

000 SIMILARITY-CONSTRAINED REWEIGHTING 001 FOR COMPLEX QUERY ANSWERING ON KNOWLEDGE 002 GRAPHS 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Machine learning models for answering complex queries on knowledge graphs
014 estimate the likelihood of answers that are not reachable via direct traversal. Prior
015 work in this area has focused on structured queries whose constraints are expressed
016 in first-order logic. Recent work has proposed to extend such logical constraints
017 with *soft entity constraints*, which require the answer to a query (also known as the
018 *target variable*) to be similar or dissimilar to specified sets of entities.

019 A natural but unexplored generalization of this extension is to allow specifying
020 similarity constraints not only on the answer to a query, but also on the values
021 assigned to *intermediate variables*, which frequently occur in complex queries.
022 In this work, we study this more general formulation and introduce SCORE: a
023 computationally efficient and interpretable method for incorporating similarity con-
024 straints at arbitrary positions of a query. Unlike approaches that rely on deep neural
025 networks, SCORE is based on a lightweight and interpretable score adjustment
026 function that only requires tuning two parameters on a validation set.

027 Our experiments on a challenging benchmark over three different knowledge graphs
028 demonstrate that on the special case of constraints on the target variable, SCORE
029 is able to incorporate preferences without degrading overall query answering
030 performance, with significantly increased ranking performance over a learned
031 neural baseline. Moreover, SCORE maintains its performance in the more general
032 setting with constraints on intermediate variables. Our code is available at <https://anonymous.4open.science/r/score-simcqa>.

034 1 INTRODUCTION

036 Knowledge graphs (KGs) have emerged as a fundamental data structure for organizing and reasoning
037 about real-world information, encoding millions of entities and their relationships across diverse
038 domains including encyclopedic knowledge (Bollacker et al., 2008), biomedical data (Himmelstein
039 et al., 2017), and scientific literature (Ji et al., 2022). Their structured representation enables reasoning
040 tasks that go beyond simple fact retrieval, supporting complex queries that involve multiple logical
041 operations such as conjunction, disjunction, and existential quantification. These capabilities have
042 made KGs relevant in applications such as question answering and recommendation systems (Zhou
043 et al., 2020), drug discovery (Daza et al., 2023), and knowledge-based reasoning (Hogan et al., 2021).

044 However, knowledge graphs are inherently incomplete, missing a substantial fraction of true
045 facts (Nickel et al., 2016). This incompleteness poses significant challenges for traditional sym-
046 bolic query processing, which can only retrieve answers that are explicitly present in the graph.
047 To address this limitation, machine learning approaches for *complex query answering* have been
048 developed (Hamilton et al., 2018; Ren et al., 2020; Ren & Leskovec, 2020; Ren et al., 2024), which
049 learn to estimate the likelihood of potential answers by reasoning over incomplete knowledge graphs.

050 Despite these advances, current complex query answering systems are limited to expressing con-
051 straints through first-order logic, which restricts their ability to capture nuanced preferences and
052 domain-specific requirements. Recent work has begun to address this limitation by introducing *soft*
053 *entity constraints* (Daza et al., 2025), which allows specifying that query answers should be similar
or dissimilar to given sets of entities. For instance, when querying for “drugs treating diseases that

Figure 1: Illustration of three approaches for query answering on knowledge graphs, with vectors indicating entity scores at different steps. **Left:** a traditional query with purely logical constraints. **Middle:** incorporating similarity constraints in NQR (Daza et al., 2025), which supports only the target variable via uncalibrated score adjustments (shown in red and blue). **Right:** SCORE, which supports similarity constraints on arbitrary variables through normalized similarity scores.

have headache as a symptom,” a user might specify preferences such as “drugs similar to Ibuprofen”. While this formulation represents a significant step towards more expressive interfaces for querying a KG, it only supports similarity constraints on the final answers being sought, also known as the *target variable*. This limitation limits expressiveness, as constraints can also involve intermediate variables that appear during query processing. For example, one might specify constraints not only on the drug (target variable) but also on the diseases (the intermediate variable), such as “diseases like migraine”.

When constraints apply only to target variables, similarity-based score adjustments can be applied as a post-processing step after the query has been evaluated. However, incorporating constraints on intermediate variables is not trivial, as they must be *integrated* into the query processing itself. Crucially, this integration depends on operating with *normalized scores*, rather than uncalibrated similarity scores, so that they can be meaningfully combined with other probabilistic components of the query answering model. Such an integration must preserve the logical structure of the query while incorporating similarity constraints at arbitrary positions, which is not supported by the methods introduced by [Daza et al. \(2025\)](#).

In this work, we address this fundamental limitation by studying the problem of *Similarity-constrained Complex Query Answering* (SimCQA) in its full generality, where similarity constraints can be specified on **any variable** within a complex query. We then propose SCORE (Similarity-**CO**nstrained **R**eweighting), a computationally efficient method that extends existing neural query answering approaches to support similarity constraints at arbitrary query positions.

The key innovation of SCORE lies in its lightweight and interpretable score adjustment mechanism, which uses pre-trained entity embeddings to compute normalized similarity scores and integrates them into the query processing pipeline, as illustrated in Figure 1 on the right. Unlike approaches that require expensive end-to-end neural optimization, SCORE introduces only two hyperparameters that can be efficiently tuned on a validation set. Our contributions are summarized as follows:

- We formalize the problem of similarity-constrained complex query answering with constraints on arbitrary variables, generalizing previous work.
- We introduce SCORE, a lightweight and interpretable method for incorporating similarity constraints at any position in complex queries, requiring minimal computational overhead and hyperparameter tuning.
- We conduct comprehensive experiments on three challenging knowledge graph benchmarks (FB15K-237, NELL-995, and Hetionet), demonstrating that SCORE achieves substantial improvements in ranking quality and constraint satisfaction (NDCG@10 increases of 3–9 percentage points, representing 10–45% relative improvements) with respect to a neural baseline, while maintaining competitive performance on unconstrained queries.

2 RELATED WORK

Complex query answering. Neural approaches to complex query answering (CQA) have evolved from simple link prediction to multi-hop logical queries [Ren et al. \(2024\)](#). Early knowledge graph

embedding methods focused on predicting individual missing edges (Nickel et al., 2011; Bordes et al., 2013; Trouillon et al., 2016; Lacroix et al., 2018; Sun et al., 2019), learning dense representations that capture relational patterns in the graph structure. The field has since progressed to handle complex queries involving multiple entities, relations, and logical operations such as conjunction, disjunction, and existential quantification. Modern *neuro-symbolic* approaches can be broadly categorized based on their query expressiveness: methods supporting smaller subsets of first-order logic (Hamilton et al., 2018; Daza & Cochez, 2020; Ren et al., 2020; Ren & Leskovec, 2020; Arakelyan et al., 2021; 2023; Bai et al., 2023; Zhu et al., 2022) and those handling more general graph pattern queries (Cucumides et al., 2024; Yin et al., 2024).

A fundamental limitation shared by all these approaches is their reliance on *hard logical constraints*: queries can only express conditions that are precisely definable in first-order logic. This restriction prevents users from incorporating nuanced preferences or domain-specific similarity requirements that are naturally expressed through soft constraints. Our work addresses this gap by extending neural query answering to support similarity-based preferences while preserving the logical structure and efficiency of existing methods.

Similarity constraints for complex queries. The first work to extend logical query answering with similarity constraints was introduced by Daza et al. (2025), which augmented first-order logic queries with *soft entity constraints* expressing similarity or dissimilarity preferences for query answers. This enriched the expressiveness of methods for CQA by enabling preferences that cannot be captured through logical operators alone. However, we note two key limitations: (i) similarity constraints are only supported on the *target variable* and not on intermediate variables which occur frequently in complex queries, and (ii) similarity incorporation is treated as a *post-processing step* after query evaluation. While post-processing is effective for the target variable, where constraints can be applied directly to the query outputs, it cannot work for intermediate variables that *interact* with query execution. In such cases, uncalibrated updates cannot be meaningfully propagated through neuro-symbolic operators. In contrast, SCORE integrates similarities by mapping them into normalized similarity scores and combining them with fuzzy vector scores, ensuring that updates remain compatible with logical operators.

3 PRELIMINARIES

Knowledge graphs. We define a knowledge graph as a tuple $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$, where \mathcal{E} is the set of entities, \mathcal{R} is the set of binary relations, and \mathcal{T} is the set of triples (h, r, t) with $h, t \in \mathcal{E}$ and $r \in \mathcal{R}$.

Complex queries. Queries over KGs are expressed as first-order logic formulas $q(v_1, \dots, v_N)$ with free variables v_1, \dots, v_N ranging over \mathcal{E} . Formulas are built from atoms over relations in \mathcal{R} (and their negations), constants denoting specific entities in \mathcal{E} , and logical connectives such as conjunction (\wedge) and disjunction (\vee). For example, consider the question “*What drugs treat diseases that have headache as a symptom?*”. The corresponding query for this question is the following:

$$q(v_1, v_2) = \text{SymptomOf}(\text{Headache}, v_1) \wedge \text{TreatedBy}(v_1, v_2). \quad (1)$$

The free variables in a query can be assigned to specific entities in \mathcal{E} . For an assignment $e_1, \dots, e_N \in \mathcal{E}$, we write $q(e_1, \dots, e_N)$ for the resulting **grounded statement**. We write $\mathcal{G} \models q(e_1, \dots, e_N)$ if the set of triples \mathcal{T} in the KG entails this grounded formula.

Continuing the example, suppose $e_1 = \text{Migraine}$ and $e_2 = \text{Ibuprofen}$. We then obtain the grounded statement:

$$\text{SymptomOf}(\text{Headache}, \text{Migraine}) \wedge \text{TreatedBy}(\text{Migraine}, \text{Ibuprofen}). \quad (2)$$

If both atoms appear in \mathcal{T} , then $\mathcal{G} \models q(\text{Migraine}, \text{Ibuprofen})$.

Answer set. Given a query formula $q(v_1, \dots, v_N)$, one may choose a free variable v_i as a designated *target variable*. Denoting as $\mathbf{v}_{\neg i}$ all free variables except v_i , the answer set $A_i(q)$ is defined as the set of entities that can be assigned to v_i such that the query holds in the graph for some assignment of the remaining variables:

$$A_i(q) = \{e \in \mathcal{E} \mid \exists \mathbf{v}_{\neg i} \in \mathcal{E} : \mathcal{G} \models q(\mathbf{v}_{\neg i}, v_i = e)\}. \quad (3)$$

162 Returning to the earlier query
163

164 $q(v_1, v_2) = \text{SymptomOf}(\text{Headache}, v_1) \wedge \text{TreatedBy}(v_1, v_2),$ (4)
165

suppose we choose v_2 (the drug) as the target variable. Then the answer set is
166

167 $A_2(q) = \{e \in \mathcal{E} \mid \exists v_1 \in \mathcal{E} : \mathcal{G} \models \text{SymptomOf}(\text{Headache}, v_1) \wedge \text{TreatedBy}(v_1, e)\}.$ (5)
168

169 These definitions form the basis of prior work on complex query answering (CQA), where the goal
170 is to predict answer sets correctly when the graph is incomplete (requiring accurate estimation of
171 the likelihood of entailments $\mathcal{G} \models q(a_1, \dots, a_N)$) (Hamilton et al., 2018; Daza & Cochez, 2020;
172 Ren et al., 2020; Ren & Leskovec, 2020). They are also adopted by Daza et al. (2025) to introduce
173 similarity constraints over a single target variable.
174

4 SIMILARITY-CONSTRAINED COMPLEX QUERY ANSWERING

175 We now consider the more general problem where similarity constraints are specified over an arbitrary
176 variable in a query.
177178 **Similarity constraints.** A similarity constraint is intended to capture notions such as “diseases like
179 migraine”. Formally, a similarity constraint is a boolean predicate s such that for an entity $e \in \mathcal{E}$,
180 $s(e)$ is true if e meets the similarity constraint, and false otherwise.
181182 **Constrained answer set.** Similarity constraints allow modifying the answer set (Equation (3)) by
183 additionally restricting certain variables to meet the constraint. Given a similarity constraint s applied
184 to variable v_j in a query $q(v_1, \dots, v_N)$, we denote the *constrained* answer set as follows:
185

186 $\hat{A}_i(q, s, j) = \{e \in \mathcal{E} \mid \exists v_{-i} : (\mathcal{G} \models q(v_{-i}, v_i = e)) \wedge s(v_j)\}.$ (6)
187

188 This can be read as the set of entities e that may serve as answers for v_i , for which there exists an
189 assignment of the remaining variables such that the query holds in the KG, *and* the assignment to v_j
190 satisfies the similarity constraint s .
191192 Because similarity constraints may vary across queries and domain context, s is not fully observed.
193 Instead, we assume access to a small set of k (in the order of tens) labeled examples in a *preference
set*:

194 $P_s = \{(e_1, s(e_1)), \dots, (e_k, s(e_k))\}.$ (7)
195

196 Suppose the similarity constraint expresses the notion of “*diseases like migraine*”. Then an example
197 preference set is $P_s = \{(\text{Migraine}, \text{true}), (\text{ClusterHeadache}, \text{true}), (\text{Asthma}, \text{false})\}.$
198199 Together, these definitions provide the foundation for the problem we study in this work.
200201 **Similarity-constrained Complex Query Answering.** Given a knowledge graph \mathcal{G} , a query
202 $q(v_1, \dots, v_N)$ with target variable v_i , and a similarity constraint s applied to variable v_j , the
203 task of Similarity-constrained Complex Query Answering (SimCQA) consists of computing
204 the constrained answer set $\hat{A}_i(q, s, j)$ (Equation (6)), where the similarity constraint s is
205 estimated from a preference set P_s (Equation (7)).
206207 This formulation subsumes prior work. If we set $v_i = v_j$, we obtain the setting of Daza et al.
208 (2025) where similarity constraints are applied to a single target variable. If, in addition, we define a
209 similarity function $s(e) = \text{true}$ for all $e \in \mathcal{E}$, we recover standard CQA with purely logical queries.
210

5 SIMILARITY-CONSTRAINED REWEIGHTING

211 As described in Section 2, several neuro-symbolic methods exist for CQA. A common approach
212 consists of computing one **fuzzy vector** of scores $\mathbf{v}_i \in [0, 1]^{|\mathcal{E}|}$ per variable in a query $q(v_1, \dots, v_N)$.
213 Each entry in the vector indicates the likelihood of each entity in \mathcal{E} to be assigned to v_i . Some
214 examples of methods following this approach are CQD (Arakelyan et al., 2021; 2023), QTO (Bai
215

Figure 2: Existing CQA methods compute fuzzy vectors via *projection* and *intersection* operators. We illustrate how we integrate the SCORE update (Equation (10)), by applying it after these operations have been computed by the base CQA method, with Δ_s indicating similarity scores.

et al., 2023), GNN-QE (Zhu et al., 2022), and UltraQuery (Galkin et al., 2024). These methods rely on *projection* and *intersection* operators to model the logical query with fuzzy vectors, as illustrated in Figure 2. Once a CQA method has processed a query, the fuzzy vector for the target variable is used as the score for each entity in the KG to answer the query. We describe the fundamental operations used by CQA methods to compute fuzzy vectors for a query in Appendix A.1. Here, we focus on how to incorporate similarity constraints into this computation.

Similarity-constrained Reweighting (SCORE). The key difference between CQA and SimCQA is the inclusion of a binary predicate in the constrained answer set that restricts one of the variables v_j to meet the similarity constraint s . In principle, this suggests modifying the fuzzy vector v_j computed by an underlying CQA model by increasing or decreasing the score for each entity depending on whether $s(e)$ is true or false. There are, however, two challenges: (i) the true similarity constraint s is unobserved, and instead it must be approximated from the preference set P_s , and (ii) any adjustments made to a fuzzy vector will have an effect in the final answers to the query as the vector is propagated by the underlying CQA method throughout the rest of the query.

We address these challenges with Similarity-constrained Reweighting (SCORE). Intuitively, given a preference set P_s and a fuzzy vector v_j computed by a base CQA method, SCORE promotes entities that resemble positively labeled, and demotes those resembling negative ones. As we illustrate in Figure 2, we apply updates to a fuzzy vector after the base CQA method has applied a projection or intersection operator. This *reweighted* vector is then propagated through the rest of the query using the base CQA method.

To approximate the true similarity constraint, SCORE relies on entity embeddings obtained from the base CQA method. We employ these embeddings to compute the cosine similarity $\text{sim}(e_1, e_2) \in [-1, 1]$ between pairs of entities $e_1, e_2 \in \mathcal{E}$. In order to combine this value with fuzzy vectors whose elements lie in the interval $[0, 1]$, we compute a *normalized similarity score*, defined as follows:

$$\overline{\text{sim}}(e_1, e_2) = \frac{1}{2}(\text{sim}(e_1, e_2) + 1). \quad (8)$$

This transformation captures the notion that $\overline{\text{sim}}(e_1, e_2) \in [0, 1]$ tends to 0 if the entities are not similar, and to 1 if they are similar.

SCORE computes updates to a fuzzy vector in *logit space*. For a probability p , the logit is defined as $\text{logit}(p) = \log(\frac{p}{1-p})$. Logits provide an additive scale for combining independent sources of evidence, which stands in contrast with multiplicative updates that can vanish quickly when values are in the interval $[0, 1]$.

We define P_s^+ as the set of entities e in P_s for which $s(e) = \text{true}$, and similarly P_s^- for the case where $s(e) = \text{false}$. The SCORE update consists of two steps:

1. For each entity $e \in \mathcal{E}$, compute the mean logit similarity:

$$\Delta(P_s^\odot, e) = \frac{1}{|P_s^\odot|} \sum_{e_i \in P_s^\odot} \text{logit}(\overline{\text{sim}}(e_i, e)), \quad (9)$$

where $P_s^\odot \in \{P_s^+, P_s^-\}$.

270 2. Reweigh the score of each entity based on the mean logit similarities in logit space, and
 271 transform back to the interval $[0, 1]$ with the sigmoid function:

272
$$\mathbf{v}_j^{\text{new}}[e] = \sigma(\text{logit}(\mathbf{v}_j[e]) + w_p \Delta(P_s^+, e) - w_n \Delta(P_s^-, e)). \quad (10)$$

273 SCORE thus only contains two hyperparameters $w_p, w_n \in \mathbb{R}$ which can be tuned to balance the
 274 contributions from preferred and non-preferred sets of entities, using a small validation set.

275 **5.1 THEORETICAL PROPERTIES**

276 We now highlight three important properties of SCORE. We refer to Appendix A.2 for proofs of the
 277 propositions and details on the connection with Bayesian inference.

278 **Proposition 1** (Monotonicity of SCORE updates). *For any two entities $e_1, e_2 \in \mathcal{E}$, suppose their
 279 preference contributions are equal:*

280
$$w_p \Delta(P_s^+, e_1) - w_n \Delta(P_s^-, e_1) = w_p \Delta(P_s^+, e_2) - w_n \Delta(P_s^-, e_2).$$

281 Then the relative ordering of their fuzzy scores is preserved under the SCORE update:

282
$$\mathbf{v}_j[e_1] < \mathbf{v}_j[e_2] \implies \mathbf{v}_j^{\text{new}}[e_1] < \mathbf{v}_j^{\text{new}}[e_2].$$

283 The monotonicity of SCORE contributes to interpretability: whenever the score of entity is promoted
 284 or demoted, the exact source of this shift can be traced back to $\Delta(P_s^+, e)$ and $\Delta(P_s^-, e)$. This makes
 285 it transparent whether the change is due to evidence from positively or negatively labeled examples,
 286 providing a direct explanation of how similarity constraints affect the final scores.

287 **Proposition 2** (Linear complexity of SCORE). *The computational complexity of applying SCORE is
 288 $O(|\mathcal{E}|)$, i.e. linear with respect to the number of entities.*

289 **Connection with posterior log-odds.** The SCORE update reflects the log-odds update rule in
 290 Bayesian inference. This provides a principled justification for our formulation, in which preferences
 291 act as additional likelihood terms that adjust the scores of the base CQA model in a coherent way.

292 **6 EXPERIMENTS**

293 In our experiments, we follow the ranking-based evaluation which has been employed in works on
 294 link prediction (Ji et al., 2022) and complex query answering (Ren et al., 2024). In this setting, the set
 295 of triples \mathcal{T} is split into disjoint sets $\mathcal{T}^{\text{train}}$, $\mathcal{T}^{\text{valid}}$, and $\mathcal{T}^{\text{test}}$, and the answer set $A_i(q)$ contains answers
 296 that are only reachable by traversing edges in $\mathcal{T}^{\text{test}}$. The goal is to determine the rank assigned by a
 297 model to the entities in the answer set $A_i(q)$ when given access to the edges in $\mathcal{T}^{\text{train}} \cup \mathcal{T}^{\text{valid}}$. Similar
 298 to prior work (Daza et al., 2025), in SimCQA the goal is the same, with the addition that entities in
 299 the *constrained* answer set $\hat{A}_i(q, s, j)$ should be ranked higher than those not in it.

300 **Datasets.** We conduct experiments on knowledge graphs of different domains and scales: Het-
 301 ionet (Himmelstein et al., 2017) is a biomedical KG covering genes, diseases, and drugs, among other
 302 biomedical entities. FB15k-237 (Bollacker et al., 2008; Toutanova & Chen, 2015) and NELL995 (Carl-
 303 son et al., 2010) are encyclopedic KGs that contain general facts about people, organizations, and
 304 locations. We adopt the complex queries of Ren & Leskovec (2020), which cover a wide variety of
 305 14 types of complex queries involving conjunctions, disjunctions, and negations.

306 We build on the corresponding datasets for SimCQA introduced by Daza et al. (2025), noting
 307 that in their setup, entities in preference sets overlap with answers reachable in $\mathcal{T}^{\text{test}}$, turning the
 308 problem into a few-shot learning setting. We focus on a more challenging and realistic scenario by
 309 restricting preference sets to contain only entities that are only reachable by traversing $\mathcal{T}^{\text{train}} \cup \mathcal{T}^{\text{valid}}$.
 310 Furthermore, we extend the datasets with cases of constraints on arbitrary variables of a query, rather
 311 than limiting them to the target variable. We present additional details of the datasets in Appendix A.3.

312 **Baselines.** We run experiments in the settings where similarity constraints are applied to the tar-
 313 get variable (**target-variable** SimCQA), and to any variable (**general** SimCQA). We compare the
 314 performance of SCORE against NQR (Daza et al., 2025), a neural reranker that, unlike SCORE,

Figure 3: SimCQA results for similarity constraints on the **target** variable. Shaded areas indicate a 95% confidence interval.

requires training with hundreds of thousands of instances of queries and their corresponding constrained answer sets; and MeanCosine: a simple baseline based on raw cosine similarity values, which modifies the fuzzy vector by adding/subtracting the mean cosine similarity with respect to positive/negative examples (Daza et al., 2025). To ensure a fair comparison, we use the same base CQA model (QTO, Bai et al. (2023)) and run an extensive hyperparameter grid search for SCORE, NQR, and MeanCosine separately for each dataset, and select the best values using the validation set. We provide more details in Appendix A.5.

Metrics. We evaluate each method in an **interactive setting** (Daza et al., 2025), where preference sets P_s of increasing size $t = 1, \dots, 10$ are provided and performance is measured at each step. We partition the answer set $A_i(q)$ into answers in the constrained answer set $\hat{A}_i(q, s, j)$, which we denote as $A_i(q)^+$, and those not in it, denoted as $A_i(q)^-$. We then report:

- **MRR** and **Hits@k (H@k)** measure whether a method preserves the ranking quality of the base CQA model, i.e., how well entities in the unconstrained answer set $A_i(q)$ are ranked.
- **Pairwise Accuracy (PA)** isolates similarity-constraint satisfaction, checking only whether entities in the constrained set $\hat{A}_i(q, s, j)$ are ranked above those in $A_i(q)^-$.
- **NDCG@k** combines both aspects by assigning graded relevance (0 to non-answers, 1 to $A_i(q)^-$, and 2 to $A_i(q)^+$), rewarding rankings that balance global quality with constraint satisfaction.

Formal definitions and additional discussion of these metrics are provided in Appendix A.4.

6.1 RESULTS

Target-variable SimCQA. We present results for target-variable SimCQA in Figure 3 averaged across all queries and indicating a 95% confidence interval. We report the **metrics of the base CQA method (QTO)** as a reference without similarity constraints (shown as Unconstrained).

Figure 4: SimCQA results for similarity constraints on the **target and intermediate** variables. Shaded areas indicate a 95% confidence interval.

SCORE achieves the highest NDCG@10 across all datasets, indicating that its resulting ranking more closely resembles the optimal ranking where preferred answers are ranked above non-preferred ones, which are in turn ranked higher than entities not answering a query. SCORE performs particularly well on small preference sets, indicating that it can quickly adapt to a few labeled examples.

The MeanCosine baseline shows a competitive NDCG@10, though the gap with SCORE increases for small preference sets. The higher pairwise accuracy and lower MRR and H@10 show that a significant contributor to the NDCG@10 stems from a good separation of preferred vs. non-preferred entities, at a cost of lower global ranking quality.

The neural NQR model performs better at capturing preferences, but it does so in a more aggressive way that harms global ranking quality. While NQR is designed to balance the two goals (Daza et al., 2025), our results show that the simpler SCORE update works better than the potentially non-linear effects introduced by NQR. Since we run experiments on a more challenging benchmark aimed at a better separation between training and test instances, the difference may also indicate that the generalization properties of NQR are limited.

General SimCQA. We present results for SimCQA over arbitrary variables in a query in Figure 4. Since this case requires normalized score updates that can be combined with the base CQA model for further propagation in query execution, SCORE is the only model applicable in this setting. We note that the performance of SCORE is consistent, though slightly lower, than in the case of similarity constraints on the target variable. The steady increase of NDCG@10 indicates that as the preference set becomes larger, preferred entities are ranked higher while preserving global ranking quality.

Per-query type results. We present more detailed results of SimCQA performance for each of the 14 query types we consider in Tables 5 and 6 in Appendix A.6. Both in target-variable as well as general SimCQA, we observe that for the large majority of query structures, SCORE results in the best performance. We identify three query types involving intersections where MeanCosine results in better performance by a small margin, but this does not point to a general trend across datasets.

Figure 5: NDCG@10 per query type and variable position on different datasets. Indices indicate where the positions of variables in which similarity constraints are applied in the query.

Table 1: Example 2-hop query from Hetionet, showing the top-scored entities for both the intermediate (drug) and target (side effect) variables before and after applying similarity constraints with SCORE. ▲ indicates a promoted entity, ▼ a demoted one.

$$P_s^+ = \{\text{Diclofenac, Naproxen, Prednisone}\}, P_s^- = \{\text{Rizatriptan, Orphenadrine, Ergotamine}\}.$$

Initial Top-5		Top-5 after SCORE	
v_1	v_2	v_1	v_2
Sumatriptan	Hemiplegia transient	▲ Diclofenac	▲ Hypersensitivity
Ergotamine	Cluster headache	▲ Naproxen	▲ Dermatitis
Frovatriptan	Arteriospasm coronary	▲ Prednisone	▲ Pain
Antipyrine	Temporal arteritis	▼ Sumatriptan	▲ Headache
Naratriptan	Hypertensive episode	▼ Frovatriptan	▲ Asthma
NDCG@10: 28.4		NDCG@10: 36.5	

Influence of variable position. Figure 5 reports NDCG@10 results of SCORE when broken down by types of queries containing more than one variable, and by the variable position on which similarity constraints are applied. We specify an index that indicates the topological order of variables in the query (see Figure 6 in Appendix A.3). For example, in a 2-hop query, 2ps0 applies similarity constraints to the intermediate variable, while 2ps1 applies them to the target variable. Interestingly, we observe that in most cases constraints applied *earlier* in the query (i.e., on intermediate variables) yield slightly higher performance than when applied to later variables or directly to the target variable. This suggests that preference information is more effectively propagated when introduced at earlier stages of the query, reinforcing the value of supporting constraints on arbitrary variables beyond the target.

Runtime overhead. Table 2 reports average query execution times (in ms) with and without SCORE. Across datasets, the additional cost is modest, ranging from 1.24 up to 8.45 ms per query. Importantly, the overhead does not grow superlinearly with dataset size, confirming our analysis that SCORE is linear in the number of entities. SCORE can thus be deployed in practice without compromising the efficiency of existing COA methods.

Table 2: Average runtime per query (ms) with and without SCORE.

Dataset	Base	+SCORE	Δ
FB15k237	2.96	4.20	+1.24
Hetionet	25.65	28.68	+3.03
NELL-995	75.51	83.96	+8.45

Qualitative example. Table 1 illustrates how SCORE applies similarity constraints to an intermediate variable on a query in the Hetionet, corresponding to the question “*What side effects are associated with drugs that treat migraine?*”. The base model primarily retrieves drugs from the classes triptans and ergots, which are used for advanced treatment of migraine, together with unrelated side effects achieving an NDCG@10 of 28.4. After providing a preference set favoring anti-inflammatory drugs and steroids (used in initial stages), SCORE shifts the ranking to compounds of these classes and their

486 associated side effects, improving NDCG@10 to 36.5. This example highlights the interpretability of
 487 SCORE and its ability to propagate similarity evidence to improve the quality of the answers.
 488

489 7 DISCUSSION

490 Our results demonstrate that SCORE provides an effective and broadly applicable mechanism for
 491 incorporating similarity constraints into complex query answering. We observe that preference
 492 information can be propagated through the query without harming global ranking quality. With
 493 these results, SCORE has a broad scope of implications: it extends the expressivity of CQA systems
 494 beyond purely logical constraints, it can be easily adapted to existing CQA methods by requiring
 495 tuning only two lightweight parameters, and it provides interpretable score updates.
 496

497 While we focused on specifying preferences for one variable at a time, a natural extension is to
 498 allow similarity constraints on multiple variables simultaneously. This substantially increases the
 499 number of possible configurations: for 2p queries one may constrain the intermediate variable, the
 500 target variable, or both; for 3p queries this grows to seven combinations; and in general, for a query
 501 with N variables, the number of variable combinations is $2^N - 1$. Systematically evaluating these
 502 combinations is an interesting direction for future work.
 503

504 The benchmarks introduced by Daza et al. (2025) derive preference sets using textual semantic
 505 similarity, but in some domains numerical and other types of attributes may provide an alternative
 506 signal. While textual descriptions often encode high-level semantics, future work could explore
 507 similarity constraints grounded in other data types.
 508

509 Finally, SCORE extends a broad class of neuro-symbolic CQA systems that traverse the query graph
 510 and compute fuzzy score vectors for each variable, including QTO (Bai et al., 2023), CQD (Arakelyan
 511 et al., 2021), GNN-QE (Zhu et al., 2022), and UltraQuery (Galkin et al., 2024), among others. These
 512 methods expose intermediate scores for each variable, which allows similarity constraints to be
 513 injected at specific points in the query. In contrast, embedding-based methods embed the entire query
 514 into a single vector (Hamilton et al., 2018; Daza & Cochez, 2020; Zhang et al., 2021; 2024), making
 515 it non-trivial to incorporate similarity constraints on arbitrary variables. Investigating how to adapt
 516 such methods is an interesting direction for future work.
 517

518 8 CONCLUSION

519 We introduce and formalize the general problem of Similarity-constrained Complex Query Answering
 520 (SimCQA), extending the expressivity of logical queries by allowing similarity constraints on arbitrary
 521 variables. To address this problem, we propose Similarity-Constrained Reweighting (SCORE), a
 522 computationally efficient and interpretable method that integrates similarity constraints consistently
 523 with the computations of a base method for complex query answering. Experiments across multiple
 524 knowledge graphs show that SCORE is capable of capturing similarity constraints without harming—
 525 and sometimes even improving—the answers to a query. We further find that constraints applied
 526 earlier in the query often yield stronger gains by allowing preference information to propagate more
 527 effectively. Taken together, these results highlight SCORE as a practical and general approach for
 528 more expressive methods for CQA supporting mechanisms for specifying constraints beyond first
 529 order logic. For future work, we envision extending expressivity by incorporating similarities derived
 530 from natural language, opening the door to richer forms of guidance and more natural interfaces to
 531 knowledge graphs.
 532

533
 534
 535
 536
 537
 538
 539

540 **9 REPRODUCIBILITY STATEMENT**
 541

542 We release an anonymous code repository with scripts to run SCORE and all baselines, along with
 543 dataset splits and configuration files for every experiment (Section 6; link in the abstract). The
 544 operators and base CQA pipeline needed to reproduce our method are specified in Appendix A.1.
 545 Further details on the SimCQA benchmark can be found in Appendix A.3, with dataset statistics in
 546 Tables 3 and 4. All model and search spaces used for SCORE, NQR, and MeanCosine are enumerated
 547 in Appendix A.5; we also provide the exact hyperparameters selected per dataset in job files in
 548 the repository. The theoretical properties of SCORE (monotonicity, linear-time overhead, and the
 549 log-odds connection) are stated in Section 5.1 with complete proofs in Appendix A.2. Figures 3 and
 550 4 report means with 95% confidence intervals; the code includes the evaluation and plotting scripts
 551 that regenerate these figures from raw runs. Finally, we include a README to facilitate replication
 552 of our experimental results.
 553

554 **REFERENCES**
 555

556 Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
 557 with neural link predictors. In *International Conference on Learning Representations*, 2021. URL
<https://openreview.net/forum?id=Mo9F9kDwkz>.

558 Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Augenstein. Adap-
 559 ting neural link predictors for data-efficient complex query answering. In *Proceedings of the 37th*
 560 *International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY,
 561 USA, 2023. Curran Associates Inc.

562 Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on knowledge
 563 graphs via query computation tree optimization. In Andreas Krause, Emma Brunskill, Kyunghyun
 564 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference*
 565 *on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
 566 *Proceedings of Machine Learning Research*, pp. 1472–1491. PMLR, 2023. URL <https://proceedings.mlr.press/v202/bai23b.html>.

567 Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
 568 a collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li
 569 Wang (ed.), *Proceedings of the ACM SIGMOD International Conference on Management of Data,*
 570 *SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008*, pp. 1247–1250. ACM, 2008. doi:
 571 10.1145/1376616.1376746.

572 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
 573 Translating embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou, M. Welling,
 574 Z. Ghahramani, and K.Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*,
 575 volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

576 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr, and Tom M.
 577 Mitchell. Toward an Architecture for Never-Ending Language Learning. In Maria Fox and
 578 David Poole (eds.), *Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence*,
 579 *AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010*, pp. 1306–1313. AAAI Press, 2010. doi:
 10.1609/AAAI.V24I1.7519. URL <https://doi.org/10.1609/aaai.v24i1.7519>.

580 Tamara Cucumides, Daniel Daza, Pablo Barcelo, Michael Cochez, Floris Geerts, Juan L Reutter,
 581 and Miguel Romero Orth. Unravl: A neuro-symbolic framework for answering graph pattern
 582 queries in knowledge graphs. In *The Third Learning on Graphs Conference*, 2024. URL <https://openreview.net/forum?id=183XrFqaHN>.

583 Daniel Daza and Michael Cochez. Message passing query embedding. In *ICML Workshop - Graph*
 584 *Representation Learning and Beyond*, 2020. URL <https://arxiv.org/abs/2002.02406>.

585 Daniel Daza, Dimitrios Alivanistos, Payal Mitra, Thom Pijnenburg, Michael Cochez, and Paul Groth.
 586 Bioblp: a modular framework for learning on multimodal biomedical knowledge graphs. *J. Biomed.*
 587 *Semant.*, 14(1):20, 2023. doi: 10.1186/S13326-023-00301-Y. URL <https://doi.org/10.1186/s13326-023-00301-y>.

594 Daniel Daza, Alberto Bernardi, Luca Costabello, Christophe Gueret, Masoud Mansouri, Michael
 595 Cochez, and Martijn Schut. Interactive query answering on knowledge graphs with soft entity
 596 constraints. *arXiv preprint arXiv:2508.13663*, 2025.

597

598 Michael Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, and Zhaocheng Zhu. A Foundation
 599 Model for Zero-shot Logical Query Reasoning. In Amir Globersons, Lester Mackey,
 600 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 601 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
 602 ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
 603 ber 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/616521c3cf15f9f7018565c427d40e3b-Abstract-Conference.html.

604

605 Gabriel Grand, Idan A. Blank, Francisco Pereira, and Evelina Fedorenko. Semantic projection
 606 recovers rich human knowledge of multiple object features from word embeddings. *Nature Human
 607 Behaviour*, 6(7):975–987, Jul 2022. doi: 10.1038/s41562-022-01316-8.

608

609 Petr Hájek. *Metamathematics of Fuzzy Logic*, volume 4 of *Trends in Logic*. Kluwer, 1998.
 610 ISBN 978-1-4020-0370-7. doi: 10.1007/978-94-011-5300-3. URL <https://doi.org/10.1007/978-94-011-5300-3>.

611

612 William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
 613 logical queries on knowledge graphs. In *Proceedings of the 32nd International Conference on Neu-
 614 ral Information Processing Systems*, NIPS’18, pp. 2030–2041, Red Hook, NY, USA, 2018.
 615 Curran Associates Inc.

616

617 Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
 618 Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
 619 of biomedical knowledge prioritizes drugs for repurposing. *eLife*, 6:e26726, September 2017.
 620 ISSN 2050-084X. doi: 10.7554/eLife.26726. URL <https://doi.org/10.7554/eLife.26726>.
 621 Publisher: eLife Sciences Publications, Ltd.

622

623 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutiérrez,
 624 Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille
 625 Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F.
 626 Sequeda, Steffen Staab, and Antoine Zimmermann. *Knowledge Graphs*. Number 22 in *Synthesis
 627 Lectures on Data, Semantics, and Knowledge*. Springer, 2021. ISBN 978-3-031-00790-3. doi:
 10.2200/S01125ED1V01Y202109DSK022. URL <https://kgbook.org/>.

628

629 Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
 630 graphs: Representation, acquisition, and applications. *IEEE Trans. Neural Networks Learn. Syst.*,
 631 33(2):494–514, 2022. doi: 10.1109/TNNLS.2021.3070843. URL <https://doi.org/10.1109/TNNLS.2021.3070843>.

632

633 Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
 634 for knowledge base completion. In Jennifer G. Dy and Andreas Krause (eds.), *Proceedings
 635 of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*,
 636 pp. 2869–2878. PMLR, 2018. URL <http://proceedings.mlr.press/v80/lacroix18a.html>.

637

638 Danny Merkx, Stefan Frank, and Mirjam Ernestus. Seeing the advantage: visually grounding
 639 word embeddings to better capture human semantic knowledge. In Emmanuele Chersoni, Nora
 640 Hollenstein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot, and Enrico Santus (eds.), *Proceedings
 641 of the Workshop on Cognitive Modeling and Computational Linguistics*, pp. 1–11, Dublin, Ireland,
 642 May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.cmcl-1.1. URL
 643 <https://aclanthology.org/2022.cmcl-1.1/>.

644

645 Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
 646 on multi-relational data. In *Proceedings of the 28th International Conference on International
 647 Conference on Machine Learning*, ICML’11, pp. 809–816, Madison, WI, USA, 2011. Omnipress.
 648 ISBN 9781450306195.

648 Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
 649 machine learning for knowledge graphs. *Proc. IEEE*, 104(1):11–33, 2016. doi: 10.1109/JPROC.
 650 2015.2483592. URL <https://doi.org/10.1109/JPROC.2015.2483592>.

651

652 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 653 In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019*
 654 *Conference on Empirical Methods in Natural Language Processing and the 9th International*
 655 *Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,*
 656 *November 3-7, 2019*, pp. 3980–3990. Association for Computational Linguistics, 2019. doi:
 657 10.18653/V1/D19-1410. URL <https://doi.org/10.18653/v1/D19-1410>.

658

659 Hongyu Ren and Jure Leskovec. Beta Embeddings for Multi-Hop Logical Reasoning in Knowl-
 660 edge Graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
 661 can, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: An-*
 662 *nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
 663 ber 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html>.

664

665 Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over Knowledge Graphs in
 666 Vector Space Using Box Embeddings. In *8th International Conference on Learning Represen-
 667 tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL
 668 <https://openreview.net/forum?id=BJgr4kSFDS>.

669

670 Hongyu Ren, Mikhail Galkin, Zhaocheng Zhu, Jure Leskovec, and Michael Cochez. Neural graph
 671 reasoning: A survey on complex logical query answering. *Transactions on Machine Learning
 672 Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=xG8un9ZbqT>.

673

674 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
 675 relational rotation in complex space. In *7th International Conference on Learning Representations,
 676 ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=HkgEQnRqYQ>.

677

678 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
 679 inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle,
 680 and Scott Wen-tau Yih (eds.), *Proceedings of the 3rd Workshop on Continuous Vector Space
 681 Models and their Compositionality, CVSC 2015, Beijing, China, July 26-31, 2015*, pp. 57–66.
 682 Association for Computational Linguistics, 2015. doi: 10.18653/V1/W15-4007. URL <https://doi.org/10.18653/v1/W15-4007>.

683

684 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
 685 embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.),
 686 *Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New York
 687 City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp.
 688 2071–2080. JMLR.org, 2016. URL <http://proceedings.mlr.press/v48/trouillon16.html>.

689

690 Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking Complex Queries on Knowledge Graphs with
 691 Neural Link Predictors. In *The Twelfth International Conference on Learning Representations,
 692 ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=1BmveEMNbG>.

693

694 L.A. Zadeh. Fuzzy sets. *Information and Control*, 8(3):338–353, 1965. ISSN 0019-9958. doi: [https://doi.org/10.1016/S0019-9958\(65\)90241-X](https://doi.org/10.1016/S0019-9958(65)90241-X). URL <https://www.sciencedirect.com/science/article/pii/S001999586590241X>.

695

696

697 Chongzhi Zhang, Zhiping Peng, Junhao Zheng, and Qianli Ma. Conditional logical message
 698 passing transformer for complex query answering. In Ricardo Baeza-Yates and Francesco Bonchi
 699 (eds.), *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
 700 Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024*, pp. 4119–4130. ACM, 2024. doi:
 701 10.1145/3637528.3671869. URL <https://doi.org/10.1145/3637528.3671869>.

702 Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. ConE: Cone Em-
703 beddings for Multi-Hop Reasoning over Knowledge Graphs. In Marc'Aurelio Ran-
704 zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
705 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on*
706 *Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-*
707 *ual*, pp. 19172–19183, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html>.

709 Sijin Zhou, Xinyi Dai, Haokun Chen, Weinan Zhang, Kan Ren, Ruiming Tang, Xiuqiang He, and
710 Yong Yu. Interactive recommender system via knowledge graph-enhanced reinforcement learning.
711 In *Proceedings of the 43rd international ACM SIGIR conference on research and development in*
712 *information retrieval*, pp. 179–188, 2020.

713 Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for
714 Logical Queries on Knowledge Graphs. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
715 Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning,*
716 *ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine*
717 *Learning Research*, pp. 27454–27478. PMLR, 2022. URL <https://proceedings.mlr.press/v162/zhu22c.html>.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
 757

758 **A.1 NEURO-SYMBOLIC METHODS FOR CQA**
 759

760 This section provides an overview of the logical operators in the logical queries we consider in
 761 this work, as well as the relaxed operators used to model logical operators in existing methods for
 762 neuro-symbolic CQA that can be used as base methods for SimCQA.
 763

764 **Logical operators.** We consider logical queries over a KG $\mathcal{G} = (\mathcal{E}, \mathcal{R}, \mathcal{T})$ specified by a formula
 765 $q(v_1, \dots, v_N)$ in first-order logic, written in disjunctive normal form (DNF), i.e., as a disjunction (\vee)
 766 of conjunctions (\wedge) of *atoms*:

767
$$q(v_1, \dots, v_N) = (c_1^1 \wedge \dots \wedge c_{m_1}^1) \vee \dots \vee (c_1^n \wedge \dots \wedge c_{m_n}^n), \quad (11)$$

 768

769 where each c_j^i denotes a predicate applied to two variables, or a variable and a known entity in \mathcal{E} ,
 770 while optionally including negations:
 771

772
$$c_j^i = \begin{cases} r(e, v) \text{ or } r(v', v) \\ \neg r(e, v) \text{ or } \neg r(v', v) \end{cases} \quad \text{with } e \in \mathcal{E}, v, v' \in \{v_1, \dots, v_N\}, \text{ and } r \in \mathcal{R}. \quad (12)$$

 773

774 **T-norms.** Neuro-symbolic methods for CQA incorporate logical operators in their computations by
 775 relaxing them into continuous functions known as **t-norms** and **t-conorms** from fuzzy logics (Zadeh,
 776 1965), where values in $[0, 1]$ model degrees of truth. In this setting, conjunction (\wedge) is generalized by
 777 a *t-norm* $\top : [0, 1]^2 \rightarrow [0, 1]$, disjunction (\vee) by a *t-conorm* $\perp : [0, 1]^2 \rightarrow [0, 1]$, and negation (\neg) by
 778 the standard fuzzy complement $1 - x$. Using these relaxations, a query $q(v_1, \dots, v_N)$ in disjunctive
 779 normal form can be expressed as
 780

781
$$q(v_1, \dots, v_N) = (c_1^1 \top \dots \top c_{m_1}^1) \perp \dots \perp (c_1^n \top \dots \top c_{m_n}^n), \quad (13)$$

 782

783 where each atom c_j^i is mapped to a fuzzy truth value in $[0, 1]$.
 784

785 An example is the *product* t-norm and its dual t-conorm, defined as
 786

787
$$\top(x, y) = x \cdot y, \quad (14)$$

 788

789
$$\perp(x, y) = x + y - x \cdot y, \quad (15)$$

790 which recover classical Boolean logic when $x, y \in \{0, 1\}$. Several other t-norms exist, for an in-depth
 791 description see Hájek (1998).
 792

793 **Fuzzy vectors for CQA.** Several neuro-symbolic methods assign a vector $\mathbf{v}_i \in [0, 1]^{|\mathcal{E}|}$ to each
 794 variable v_i in a query, which represents the likelihood that the variable is assigned each entity in
 795 \mathcal{E} (Arakelyan et al., 2021; 2023; Bai et al., 2023; Zhu et al., 2022; Cucumides et al., 2024; Yin et al.,
 796 2024). Similarly, constants in a query can be represented as one hot vectors $\mathbf{c} \in \{0, 1\}^{|\mathcal{E}|}$, such that
 797 $\mathbf{c}[e] = 1$ for a constant entity e , and all other entries are zero. This vector can then be transformed
 798 with t-norms, t-conorms, and negations depending on the query being answered.
 799

800 **Projections and negations.** For a query formula $q(v_1, v_2) = r(v_1, v_2)$ with $r \in \mathcal{R}$, a fuzzy vector
 801 \mathbf{v}_1 is projected via a function $f_r(\mathbf{v}_1) = \mathbf{v}_2 \in [0, 1]^{|\mathcal{E}|}$ which yields the fuzzy vector for v_2 . Often
 802 the function f_r is a parameterized neural network optimized for 1-hop link prediction (Arakelyan
 803 et al., 2021; 2023; Bai et al., 2023) or CQA (Zhu et al., 2022; Galkin et al., 2024). For a negation
 804 $q(v_1, v_2) = \neg r(v_1, v_2)$, the fuzzy vector is computed as $\mathbf{1} - f_r(\mathbf{v}_1)$, where $\mathbf{1}$ is an all-ones vector of
 805 length $|\mathcal{E}|$.
 806

807 **Conjunctions and disjunctions.** For a conjunction $q(v_1, v_2, v_3) = r_1(v_1, v_2) \wedge r_2(v_3, v_2)$ with
 808 $r_1, r_2 \in \mathcal{R}$ the two predicates are first projected as $f_{r_1}(\mathbf{v}_1)$ and $f_{r_2}(\mathbf{v}_3)$, and the fuzzy vector of \mathbf{v}_2
 809 is computed via the t-norm: $\mathbf{v}_2 = f_{r_1}(\mathbf{v}_1) \top f_{r_2}(\mathbf{v}_3)$. For a disjunction $r_1(v_1, v_2) \wedge r_2(v_3, v_2)$ the
 result is computed via the t-conorm, $\mathbf{v}_2 = f_{r_1}(\mathbf{v}_1) \perp f_{r_2}(\mathbf{v}_3)$.
 810

810 A.2 PROOFS OF PROPERTIES OF SCORE
811812 **Proposition 1** (Monotonicity of SCORE updates). *For any two entities $e_1, e_2 \in \mathcal{E}$, suppose their
813 preference contributions are equal:*

814
$$w_p \Delta(P_s^+, e_1) - w_n \Delta(P_s^-, e_1) = w_p \Delta(P_s^+, e_2) - w_n \Delta(P_s^-, e_2).$$

815

816 *Then the relative ordering of their fuzzy scores is preserved under the SCORE update:*

817
$$\mathbf{v}_j[e_1] < \mathbf{v}_j[e_2] \implies \mathbf{v}_j^{\text{new}}[e_1] < \mathbf{v}_j^{\text{new}}[e_2].$$

818

819 *Proof.* By definition of the update in Equation (10),

820
$$\mathbf{v}_j^{\text{new}}[e] = \sigma(\text{logit}(\mathbf{v}_j[e]) + \delta(e)),$$

821

822 where $\delta(e) = w_p \Delta(P_s^+, e) - w_n \Delta(P_s^-, e)$. If $\delta(e_1) = \delta(e_2)$, then the same shift is applied to both
823 $\text{logit}(\mathbf{v}_j[e_1])$ and $\text{logit}(\mathbf{v}_j[e_2])$. Since $\sigma(\cdot)$ is strictly monotone, the ordering of the original logits
824 is preserved, and so is the ordering of the values in the fuzzy vector. Hence SCORE is monotonic
825 with respect to the scores of the underlying model: it preserves the base model’s ranking whenever
826 preference contributions are equal. \square
827828 The monotonicity of SCORE contributes to interpretability: whenever the score of entity is promoted
829 or demoted, the exact source of this shift can be traced back to $\Delta(P_s^+, e)$ and $\Delta(P_s^-, e)$. This makes
830 it transparent whether the change is due to evidence from positively or negatively labeled examples,
831 providing a direct explanation of how similarity constraints affect the final scores.832 **Proposition 2** (Linear complexity of SCORE). *The computational complexity of applying SCORE is
833 $O(|\mathcal{E}|)$, i.e. linear with respect to the number of entities.*834 *Proof.* Let $|\mathcal{E}|$ be the number of entities and k the number of examples in the preference set. For
835 each candidate entity $e \in \mathcal{E}$, SCORE computes normalized similarities $\overline{\text{sim}}(e, e_i)$ with all k labeled
836 examples, which costs $O(kd)$ if embeddings are d -dimensional. Aggregating these values and
837 computing the update in Equation (10) also requires $O(k)$. Thus the cost per entity is $O(kd)$, and
838 the total cost is $O(|\mathcal{E}|kd)$. Since k is small (on the order of tens of examples) and d is fixed by the
839 underlying embedding model, both factors are constant in practice. Therefore the overall complexity
840 scales linearly with $|\mathcal{E}|$. \square
841842 **Connection with posterior log-odds.** Assuming a probabilistic interpretation of scores, we rein-
843 terpret the similarity constraint $s(e)$ (previously a binary predicate) as the probability that an entity
844 $e \in \mathcal{E}$ is to satisfy the constraint. For brevity, let $\mathbf{v} = \mathbf{v}_j[e]$ denote the base CQA score for entity e .
845 The SCORE update can then be written as

846
$$\mathbf{v}^{\text{new}} = \sigma(\text{logit}(\mathbf{v}) + \text{logit}(s(e))). \quad (16)$$

847

848 Taking logits gives

849
$$\text{logit}(\mathbf{v}^{\text{new}}) = \text{logit}(\mathbf{v}) + \text{logit}(s(e)), \quad (17)$$

850 and by the definition of the logit,

851
$$\log \frac{\mathbf{v}^{\text{new}}}{1 - \mathbf{v}^{\text{new}}} = \log \frac{\mathbf{v}}{1 - \mathbf{v}} + \log \frac{s(e)}{1 - s(e)}. \quad (18)$$

852

853 This is equivalent to the additive update of log-odds in Bayesian inference: the posterior log-odds
854 equal the prior log-odds plus the log-likelihood ratio of the evidence. More concretely, let x be the
855 random variable indicating whether e is an answer. If we view $\mathbf{v} = P(x = 1)$ as the prior from
856 the CQA model and $s(e)$ as a data-dependent score that encodes the strength of evidence for $x = 1$
857 versus $x = 0$, then

858
$$\log \frac{P(x = 1 \mid \text{data})}{P(x = 0 \mid \text{data})} = \log \frac{P(x = 1)}{P(x = 0)} + \log \frac{P(\text{data} \mid x = 1)}{P(\text{data} \mid x = 0)}. \quad (19)$$

859

860 Thus, the SCORE update mirrors the Bayesian log-posterior update when scores are interpreted
861 probabilistically. While the base CQA model and similarity function may not produce calibrated
862 probabilities, operating in logit space ensures that preference evidence is combined additively and
863 propagated consistently with the logical operators of the query.

Figure 6: Query graphs of different types covered in the datasets used in our experiments, along with their designated name.

A.3 DATASETS

In this section we provide additional details on how we construct a generalized benchmark for SimCQA with similarity constraints on arbitrary variables.

Base resources. We start from standard benchmarks for complex query answering (Ren & Leskovec, 2020), which cover 14 query types involving conjunction, disjunction, and negation (illustrated in Figure 6). For each knowledge graph (Hetonet, FB15k-237, and NELL995), we generate training, validation, and test queries following the same procedure as in prior work. Each query is associated with a designated *target variable* v_i whose answers form the set $A_i(q)$.

Preference sets and constrained answers. Following Daza et al. (2025), we rely on clusterings of embeddings as a proxy for unobserved similarity constraints. For each query, we (i) identify a variable v_j (which may be the target or any intermediate variable), (ii) collect the entities that appear as valid bindings for v_j , and (iii) apply hierarchical agglomerative clustering to obtain two partitions of this set. These partitions define preference sets of the form $P_s = \{(e, \text{true}) : e \in C^+\} \cup \{(e, \text{false}) : e \in C^-\}$, where C^+ and C^- are clusters. The induced constrained answer set $\hat{A}_i(q, s, j)$ is then computed by propagating the partition of v_j through the query, yielding a corresponding partition of the target answers.

While clusters derived from embeddings are not the only or definitive notion of similarity, they offer a systematic, reproducible, and scalable way to approximate semantic groupings, allowing us to study preference-based reranking behavior across a large collection of queries. Their use as a proxy is supported by prior work showing that distances in embedding spaces correlate with human perceptions of semantic similarity and relatedness (Reimers & Gurevych, 2019; Grand et al., 2022; Merkx et al., 2022), which we observed also occur in the datasets in our experiments.

Generalization protocol. A key difference with Daza et al. (2025) is how we split answers across $\mathcal{T}^{\text{train}}$, $\mathcal{T}^{\text{valid}}$, and $\mathcal{T}^{\text{test}}$. In their original setup, preference examples could overlap with answers reachable in $\mathcal{T}^{\text{test}}$, meaning that at test time the model effectively observes part of the ground truth answers (a few-shot learning scenario). To ensure stricter generalization, we impose the following rules:

- The ground truth constrained answer set $\hat{A}_i(q, s, j)$ is defined only with respect to $\mathcal{T}^{\text{test}}$. This ensures that evaluation reflects the model’s ability to generalize to unseen facts.
- Preference sets P_s are restricted to contain only entities reachable via $\mathcal{T}^{\text{train}} \cup \mathcal{T}^{\text{valid}}$. This prevents test leakage and forces the model to extrapolate similarity constraints to novel cases at test time.

Constraints on arbitrary variables. Whereas Daza et al. (2025) considered constraints only on the target variable, we generalize the construction to allow constraints on *any* variable in the query. This is achieved by clustering the bindings of each free variable v_j in the query (not just the target), and retaining those partitions that induce non-trivial and non-overlapping partitions of the target answer set. This extension produces preference/evidence pairs where feedback is given on intermediate variables, leading to richer scenarios for similarity-constrained reasoning.

Filtering and quality control. To ensure meaningful preference sets, we apply the following filters: (i) only variables with at least 10 and at most 100 distinct bindings are considered for clustering; (ii)

918 Table 3: Statistics of the datasets used in our experiments.
919

920	Dataset	Knowledge Graph			Queries			Preference Sets		
		921 Entities	922 Relations	923 Edges	924 Train	Validation	Test	925 Train	Validation	Test
	FB15k237	14,505	237	310,079	157,479	20,961	21,352	580,623	68,834	70,365
	Hetionet	45,158	24	2,250,198	91,820	29,475	29,488	325,443	99,785	99,284
	NELL995	63,361	200	142,804	75,446	17,289	17,435	245,511	52,446	52,589

926 Table 4: Statistics of the queries and preference sets in the datasets used in our experiments.
927

928 Structure	1p	2p	3p	2i	3i	ip	pi	2in	3in	inp	pin	pni	2u	up	Total
FB15k237															
Training															
Queries	7,596	34,720	56,495	16,205	8,870	0	0	5,300	3,821	9,384	8,891	6,197	0	0	157,479
Pref. Sets	19,075	121,420	240,770	46,302	26,265	0	0	16,536	11,530	41,128	38,217	19,380	0	0	580,623
Validation															
Queries	1,631	1,746	2,255	1,341	753	1,249	1,501	1,210	1,560	2,184	1,825	782	1,087	1,837	20,961
Pref. Sets	4,149	5,967	8,876	3,972	2,275	4,099	5,239	3,516	4,549	8,140	6,256	2,182	3,251	6,363	68,834
Test															
Queries	1,934	1,776	2,267	1,347	814	1,337	1,399	1,191	1,553	2,133	1,844	814	1,080	1,863	21,352
Pref. Sets	4,898	6,157	9,138	3,875	2,398	4,358	4,834	3,456	4,581	8,017	6,516	2,356	3,206	6,575	70,365
Hetionet															
Training															
Queries	19,595	20,075	2,000	20,075	20,075	0	0	2,000	2,000	2,000	2,000	2,000	0	0	91,820
Pref. Sets	66,076	79,488	9,127	68,553	66,012	0	0	7,281	6,768	7,503	7,586	7,049	0	0	325,443
Validation															
Queries	9,975	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	29,475
Pref. Sets	32,653	5,185	5,805	5,024	5,017	5,040	5,801	5,158	5,068	5,223	4,970	4,829	4,877	5,135	99,785
Test															
Queries	9,988	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	29,488
Pref. Sets	32,865	5,049	5,796	5,056	4,980	4,843	5,783	5,092	5,121	5,218	4,789	4,630	4,820	5,242	99,284
NELL995															
Training															
Queries	1,871	17,649	24,859	4,547	3,034	0	0	3,848	2,459	5,824	6,016	5,339	0	0	75,446
Pref. Sets	4,677	50,328	92,914	11,221	7,530	0	0	11,507	7,151	22,040	22,145	15,998	0	0	245,511
Validation															
Queries	942	1,281	1,532	824	468	836	1,042	1,381	1,383	2,126	1,859	1,058	1,152	1,405	17,289
Pref. Sets	2,254	4,043	5,159	2,292	1,291	2,410	2,855	3,945	4,214	7,229	6,038	3,046	3,270	4,400	52,446
Test															
Queries	1,004	1,253	1,607	993	635	772	1,039	1,344	1,510	2,106	1,770	938	1,106	1,358	17,435
Pref. Sets	2,437	3,917	5,514	2,659	1,789	2,077	2,933	3,860	4,479	7,182	5,743	2,618	3,076	4,305	52,589

953 both positive and negative clusters must induce at least 5 valid answers on the training edges; (iii)
954 induced answer sets must be non-empty and disjoint. These criteria discard degenerate cases and
955 guarantee that similarity constraints provide useful supervisory signals.

956 **Output.** Each dataset instance consists of:

- 957 1. a query q and target variable v_i ,
- 958 2. the variable v_j on which preferences are applied,
- 959 3. a preference set P_s built from clusters of bindings of v_j ,
- 960 4. the ground truth constrained answer set for the target variable v_i : $\hat{A}_i(q, s, j)$ derived from
961 $\mathcal{T}^{\text{test}}$.

965 We repeat this process across all query types and variables, producing a diverse benchmark that covers
966 both biomedical and encyclopedic domains. Dataset statistics are reported in Table 3 and Table 4.

968 A.4 METRICS

970 **Global ranking quality.** For each entity in the unconstrained answer set $A_i(q)$, we determine its
971 rank r , and compute the Mean Reciprocal Rank (MRR) and Hits@k (H@k), computed per answer as
972 $\text{MRR} = \frac{1}{r}$ and $\text{H}@k = \mathbb{1}[r \leq k]$ (where $\mathbb{1}$ is an indicator function) and averaged over all queries.

972 **Similarity constraint satisfaction.** Here we measure whether methods rank preferred answers
 973 higher than non-preferred ones. We partition the answer set $A_i(q)$ into answers in the constrained
 974 answer set $\hat{A}_i(q, s, j)$, which we denote as $A_i(q)^+$, and those not in it, denoted as $A_i(q)^-$. We then
 975 compute Pairwise Accuracy:
 976

$$977 \text{PA} = \sum_{e^+ \in A_i(q)^+} \sum_{e^- \in A_i(q)^-} \mathbb{1}[r(e^+) < r(e^-)], \quad (20)$$

$$978$$

979 where $r(e)$ indicates the ranking of entity e .
 980

981 We also compute the Normalized Discounted Cumulative Gain at k (NDCG@ k), assigning 0 relevance
 982 to non-answers, 1 to answers in $A_i(q)^-$, and 2 to answers in $A_i(q)^+$. Concretely, the discounted
 983 cumulative gain is

$$984 \text{DCG}@k = \sum_{e \in A_i(q)} \frac{2^{\text{rel}(e)} - 1}{\log_2(j + 1)}, \quad (21)$$

$$985$$

$$986$$

987 where

$$988 \text{rel}(e) = \begin{cases} 0 & \text{if } e \notin A_i(q) \\ 1 & \text{if } e \in A_i(q) \setminus \hat{A}_i(q, s, j) \\ 2 & \text{if } e \in \hat{A}_i(q, s, j) \end{cases} \quad (22)$$

$$989$$

$$990$$

$$991$$

992 and the normalized score is
 993

$$994 \text{NDCG}@k = \frac{\text{DCG}@k}{\text{IDCG}@k}, \quad (23)$$

$$995$$

996 where IDCG@ k is the maximum achievable DCG under the given relevance scores. Since NDCG@ k
 997 is normalized by the ideal ranking, a value of 1 indicates that all preferred answers appear above
 998 non-preferred answers, which in turn appear above non-answers. We report the average of PA and
 999 NDCG@ k over all queries.
 1000

1001 A.5 EXPERIMENTAL DETAILS

1002 **SCORE.** The only two parameters that need to be tune in SCORE are the weights w_p and w_n
 1003 in Equation (10) that control the strength of shifts in logit space to the base score due to similarities
 1004 with the preference set. We run a grid search with values in $\{0.25, 0.5, 1.0\}$, for a total of 9 possible
 1005 combinations of w_p and w_n .
 1006

1007 **NQR.** We perform a grid search with values of the learning rate in $\{1 \times 10^{-5}, 1 \times 10^{-4}\}$, the
 1008 margin in the preference loss in $\{0.05, 0.1, 0.25\}$, and the KL divergence weight in $\{0.1, 1.0, 10\}$,
 1009 resulting in a total of 18 possible combinations of hyperparameters. As done by Daza et al. (2025),
 1010 we train NQR on queries of type 1p, as training on more query types is more expensive but brings
 1011 little benefits.
 1012

1013 **MeanCosine.** The update rule in the MeanCosine baseline is given by the following expression:
 1014

$$1015 \mathbf{v}_i^{\text{new}}[e] = \alpha \mathbf{v}_i[e] + (1 - \alpha) \left(\frac{1 + \beta}{2|P_s^+|} \sum_{e_i \in P_s^+} \text{sim}(e_i, e) - \frac{1 - \beta}{2|P_s^-|} \sum_{e_i \in P_s^-} \text{sim}(e_i, e) \right). \quad (24)$$

$$1016$$

1017 Intuitively, MeanCosine computes a convex combination of the original score, and a score due to
 1018 the mean of raw cosine similarity values, which is balanced with the hyperparameter $\alpha \in [0, 1]$.
 1019 Similarities from P_s^+ are added, and those from P_s^- are subtracted, and the balance of these two is
 1020 determined by the value of $\beta \in [-1, 1]$. We run a grid search for the values of α in $\{0.25, 0.5, 0.75\}$,
 1021 and $\beta \in \{-0.5, 0, 0.5\}$ for a total of 9 possible configurations.
 1022

1023 A.6 ADDITIONAL RESULTS

1024 We present more detailed results on SimCQA performance for each of the 14 types of complex
 1025 queries we consider in our work (shown in Figure 6).
 1026

1026	Method	1p	2in	2i	2p	2u	3in	3i	3p	inp	ip	pin	pi	pni	up	Avg.
FB15k237																
1028	Unconstrained	43.90	23.34	47.40	28.75	34.37	37.14	50.54	27.16	21.48	34.32	20.05	41.32	9.87	27.98	31.97
1029	MeanCosine	44.25	23.76	47.92	29.67	34.80	37.20	50.92	26.95	22.81	34.29	20.38	40.53	10.33	28.34	32.30
1030	NQR	41.61	21.13	46.13	25.24	32.33	33.82	49.43	21.30	19.48	27.79	16.92	36.12	9.25	25.95	29.04
	SCORE	44.43	24.07	48.06	29.84	34.91	37.80	51.38	28.34	22.62	35.61	21.20	42.03	10.57	28.73	32.83
Hetionet																
1032	Unconstrained	52.95	33.11	44.51	17.10	44.21	22.11	48.94	14.58	13.63	18.38	11.27	34.94	12.84	18.18	27.62
1033	MeanCosine	53.18	33.51	44.62	19.42	44.62	23.56	47.97	13.56	17.76	20.54	14.35	31.66	13.35	18.76	28.35
	NQR	45.24	24.65	39.93	14.65	35.57	19.20	44.64	11.75	13.20	13.67	10.96	26.11	11.23	16.13	23.35
	SCORE	52.79	33.59	45.93	20.69	44.31	24.23	50.38	15.96	17.27	23.53	14.23	37.55	14.41	19.52	29.60
NELL995																
1036	Unconstrained	47.02	23.36	41.79	29.45	33.53	22.78	47.10	23.35	21.30	29.71	15.70	31.72	10.34	29.79	29.07
1037	MeanCosine	46.98	22.99	41.74	28.85	32.81	21.74	47.36	22.64	22.23	27.67	14.60	28.97	10.17	29.35	28.43
	NQR	37.55	14.81	33.77	20.28	26.46	13.23	37.64	14.15	15.04	21.62	7.94	23.04	6.25	21.19	20.93
	SCORE	47.58	23.99	41.74	30.43	33.63	22.59	47.57	24.81	22.98	31.32	16.54	33.38	11.02	30.51	29.86

Table 5: NDCG@10 results **target-variable SimCQA** averaged over preference sets of size 10.

1039	Method	1ps0	2ins0	2is0	2ps0	2ps1	2us0	3ins0	3is0	3ps0	3ps1	3ps2	inps0	inps1	ip0	ip1	pins0	pins1	pis0	pis1	pns1	ups0	ups1	Avg.
FB15k237																								
1042	Unconstrained	43.90	23.34	47.40	29.29	28.75	34.37	37.14	50.54	28.60	27.72	27.16	22.15	21.48	40.29	34.32	21.48	20.05	36.97	41.32	9.87	30.34	27.98	31.11
	SCORE	44.43	24.07	48.06	29.39	29.84	34.91	37.80	51.38	29.00	28.36	28.34	22.65	22.62	40.42	35.61	22.36	21.20	38.12	42.03	10.57	30.68	28.73	31.84
Hetionet																								
1044	Unconstrained	52.95	33.11	44.51	17.14	17.10	44.21	22.11	48.94	32.02	14.59	14.58	13.52	13.63	21.42	18.38	13.84	11.27	30.27	34.94	12.84	17.18	18.18	24.85
	SCORE	52.79	33.59	45.93	21.22	20.69	44.31	24.23	50.38	32.30	20.55	15.96	16.62	17.27	26.58	23.53	17.16	14.23	30.31	37.55	14.41	18.59	19.52	27.17
NELL995																								
1045	Unconstrained	47.02	23.36	41.79	30.98	29.45	33.53	22.78	47.10	25.64	23.55	23.35	23.26	21.30	37.64	29.71	25.20	15.70	38.29	31.72	10.34	27.57	29.79	29.05
	SCORE	47.58	23.99	41.74	31.45	30.43	33.63	22.59	47.57	26.78	25.07	24.81	24.52	22.98	39.30	31.32	26.21	16.54	40.30	33.38	11.02	27.63	30.51	29.97

Table 6: NDCG@10 results for **general SimCQA** averaged over preference sets of size 10.

Following our main experiments, we apply a similarity constraint to a query by using preference sets of size $t = 1, \dots, 10$. For each value of t we then compute NDCG@10 and report the average over the 10 sizes. We present results for target-variable SimCQA in Table 5 and for general SimCQA in Table 6.

For general SimCQA, we suffix the query type with $s\ell$, where ℓ is the zero-based index of the variable on which the similarity constraint is applied. Variables are ordered in a topological order from the leaf nodes to the root of the query graph (see Figure 6). For example, for a 2p chain, the intermediate variable corresponds to index 0 (2ps0), and the terminal variable corresponds to index 1 (2ps1).

A.7 LLM USAGE

Large language models were used sparingly in preparing this work, limited to assistance with word choice and clarity of exposition.

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079