
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIMILARITY-CONSTRAINED REWEIGHTING
FOR COMPLEX QUERY ANSWERING ON KNOWLEDGE
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models for answering complex queries on knowledge graphs
estimate the likelihood of answers that are not reachable via direct traversal. Prior
work in this area has focused on structured queries whose constraints are expressed
in first-order logic. Recent work has proposed to extend such logical constraints
with soft entity constraints, which require the answer to a query (also known as the
target variable) to be similar or dissimilar to specified sets of entities.
A natural but unexplored generalization of this extension is to allow specifying
similarity constraints not only on the answer to a query, but also on the values
assigned to intermediate variables, which frequently occur in complex queries.
In this work, we study this more general formulation and introduce SCORE: a
computationally efficient and interpretable method for incorporating similarity con-
straints at arbitrary positions of a query. Unlike approaches that rely on deep neural
networks, SCORE is based on a lightweight and interpretable score adjustment
function that only requires tuning two parameters on a validation set.
Our experiments on a challenging benchmark over three different knowledge graphs
demonstrate that on the special case of constraints on the target variable, SCORE
is able to incorporate preferences without degrading overall query answering
performance, with significantly increased ranking performance over a learned
neural baseline. Moreover, SCORE maintains its performance in the more general
setting with constraints on intermediate variables. Our code is available at https:
//anonymous.4open.science/r/score-simcqa.

1 INTRODUCTION

Knowledge graphs (KGs) have emerged as a fundamental data structure for organizing and reasoning
about real-world information, encoding millions of entities and their relationships across diverse
domains including encyclopedic knowledge (Bollacker et al., 2008), biomedical data (Himmelstein
et al., 2017), and scientific literature (Ji et al., 2022). Their structured representation enables reasoning
tasks that go beyond simple fact retrieval, supporting complex queries that involve multiple logical
operations such as conjunction, disjunction, and existential quantification. These capabilities have
made KGs relevant in applications such as question answering and recommendation systems (Zhou
et al., 2020), drug discovery (Daza et al., 2023), and knowledge-based reasoning (Hogan et al., 2021).

However, knowledge graphs are inherently incomplete, missing a substantial fraction of true
facts (Nickel et al., 2016). This incompleteness poses significant challenges for traditional sym-
bolic query processing, which can only retrieve answers that are explicitly present in the graph.
To address this limitation, machine learning approaches for complex query answering have been
developed (Hamilton et al., 2018; Ren et al., 2020; Ren & Leskovec, 2020; Ren et al., 2024), which
learn to estimate the likelihood of potential answers by reasoning over incomplete knowledge graphs.

Despite these advances, current complex query answering systems are limited to expressing con-
straints through first-order logic, which restricts their ability to capture nuanced preferences and
domain-specific requirements. Recent work has begun to address this limitation by introducing soft
entity constraints (Daza et al., 2025), which allows specifying that query answers should be similar
or dissimilar to given sets of entities. For instance, when querying for “drugs treating diseases that

1

https://anonymous.4open.science/r/score-simcqa
https://anonymous.4open.science/r/score-simcqa

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Headache

Query: What are drugs treating diseases that have headache as a symptom?

disease drug
Headache Headache

disease diseasedrug drug

similar to Ibuprofen similar to Migraine

Figure 1: Illustration of three approaches for query answering on knowledge graphs, with vectors
indicating entity scores at different steps. Left: a traditional query with purely logical constraints.
Middle: incorporating similarity constraints in NQR (Daza et al., 2025), which supports only the
target variable via uncalibrated score adjustments (shown in red and blue). Right: SCORE, which
supports similarity constraints on arbitrary variables through normalized similarity scores.

have headache as a symptom,” a user might specify preferences such as “drugs similar to Ibuprofen”.
While this formulation represents a significant step towards more expressive interfaces for querying a
KG, it only supports similarity constraints on the final answers being sought, also known as the target
variable. This limitation limits expressiveness, as constraints can also involve intermediate variables
that appear during query processing. For example, one might specify constraints not only on the drug
(target variable) but also on the diseases (the intermediate variable), such as “diseases like migraine”.

When constraints apply only to target variables, similarity-based score adjustments can be applied
as a post-processing step after the query has been evaluated. However, incorporating constraints
on intermediate variables is not trivial, as they must be integrated into the query processing itself.
Crucially, this integration depends on operating with normalized scores, rather than uncalibrated
similarity scores, so that they can be meaningfully combined with other probabilistic components of
the query answering model. Such an integration must preserve the logical structure of the query while
incorporating similarity constraints at arbitrary positions, which is not supported by the methods
introduced by Daza et al. (2025).

In this work, we address this fundamental limitation by studying the problem of Similarity-constrained
Complex Query Answering (SimCQA) in its full generality, where similarity constraints can be
specified on any variable within a complex query. We then propose SCORE (Similarity-COnstrained
REweighting), a computationally efficient method that extends existing neural query answering
approaches to support similarity constraints at arbitrary query positions.

The key innovation of SCORE lies in its lightweight and interpretable score adjustment mechanism,
which uses pre-trained entity embeddings to compute normalized similarity scores and integrates
them into the query processing pipeline, as illustrated in Figure 1 on the right. Unlike approaches
that require expensive end-to-end neural optimization, SCORE introduces only two hyperparameters
that can be efficiently tuned on a validation set. Our contributions are summarized as follows:

• We formalize the problem of similarity-constrained complex query answering with con-
straints on arbitrary variables, generalizing previous work.

• We introduce SCORE, a lightweight and interpretable method for incorporating similarity
constraints at any position in complex queries, requiring minimal computational overhead
and hyperparameter tuning.

• We conduct comprehensive experiments on three challenging knowledge graph benchmarks
(FB15K-237, NELL-995, and Hetionet), demonstrating that SCORE achieves substantial
improvements in ranking quality and constraint satisfaction (NDCG@10 increases of 3–9
percentage points, representing 10–45% relative improvements) with respect to a neural
baseline, while maintaining competitive performance on unconstrained queries.

2 RELATED WORK

Complex query answering. Neural approaches to complex query answering (CQA) have evolved
from simple link prediction to multi-hop logical queries Ren et al. (2024). Early knowledge graph

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

embedding methods focused on predicting individual missing edges (Nickel et al., 2011; Bordes et al.,
2013; Trouillon et al., 2016; Lacroix et al., 2018; Sun et al., 2019), learning dense representations that
capture relational patterns in the graph structure. The field has since progressed to handle complex
queries involving multiple entities, relations, and logical operations such as conjunction, disjunction,
and existential quantification. Modern neuro-symbolic approaches can be broadly categorized based
on their query expressiveness: methods supporting smaller subsets of first-order logic (Hamilton et al.,
2018; Daza & Cochez, 2020; Ren et al., 2020; Ren & Leskovec, 2020; Arakelyan et al., 2021; 2023;
Bai et al., 2023; Zhu et al., 2022) and those handling more general graph pattern queries (Cucumides
et al., 2024; Yin et al., 2024).

A fundamental limitation shared by all these approaches is their reliance on hard logical constraints:
queries can only express conditions that are precisely definable in first-order logic. This restriction
prevents users from incorporating nuanced preferences or domain-specific similarity requirements
that are naturally expressed through soft constraints. Our work addresses this gap by extending neural
query answering to support similarity-based preferences while preserving the logical structure and
efficiency of existing methods.

Similarity constraints for complex queries. The first work to extend logical query answering
with similarity constraints was introduced by Daza et al. (2025), which augmented first-order logic
queries with soft entity constraints expressing similarity or dissimilarity preferences for query
answers. This enriched the expressiveness of methods for CQA by enabling preferences that cannot
be captured through logical operators alone. However, we note two key limitations: (i) similarity
constraints are only supported on the target variable and not on intermediate variables which occur
frequently in complex queries, and (ii) similarity incorporation is treated as a post-processing step
after query evaluation. While post-processing is effective for the target variable, where constraints
can be applied directly to the query outputs, it cannot work for intermediate variables that interact
with query execution. In such cases, uncalibrated updates cannot be meaningfully propagated
through neuro-symbolic operators. In contrast, SCORE integrates similarities by mapping them into
normalized similarity scores and combining them with fuzzy vector scores, ensuring that updates
remain compatible with logical operators.

3 PRELIMINARIES

Knowledge graphs. We define a knowledge graph as a tuple G = (E ,R, T), where E is the set of
entities, R is the set of binary relations, and T is the set of triples (h, r, t) with h, t ∈ E and r ∈ R.

Complex queries. Queries over KGs are expressed as first-order logic formulas q(v1, . . . , vN) with
free variables v1, . . . , vN ranging over E . Formulas are built from atoms over relations in R (and
their negations), constants denoting specific entities in E , and logical connectives such as conjunction
(∧) and disjunction (∨). For example, consider the question “What drugs treat diseases that have
headache as a symptom?”. The corresponding query for this question is the following:

q(v1, v2) = SymptomOf(Headache, v1) ∧ TreatedBy(v1, v2). (1)

The free variables in a query can be assigned to specific entities in E . For an assignment e1, . . . , eN ∈
E , we write q(e1, . . . , eN) for the resulting grounded statement. We write G |= q(e1, . . . , eN) if the
set of triples T in the KG entails this grounded formula.

Continuing the example, suppose e1 = Migraine and e2 = Ibuprofen. We then obtain the grounded
statement:

SymptomOf(Headache, Migraine) ∧ TreatedBy(Migraine, Ibuprofen). (2)

If both atoms appear in T , then G |= q(Migraine, Ibuprofen).

Answer set. Given a query formula q(v1, . . . , vN), one may choose a free variable vi as a designated
target variable. Denoting as v¬i all free variables except vi, the answer set Ai(q) is defined as the
set of entities that can be assigned to vi such that the query holds in the graph for some assignment of
the remaining variables:

Ai(q) = {e ∈ E | ∃v¬i ∈ E : G |= q(v¬i, vi = e)}. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Returning to the earlier query

q(v1, v2) = SymptomOf(Headache, v1) ∧ TreatedBy(v1, v2), (4)

suppose we choose v2 (the drug) as the target variable. Then the answer set is

A2(q) = { e ∈ E | ∃v1 ∈ E : G |= SymptomOf(Headache, v1) ∧ TreatedBy(v1, e) }. (5)

These definitions form the basis of prior work on complex query answering (CQA), where the goal
is to predict answer sets correctly when the graph is incomplete (requiring accurate estimation of
the likelihood of entailments G |= q(a1, . . . , aN)) (Hamilton et al., 2018; Daza & Cochez, 2020;
Ren et al., 2020; Ren & Leskovec, 2020). They are also adopted by Daza et al. (2025) to introduce
similarity constraints over a single target variable.

4 SIMILARITY-CONSTRAINED COMPLEX QUERY ANSWERING

We now consider the more general problem where similarity constraints are specified over an arbitrary
variable in a query.

Similarity constraints. A similarity constraint is intended to capture notions such as “diseases like
migraine”. Formally, a similarity constraint is a boolean predicate s such that for an entity e ∈ E ,
s(e) is true if e meets the similarity constraint, and false otherwise.

Constrained answer set. Similarity constraints allow modifying the answer set (Equation (3)) by
additionally restricting certain variables to meet the constraint. Given a similarity constraint s applied
to variable vj in a query q(v1, . . . , vN), we denote the constrained answer set as follows:

Âi(q, s, j) = {e ∈ E | ∃v¬i : (G |= q(v¬i, vi = e)) ∧ s(vj)}. (6)

This can be read as the set of entities e that may serve as answers for vi, for which there exists an
assignment of the remaining variables such that the query holds in the KG, and the assignment to vj
satisfies the similarity constraint s.

Because similarity constraints may vary across queries and domain context, s is not fully observed.
Instead, we assume access to a small set of k (in the order of tens) labeled examples in a preference
set:

Ps = {(e1, s(e1)), . . . , (ek, s(ek))}. (7)

Suppose the similarity constraint expresses the notion of “diseases like migraine”. Then an example
preference set is Ps = {(Migraine, true), (ClusterHeadache, true), (Asthma, false)}.

Together, these definitions provide the foundation for the problem we study in this work.

Similarity-constrained Complex Query Answering. Given a knowledge graph G, a query
q(v1, . . . , vN) with target variable vi, and a similarity constraint s applied to variable vj , the
task of Similarity-constrained Complex Query Answering (SimCQA) consists of computing
the constrained answer set Âi(q, s, j) (Equation (6)), where the similarity constraint s is
estimated from a preference set Ps (Equation (7)).

This formulation subsumes prior work. If we set vi = vj , we obtain the setting of Daza et al.
(2025) where similarity constraints are applied to a single target variable. If, in addition, we define a
similarity function s(e) = true for all e ∈ E , we recover standard CQA with purely logical queries.

5 SIMILARITY-CONSTRAINED REWEIGHTING

As described in Section 2, several neuro-symbolic methods exist for CQA. A common approach
consists of computing one fuzzy vector of scores vi ∈ [0, 1]|E| per variable in a query q(v1, . . . , vN).
Each entry in the vector indicates the likelihood of each entity in E to be assigned to vi. Some
examples of methods following this approach are CQD (Arakelyan et al., 2021; 2023), QTO (Bai

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Projection Projection with

SCORE update

Intersection Intersection with

SCORE update

Figure 2: Existing CQA methods compute fuzzy vectors via projection and intersection operators. We
illustrate how we integrate the SCORE update (Equation (10)), by applying it after these operations
have been computed by the base CQA method, with ∆s indicating similarity scores.

et al., 2023), GNN-QE (Zhu et al., 2022), and UltraQuery (Galkin et al., 2024). These methods rely
on projection and intersection operators to model the logical query with fuzzy vectors, as illustrated
in Figure 2. Once a CQA method has processed a query, the fuzzy vector for the target variable
is used as the score for each entity in the KG to answer the query. We describe the fundamental
operations used by CQA methods to compute fuzzy vectors for a query in Appendix A.1. Here, we
focus on how to incorporate similarity constraints into this computation.

Similarity-constrained Reweighting (SCORE). The key difference between CQA and SimCQA
is the inclusion of a binary predicate in the constrained answer set that restricts one of the variables vj
to meet the similarity constraint s. In principle, this suggests modifying the fuzzy vector vj computed
by an underlying CQA model by increasing or decreasing the score for each entity depending on
whether s(e) is true or false. There are, however, two challenges: (i) the true similarity constraint s is
unobserved, and instead it must be approximated from the preference set Ps, and (ii) any adjustments
made to a fuzzy vector will have an effect in the final answers to the query as the vector is propagated
by the underlying CQA method throughout the rest of the query.

We address these challenges with Similarity-constrained Reweighting (SCORE). Intuitively, given
a preference set Ps and a fuzzy vector vj computed by a base CQA method, SCORE promotes
entities that resemble positively labeled, and demotes those resembling negative ones. As we illustrate
in Figure 2, we apply updates to a fuzzy vector after the base CQA method has applied a projection
or intersection operator. This reweighted vector is then propagated through the rest of the query using
the base CQA method.

To approximate the true similarity constraint, SCORE relies on entity embeddings obtained from the
base CQA method. We employ these embeddings to compute the cosine similarity sim(e1, e2) ∈
[−1, 1] between pairs of entities e1, e2 ∈ E . In order to combine this value with fuzzy vectors whose
elements lie in the interval [0, 1], we compute a normalized similarity score, defined as follows:

sim(e1, e2) =
1
2

(
sim(e1, e2) + 1

)
. (8)

This transformation captures the notion that sim(e1, e2) ∈ [0, 1] tends to 0 if the entities are not
similar, and to 1 if they are similar.

SCORE computes updates to a fuzzy vector in logit space. For a probability p, the logit is defined
as logit(p) = log(p

1−p). Logits provide an additive scale for combining independent sources of
evidence, which stands in contrast with multiplicative updates that can vanish quickly when values
are in the interval [0, 1].

We define P+
s as the set of entities e in Ps for which s(ei) = true, and similarly P−

s for the case
where s(ei) = false. The SCORE update consists of two steps:

1. For each entity e ∈ E , compute the mean logit similarity:

∆(P⊙
s , e) =

1

|P⊙
s |

∑
ei∈P⊙

s

logit(sim(ei, e)), (9)

where P⊙
s ∈ {P+

s , P−
s }.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2. Reweigh the score of each entity based on the mean logit similarities in logit space, and
transform back to the interval [0, 1] with the sigmoid function:

vnew
j [e] = σ

(
logit(vj [e]) + wp∆(P+

s , e)− wn∆(P−
s , e)

)
. (10)

SCORE thus only contains two hyperparameters wp, wn ∈ R which can be tuned to balance the
contributions from preferred and non-preferred sets of entities, using a small validation set.

5.1 THEORETICAL PROPERTIES

We now highlight three important properties of SCORE. We refer to Appendix A.2 for proofs of the
propositions and details on the connection with Bayesian inference.
Proposition 1 (Monotonicity of SCORE updates). For any two entities e1, e2 ∈ E , suppose their
preference contributions are equal:

wp∆(P+
s , e1)− wn∆(P−

s , e1) = wp∆(P+
s , e2)− wn∆(P−

s , e2).

Then the relative ordering of their fuzzy scores is preserved under the SCORE update:

vj [e1] < vj [e2] =⇒ vnew
j [e1] < vnew

j [e2].

The monotonicity of SCORE contributes to interpretability: whenever the score of entity is promoted
or demoted, the exact source of this shift can be traced back to ∆(P+

s , e) and ∆(P−
s , e). This makes

it transparent whether the change is due to evidence from positively or negatively labeled examples,
providing a direct explanation of how similarity constraints affect the final scores.
Proposition 2 (Linear complexity of SCORE). The computational complexity of applying SCORE is
O(|E|), i.e. linear with respect to the number of entities.

Connection with posterior log-odds. The SCORE update reflects the log-odds update rule in
Bayesian inference. This provides a principled justification for our formulation, in which preferences
act as additional likelihood terms that adjust the scores of the base CQA model in a coherent way.

6 EXPERIMENTS

In our experiments, we follow the ranking-based evaluation which has been employed in works on
link prediction (Ji et al., 2022) and complex query answering (Ren et al., 2024). In this setting, the set
of triples T is split into disjoint sets T train, T valid, and T test, and the answer set Ai(q) contains answers
that are only reachable by traversing edges in T test. The goal is to determine the rank assigned by a
model to the entities in the answer set Ai(q) when given access to the edges in T train ∪T valid. Similar
to prior work (Daza et al., 2025), in SimCQA the goal is the same, with the addition that entities in
the constrained answer set Âi(q, s, j) should be ranked higher than those not in it.

Datasets. We conduct experiments on knowledge graphs of different domains and scales: Het-
ionet (Himmelstein et al., 2017) is a biomedical KG covering genes, diseases, and drugs, among other
biomedical entities. FB15k-237 (Bollacker et al., 2008; Toutanova & Chen, 2015) and NELL995 (Carl-
son et al., 2010) are encyclopedic KGs that contain general facts about people, organizations, and
locations. We adopt the complex queries of Ren & Leskovec (2020), which cover a wide variety of
14 types of complex queries involving conjunctions, disjunctions, and negations.

We build on the corresponding datasets for SimCQA introduced by Daza et al. (2025), noting
that in their setup, entities in preference sets overlap with answers reachable in T test, turning the
problem into a few-shot learning setting. We focus on a more challenging and realistic scenario by
restricting preference sets to contain only entities that are only reachable by traversing T train ∪ T valid.
Furthermore, we extend the datasets with cases of constraints on arbitrary variables of a query, rather
than limiting them to the target variable. We present additional details of the datasets in Appendix A.3.

Baselines. We run experiments in the settings where similarity constraints are applied to the tar-
get variable (target-variable SimCQA), and to any variable (general SimCQA). We compare the
performance of SCORE against NQR (Daza et al., 2025), a neural reranker that, unlike SCORE,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
t

60.0

70.0
Pa

irw
is

e
Ac

cu
ra

cy
 (%

)

1 2 3 4 5 6 7 8 9 10
t

20.0

25.0

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

30.0

35.0

40.0

H
@

10
 (%

)

1 2 3 4 5 6 7 8 9 10
t

30.0

35.0

N
D

C
G

@
10

 (%
)

FB15K-237

1 2 3 4 5 6 7 8 9 10
t

60.0

80.0

Pa
irw

is
e

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
t

20.0

25.0

30.0

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

35.0

40.0

45.0

H
@

10
 (%

)

1 2 3 4 5 6 7 8 9 10
t

35.0

40.0

45.0

N
D

C
G

@
10

 (%
)

Hetionet

1 2 3 4 5 6 7 8 9 10
t

50.0

55.0

60.0

65.0

Pa
irw

is
e

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
t

10.0

12.5

15.0

17.5

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

20.0

25.0

30.0

H
@

10
 (%

)
1 2 3 4 5 6 7 8 9 10

t

20.0

25.0

N
D

C
G

@
10

 (%
)

NELL-995

Unconstrained MeanCosine NQR SCORE

Figure 3: SimCQA results for similarity constraints on the target variable. Shaded areas indicate a
95% confidence interval.

requires training with hundreds of thousands of instances of queries and their corresponding con-
strained answer sets; and MeanCosine: a simple baseline based on raw cosine similarity values,
which modifies the fuzzy vector by adding/subtracting the mean cosine similarity with respect to
positive/negative examples (Daza et al., 2025). To ensure a fair comparison, we use the same base
CQA model (QTO, Bai et al. (2023)) and run an extensive hyperparameter grid search for SCORE,
NQR, and MeanCosine separately for each dataset, and select the best values using the validation set.
We provide more details in Appendix A.5.

Metrics. We evaluate each method in an interactive setting (Daza et al., 2025), where preference
sets Ps of increasing size t = 1, . . . , 10 are provided and performance is measured at each step. We
partition the answer set Ai(q) into answers in the constrained answer set Âi(q, s, j), which we denote
as Ai(q)

+, and those not in it, denoted as Ai(q)
−. We then report:

• MRR and Hits@k (H@k) measure whether a method preserves the ranking quality of the
base CQA model, i.e., how well entities in the unconstrained answer set Ai(q) are ranked.

• Pairwise Accuracy (PA) isolates similarity-constraint satisfaction, checking only whether
entities in the constrained set Âi(q, s, j) are ranked above those in Ai(q)

−.

• NDCG@k combines both aspects by assigning graded relevance (0 to non-answers, 1 to
Ai(q)

−, and 2 to Ai(q)
+), rewarding rankings that balance global quality with constraint

satisfaction.

Formal definitions and additional discussion of these metrics are provided in Appendix A.4.

6.1 RESULTS

Target-variable SimCQA. We present results for target-variable SimCQA in Figure 3 averaged
across all queries and indicating a 95% confidence interval. We report the metrics of the base CQA
method (QTO) as a reference without similarity constraints (shown as Unconstrained).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
t

55.0

60.0
Pa

irw
is

e
Ac

cu
ra

cy
 (%

)

1 2 3 4 5 6 7 8 9 10
t

20.0

21.0

22.0

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

34.0

36.0

H
@

10
 (%

)

1 2 3 4 5 6 7 8 9 10
t

30.0

32.0

34.0

N
D

C
G

@
10

 (%
)

FB15K-237

1 2 3 4 5 6 7 8 9 10
t

50.0

55.0

Pa
irw

is
e

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
t

24.0

26.0

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

36.0

38.0

40.0

H
@

10
 (%

)

1 2 3 4 5 6 7 8 9 10
t

35.0

37.5

N
D

C
G

@
10

 (%
)

Hetionet

1 2 3 4 5 6 7 8 9 10
t

50.0

52.5

55.0

Pa
irw

is
e

Ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
t

15.0

16.0

M
R

R
 (%

)

1 2 3 4 5 6 7 8 9 10
t

28.0

30.0

32.0

H
@

10
 (%

)
1 2 3 4 5 6 7 8 9 10

t

26.0

28.0

N
D

C
G

@
10

 (%
)

NELL-995

Unconstrained SCORE

Figure 4: SimCQA results for similarity constraints on the target and intermediate variables. Shaded
areas indicate a 95% confidence interval.

SCORE achieves the highest NDCG@10 across all datasets, indicating that its resulting ranking more
closely resembles the optimal ranking where preferred answers are ranked above non-preferred ones,
which are in turn ranked higher than entities not answering a query. SCORE performs particularly
well on small preference sets, indicating that it can quickly adapt to a few labeled examples.

The MeanCosine baseline shows a competitive NDCG@10, though the gap with SCORE increases
for small preference sets. The higher pairwise accuracy and lower MRR and H@10 show that a
significant contributor to the NDCG@10 stems from a good separation of preferred vs. non-preferred
entities, at a cost of lower global ranking quality.

The neural NQR model performs better at capturing preferences, but it does so in a more aggressive
way that harms global ranking quality. While NQR is designed to balance the two goals (Daza et al.,
2025), our results show that the simpler SCORE update works better than the potentially non-linear
effects introduced by NQR. Since we run experiments on a more challenging benchmark aimed
at a better separation between training and test instances, the difference may also indicate that the
generalization properties of NQR are limited.

General SimCQA. We present results for SimCQA over arbitrary variables in a query in Figure 4.
Since this case requires normalized score updates that can be combined with the base CQA model for
further propagation in query execution, SCORE is the only model applicable in this setting. We note
that the performance of SCORE is consistent, though slightly lower, than in the case of similarity
constraints on the target variable. The steady increase of NDCG@10 indicates that as the preference
set becomes larger, preferred entities are ranked higher while preserving global ranking quality.

Per-query type results. We present more detailed results of SimCQA performance for each of the
14 query types we consider in Tables 5 and 6 in Appendix A.6. Both in target-variable as well as
general SimCQA, we observe that for the large majority of query structures, SCORE results in the
best performance. We identify three query types involving intersections where MeanCosine results in
better performance by a small margin, but this does not point to a general trend across datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2p
s0

2p
s1

3p
s0

3p
s1

3p
s2
inp

s0
inp

s1 ips
0

ips
1
pin

s0
pin

s1 pis
0

pis
1

up
-D

NFs0

up
-D

NFs1

Query type and variable index

0

10

20

30

40

N
D

C
G

@
10

 (%
)

28.728.628.527.326.9

21.721.2

39.5

34.2

21.020.0

36.2

41.0

29.9
27.9

FB15k237

2p
s0

2p
s1

3p
s0

3p
s1

3p
s2
inp

s0
inp

s1 ips
0

ips
1
pin

s0
pin

s1 pis
0

pis
1

up
-D

NFs0

up
-D

NFs1

Query type and variable index

0

10

20

30

N
D

C
G

@
10

 (%
)

16.917.0

31.8

14.214.5
13.013.4

20.6
18.3

13.3
11.1

30.5

34.5

16.8
18.3

Hetionet

2p
s0

2p
s1

3p
s0

3p
s1

3p
s2
inp

s0
inp

s1 ips
0

ips
1
pin

s0
pin

s1 pis
0

pis
1

up
-D

NFs0

up
-D

NFs1

Query type and variable index

0

10

20

30

40

N
D

C
G

@
10

 (%
) 31.2

29.2
25.4

23.223.223.0
21.0

36.4

29.6

24.8

15.4

37.7

31.5

27.4
29.6

NELL995

Figure 5: NDCG@10 per query type and variable position on different datasets. Indices indicate
where the positions of variables in which similarity constraints are applied in the query.

Table 1: Example 2-hop query from Hetionet, showing the top-scored entities for both the intermediate
(drug) and target (side effect) variables before and after applying similarity constraints with SCORE.
▲ indicates a promoted entity, ▼ a demoted one.

q(v1, v2) = TreatedBy(Migraine, v1) ∧ SideEffect(v1, v2)
P+
s = {Diclofenac, Naproxen, Prednisone}, P−

s = {Rizatriptan, Orphenadrine, Ergotamine}.

Initial Top-5 Top-5 after SCORE
v1 v2 v1 v2

Sumatriptan Hemiplegia transient ▲ Diclofenac ▲ Hypersensitivity
Ergotamine Cluster headache ▲ Naproxen ▲ Dermatitis
Frovatriptan Arteriospasm coronary ▲ Prednisone ▲ Pain
Antipyrine Temporal arteritis ▼ Sumatriptan ▲ Headache
Naratriptan Hypertensive episode ▼ Frovatriptan ▲ Asthma

NDCG@10: 28.4 NDCG@10: 36.5

Influence of variable position. Figure 5 reports NDCG@10 results of SCORE when broken
down by types of queries containing more than one variable, and by the variable position on which
similarity constraints are applied. We specify an index that indicates the topological order of variables
in the query (see Figure 6 in Appendix A.3). For example, in a 2-hop query, 2ps0 applies similarity
constraints to the intermediate variable, while 2ps1 applies them to the target variable. Interestingly,
we observe that in most cases constraints applied earlier in the query (i.e., on intermediate variables)
yield slightly higher performance than when applied to later variables or directly to the target variable.
This suggests that preference information is more effectively propagated when introduced at earlier
stages of the query, reinforcing the value of supporting constraints on arbitrary variables beyond the
target.

Table 2: Average runtime per query (ms) with
and without SCORE.

Dataset Base +SCORE ∆

FB15k237 2.96 4.20 +1.24
Hetionet 25.65 28.68 +3.03
NELL-995 75.51 83.96 +8.45

Runtime overhead. Table 2 reports average query
execution times (in ms) with and without SCORE.
Across datasets, the additional cost is modest, ranging
from 1.24 up to 8.45 ms per query. Importantly, the
overhead does not grow superlinearly with dataset
size, confirming our analysis that SCORE is linear in
the number of entities. SCORE can thus be deployed
in practice without compromising the efficiency of
existing CQA methods.

Qualitative example. Table 1 illustrates how SCORE applies similarity constraints to an intermedi-
ate variable on a query in the Hetionet, corresponding to the question “What side effects are associated
with drugs that treat migraine?”. The base model primarily retrieves drugs from the classes triptans
and ergots, which are used for advanced treatment of migraine, together with unrelated side effects
achieving an NDCG@10 of 28.4. After providing a preference set favoring anti-inflammatory drugs
and steroids (used in initial stages), SCORE shifts the ranking to compounds of these classes and their

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

associated side effects, improving NDCG@10 to 36.5. This example highlights the interpretability of
SCORE and its ability to propagate similarity evidence to improve the quality of the answers.

7 DISCUSSION

Our results demonstrate that SCORE provides an effective and broadly applicable mechanism for
incorporating similarity constraints into complex query answering. We observe that preference
information can be propagated through the query without harming global ranking quality. With
these results, SCORE has a broad scope of implications: it extends the expressivity of CQA systems
beyond purely logical constraints, it can be easily adapted to existing CQA methods by requiring
tuning only two lightweight parameters, and it provides interpretable score updates.

While we focused on specifying preferences for one variable at a time, a natural extension is to
allow similarity constraints on multiple variables simultaneously. This substantially increases the
number of possible configurations: for 2p queries one may constrain the intermediate variable, the
target variable, or both; for 3p queries this grows to seven combinations; and in general, for a query
with N variables, the number of variable combinations is 2N − 1. Systematically evaluating these
combinations is an interesting direction for future work.

The benchmarks introduced by Daza et al. (2025) derive preference sets using textual semantic
similarity, but in some domains numerical and other types of attributes may provide an alternative
signal. While textual descriptions often encode high-level semantics, future work could explore
similarity constraints grounded in other data types.

Finally, SCORE extends a broad class of neuro-symbolic CQA systems that traverse the query graph
and compute fuzzy score vectors for each variable, including QTO (Bai et al., 2023), CQD (Arakelyan
et al., 2021), GNN-QE (Zhu et al., 2022), and UltraQuery (Galkin et al., 2024), among others. These
methods expose intermediate scores for each variable, which allows similarity constraints to be
injected at specific points in the query. In contrast, embedding-based methods embed the entire query
into a single vector (Hamilton et al., 2018; Daza & Cochez, 2020; Zhang et al., 2021; 2024), making
it non-trivial to incorporate similarity constraints on arbitrary variables. Investigating how to adapt
such methods is an interesting direction for future work.

8 CONCLUSION

We introduce and formalize the general problem of Similarity-constrained Complex Query Answering
(SimCQA), extending the expressivity of logical queries by allowing similarity constraints on arbitrary
variables. To address this problem, we propose Similarity-Constrained Reweighting (SCORE), a
computationally efficient and interpretable method that integrates similarity constraints consistently
with the computations of a base method for complex query answering. Experiments across multiple
knowledge graphs show that SCORE is capable of capturing similarity constraints without harming–
and sometimes even improving–the answers to a query. We further find that constraints applied
earlier in the query often yield stronger gains by allowing preference information to propagate more
effectively. Taken together, these results highlight SCORE as a practical and general approach for
more expressive methods for CQA supporting mechanisms for specifying constraints beyond first
order logic. For future work, we envision extending expressivity by incorporating similarities derived
from natural language, opening the door to richer forms of guidance and more natural interfaces to
knowledge graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

We release an anonymous code repository with scripts to run SCORE and all baselines, along with
dataset splits and configuration files for every experiment (Section 6; link in the abstract). The
operators and base CQA pipeline needed to reproduce our method are specified in Appendix A.1.
Further details on the SimCQA benchmark can be found in Appendix A.3, with dataset statistics in
Tables 3 and 4. All model and search spaces used for SCORE, NQR, and MeanCosine are enumerated
in Appendix A.5; we also provide the exact hyperparameters selected per dataset in job files in
the repository. The theoretical properties of SCORE (monotonicity, linear-time overhead, and the
log-odds connection) are stated in Section 5.1 with complete proofs in Appendix A.2. Figures 3 and
4 report means with 95% confidence invertals; the code includes the evaluation and plotting scripts
that regenerate these figures from raw runs. Finally, we include a README to facilitate replication
of our experimental results.

REFERENCES

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Mos9F9kDwkz.

Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Augenstein. Adapt-
ing neural link predictors for data-efficient complex query answering. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2023. Curran Associates Inc.

Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on knowledge
graphs via query computation tree optimization. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 1472–1491. PMLR, 2023. URL https://
proceedings.mlr.press/v202/bai23b.html.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
a collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li
Wang (ed.), Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp. 1247–1250. ACM, 2008. doi:
10.1145/1376616.1376746.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper
files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr, and Tom M.
Mitchell. Toward an Architecture for Never-Ending Language Learning. In Maria Fox and
David Poole (eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, pp. 1306–1313. AAAI Press, 2010. doi:
10.1609/AAAI.V24I1.7519. URL https://doi.org/10.1609/aaai.v24i1.7519.

Tamara Cucumides, Daniel Daza, Pablo Barcelo, Michael Cochez, Floris Geerts, Juan L Reutter,
and Miguel Romero Orth. Unravl: A neuro-symbolic framework for answering graph pattern
queries in knowledge graphs. In The Third Learning on Graphs Conference, 2024. URL https:
//openreview.net/forum?id=183XrFqaHN.

Daniel Daza and Michael Cochez. Message passing query embedding. In ICML Workshop - Graph
Representation Learning and Beyond, 2020. URL https://arxiv.org/abs/2002.02406.

Daniel Daza, Dimitrios Alivanistos, Payal Mitra, Thom Pijnenburg, Michael Cochez, and Paul Groth.
Bioblp: a modular framework for learning on multimodal biomedical knowledge graphs. J. Biomed.
Semant., 14(1):20, 2023. doi: 10.1186/S13326-023-00301-Y. URL https://doi.org/10.1186/
s13326-023-00301-y.

11

https://openreview.net/forum?id=Mos9F9kDwkz
https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.mlr.press/v202/bai23b.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1609/aaai.v24i1.7519
https://openreview.net/forum?id=183XrFqaHN
https://openreview.net/forum?id=183XrFqaHN
https://arxiv.org/abs/2002.02406
https://doi.org/10.1186/s13326-023-00301-y
https://doi.org/10.1186/s13326-023-00301-y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniel Daza, Alberto Bernardi, Luca Costabello, Christophe Gueret, Masoud Mansoury, Michael
Cochez, and Martijn Schut. Interactive query answering on knowledge graphs with soft entity
constraints. arXiv preprint arXiv:2508.13663, 2025.

Michael Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, and Zhaocheng Zhu. A Founda-
tion Model for Zero-shot Logical Query Reasoning. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper files/paper/2024/hash/
616521c3cf15f9f7018565c427d40e3b-Abstract-Conference.html.

Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer, 1998.
ISBN 978-1-4020-0370-7. doi: 10.1007/978-94-011-5300-3. URL https://doi.org/10.1007/
978-94-011-5300-3.

William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, pp. 2030–2041, Red Hook, NY, USA, 2018.
Curran Associates Inc.

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. eLife, 6:e26726, September 2017.
ISSN 2050-084X. doi: 10.7554/eLife.26726. URL https://doi.org/10.7554/eLife.26726.
Publisher: eLife Sciences Publications, Ltd.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutiérrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille
Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F.
Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Number 22 in Synthesis
Lectures on Data, Semantics, and Knowledge. Springer, 2021. ISBN 978-3-031-00790-3. doi:
10.2200/S01125ED1V01Y202109DSK022. URL https://kgbook.org/.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst.,
33(2):494–514, 2022. doi: 10.1109/TNNLS.2021.3070843. URL https://doi.org/10.1109/
TNNLS.2021.3070843.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pp. 2869–2878. PMLR, 2018. URL http://proceedings.mlr.press/v80/lacroix18a.html.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 809–816, Madison, WI, USA, 2011. Omnipress.
ISBN 9781450306195.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016. doi: 10.1109/JPROC.
2015.2483592. URL https://doi.org/10.1109/JPROC.2015.2483592.

Hongyu Ren and Jure Leskovec. Beta Embeddings for Multi-Hop Logical Reasoning in Knowl-
edge Graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html.

12

http://papers.nips.cc/paper_files/paper/2024/hash/616521c3cf15f9f7018565c427d40e3b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/616521c3cf15f9f7018565c427d40e3b-Abstract-Conference.html
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.7554/eLife.26726
https://kgbook.org/
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
http://proceedings.mlr.press/v80/lacroix18a.html
https://doi.org/10.1109/JPROC.2015.2483592
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over Knowledge Graphs in
Vector Space Using Box Embeddings. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJgr4kSFDS.

Hongyu Ren, Mikhail Galkin, Zhaocheng Zhu, Jure Leskovec, and Michael Cochez. Neural graph
reasoning: A survey on complex logical query answering. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=xG8un9ZbqT.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://
openreview.net/forum?id=HkgEQnRqYQ.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle,
and Scott Wen-tau Yih (eds.), Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, CVSC 2015, Beijing, China, July 26-31, 2015, pp. 57–66.
Association for Computational Linguistics, 2015. doi: 10.18653/V1/W15-4007. URL https:
//doi.org/10.18653/v1/W15-4007.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.),
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2071–2080. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/trouillon16.html.

Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking Complex Queries on Knowledge Graphs with
Neural Link Predictors. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=1BmveEMNbG.

L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. ISSN 0019-9958. doi: https:
//doi.org/10.1016/S0019-9958(65)90241-X. URL https://www.sciencedirect.com/science/
article/pii/S001999586590241X.

Chongzhi Zhang, Zhiping Peng, Junhao Zheng, and Qianli Ma. Conditional logical message
passing transformer for complex query answering. In Ricardo Baeza-Yates and Francesco Bonchi
(eds.), Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024, pp. 4119–4130. ACM, 2024. doi:
10.1145/3637528.3671869. URL https://doi.org/10.1145/3637528.3671869.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. ConE: Cone Em-
beddings for Multi-Hop Reasoning over Knowledge Graphs. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 19172–19183, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a0160709701140704575d499c997b6ca-Abstract.html.

Sijin Zhou, Xinyi Dai, Haokun Chen, Weinan Zhang, Kan Ren, Ruiming Tang, Xiuqiang He, and
Yong Yu. Interactive recommender system via knowledge graph-enhanced reinforcement learning.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 179–188, 2020.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-Symbolic Models for
Logical Queries on Knowledge Graphs. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 27454–27478. PMLR, 2022. URL https://proceedings.mlr.press/
v162/zhu22c.html.

13

https://openreview.net/forum?id=BJgr4kSFDS
https://openreview.net/forum?id=xG8un9ZbqT
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=1BmveEMNbG
https://openreview.net/forum?id=1BmveEMNbG
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://doi.org/10.1145/3637528.3671869
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.mlr.press/v162/zhu22c.html
https://proceedings.mlr.press/v162/zhu22c.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 NEURO-SYMBOLIC METHODS FOR CQA

This section provides an overview of the logical operators in the logical queries we consider in
this work, as well as the relaxed operators used to model logical operators in existing methods for
neuro-symbolic CQA that can be used as base methods for SimCQA.

Logical operators. We consider logical queries over a KG G = (E ,R, T) specified by a formula
q(v1, . . . , vN) in first-order logic, written in disjunctive normal form (DNF), i.e., as a disjunction (∨)
of conjunctions (∧) of atoms:

q(v1, . . . , vN) = (c11 ∧ · · · ∧ c1m1
) ∨ · · · ∨ (cn1 ∧ · · · ∧ cnmn

), (11)

where each cij denotes a predicate applied to two variables, or a variable and a known entity in E ,
while optionally including negations:

cij =

{
r(e, v) or r(v′, v)
¬r(e, v) or ¬r(v′, v) with e ∈ E , v, v′ ∈ {v1, . . . , vN}, and r ∈ R. (12)

T-norms. Neuro-symbolic methods for CQA incorporate logical operators in their computations by
relaxing them into continuous functions known as t-norms and t-conorms from fuzzy logics (Zadeh,
1965), where values in [0, 1] model degrees of truth. In this setting, conjunction (∧) is generalized by
a t-norm ⊤ : [0, 1]2 → [0, 1], disjunction (∨) by a t-conorm ⊥ : [0, 1]2 → [0, 1], and negation (¬) by
the standard fuzzy complement 1− x. Using these relaxations, a query q(v1, . . . , vN) in disjunctive
normal form can be expressed as

q(v1, . . . , vN) = (c11⊤ . . .⊤c1m1
)⊥ . . .⊥(cn1⊤ . . .⊤cnmn

), (13)

where each atom cij is mapped to a fuzzy truth value in [0, 1].

An example is the product t-norm and its dual t-conorm, defined as

⊤(x, y) = x · y, (14)
⊥(x, y) = x+ y − x · y, (15)

which recover classical Boolean logic when x, y ∈ {0, 1}. Several other t-norms exist, for an in-depth
description see Hájek (1998).

Fuzzy vectors for CQA. Several neuro-symbolic methods assign a vector vi ∈ [0, 1]|E| to each
variable vi in a query, which represents the likelihood that the variable is assigned each entity in
E (Arakelyan et al., 2021; 2023; Bai et al., 2023; Zhu et al., 2022; Cucumides et al., 2024; Yin et al.,
2024). Similarly, constants in a query can be represented as one hot vectors c ∈ {0, 1}|E|, such that
c[e] = 1 for a constant entity e, and all other entries are zero. This vector can then be transformed
with t-norms, t-conorms, and negations depending on the query being answered.

Projections and negations. For a query formula q(v1, v2) = r(v1, v2) with r ∈ R, a fuzzy vector
v1 is projected via a function fr(v1) = v2 ∈ [0, 1]|E| which yields the fuzzy vector for v2. Often
the function fr is a parameterized neural network optimized for 1-hop link prediction (Arakelyan
et al., 2021; 2023; Bai et al., 2023) or CQA (Zhu et al., 2022; Galkin et al., 2024). For a negation
q(v1, v2) = ¬r(v1, v2), the fuzzy vector is computed as 1− fr(v1), where 1 is an all-ones vector of
length |E|.

Conjunctions and disjunctions. For a conjunction q(v1, v2, v3) = r1(v1, v2) ∧ r2(v3, v2) with
r1, r2 ∈ R the two predicates are first projected as fr1(v1) and fr2(v3), and the fuzzy vector of v2

is computed via the t-norm: v2 = fr1(v1)⊤fr1(v3). For a disjunction r1(v1, v2) ∧ r2(v3, v2) the
result is computed via the t-conorm, v2 = fr1(v1)⊥fr1(v3).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 PROOFS OF PROPERTIES OF SCORE

Proposition 1 (Monotonicity of SCORE updates). For any two entities e1, e2 ∈ E , suppose their
preference contributions are equal:

wp∆(P+
s , e1)− wn∆(P−

s , e1) = wp∆(P+
s , e2)− wn∆(P−

s , e2).

Then the relative ordering of their fuzzy scores is preserved under the SCORE update:

vj [e1] < vj [e2] =⇒ vnew
j [e1] < vnew

j [e2].

Proof. By definition of the update in Equation (10),

vnew
j [e] = σ(logit(vj [e]) + δ(e)) ,

where δ(e) = wp∆(P+
s , e)− wn∆(P−

s , e). If δ(e1) = δ(e2), then the same shift is applied to both
logit(vj [e1]) and logit(vj [e2]). Since σ(·) is strictly monotone, the ordering of the original logits
is preserved, and so is the ordering of the values in the fuzzy vector. Hence SCORE is monotonic
with respect to the scores of the underlying model: it preserves the base model’s ranking whenever
preference contributions are equal.

The monotonicity of SCORE contributes to interpretability: whenever the score of entity is promoted
or demoted, the exact source of this shift can be traced back to ∆(P+

s , e) and ∆(P−
s , e). This makes

it transparent whether the change is due to evidence from positively or negatively labeled examples,
providing a direct explanation of how similarity constraints affect the final scores.
Proposition 2 (Linear complexity of SCORE). The computational complexity of applying SCORE is
O(|E|), i.e. linear with respect to the number of entities.

Proof. Let |E| be the number of entities and k the number of examples in the preference set. For
each candidate entity e ∈ E , SCORE computes normalized similarities sim(e, ei) with all k labeled
examples, which costs O(kd) if embeddings are d-dimensional. Aggregating these values and
computing the update in Equation (10) also requires O(k). Thus the cost per entity is O(kd), and
the total cost is O(|E|kd). Since k is small (on the order of tens of examples) and d is fixed by the
underlying embedding model, both factors are constant in practice. Therefore the overall complexity
scales linearly with |E|.

Connection with posterior log-odds. Assuming a probabilistic interpretation of scores, we rein-
terpret the similarity constraint s(e) (previously a binary predicate) as the probability that an entity
e ∈ E is to satisfy the constraint. For brevity, let v = vj [e] denote the base CQA score for entity e.
The SCORE update can then be written as

vnew = σ(logit(v) + logit(s(e))) . (16)

Taking logits gives
logit(vnew) = logit(v) + logit(s(e)), (17)

and by the definition of the logit,

log
vnew

1− vnew = log
v

1− v
+ log

s(e)

1− s(e)
. (18)

This is equivalent to the additive update of log-odds in Bayesian inference: the posterior log-odds
equal the prior log-odds plus the log-likelihood ratio of the evidence. More concretely, let x be the
random variable indicating whether e is an answer. If we view v = P (x = 1) as the prior from
the CQA model and s(e) as a data-dependent score that encodes the strength of evidence for x = 1
versus x = 0, then

log
P (x = 1 | data)
P (x = 0 | data)

= log
P (x = 1)

P (x = 0)
+ log

P (data | x = 1)

P (data | x = 0)
. (19)

Thus, the SCORE update mirrors the Bayesian log-posterior update when scores are interpreted
probabilistically. While the base CQA model and similarity function may not produce calibrated
probabilities, operating in logit space ensures that preference evidence is combined additively and
propagated consistently with the logical operators of the query.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

inp

1p 2p 3p

pin pni

2i 3i ip pi

2in 3in 2u up

Constant

Negation

Disjunction

Intermediate variable

Target variable

Figure 6: Query graphs of different types covered in the datasets used in our experiments, along with
their designated name.

A.3 DATASETS

In this section we provide additional details on how we construct a generalized benchmark for
SimCQA with similarity constraints on arbitrary variables.

Base resources. We start from standard benchmarks for complex query answering (Ren & Leskovec,
2020), which cover 14 query types involving conjunction, disjunction, and negation (illustrated
in Figure 6). For each knowledge graph (Hetionet, FB15k-237, and NELL995), we generate training,
validation, and test queries following the same procedure as in prior work. Each query is associated
with a designated target variable vi whose answers form the set Ai(q).

Preference sets and constrained answers. Following Daza et al. (2025), we rely on clusterings of
embeddings as a proxy for unobserved similarity constraints. For each query, we (i) identify a variable
vj (which may be the target or any intermediate variable), (ii) collect the entities that appear as valid
bindings for vj , and (iii) apply hierarchical agglomerative clustering to obtain two partitions of this
set. These partitions define preference sets of the form Ps = {(e, true) : e ∈ C+} ∪ {(e, false) :
e ∈ C−}, where C+ and C− are clusters. The induced constrained answer set Âi(q, s, j) is then
computed by propagating the partition of vj through the query, yielding a corresponding partition of
the target answers.

Generalization protocol. A key difference with Daza et al. (2025) is how we split answers across
T train, T valid, and T test. In their original setup, preference examples could overlap with answers
reachable in T test, meaning that at test time the model effectively observes part of the ground truth
answers (a few-shot learning scenario). To ensure stricter generalization, we impose the following
rules:

• The ground truth constrained answer set Âi(q, s, j) is defined only with respect to T test.
This ensures that evaluation reflects the model’s ability to generalize to unseen facts.

• Preference sets Ps are restricted to contain only entities reachable via T train ∪ T valid. This
prevents test leakage and forces the model to extrapolate similarity constraints to novel cases
at test time.

Constraints on arbitrary variables. Whereas Daza et al. (2025) considered constraints only on the
target variable, we generalize the construction to allow constraints on any variable in the query. This
is achieved by clustering the bindings of each free variable vj in the query (not just the target), and
retaining those partitions that induce non-trivial and non-overlapping partitions of the target answer
set. This extension produces preference/evidence pairs where feedback is given on intermediate
variables, leading to richer scenarios for similarity-constrained reasoning.

Filtering and quality control. To ensure meaningful preference sets, we apply the following filters:
(i) only variables with at least 10 and at most 100 distinct bindings are considered for clustering; (ii)
both positive and negative clusters must induce at least 5 valid answers on the training edges; (iii)
induced answer sets must be non-empty and disjoint. These criteria discard degenerate cases and
guarantee that similarity constraints provide useful supervisory signals.

Output. Each dataset instance consists of:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: Statistics of the datasets used in our experiments.

Knowledge Graph Queries Preference Sets

Dataset Entities Relations Edges Train Validation Test Train Validation Test

FB15k237 14,505 237 310,079 157,479 20,961 21,352 580,623 68,834 70,365
Hetionet 45,158 24 2,250,198 91,820 29,475 29,488 325,443 99,785 99,284

NELL995 63,361 200 142,804 75,446 17,289 17,435 245,511 52,446 52,589

Table 4: Statistics of the queries and preference sets in the datasets used in our experiments.

Structure 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up Total

FB15k237
Training

Queries 7,596 34,720 56,495 16,205 8,870 0 0 5,300 3,821 9,384 8,891 6,197 0 0 157,479
Pref. Sets 19,075 121,420 240,770 46,302 26,265 0 0 16,536 11,530 41,128 38,217 19,380 0 0 580,623

Validation

Queries 1,631 1,746 2,255 1,341 753 1,249 1,501 1,210 1,560 2,184 1,825 782 1,087 1,837 20,961
Pref. Sets 4,149 5,967 8,876 3,972 2,275 4,099 5,239 3,516 4,549 8,140 6,256 2,182 3,251 6,363 68,834

Test

Queries 1,934 1,776 2,267 1,347 814 1,337 1,399 1,191 1,553 2,133 1,844 814 1,080 1,863 21,352
Pref. Sets 4,898 6,157 9,138 3,875 2,398 4,358 4,834 3,456 4,581 8,017 6,516 2,356 3,206 6,575 70,365

Hetionet
Training

Queries 19,595 20,075 2,000 20,075 20,075 0 0 2,000 2,000 2,000 2,000 2,000 0 0 91,820
Pref. Sets 66,076 79,488 9,127 68,553 66,012 0 0 7,281 6,768 7,503 7,586 7,049 0 0 325,443

Validation

Queries 9,975 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 29,475
Pref. Sets 32,653 5,185 5,805 5,024 5,017 5,040 5,801 5,158 5,068 5,223 4,970 4,829 4,877 5,135 99,785

Test

Queries 9,988 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 29,488
Pref. Sets 32,865 5,049 5,796 5,056 4,980 4,843 5,783 5,092 5,121 5,218 4,789 4,630 4,820 5,242 99,284

NELL995
Training

Queries 1,871 17,649 24,859 4,547 3,034 0 0 3,848 2,459 5,824 6,016 5,339 0 0 75,446
Pref. Sets 4,677 50,328 92,914 11,221 7,530 0 0 11,507 7,151 22,040 22,145 15,998 0 0 245,511

Validation

Queries 942 1,281 1,532 824 468 836 1,042 1,381 1,383 2,126 1,859 1,058 1,152 1,405 17,289
Pref. Sets 2,254 4,043 5,159 2,292 1,291 2,410 2,855 3,945 4,214 7,229 6,038 3,046 3,270 4,400 52,446

Test

Queries 1,004 1,253 1,607 993 635 772 1,039 1,344 1,510 2,106 1,770 938 1,106 1,358 17,435
Pref. Sets 2,437 3,917 5,514 2,659 1,789 2,077 2,933 3,860 4,479 7,182 5,743 2,618 3,076 4,305 52,589

1. a query q and target variable vi,

2. the variable vj on which preferences are applied,

3. a preference set Ps built from clusters of bindings of vj ,

4. the ground truth constrained answer set for the target variable vi: Âi(q, s, j) derived from
T test.

We repeat this process across all query types and variables, producing a diverse benchmark that covers
both biomedical and encyclopedic domains. Dataset statistics are reported in Table 3 and Table 4.

A.4 METRICS

Global ranking quality. For each entity in the unconstrained answer set Ai(q), we determine its
rank r, and compute the Mean Reciprocal Rank (MRR) and Hits@k (H@k), computed per answer as
MRR = 1

r and H@k = 1[r ≤ k] (where 1 is an indicator function) and averaged over all queries.

Similarity constraint satisfaction. Here we measure whether methods rank preferred answers
higher than non-preferred ones. We partition the answer set Ai(q) into answers in the constrained
answer set Âi(q, s, j), which we denote as Ai(q)

+, and those not in it, denoted as Ai(q)
−. We then

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

compute Pairwise Accuracy:

PA =
∑

e+∈Ai(q)+

∑
e−∈Ai(q)−

1
[
r(e+) < r(e−)

]
, (20)

where r(e) indicates the ranking of entity e.

We also compute the Normalized Discounted Cumulative Gain at k (NDCG@k), assigning 0 relevance
to non-answers, 1 to answers in Ai(q)

−, and 2 to answers in Ai(q)
+. Concretely, the discounted

cumulative gain is

DCG@k =
∑

e∈Ai(q)

2rel(e) − 1

log2(j + 1)
, (21)

where

rel(e) =


0 if e /∈ Ai(q)

1 if ∈ Ai(q) \ Âi(q, s, j)

2 if ∈ Âi(q, s, j)

(22)

and the normalized score is
NDCG@k =

DCG@k

IDCG@k
, (23)

where IDCG@k is the maximum achievable DCG under the given relevance scores. Since NDCG@k
is normalized by the ideal ranking, a value of 1 indicates that all preferred answers appear above
non-preferred answers, which in turn appear above non-answers. We report the average of PA and
NDCG@k over all queries.

A.5 EXPERIMENTAL DETAILS

SCORE. The only two parameters that need to be tune in SCORE are the weights wp and wn

in Equation (10) that control the strength of shifts in logit space to the base score due to similarities
with the preference set. We run a grid search with values in {0.25, 0.5, 1.0}, for a total of 9 possible
combinations of wp and wn.

NQR. We perform a grid search with values of the learning rate in {1 × 10−5, 1 × 10−4}, the
margin in the preference loss in {0.05, 0.1, 0.25}, and the KL divergence weight in {0.1, 1.0, 10},
resulting in a total of 18 possible combinations of hyperparameters. As done by Daza et al. (2025),
we train NQR on queries of type 1p, as training on more query types is more expensive but brings
little benefits.

MeanCosine. The update rule in the MeanCosine baseline is given by the following expression:

vnew
i [e] = αvi[e] + (1− α)

 1 + β

2|P+
s |

∑
ei∈P+

s

sim(ei, e)−
1− β

2|P−
s |

∑
ei∈P−

s

sim(ei, e)

 . (24)

Intuitively, MeanCosine computes a convex combination of the original score, and a score due to
the mean of raw cosine similarity values, which is balanced with the hyperparameter α ∈ [0, 1].
Similarities from P+

s are added, and those from P−
s are subtracted, and the balance of these two is

determined by the value of β ∈ [−1, 1]. We run a grid search for the values of α in {0.25, 0.5, 0.75},
and β ∈ {−0.5, 0, 0.5} for a total of 9 possible configurations.

A.6 ADDITIONAL RESULTS

We present more detailed results on SimCQA performance for each of the 14 types of complex
queries we consider in our work (shown in Figure 6).

Following our main experiments, we apply a similarity constraint to a query by using preference sets
of size t = 1, . . . , 10. For each value of t we then compute NDCG@10 and report the average over
the 10 sizes. We present results for target-variable SimCQA in Table 5 and for general SimCQA
in Table 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Method 1p 2in 2i 2p 2u 3in 3i 3p inp ip pin pi pni up Avg.

FB15k237

Unconstrained 43.90 23.34 47.40 28.75 34.37 37.14 50.54 27.16 21.48 34.32 20.05 41.32 9.87 27.98 31.97
MeanCosine 44.25 23.76 47.92 29.67 34.80 37.20 50.92 26.95 22.81 34.29 20.38 40.53 10.33 28.34 32.30
NQR 41.61 21.13 46.13 25.24 32.33 33.82 49.43 21.30 19.48 27.79 16.92 36.12 9.25 25.95 29.04
SCORE 44.43 24.07 48.06 29.84 34.91 37.80 51.38 28.34 22.62 35.61 21.20 42.03 10.57 28.73 32.83

Hetionet

Unconstrained 52.95 33.11 44.51 17.10 44.21 22.11 48.94 14.58 13.63 18.38 11.27 34.94 12.84 18.18 27.62
MeanCosine 53.18 33.51 44.62 19.42 44.62 23.56 47.97 13.56 17.76 20.54 14.35 31.66 13.35 18.76 28.35
NQR 45.24 24.65 39.93 14.65 35.57 19.20 44.64 11.75 13.20 13.67 10.96 26.11 11.23 16.13 23.35
SCORE 52.79 33.59 45.93 20.69 44.31 24.23 50.38 15.96 17.27 23.53 14.23 37.55 14.41 19.52 29.60

NELL995

Unconstrained 47.02 23.36 41.79 29.45 33.53 22.78 47.10 23.35 21.30 29.71 15.70 31.72 10.34 29.79 29.07
MeanCosine 46.98 22.99 41.74 28.85 32.81 21.74 47.36 22.64 22.23 27.67 14.60 28.97 10.17 29.35 28.43
NQR 37.55 14.81 33.77 20.28 26.46 13.23 37.64 14.15 15.04 21.62 7.94 23.04 6.25 21.19 20.93
SCORE 47.58 23.99 41.74 30.43 33.63 22.59 47.57 24.81 22.98 31.32 16.54 33.38 11.02 30.51 29.86

Table 5: NDCG@10 results target-variable SimCQA averaged over preference sets of size 10.

Method 1ps0 2ins0 2is0 2ps0 2ps1 2us0 3ins0 3is0 3ps0 3ps1 3ps2 inps0 inps1 ips0 ips1 pins0 pins1 pis0 pis1 pnis1 ups0 ups1 Avg.

FB15k237

Unconstrained 43.90 23.34 47.40 29.29 28.75 34.37 37.14 50.54 28.60 27.72 27.16 22.15 21.48 40.29 34.32 21.48 20.05 36.97 41.32 9.87 30.34 27.98 31.11
SCORE 44.43 24.07 48.06 29.39 29.84 34.91 37.80 51.38 29.00 28.36 28.34 22.65 22.62 40.42 35.61 22.36 21.20 38.12 42.03 10.57 30.68 28.73 31.84

Hetionet

Unconstrained 52.95 33.11 44.51 17.14 17.10 44.21 22.11 48.94 32.02 14.59 14.58 13.52 13.63 21.42 18.38 13.84 11.27 30.27 34.94 12.84 17.18 18.18 24.85
SCORE 52.79 33.59 45.93 21.22 20.69 44.31 24.23 50.38 32.30 20.55 15.96 16.62 17.27 26.58 23.53 17.16 14.23 30.31 37.55 14.41 18.59 19.52 27.17

NELL995

Unconstrained 47.02 23.36 41.79 30.98 29.45 33.53 22.78 47.10 25.64 23.55 23.35 23.26 21.30 37.64 29.71 25.20 15.70 38.29 31.72 10.34 27.57 29.79 29.05
SCORE 47.58 23.99 41.74 31.45 30.43 33.63 22.59 47.57 26.78 25.07 24.81 24.52 22.98 39.30 31.32 26.21 16.54 40.30 33.38 11.02 27.63 30.51 29.97

Table 6: NDCG@10 results for general SimCQA averaged over preference sets of size 10.

For general SimCQA, we suffix the query type with sℓ, where ℓ is the zero-based index of the variable
on which the similarity constraint is applied. Variables are ordered in a topological order from the
leaf nodes to the root of the query graph (see Figure 6). For example, for a 2p chain, the intermediate
variable corresponds to index 0 (2ps0), and the terminal variable corresponds to index 1 (2ps1).

A.7 LLM USAGE

Large language models were used sparingly in preparing this work, limited to assistance with word
choice and clarity of exposition.

19

	Introduction
	Related Work
	Preliminaries
	Similarity-constrained Complex Query Answering
	Similarity-Constrained Reweighting
	Theoretical properties

	Experiments
	Results

	Discussion
	Conclusion
	Reproducibility Statement
	Appendix
	Neuro-symbolic methods for CQA
	Proofs of properties of SCORE
	Datasets
	Metrics
	Experimental details
	Additional results
	LLM usage

