 Spatial Discrete-Continuous Optimization

Require: Variables Y = { [r(V)
i , g

(V)
i , b

(V)
i , pi] }Ni=1, continuous p̃i, step size η, discretization prob-

ability α, max iterations T , detection process f(X) in Equation 1, function H(Y ) in Equation 2,
loss L in Equation 7

1: Initialize j ← 0
2: while j < T do
3: Generate random mask M ∈ {0, 1}N with Mi ∼ Bernoulli(α) % Spatially-Random

Discretization
4: for each pixel i do
5: pi ← I(p̃i ≥ 0.5) if Mi = 1 else pi ← p̃i % Discretize thermal / keep thermal continuous
6: end for
7: L← L

(
f(H(Y ))

)
% One single forward & backward step

8: ∇Y L← ∂L
∂Y

9: for each pixel i do
10: Set ∇pi

L← 0 if Mi = 1 else ∇
[r

(V)
i ,g

(V)
i ,b

(V)
i ]

L← 0 % Block thermal vs. RGB gradient
11: end for
12: Update Y ← Y − η∇Y L; j ← j + 1
13: end while
14: Final Binarization: pi ← I(p̃i ≥ 0.5) for all i;
15: return Adversarial Texture X = H(Y )

3.5 APPLYING THE ADVERSARIAL RGB-T PATTERNS TO 3D RGB-T MODELS

Let T vis
adv and T thm

adv denote the optimized adversarial textures for the visible and thermal modalities,
respectively. We first apply EOT algorithm (Athalye et al., 2018) to simulate physical perturbations
during optimization. The adversarial textures after the EOT transformation are represented as:

T vis
adv-E = EOT

(
T vis
adv

)
, T thm

adv-E = EOT
(
T thm
adv

)
. (3)

We then use the renderer R to map the adversarial textures onto the surface of the 3D clothing mesh
Mcloth. The parameters ϕ of the renderer include rendering distances, angles, etc. The rendered
adversarial clothing images in both visible and thermal modalities are represented as:

Iviscloth = R(Mcloth, T
vis
adv-E, ϕ), Ithmcloth = R(Mcloth, T

thm
adv-E, ϕ). (4)

Next, we combine the 3D RGB-T person models and the 3D RGB-T clothing models. In other
words, we let the 3D person “wear” the 3D clothing. The 3D RGB-T person model consists of the
3D body model Mbody , the RGB skin images P vis

skin, and the thermal skin image P inf
skin. Therefore,

the rendered visible and thermal images of a person wearing the clothing are given by:

Ivisperson = R(Mbody, P
vis
skin, I

vis
cloth), Ithmperson = R(Mbody, P

thm
skin , I

thm
cloth). (5)

To simulate physical attacks under different environments, we paste the rendered images Ivisperson and
Ithmman onto the aligned visible and thermal background images Ivisback and Ithmback, respectively. The
pasted images are given by:

Ivispaste = Paste(Ivisperson, I
vis
back), Ithmpaste = Paste(Ithmperson, I

thm
back). (6)

3.6 LOSS FUNCTIONS

We input the pasted images Ivispaste and Ithmpaste into the RGB-T detection model f . The optimization
objective of the adversarial pattern is to minimize the RGB-T detector’s confidence score fobj of the
person wearing the adversarial clothing. Specifically, the optimization loss function is given by:

L = fobj(I
vis
paste, I

thm
paste). (7)

To improve the transferability of the adversarial pattern across different fusion architectures of RGB-
T detectors, we propose a fusion-stage ensemble method. This approach integrates multiple RGB-T

5
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detectors with different fusion architectures, including early-fusion, mid-fusion, late-fusion, and
independent RGB-T detectors during optimization. The ensemble optimization loss function can be
formulated as follows:

Lensemble = w1 · Learly + w2 · Lmid + w3 · Llate + w4 · Lindep. (8)

where wi, i = 1, 2, 3, 4 are the empirically determined weights for each fusion stage.

3.7 PHYSICAL IMPLEMENTATION

After obtaining the optimized adversarial textures using SDCO method, we print the adversarial
textures with RGB color onto fabric. For regions requiring the pasting of aluminum film, the fabric
was marked with an “X” to indicate their placement. Each pixel on the fabric measures 25mm ×
25mm. A tailor then processed the printed fabric into clothing, including a shirt and pants, and
pasted the aluminum film (only 0.1 mm thick) into the clothing regions marked with “X”. Through
this process, we successfully created physical RGB-T adversarial clothing.

4 EXPERIMENTS

4.1 DATASET

To simulate RGB-T attacks in various real-world environments during simulation, we used an
aligned RGB-T dataset (Zhang et al., 2020) named FLIR-aligned. It contains 4,129 well-aligned
RGB-T image pairs for training and 1,013 RGB-T image pairs for testing. We used this dataset as
the background images in our 3D RGB-T simulations.

4.2 TARGET RGB-T DETECTORS

We selected typical RGB-T detectors across different fusion architectures as our primary attack
targets, including an early-fusion detector Prob-E (Chen et al., 2022), a mid-fusion detector Prob-
M (Chen et al., 2022), a late-fusion detector Prob-L (Chen et al., 2022), and independent RGB-T
detectors YOLOv11(RGB) and YOLOv11(T) (Khanam & Hussain, 2024). After performing attacks
on these RGB-T detectors in a white-box setting, we transferred our method to unseen black-box
RGB-T detectors to evaluate its transferability. These black-box detectors include an early-fusion
detector RPN-E (Liu et al., 2016), a mid-fusion detector AR-CNN (Zhang et al., 2019), a late-
fusion detector RPN-L (Liu et al., 2016), and independent RGB-T detectors D-DETR(RGB) and
D-DETR(T) (Zhu et al., 2020). All these detectors achieve high detection confidence scores (above
0.85) on clean RGB-T pedestrian targets, making them strong baselines for evaluating adversarial
robustness.

4.3 EVALUATION METRICS

Table 1: Comparison of different methods in digital world.

Method ASR (%) ↑
Prob-E Prob-M Prob-L YOLOv11

RGB T

Clean 0.2 0.4 0.2 0.4 0.2
Random 15.6 12.0 3.4 0.2 0.6
MAP 31.4 37.2 11.2 6.8 4.2
MIC 26.2 24.0 12.4 5.8 4.0
UAP 25.4 27.8 5.6 2.8 4.4
Ours 100.0 100.0 99.8 98.8 99.4

In our experiments, we adopted
the widely used Attack Success
Rate (ASR) as the evaluation met-
ric. ASR is defined as the ratio
of the number of undetected tar-
get pedestrians to the total number
of target pedestrians. Similar to
previous works (Wei et al., 2022;
2023b; Zhu et al., 2021; 2022;
2024), we set the Intersection over
Union (IoU) threshold between the
predicted bounding box and the
ground truth bounding box to 0.5,
and the confidence threshold to 0.6. The reported ASR was computed as the average success rate
across different viewing angles, distances, and scene conditions.

4.4 ATTACK RGB-T DETECTORS IN THE DIGITAL WORLD

Based on the method introduced in Sec. 3.3, we designed the non-overlapping adversarial RGB-T
patterns where each pixel in the pattern measures 10 × 10 (see App. D for further analysis of this
parameter). Next, we optimized the adversarial patterns using the SDCO method presented in Sec.

6
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3.4, with the mask probability α for SRD set to 70%. A further analysis of α can be found in Sec.
4.6. Additional experimental settings are detailed in App. B. After optimization, we obtained the
adversarial clothing textures for RGB-T detectors with different fusion architectures, along with the
rendered 3D RGB-T human models with adversarial clothing (Fig. 2). See App. 8 for the optimized
3D RGB-T models for different RGB-T detectors.

Next, we applied the rendered 3D RGB-T human model to the test set of the FLIR-aligned dataset,
following the process described in Sec. 3.5. The generated images were then input into RGB-T
detectors with different fusion architectures including Prob-E, Prob-M, Prob-L, and YOLOv11 to
evaluate the attack effectiveness of our adversarial pattern in the digital world. For a fair compari-
son, we employed the clean clothing pattern (pure color pattern), random RGB-T pattern (without
optimization), and the adversarial patterns generated by previous works including MAP, UAP, and
MIC. These patterns were applied according to their original papers and released codes. We used
ASR as the evaluation metric. The results are shown in Tab. 1. Our method achieved an average
ASR of 99.6% across RGB-T detectors with different fusion stages, while the ASR for the control
group was below 37.2%. A set of visual examples comparing these methods is shown in App. 9.

This indicates that our method effectively attacked RGB-T detectors with different fusion architec-
tures in the digital world, outperforming simple baselines and previous RGB-T attack methods.

4.5 ANALYSIS OF ADVERSARIAL EFFECTS AT DIFFERENT DISTANCES AND ANGLES

Figure 4: The attack success rate for different
RGB-T detectors at various (a) distance and (b)
viewing angles.

We further analyzed the ASRs of our method
at various viewing angles and distances. The
viewing angle varied from 0 to 360 degrees,
with samples taken every 18 degrees. The
distance ranged from 2.5 meters to 20 me-
ters, with samples taken every 2.5 meters.
Fig. 4 shows the analysis of ASRs for RGB-
T detectors with different fusion architec-
tures across various distances and angles.

The results show that our method success-
fully attacked RGB-T detectors with various fusion architectures at different (full-angle) viewing
angles and distances. In comparison, some previous methods (Kim et al., 2022; Wei et al., 2023b)
are only effective within a limited range of angles and distances (e.g., angles from -30 to 30 degrees,
distances between 3 to 6 meters). This can be attributed to the fact that our 3D modeling-based
approach can simulate attacks over a broader range of angles (full view) and distances, which is a
significant improvement over traditional 2D simulation-based methods.

4.6 ABLATION STUDY FOR SDCO METHOD

Table 2: Ablation study for SDCO method.

Method ASR (%) ↑
Prob-E Prob-M Prob-L YOLOv11

RGB T

w/o SRD 78.6 88.4 67.2 48.2 46.4
w SRD 100.0 100.0 99.8 98.8 99.4

The core technique of SDCO
is Spatially-Random Discretiza-
tion (SRD). We conducted abla-
tion experiments to evaluate the ef-
fectiveness of SRD while keeping
all other experimental settings the
same as in Sec. 4.4. The results,
shown in Tab. 2, indicate that SRD
effectively improved the attack ef-
fectiveness against RGB-T detectors with different fusion architectures. This is because SRD effec-
tively balances the dual-modality variable optimization.

We further analyzed the impact of the key parameter α of SRD on the ASR, which serves as a
balancing factor between the optimization parameters of the visible and thermal modalities. The
results are detailed in C. We observed that the highest average ASR was achieved when α was set to
0.7. Therefore, we set α = 0.7 in our experiments.

4.7 COMPARISION WITH OTHER OPTIMIZATION METHODS

For simultaneously optimizing discrete and continuous variables, there are other optimization algo-
rithms such as Gumbel-Softmax (Jang et al., 2017) and Straight-Through Estimator (Bengio et al.,

7
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2013) (STE) . Gumbel-Softmax outputs a soft distribution during training and uses a hard distribu-
tion during inference, while STE outputs a hard distribution during the forward process and uses
a differentiable approximation during the backward process. Both methods transform the discrete
optimization problem into an approximate continuous optimization problem, enabling the use of
gradient-based methods to optimize both types of variables. We applied these methods to optimize
adversarial textures while keeping the settings consistent with Sec. 4.4.

Table 3: Comparison with other optimization methods

Method ASR (%) ↑
Prob-E Prob-M Prob-L YOLOv11

RGB T

Gumbel 78.6 87.8 60.0 34.0 22.6
STE 95.6 96.8 94.4 92.4 86.8
SDCO 100.0 100.0 99.8 98.8 99.4

The experimental results, shown in
Tab. 3, indicates that in our exper-
iments, our SDCO method outper-
forms Gumbel-Softmax and STE.
This is likely because Gumbel-
Softmax and STE essentially per-
form continuous optimization and
discrete operations in different se-
quential stage (e.g., training vs. in-
ference, forward vs. backward),
while our method simultaneously performs continuous optimization and discrete operations in dif-
ferent spatial aeras, which aligns with the spatial distribution of two types of variables in our RGB-T
adversarial clothing.

Figure 5: Visualization of physical RGB-T attacks across diverse scenes. Top row: indoor scenarios.
Bottom row: outdoor scenarios. O: ordinary clothes. R: random pattern clothes. U: UAP patch. A:
adversarial clothes. See Supplementary Material for the Demo Video and more examples.

4.8 ATTACK RGB-T DETECTORS IN THE PHYSICAL WORLD

Table 4: Comparison of different methods in the physical
world. Highest ASR values are marked in bold.

Method ASR (%) ↑
Prob-E Prob-M Prob-L YOLOv11

RGB T

Clean 15.2 19.6 15.3 9.4 11.6
Random 23.4 21.5 17.6 11.0 9.7
UAP 15.6 23.3 15.3 8.8 12.2
Ours 73.5 76.5 79.2 61.2 64.4

Based on the results of 3D digi-
tal simulation, we created physi-
cal RGB-T adversarial clothes ac-
cording to the process described in
Sec. 3.7. To ensure a fair compari-
son, we selected ordinary clothing,
random RGB-T pattern clothing,
latest RGB-T attack method UAP
patch as control groups (MAP and
MIC were excluded due to the lack
of corresponding special materials
such as low-E films, which makes
physical reproduction difficult). See App. 12 for the photos of our adversarial clothes and the control
groups.

We tested the physical-world attack effectiveness of RGB-T adversarial clothes and the control
groups. We invited 5 volunteers to participate in the experiments. The human-related experiments
have been approved by the Institutional Review Board (IRB). Volunteers participated in groups of
two, three, or four, wearing our RGB-T adversarial clothing, random-pattern RGB-T clothing, or-
dinary clothing, or holding a UAP patch. We used an iPhone 13 Pro and a FLIR T560 thermal
camera to simultaneously capture visible and thermal images of these volunteers. The captured
scenes included both indoor and outdoor environments, spanning different times of the day, includ-
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ing morning, noon, afternoon, and nightfall. The camera angles covered a full 0-360◦ range, and the
capture distances ranged from 2 to 15 meters. We recorded 116 videos and sampled 5220 visible-
thermal image pairs at a frame rate of 1 frame per second. The collected images were then input into
the corresponding RGB-T detectors for detection, and the ASR was calculated, as shown in Tab. 4.
Some examples are shown in Fig. 5. See Supplementary Material for the Demo Video.

The results indicate that our adversarial clothing successfully evades multiple RGB-T detectors with
different fusion architectures across various scenes, angles, and distances, consistently outperform-
ing the baseline methods.

4.9 ATTACK TRANSFERABILITY

Table 5: Transferability in the digital world. The numbers are ASRs. See App. F for the physical-
world results.

Train
Test Prob-E Prob-M Prob-L YOLOv11 RPN-E AR-CNN RPN-L D-DETR

Prob-E 100.0 99.0 11.2 1.0 95.4 67.8 96.2 48.6
Prob-M 81.8 100.0 39.0 0.4 92.4 64.4 92.1 70.6
Prob-L 92.8 94.6 99.8 0.8 91.2 71.2 97.0 91.8
YOLOv11 61.0 86.4 38.2 98.4 87.0 42.0 78.6 70.4
Ensemble 99.8 100.0 99.4 96.2 94.8 76.4 97.4 99.0

We tested the attack transferability of our RGB-T adversarial clothes to unseen RGB-T detectors,
both in the digital and physical worlds. The experimental details are described in App. F. It is
worth noting that most of the experiments were conducted under a black-box attack setting, which
is more challenging but practically significant for real-world applications. The results of the digital
experiments are shown in Tab. 5, and the physical world results are available in App. E.

The results indicate that that our method successfully attacked various RGB-T detectors in both
white-box and black-box settings. More importantly, our fusion-stage ensemble method effectively
improved the ASRs against unseen RGB-T detectors compared to patterns optimized for a single
model. This suggests that we can just use one single clothing pattern to attack unseen RGB-T
detectors with different fusion architectures.

4.10 DEFENSE METHODS

We evaluated the effectiveness of eight typical defense methods against our attack method. These
included five traditional defense techniques: Adversarial Training (Goodfellow et al., 2014), Total
Variance Minimization (Agarwal et al., 2021), Bit Squeezing (Xu et al., 2017), JPEG Compression
(Guo et al., 2017), and Pixel Mask (Guo et al., 2017), along with three state-of-the-art methods
specifically designed for defending object detection attacks: PAD (Jing et al., 2024), NAPGuard
(Wu et al., 2024), and Jedi (Tarchoun et al., 2023). The experimental details of these methods are
provided in App. G. The results show that, although these methods had some defense effects, the
ASRs of our method after defense still achieved at least 70%, further indicating the effectiveness of
our attack approach.

5 CONCLUSION

This paper presents a novel method to RGB-T physical attacks using adversarial clothing with
NORP. We construct 3D RGB-T models for human and adversarial clothing to simulate full-view
(0◦–360◦) RGB-T attacks. NORP is a new adversarial pattern design using distinct visible and ther-
mal materials without overlap, avoiding the light reduction in ORP. To simultaneously optimizing
continuous RGB pixels and discrete thermal pixels within NORP, we propose an SDCO method.
Through systematic evaluation in both the digital and physical world, our work comprehensively
reveals the vulnerabilities of RGB-T detectors across different fusion architectures, viewing angles,
and distances, which is important for building more robust detectors in the future.

Ethics Statement: Adversarial example techniques should be used carefully. If abused, adversarial
attacks may threaten the security of AI systems. However, adversarial attacks also advance AI
robustness research by exposing system vulnerabilities and promote the development of more robust
and trustworthy AI models.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yi-Ting Chen, Jinghao Shi, Zelin Ye, Christoph Mertz, Deva Ramanan, and Shu Kong. Multimodal
object detection via probabilistic ensembling. In European Conference on Computer Vision, pp.
139–158. Springer, 2022.

Kinjal Dasgupta, Arindam Das, Sudip Das, Ujjwal Bhattacharya, and Senthil Yogamani. Spatio-
contextual deep network-based multimodal pedestrian detection for autonomous driving. IEEE
transactions on intelligent transportation systems, 23(9):15940–15950, 2022.

Wassim El Ahmar, Yahya Massoud, Dhanvin Kolhatkar, Hamzah AlGhamdi, Mohammad
Alja’Afreh, Riad Hammoud, and Robert Laganiere. Enhanced thermal-rgb fusion for robust ob-
ject detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 365–374, 2023.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

Junjie Guo, Chenqiang Gao, Fangcen Liu, Deyu Meng, and Xinbo Gao. Damsdet: Dynamic adaptive
multispectral detection transformer with competitive query selection and adaptive feature fusion.
In ECCV 2024, volume 15085, pp. 464–481. Springer, 2024.

Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-Cheng Chen, Kai-Lung Hua, and Wen-
Huang Cheng. Naturalistic physical adversarial patch for object detectors. In ICCV, 2021.

Zhanhao Hu, Siyuan Huang, Xiaopei Zhu, Fuchun Sun, Bo Zhang, and Xiaolin Hu. Adversarial
texture for fooling person detectors in the physical world. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 13307–13316, 2022.

Zhanhao Hu, Wenda Chu, Xiaopei Zhu, Hui Zhang, Bo Zhang, and Xiaolin Hu. Physically realizable
natural-looking clothing textures evade person detectors via 3d modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16975–16984,
June 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
ICLR, 2017.

Lihua Jing, Rui Wang, Wenqi Ren, Xin Dong, and Cong Zou. Pad: Patch-agnostic defense against
adversarial patch attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 24472–24481, 2024.

Rahima Khanam and Muhammad Hussain. Yolov11: An overview of the key architectural enhance-
ments. arXiv preprint arXiv:2410.17725, 2024.

Taeheon Kim, Hong Joo Lee, and Yong Man Ro. Map: Multispectral adversarial patch to attack
person detection. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4853–4857. IEEE, 2022.

Taeheon Kim, Youngjoon Yu, and Yong Man Ro. Multispectral invisible coating: laminated visible-
thermal physical attack against multispectral object detectors using transparent low-e films. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 1151–1159, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenjie Lai, Fanyu Zeng, Xiao Hu, Shaowei He, Ziji Liu, and Yadong Jiang. Regseg: An end-to-end
network for multimodal rgb-thermal registration and semantic segmentation. IEEE Transactions
on Image Processing, 2024.

Jingjing Liu, Shaoting Zhang, Shu Wang, and Dimitris N Metaxas. Multispectral deep neural net-
works for pedestrian detection. arXiv preprint arXiv:1611.02644, 2016.

Mehmood Nawaz, Sheheryar Khan, Muhammad Daud, Muhammad Asim, Ghazanfar Ali Anwar,
Ali Raza Shahid, Ho Pui Aaron HO, Tom Chan, Daniel Pak Kong, and Wu Yuan. Improving au-
tonomous vehicle cognitive robustness in extreme weather with deep learning and thermal camera
fusion. IEEE Open Journal of Vehicular Technology, 6:426–441, 2025.

Han Ni, Wenna Wang, Shuai Yun, Zixu Zhao, and Xiuwei Zhang. Modality-independent regression
and training for improving multispectral pedestrian detection. In 2022 7th International Confer-
ence on Image, Vision and Computing (ICIVC), pp. 75–80. IEEE, 2022.

Bilel Tarchoun, Anouar Ben Khalifa, Mohamed Ali Mahjoub, Nael Abu-Ghazaleh, and Ihsen
Alouani. Jedi: Entropy-based localization and removal of adversarial patches. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4087–4095, 2023.

Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance cameras: Ad-
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A DETAILS FOR BUILDING 3D RGB-T MODELS

To construct a 3D RGB-T model, we develop a method for extending an 3D RGB model into an
aligned 3D RGB-T model based on a previous thermal 3D modeling approach (Zhu et al., 2024).
Initially, we utilized publicly available 3D RGB human and clothing models (Hu et al., 2023) as the
foundation. Next, we take a clothing model (Fig. 6) as an example to illustrate our method.

The challenge in building an aligned 3D RGB-T model lies in generating an thermal “skin” that
aligns with the 3D mesh model (Fig. 6(c)). To address this, we first unfold the faces of the 3D
mesh model into a 2D faces map (Fig. 6(d)) and organize it into different regions, such as the back
and arms, using Maya software. Next, we capture real thermal images of clothing using an thermal
camera and process them to align with the faces map, producing an aligned thermal texture map
(Fig. 6(f)). This process ensures that the real thermal texture is properly aligned with the 3D mesh
model, and the final rendered 3D RGB-T models are shown in Fig. 6(a) and 6(e).

We observe that cropped thermal images may not perfectly align with the faces map. To address
this issue, we utilize Photoshop’s distortion function to fine-tune the cropped thermal images for
better alignment. In some cases, the captured thermal images may only contain partial regions
corresponding to the faces map. When this occurs, we capture images from different angles and
stitch them together to create a complete thermal texture map.

Using the above approach, we obtain a fully aligned thermal texture image for the 3D RGB-T model.
Finally, we employ PyTorch3D renderer to map both the RGB texture and thermal texture onto the
3D mesh surface, resulting in a 3D RGB-T model.

We further observed that the thermal characteristics of clothing vary with time and location. To
simulate these changing thermal properties, we captured thermal images of the same clothing at
different times (day and night) and in different locations (indoor and outdoor). Using the method
described above, we constructed 3D thermal clothing models for various scenarios, as shown in Fig.
7. During both the optimization and testing processes, we randomly switch the texture maps of the
3D thermal clothing model to simulate the thermal characteristics of the clothing under different
times and locations.

We captured 10 sets of human thermal textures using an thermal imaging camera FLIR T560, cover-
ing various environments such as indoor and outdoor settings during both day and night. During the
3D rendering process, visible light is randomly selected from point light sources, directional light
sources, and ambient light sources. Infrared light is fixed as an ambient light source to simulate the
thermal radiation emitted by the human body in all directions. We increased the brightness of the
ambient light source in the thermal rendering to make it close to the thermal imaging effect caused
by the high temperature of the human body.

For each sample, we randomly selected the azimuth from 0 to 360 degrees, the elevation from -10
to 20 degrees, and the distance scale from 1.5 to 3.5 for RGB-T joint rendering. After rendering,
the human figures were randomly placed within the aligned FLIR background with x ∼ U(−1, 1)
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Figure 6: Construction of 3D RGB-T model.
(a) 3D RGB model. (b) RGB texture. (c) 3D
mesh. (d) Reorganized faces map. (e) 3D ther-
mal model. (f) Thermal texture collected from
real world.

Figure 7: Different thermal characteristics of
clothes at (a) day indoors, (b) day outdoors, (c)
night indoors, and (d) night outdoors.

and y ∼ U(−0.2, 0.2), followed by object detection. Considering that some images in the FLIR
dataset contain other individuals, their detection results need to be excluded. Therefore, we set
an Intersection over Union (IoU) threshold of 0.6 to exclude detection boxes that fall outside the
placement range of our rendered human figures, and then took the highest detection score as the loss
value.

Figure 8: 3D RGB-T models for (a) Prob-E, (b) Prob-M, (c) Prob-L, (d) Ensemble Detector, (e)
YOLOv11, (f) Deformable DETR, and (g) Random RGB-T Pattern.

B DETAILS FOR EXPERIMENTAL SETTINGS OF DIGITAL ATTACKS

When conducting spatial discrete-continuous optimization (SDCO), we set the learning rate to 0.01,
the batch size to 2, and initialized the attack with [r

(V)
i , g

(V)
i , b

(V)
i ] = U(0, 1), p̃i = U(0.5 −

0.01, 0.5 + 0.01). The number of training steps was set to 10k steps for the Prob-E, Prob-M, and
Prob-L models, and 20k steps for the YOLOv11 model. We set the α of the SRD to 0.7 and the pixel
size to 10 × 10. The texture of shirt was divided into 86 × 34 pixels, and the texture of pants was
divided into 70× 48 pixels.
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Figure 9: Comparison of different RGB-T attack methods targeting (a) Prob-E, (b) Prob-M, (c)
Prob-L, (d) YOLOv11 across diverse scenes in the digital world.

All experiments were performed on RTX3090 GPU with Ubuntu 22.04, CUDA 11.8 and Pytorch
1.13. A single experiment requires around 20GB of GPU memory, takes about 5 hours for every
10k training steps.

After optimization, we rendered the adversarial textures onto the 3D human models (Fig. 8) and
placed them in the background images of the test set. We then input the images to RGB-T detectors
and evaluate the attack performance both in the white-box and black-box setting. We also compare
our method with simple baselines and previous RGB-T attack methods. The results are shown in
Tab. 1 and Tab. 5. Fig. 9 shows a set of visual examples.

The results indicates that our method effectively attacked RGB-T detectors with different fusion
architectures in the digital world, outperforming simple baselines and previous RGB-T attack meth-
ods.

C ANALYSIS OF THE KEY PARAMETER OF SRD

Figure 10: Effect of the parameter α

We further analyzed the impact of the key parameter of
SRD, mask probability α, on the ASR. The results are
shown in Fig. 10. We observed that highest average
ASR was achieved when α was set to 0.7. Therefore,
we set α = 0.7 in our experiments.

It is worth noting that, α serves as a balancing factor
between the optimization parameters of the visible and
thermal modalities. When α is too low, the number
of trainable parameters in the thermal modality signifi-
cantly exceeds that in the visible modality, causing the
SDCO algorithm to focus more on optimizing the ther-
mal modality than the visible modality. Conversely, when α is too high, SDCO focuses more on
optimizing the visible modality. This imbalance in optimization between the two modalities can
ultimately degrade the overall attack effectiveness.

D EFFECT OF PIXEL SIZE

Another hyperparameter that affects the ASR is the pixel size of the adversarial pattern. We tested
the ASRs of adversarial clothing patterns with pixel sizes of 5×5, 10×10, 15×15, and 20×20,
targeting RGB-T detectors with different fusion architecture. The results are shown in Tab. 6. We
found that adversarial clothing patterns with a pixel size of 10×10 achieved the best performance
among these.

E MORE EXAMPLES FOR RGB-T PHYSICAL ATTACKS

We provide photos of our adversarial RGB-T clothes in Fig. 12 and additional examples of RGB-T
physical attacks in Fig. 11. The captured scenes include both indoor and outdoor environments,
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Table 6: Effect of pixel size from 5x5 to 20x20. Note that highest ASR values are marked in bold.

Method ASR (%) ↑
Early Mid Late Combined

RGB T

5×5 99.8 99.6 99.2 86.4 85.6
10×10 100.0 100.0 99.8 98.4 98.2
15×15 100.0 99.8 99.0 94.2 94.6
20×20 99.8 99.8 97.0 87.0 88.4

Figure 11: Visualization of physical RGB-T attacks targeting (a) Prob-E, (b) Prob-M, (c) Prob-L,
(d) YOLOv11, and (e) Ensemble RGB-T detector at different angles, distances, time, and locations.
Facial areas are blurred for privacy reasons.

spanning different times of the day, including morning, noon, afternoon, and nightfall. Volunteers
participated in groups of two, three, or four, wearing our RGB-T adversarial clothes (Fig. 12(a-f)),
random-pattern RGB-T clothing(Fig. 12(g)), ordinary clothing, or holding a UAP patch.

The tested RGB-T detectors include both white-box models, such as an early-fusion detector Prob-E
(Chen et al., 2022), a mid-fusion detector Prob-M (Chen et al., 2022), a late-fusion detector Prob-L
(Chen et al., 2022), and independent RGB-T detectors YOLOv11(RGB) and YOLOv11(T) (Khanam
& Hussain, 2024), as well as unseen black-box models, including an unseen early-fusion model

Table 7: Transferability in the physical world. The numbers are ASRs.

Train
Test Prob-E Prob-M Prob-L YOLOv11 RPN-E AR-CNN RPN-L D-DETR

Prob-E 83.6 71.4 21.3 1.9 47.3 51.1 48.1 47.5
Prob-M 57.8 87.8 13.4 3.4 61.4 47.9 58.2 48.1
Prob-L 61.6 77.4 78.4 0.3 75.1 46.2 65.2 41.2
YOLOv11 50.5 55.3 32.3 66.9 39.7 33.9 55.3 27.4
Ensemble 77.6 84.3 78.2 68.8 71.4 55.6 59.0 50.0
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Table 8: Evaluation of defense methods

Method ASR drop (%) ↓
Early Mid Late Combined

RGB T

AT 23.4 18.4 21.0 25.4 24.6
TVM 17.0 14.6 9.8 14.6 18.0
BIT 9.8 7.2 8.6 12.4 14.2
JPEG 11.2 10.0 15.4 16.8 19.6
PM 21.0 17.4 24.2 12.0 10.2

PAD 17.2 12.4 21.2 25.0 22.0
NAPGuard 15.4 11.0 22.4 28.6 17.2
Jedi 22.4 19.8 29.8 27.6 28.2

RPN-E(Liu et al., 2016), an unseen mid-fusion model AR-CNN(Zhang et al., 2019), an unseen late-
fusion model RPN-L(Liu et al., 2016), and unseen independent RGB-T detectors D-DETR(RGB)
and D-DETR(T)(Zhu et al., 2020). The camera angles cover a full 0-360◦ range, and the capture
distances range from 2 to 15 meters.

Experimental results indicate that our adversarial clothing successfully evades multiple white-box
and black-box RGB-T detectors across various scenes, angles, and distances, consistently outper-
forming the baseline methods.

Figure 12: Physical RGB-T clothes for (a) Prob-E, (b) Prob-M, (c) Prob-L, (d) Ensemble Detector,
(e) YOLOv11, (f) Deformable DETR, and, (g) Random Pattern.

F ATTACK TRANSFERABILITY IN THE PHYSICAL WORLD

We tested the attack transferability of our RGB-T adversarial clothes to unseen RGB-T detectors
in the physical world. The RGB-T detectors involved in the optimization process include an early-
fusion detector Prob-E (Chen et al., 2022), a mid-fusion detector Prob-M (Chen et al., 2022), a late-
fusion detector Prob-L (Chen et al., 2022), and independent RGB-T detectors YOLOv11(RGB) and
YOLOv11(T) (Khanam & Hussain, 2024), and an ensemble model of the aforementioned models.
In the testing process, the models, in addition to the ones listed above, also include an unseen early-
fusion model RPN-E(Liu et al., 2016), an unseen mid-fusion model AR-CNN(Zhang et al., 2019),
an unseen late-fusion model RPN-L(Liu et al., 2016), and unseen independent RGB-T detectors D-
DETR(RGB) and D-DETR(T)(Zhu et al., 2020). The results of the physical experiments are shown
in Tab. 7. Please note that we calculated the average ASR of both modalities for independent RGB-T
detectors in Tab. 7.

The results indicate that our method can transfer to a variety of unseen RGB-T detectors in the
physical world. More importantly, our fusion stage ensemble method effectively improves the ASRs
against unseen RGB-T detectors compared to patterns optimized for a single model. This suggests
that we can just use one single clothing to attack unseen RGB-T detectors with different fusion
architectures in the physical world.
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Figure 13: Failure cases of defense. Black segments denote adversarial regions identified by defense
algorithms.

Table 9: Evaluation on E2E-MFD and DAMSDET.

Method ASR (%) ↑
E2E-MFD DAMSDET

Clean 0.2 3.6
Random 0.4 9.6
MAP 8.8 17.8
MIC 11.4 14.2
UAP 7.0 12.0
Ours 88.2 94.6

G DETAILS FOR DEFENSE METHODS

We evaluated the effectiveness of eight typical adversarial defense methods against our attack meth-
ods. These included five traditional defense techniques: Adversarial Training(Goodfellow et al.,
2014), Total Variance Minimization (Agarwal et al., 2021), Bit Squeezing(Xu et al., 2017), JPEG
Compression(Guo et al., 2017), and Pixel Mask(Guo et al., 2017), along with three state-of-the-
art methods specifically designed for defending against adversarial attacks on object detectors:
PAD(Jing et al., 2024), NAPGuard(Wu et al., 2024), and Jedi(Tarchoun et al., 2023).

For Adversarial Training, we began by rendering 200 images with adversarial textures and collecting
their corresponding labels. These images were then added to the original FLIR-aligned dataset for
fine-tuning RGB-T detectors. We fine-tuned the Prob-E, Prob-M, Prob-L, and YOLOv11 models
individually for 10 epochs, with a learning rate of 0.001. The fine-tuned model weights were subse-
quently used as the target for our attacks. In the case of Pixel Mask defense, we randomly selected
an 80× 80 region on both the shirt and trousers textures, simultaneously removing the thermal ma-
terials and visible light adversarial textures from these areas. For Bit Squeezing, we reduced the bit
depth of both the 8-bit visible light and thermal adversarial textures to 7-bit. Regarding Total Vari-
ance Minimization and JPEG Compression, we utilized modules from the Adversarial Robustness
Toolbox library to compress or blur the adversarial textures. As for PAD, NAPGuard, and Jedi, we
directly implemented their open-source codes, which attempt to verify and eliminate our adversarial
clothing on simulated humans.

Tab. 8 shows the results. It indicates that although these methods had some defense effects, the
ASRs of our method after defense still achieved at least 70%, further indicating the effectiveness
of our attack approach. Note that our 3D modeling ensures that adversarial clothing can cover
larger areas of human body and have more irregular shapes and boundaries compared with 2D
adversarial patches. Therefore, even latest methods specialized in defending object detectors cannot
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precisely locate our adversarial clothing. Fig. 13 illustrates examples of failure cases of defense
when applying PAD method.

H ATTACK DEFORMABLE DETR

To evaluate the attack effectiveness of our method against the transformer-based detector, we at-
tacked a typical detector, Deformable DETR (Zhu et al., 2020), both in the digital and physical
world. Following the experimental setup described in Sec. 4.4, we obtained the optimized adversar-
ial clothing, as shown in Fig. 8(f). We then tested its attack performance in the digital world, and
the experimental settings were same as Sec. 4.4. The ASR of the adversarial clothing was 99.6% in
the digital world. In comparison, the ASR of the random pattern clothing was only 17.8%.

Next, we manufactured adversarial clothes based on the optimized patterns, as shown in Fig. 12(f),
and conducted physical experiments following the setup described in Sec. 4.9. The physical experi-
ments indicated that our adversarial clothes successfully evaded Deformable DETR in the physical
world, achieving an ASR of 75.4%, while the ASR of random pattern clothes was only 22.0%. These
results, together with our previous experiments, indicate that our method is effective against both the
CNN-based models (e.g., YOLOv11) and the transformer-based model, highlighting the generality
of our approach.

I ATTACK E2E-MFD AND DAMSDET

We evaluated our attack method on two recently published RGB-T detectors—an early-fusion de-
tector E2E-MFD (Zhang et al., 2024) and a mid-fusion detector DAMSDET(Guo et al., 2024). For
a fair comparison, we employed the clean clothing pattern (pure color pattern), random RGB-T
pattern (without optimization), and the adversarial patterns generated by previous works including
MAP(Kim et al., 2022), UAP(Wei et al., 2023b), and MIC(Kim et al., 2023). The results are shown
in Tab. 9. Our method achieved an average ASR of 91.4%, while the ASR for the control group
was below 17.8%. This indicates that our approach can effectively attack state-of-the-art RGB-T
detectors, outperforming simple baselines and previous RGB-T attack methods.

J LIMITATION AND FUTURE WORK

As the first physical attack that effectively targets RGB–T detectors across all fusion methods, this
paper accepts a modest loss in garment naturalness, consistent with early work on single-modality
(Kim et al., 2022; 2023; Zhu et al., 2021; 2022; Hu et al., 2022), to give research priority on better
exposing the vulnerabilities of current RGB–T object detectors. Future work would further focus
on how to improve the perceptual naturalness of clothing patterns while remaining effectiveness of
attack in multi-modal real-world detection.
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