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ABSTRACT

Self-improving agents learn by playing competitive, often non-transitive language
games (e.g., generator–solver, proposer–verifier) where training can oscillate or
drift toward undesirable behaviours. We study this scenario through the lens of
reverse-KL regularised Nash learning, showing how the regularisation strength
β shapes both where agents converge and how they get there. We derive a
continuous-time view of Nash Mirror Descent (Nash-MD), revealing a simple
geometry: trajectories are spirals on the simplex whose damping grows with β,
while β simultaneously pulls equilibria toward the reference policy—amplifying
any existing biases. We prove last-iterate convergence to the β-regularised Nash
equilibrium, quantify its first-order shift from the unregularised solution, and link
convergence speed to the spectrum of the linearised dynamics.
Building on this geometry, we introduce two adaptive β controllers: (i) a
Hessian-based rule that targets a desired damping–rotation ratio to accelerate with-
out overshoot, and (ii) a bias-based rule that caps measurable bias (e.g., output
length, calibration, hallucination proxies) while retaining speed. On toy games
(e.g. Rock–Paper–Scissors) and small open-model reasoning benchmarks, our
controllers deliver faster, more stable convergence with bounded bias, outperform-
ing baselines. The result is a practical recipe: tune β as a control knob to make
self-improving LLM agents both faster and safer.

1 INTRODUCTION

Self-improving LLM (large language model) agents (Tao et al., 2024; Tian et al., 2024; Munos
et al., 2024; Rosset et al., 2024; Choi et al., 2025; Huang et al., 2025a;b) are trained in competitive,
non-transitive preference games (e.g., proposer–verifier, generator–solver). In such games, stan-
dard no-regret or mirror-descent updates can exhibit rotational components that cause cycling and
unstable last-iterate behaviour even when time-averages converge (Shapley, 1963; Hofbauer, 1996;
Mertikopoulos et al., 2018). In practice, reverse-KL regularisation to a reference policy µ is perva-
sive in post-training and preference-learning pipelines (PPO-style KL in RLHF; DPO/IPO’s implicit
anchoring; Nash learning with entropic regularisation), where it is believed to stabilise learning and
bound distribution shift (Munos et al., 2024; Ye et al., 2024; Xiong et al., 2024; Rafailov et al.,
2023; Xiong et al., 2024; Zhao et al., 2024; Wang et al., 2024). However, the role of the reverse
temperature β remains under-characterised: how exactly does β control damping vs. rotation of the
dynamics? How far does it bias equilibria toward µ? And how should β be adapted online to trade
convergence speed against explicit bias budgets (e.g., output length, calibration)?

Contributions. Our technical and empirical contributions are:

C1. Derive entropic Nash mirror ODEs with reverse-KL regularization (§2.2).
C2. Show a spectral separation λ(Jβ) = {−β ± i σk} that isolates damping (real part) from rotation

(imaginary part) (§2.4).
C3. Characterise β-regularised Nash equilibria as logit/quantal responses around µ (§2.3).
C4. Prove an O(β) first-order equilibrium sensitivity bound near the unregularised NE (§2.3).
C5. Propose two adaptive-β controllers: Hessian-β (spectral damping ratio) and Bias-β (log-scale

updates to meet bias budgets) (§3).
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Figure 1: RPS geometry under reverse–KL Nash mirror dynamics. Simplex vector fields (RPS) for
β ∈ {0, 0.05, 0.1, 0.2, 0.5, 1.0}; spiral steepening with β. Trajectory bundles from random inits;
faster radial decay at larger β. Takeaway: β adds uniform damping without changing rotational
frequencies (Section 2).

C6. Validate on toy RPS (fields, trajectories, β-sweeps, spectra, convergence vs. baselines) and
demonstrate feasibility on a small LLM micro-experiment (learned payoff) (§5).

Hypotheses. (A) Reverse-KL regularization (β) shifts fixed points away from the unregularised
Nash equilibrium with a β-controlled bias; larger β amplifies pre-existing reference-policy biases
(length, overconfidence, hallucinations). (B) Convergence speed and spiral steepness increase with
β. We formalise these as Theorems 2.4, 2.3, and 2.7.

What is new vs. known. Prior work studied mirror descent in games and regularised best re-
sponses. Our novelty is a reverse-KL geometry for Nash mirror dynamics that yields (i) a simple
spectral law with additive −β damping; (ii) a first-order sensitivity bound linking β to equilibrium
bias; and (iii) controllers that use this geometry to regulate convergence speed and explicit bias
budgets.

2 THEORY: GEOMETRY OF REVERSE–KL NASH MIRROR DYNAMICS

We give a precise account of reverse–KL Nash mirror dynamics. Assumptions are explicit, theorem
statements appear in the main text with concise proof sketches, and full proofs are in the Appendix.

2.1 PROBLEM SET-UP AND ASSUMPTIONS

Let ∆m = {p ∈ Rm≥0 : 1⊤p = 1} and T = {v ∈ Rm : 1⊤v = 0}. We study the reverse–KL
regularised two-player zero-sum matrix game

fβ(x, y) = x⊤Ay − β DKL(x∥µ) + β DKL(y∥µ), x, y ∈ ∆m, β ≥ 0, (1)

where A ∈ Rm×m and µ ∈ relint(∆m) is the reference. We use the negative-entropy mirror map
ψ(p) =

∑
i pi log pi with dual variables zx, zy and x = softmax(zx), y = softmax(zy).

Assumptions (local, minimal).

A0 (Reference positivity). µ ∈ relint(∆m) (all coordinates strictly positive).

A1 (Interior equilibrium). For the β considered, there exists (x∗β , y
∗
β) ∈ relint(∆m)2 solving

maxxminy fβ(x, y).

A2 (Local variational stability). The Nash field F (x, y) = (∇xfβ ,−∇yfβ) is locally monotone
on T× T around (x∗β , y

∗
β); when needed, strong monotonicity holds with modulus propor-

tional to β.

A3 (Smoothness and nonsingularity at β=0). Gradients are C1 near (x∗0, y
∗
0); the Jacobian

D(x,y)F (x, y)
∣∣
(x∗

0 ,y
∗
0 )

is nonsingular on T× T.

Remark 2.1 (Equivalence to preference games). Starting from Pβ(π ≻ π′) = Pθ(π ≻ π′) −
βDKL[π∥µ]+βDKL[π

′∥µ] and discretizing policy space {πi}, define Aij = 2E[Pθ(πi ≻ πj)]− 1.
Then maxπminπ′ Pβ and maxxminy fβ are equivalent up to an additive constant and a factor 2.
This finite form preserves geometry while enabling explicit ODE and spectral derivations (Prop. ??).
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2.2 ENTROPIC NASH MIRROR DYNAMICS AND ODE LIMIT

Define the Nash field

F (x, y) =
(
Ay − β(log x− log µ), −A⊤x− β(log y − log µ)

)
, (2)

understood on T× T (constant vectors are projected out).
Theorem 2.2 (Entropic Nash mirror ODE). Let x = softmax(zx) and y = softmax(zy). As η → 0
with t = kη, the dual mirror updates zt+1 = zt + η F (xt, yt) converge to

żx = Ay − β(log x− logµ), ży = −A⊤x− β(log y − log µ), x = softmax(zx), y = softmax(zy) .

The flow remains in relint(∆m)2 and preserves
∑
i xi =

∑
i yi = 1.

Sketch. Forward-Euler limit in dual space; interior invariance follows from the Legendre property
of ψ. Details in Appendix A.1; well-posedness in Appendix A.2.

Primal form. Using Jx = Diag(x)− xx⊤, Jy = Diag(y)− yy⊤:

ẋ = Jx[Ay − β(log x− log µ)] , ẏ = −Jy
[
A⊤x+ β(log y − log µ)

]
. (3)

2.3 FIXED POINTS: LOGIT/QUANTAL RESPONSES AROUND µ

Proposition 2.3 (Quantal-response structure). Stationarity (żx, ży) = (0, 0) is equivalent to

x∗β ∝ µ⊙ exp
(

1
β Ay

∗
β

)
, y∗β ∝ µ⊙ exp

(
− 1

β A
⊤x∗β

)
.

Larger β pulls (x∗β , y
∗
β) toward µ. Proof sketch: Subtract per-coordinate means, exponentiate, and

renormalise. Full proof: Appendix A.3.

2.4 LINEARIZATION AND SPECTRAL SEPARATION (DAMPING VS. ROTATION)

At (x∗β , y
∗
β), write J∗

x = Diag(x∗β)−x∗βx∗⊤β , J∗
y = Diag(y∗β)−y∗βy∗⊤β , andH := AJ∗

y ,K := A⊤J∗
x .

Theorem 2.4 (Spectral separation). On T× T the dual Jacobian is

Jβ =

[
−βI H
−K −βI

]
, spec(Jβ) = {−β ± iσk}m−1

k=1 ,

where σ2
k are the nonzero eigenvalues of HK (or equivalently KH). Thus damping is uniform

(ℜλ = −β), while rotation (ℑλ = ±σk) depends only on A and the entropic metric (J∗
x , J

∗
y ) and is

independent of β.

Sketch. Let J =
[

0 H
−K 0

]
; then J2 = diag(−HK,−KH) has eigenvalues −σ2

k ≤ 0. Hence
spec(J) = {±iσk} and spec(Jβ) = spec(−βI+J). See Appendix A.4 for the metric/Hamiltonian
view and nonnegativity of HK.

Corollary 2.5 (Spiral geometry and damping ratio). Trajectories near (x∗β , y
∗
β) are decaying spirals

with exponential rate β and modal angular frequencies {σk}; the modal damping ratio is ζk =
β/σk.

2.5 LOCAL LAST-ITERATE CONVERGENCE AND SENSITIVITY

Theorem 2.6 (Local last-iterate convergence with β-explicit rate). Under A1–A2, there exists a
neighborhood N of (x∗β , y

∗
β) such that along the ODE,

V (t) := DKL(x
∗
β∥x(t)) +DKL(y

∗
β∥y(t)) ≤ C0 e

−c0βt.

For sufficiently small steps, discrete Nash–MD converge linearly with factors 1 − Θ(βη). Sketch:
V is a local Lyapunov; A2 gives V̇ ≤ −cβ ∥z − z∗∥2; norm equivalences yield exponential decay.
Appendix A.5.
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Let (x∗0, y
∗
0) be the interior NE at β = 0. Define g(x, y, β) = (∇xfβ ,−∇yfβ).

Theorem 2.7 (First-order β-sensitivity and O(β) deviation). Under A1–A3, for sufficiently small β,
d

dβ

∣∣∣
β=0

[
x∗β
y∗β

]
= −J−1

0

[
∇xDKL(x

∗
0∥µ)

−∇yDKL(y
∗
0∥µ)

]
,

∥∥(x∗β − x∗0, y∗β − y∗0)∥∥ ≤ C β,
with J0 = D(x,y)g(x, y, 0)

∣∣
(x∗

0 ,y
∗
0 )

and C depending on ∥J−1
0 ∥ and local Lipschitz moduli. Sketch:

Implicit-function theorem; Appendix A.6.
Remark 2.8 (Parametric Taylor bound (sanity cross-check)). In a local parametrization θ 7→
(πθ, π

′
θ) with positive-definite reduced Hessian HP = ∇2

θPθ at the unregularised NE, Theorem 2.7
reduces to the familiar first-order estimate ∥θ∗β − θ∗0∥ ≤

β
λmin(HP )∥∇θDKL(πθ∗0∥µ)∥+O(β2); see

Appendix A.6, Corollary A.3.

2.6 ILLUSTRATIVE EXAMPLE: ROCK–PAPER–SCISSORS (SANITY CHECK)

For A =
[ 0 −1 1

1 0 −1
−1 1 0

]
and µ = 1

31, J∗
x = J∗

y = 1
3I on T, so H = 1

3A and K = −H , hence

HK = 1
9AA

⊤ with nonzero eigenvalues 1
3 . Therefore

spec(Jβ) = {−β ± i/
√
3}.

Predictions: decaying spirals with rate β and fixed angular speed 1/
√
3; increasing β steepens

radial decay; with biased µ, (x∗β , y
∗
β) shift O(β) toward µ. Evidence: Figures in Section 5 (fields,

trajectories, spectra; β-sweep diagnostics).

2.7 CROSS-WALK TO EXISTING THEOREMS AND NOVELTY

Classical/standard. (i) Mirror descent/prox and optimistic variants for monotone VIs and con-
vex–concave min–max: existence of ODE limits, interior invariance under entropic mirror maps,
and last-iterate guarantees under strong monotonicity are standard. (ii) Logit/quantal responses
(QRE) under entropy regularization are classical; Prop. 2.3 is the reverse–KL specialization.

Refinements/new in this paper. (i) Spectral separation in entropic Nash mirror dynamics:
Theorem 2.4 shows a clean additive shift−βI (uniform damping) and a β-invariant imaginary spec-
trum determined by HK; we are not aware of prior statements in this exact form for the Nash
mirror linearization. (ii) β-explicit local rates: Theorem 2.6 gives exponential decay with rate
Θ(β), consistent with the real-part shift. (iii) First-order sensitivity with constants: Theorem 2.7
and Appendix A.6 quantify the O(β) deviation and provide explicit constants via ∥J−1

0 ∥ and local
Lipschitz moduli, subsuming the familiar parametric Taylor bound (Remark above; Corollary A.3).

Takeaway for control. The split λ(Jβ) = −β ± iσ elevates β to a uniform damping knob; the
O(β) bias law quantifies movement toward µ. These two facts directly enable the controllers in
Section 3: match damping to rotation (Hessian–β), or enforce a bias budget (Bias–β).

3 METHOD: ADAPTIVE β-CONTROL FOR NASH LEARNING

Objective. Leveraging Section 2, where the local spectrum is λ(Jβ) = −β± iσk (uniform damp-
ing from β, rotation from game geometry) and the β-NE shifts O(β) from the unregularised NE, we
design adaptive β controllers that (i) accelerate and stabilise last-iterate dynamics, and (ii) satisfy
explicit bias budgets (e.g., length ratio, ECE).

3.1 CONTROL PROBLEM AND CLOSED-LOOP MODEL

Let z = (zx, zy) be dual variables, x = softmax(zx), y = softmax(zy). The open-loop ODE is
Theorem 2.2. We close the loop by adapting β:

ż = G(z;β), β+ = C(β,M(z)) , (4)
where M measures either a spectral proxy σ̂ (rotation scale) or a bias metric B(π), and C is the
controller.

4
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Algorithm 1 Hessian–β (wraps Nash–MD)

Require: target ratio ζ∗, smoothing ρ, bounds [βmin, βmax], update period K
1: Initialize z0, β0
2: for t = 0, 1, 2, . . . do
3: zt+1 ← NASHSTEP(zt, βt) ▷ MD via equation 3 or MP
4: if t mod K = 0 then
5: σ̂t ← ∥ 12 (J(zt)− J(zt)

⊤) v∥2 (one JVP; clamp & EMA)
6: βt+1 ← proj

(
(1− ρ)βt + ρ ζ∗σ̂t

)
7: else
8: βt+1 ← βt

Targets. (i) Damping ratio ζk = β/σk with lower bound ζ∗ > 0; (ii) Bias budget B(π) ≤ B∗

(e.g., LenBias, ECE, or a subset DKL(π
∗
β∥π∗

0)).

Controller assumptions (local).

C1 Two time-scales. β updates are slower than primal–dual relaxation (e.g., update every K steps
or use small gains).

C2 Spectral proxy. A local estimate σ̂ obeys |σ̂ − σ| ≤ ϵ σ for some ϵ ∈ [0, 1).

C3 Bias monotonicity. Writing u = log β, the map u 7→ B(π∗
eu) is differentiable and strictly

increasing with slope s ∈ [smin, smax], 0 < smin ≤ smax <∞.

C4 Bounded noise. Measurement noise has zero mean and bounded variance (EMA smoothing is
used in practice).

3.2 CONTROLLER I: HESSIAN–β (MATCH DAMPING TO ROTATION)

Design principle. By Theorem 2.4, modal damping ratio is ζk = β/σk. To target ζ∗ we set
β ≈ ζ∗ σ and estimate σ by a spectral proxy σ̂ using one power iteration on the skew-Jacobian
S(z) = 1

2 (J(z)− J(z)
⊤) (JVP/VJP) or a centred finite difference on the simplex tangent.

Update rule.

βt+1 = proj[βmin, βmax]

(
(1− ρ)βt + ρ ζ∗ σ̂t

)
, ρ ∈ (0, 1]. (5)

Proposition 3.1 (Instantaneous damping guarantee). Under C1–C2, the closed-loop linearization
retains ℜλt = −βt. Moreover, from equation 5, βt+1 ≥ (1−ρ)βt+ρ ζ∗(1− ϵ)σt. If ζ∗(1− ϵ)σ ≥
βmin > 0, the local contraction rate is uniformly bounded below by βmin.

Corollary 3.2 (Non-oscillatory (modal) regime). If ζk = β/σk ≥ 1 for all modes, the lin-
earized response is critically/over-damped (no ringing). Hessian–β can enforce this by choosing
β ≥ ζ∗ σmax.

Practical notes. (i) Cost: one JVP per controller update (two for centred differences). (ii) Noise:
reduce ρ and apply EMA to stabilise σ̂. (iii) Clamps: clip σ̂ ∈ [σmin, σmax] to discard outliers. (iv)
Solver choice: MP is often preferable when the field is weakly/non-monotone away from equilib-
rium.

3.3 CONTROLLER II: BIAS–β (BUDGET-COMPLIANT LOG-SCALE CONTROL)

Design principle. Theorem 2.7 shows β induces O(β) bias toward µ. We therefore regulate β on
the log-scale to meet an operational budget B∗ directly:

log βt+1 = log βt + ηβ clamp
(
B(πt)−B∗, −b, b

)
, βt+1 = proj

(
βte

ηβδt
)
, (6)

where δt = clamp(B(πt)−B∗,−b, b).

5
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Algorithm 2 Bias–β (wraps Nash–MD)

Require: budget B∗, log-step ηβ > 0, clamp b > 0, bounds [βmin, βmax], update period K
1: for t = 0, 1, 2, . . . do
2: zt+1 ← NASHSTEP(zt, βt); πt+1 ← softmax(zt+1)
3: if t mod K = 0 then
4: Bt+1 ← MEASUREBIAS(πt+1) on a fixed probe set
5: δ ← clamp(Bt+1 −B∗,−b, b); βt+1 ← proj

(
βt exp(ηβ δ)

)
6: else
7: βt+1 ← βt

Theorem 3.3 (Budget tracking (quasi-static regime)). Under C1, C3, C4, linearizing equation 6 at
u∗ = log β∗ with B(π∗

β∗) = B∗ yields

ut+1 − u∗ = (1− ηβs∗)(ut − u∗) + ξt, u = log β,

where ξt captures bounded noise. If 0 < ηβs
∗ < 2, the controller is mean-stable with geometric

rate |1− ηβs∗| and bounded variance suptVar(ut) ≤ η2βb2
/(
1− (1− ηβs∗)2

)
.

Remark 3.4 (Parametric Taylor view). In parametric models, Theorem 2.7 reduces to a first-order
Taylor bound ∥θ∗β − θ∗0∥ ≤ (β/λmin(HP ))∥∇θDKL(πθ∗0∥µ)∥+O(β2), which aligns with the anal-
ysis in the accompanying memo; Bias–β closes the loop on operational bias (length/ECE) rather
than targeting a global KL alone.

3.4 COMPOSING THE CONTROLLERS: PRIORITY AND FEASIBILITY

Operationally, meet the budget first, then go as fast as possible. We therefore recommend the priority
composition

βbias
t+1 from equation 6, βhess

t+1 from equation 5, βt+1 = max{βbias
t+1, β

hess
t+1}. (7)

This preserves feasibility (βt+1 ≥ βbias
t+1 ⇒ B(π) ≤ B∗) while securing a damping ratio as high as

allowed by the budget.

3.5 CLOSED-LOOP GUARANTEES: WHAT IS PROVED VS. ASSUMED

Proved near equilibrium. Proposition 3.1 (instantaneous damping bound) and Theorem 3.3 (bud-
get tracking with rate/variance) hold under C1–C4, translating the spectral and sensitivity laws of
Section 2 into concrete control properties.

Assumptions that remain. Global guarantees far from equilibria, non-stationary A(t) or drifting
µ(t), and architecture-wise β distributions are outside our theory; we mitigate with the safeguards
above.

4 RELATED WORK

Evolutionary dynamics and quantal responses are foundational to learning in games (Hofbauer &
Sigmund, 1998; Sandholm, 2010). Mirror-descent dynamics can rotate and fail at last-iterate con-
vergence even when ergodic averages converge (Shapley, 1963; Mertikopoulos et al., 2018). Ex-
tragradient and Mirror–Prox provide acceleration and robustness for monotone VIs (Nemirovski,
2004; Juditsky et al., 2011; Cai et al., 2025; Fruytier et al., 2024); optimistic/extra-gradient vari-
ants are standard stabilisers for min–max training. Our spectral perspective (Theorem 2.4) is com-
plementary: we show that reverse-KL inserts a uniform −βI real-part shift without touching the
rotational frequencies, giving a simple recipe for damping control. NLHF frames alignment as a
two-player preference game and introduces Nash mirror methods with entropic regularisation, in-
cluding geometric mixing with a reference µ (Munos et al., 2024). Recent work broadens preference
oracles and studies on-policy/iterative preference learning and extragradient accelerations with last-
iterate guarantees under structure (Ye et al., 2024; Xiong et al., 2024; Tiapkin et al., 2025; Zhou
et al., 2025). Our work keeps the Nash–MD backbone to analyse how β shapes the local spec-
trum and equilibrium bias, and introduces β-controllers (Hessian–β, Bias–β) that we prove stable

6
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near equilibrium. To our knowledge, explicit β-control for (i) damping–rotation matching and (ii)
measurable operational bias budgets has not been developed within NLHF. Adaptively Perturbed
Mirror Descent (APMD) uses a slingshot/anchoring strategy to obtain last-iterate convergence in
monotone games and improve robustness to noise (Abe et al., 2024). Our Hessian–β controller is
philosophically related (both increase effective damping), yet distinct: rather than injecting exoge-
nous perturbations, we modulate the reverse-KL temperature to set the real-part margin, guided by a
spectral proxy. KL penalties to a reference policy are standard in RLHF; early work used an adaptive
KL controller to keep the realised KL near a target, adjusting the coefficient online (Ziegler et al.,
2019). This heuristic remains in widely-used libraries for PPO-style RLHF. DPO/IPO and ΨPO
provide RL-free or hybrid alternatives that relate to KL-regularized formulations (Rafailov et al.,
2023; Azar et al., 2024). Several unifying frameworks (e.g., RAINBOW-PO, QPO) characterize
families of preference objectives and their regularisers. Our reverse-KL game view is compatible
with these (e.g., as a best-response/quantal-response fixed point), nevertheless our focus is on dy-
namics and β-control for stability/bias in non-transitive interactions rather than on offline objective
design. Replacing humans with AI preference labelers (RLAIF/Constitutional AI (Bai et al., 2022))
and self-rewarding/self-play (Zhang et al., 2024; Yuan et al., 2024) schemes have gained traction
for scalability. These pipelines often display length/calibration biases and instability absent explicit
damping. Our analysis suggests that reverse-KL β is the right low-level knob for stabilising such
self-improving loops; Bias–β offers a principled way to enforce budgets aligned with deployment
goals. In sum, we: (i) give a geometric, β-explicit analysis of Nash mirror dynamics; (ii) quan-
tify O(β) equilibrium drift toward µ; and (iii) turn these into β-controllers with local guarantees.
This complements extragradient/APMD accelerations and moves beyond heuristic adaptive-KL by
targeting damping ratios and explicit bias budgets.

5 EXPERIMENTS

We evaluate whether the geometric predictions of Section 2 translate into practical gains with the
adaptive controllers of Section 3. Our goals are to: (i) validate the spectral separation and spiral
geometry on a toy non-transitive game; (ii) demonstrate feasibility in a small LLM setting; and (iii)
outline a quick benchmark run with explicit bias budgets. Unless stated otherwise, error bars denote
mean ±95% CI over seeds or random initializations, and we report run counts.

5.1 BENCHMARKS, MODELS, AND BASELINES

Tasks. Toy RPS (3×3 antisymmetric payoff; biased µ to expose β–bias geometry). LLM micro-
experiment (learned 3×3 payoff from 5 prompts× 3 candidates of unsloth/qwen3-14b; single
run prototype). GSM8K (8-shot CoT; SC=10), MMLU-Pro (0-shot), DROP (0-shot).

Backbones. Primary: Qwen2.5-7B-Instruct. Sanity check: Llama-3.1-8B-Instruct. Candidate
generator (micro): unsloth/qwen3-14b.

Baselines. Nash-MD (fixed β), Nash-MP (extragradient; fixed β), Adaptive-KL (targets
DKL(π∥µ)), APMD-like (small dual noise, diagnostic), and our Hessian–β and Bias–β controllers.

Metrics and diagnostics. Accuracy/normalised accuracy, EM/F1, ECE, length bias LenBias, and
the subset diagnostic DKL(π

∗
β∥π∗

0); for toy games we report exploitability and spectra. Decod-
ing settings and dataset-specific protocols follow Section 5 (or Appendix G), including SC(10) for
GSM8K.

5.2 TOY RPS: GEOMETRY, SPECTRA, AND BIAS CONTROL

Qualitative geometry. Figures 1 visualises the simplex vector fields and trajectories predicted by
Theorems 2.2 and 2.4: trajectories are decaying spirals; increasing β steepens radial decay (damp-
ing) while angular speed (rotation) remains roughly constant.

Spectra and β-sweeps. Figure 3 (left) plots Jacobian spectra vs. β. Real parts track −β; imag-
inary parts remain near constant, confirming λ(Jβ) = −β ± iσk. Figure 3 (right) sweeps β and
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(a) DKL(x
∗
β∥x∗

0) (b) ∥x∗
β − x∗

0∥2 (c) Exploitability

Figure 2: β-sweeps: bias to µ increases with β; exploitability at equilibrium decreases.

(a) Spectra vs. β: ℜλ ≈ −β; ℑλ ≈ const. (b) β-sweeps: DKL(x
∗
β∥x∗

0), ℓ2, exploitability.

Figure 3: Spectral separation and β-bias trade-off in RPS.

reports DKL(x
∗
β∥x∗0), ∥x∗β −x∗0∥2, and exploitability. As predicted by Theorem 2.7, bias to µ grows

monotonically with β, while exploitability drops.

5.3 EXPERIMENTS B: LLMS ON REASONING BENCHMARKS (DESIGN)

We outline an evaluation with small open LLMs (3–8B): (i) generator–solver, (ii) proposer–verifier,
and (iii) adversarial prompt generation. Bias metrics B include length ratio to µ, token-level ECE,
and hallucination proxy (1–accuracy). Controllers: Hessian-based and bias-based with PID option
and β-caps. Baselines: fixed-β MD, Nash-MP, MPO/GRPO-like, APMD-like, and TRL’s Adaptive-
KL. Metrics: exact match, pass@k, ECE, average length, per-token KL to µ, and adversarial win-
rate (exploitability analogue).

Caveat. Due to single-run design, we treat these as feasibility evidence only. Still, results align with
the spectral view: uncalibrated linear decay of β underperforms, while geometry-aware adaptation
(DynKL or Bias–β forms) yields faster or more stable last-iterate behaviour.

5.4 FAILURE MODES AND ROBUSTNESS CHECKS

(i) Proxy mismatch. Adaptive-KL aligns to DKL(π∥µ), which may not correlate with operational
biases (length/calibration), causing high budget-violation fractions despite low exploitability (Ta-
ble 2). (ii) Noisy spectra. Hessian–β can drift if σ̂ is noisy; EMA smoothing and clamping stabilise.
(iii) Noise trade-off. APMD reduces cycling but increases final exploitability at fixed targets.

Qualitative outcomes: (1) Geometry-aware control improves last-iterate stability and reduces steps-
to-tolerance compared to fixed β or linear schedules; (2) Bias–β satisfies the bias budget with smaller
variance than Adaptive-KL which controls DKL(π∥µ) but not operational bias; (3) Hessian–β pro-
vides faster convergence (lower area-under-curve of exploitability) given a fixed budget envelope.
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Table 1: LLM experiments. Takeaway: Dynamic KL methods converge fastest on this instance; our
DynUpExp (Bias–β form) attains comparable quality with competitive steps.

Method steps≤10−3 final nashconv cycle avg quality

Nash–MD (β=0.05) 16.0 0.0 −0.1770 0.5990
Nash–MP (β=0.05) 15.0 0.0 −0.1365 0.5989
MPO-approx 14.0 0.0 −0.1786 0.5992
DynKL–MD 9 4.22×10−13 – 0.59969
DynKL–MP 8 4.22×10−13 – 0.59975
DynUpExp–MD 17 7.91×10−12 −0.17697 0.59898
DynUpExp–MP 16 7.91×10−12 −0.13664 0.59890
DynBeta-linearDown 198 6.77×10−4 – 0.5749

Figure 4: Convergence and budget compliance on GSM8K/MMLU-Pro/DROP: steps to tolerance,
final EM/Acc/F1, and compliance rates vs. controller.

6 LIMITATIONS

Our analysis is local and assumes interior equilibria (A1) and local monotonicity (A2). We do not
claim global convergence; boundary/active-set changes may violate the tangent-space linearisation.
Both controllers rely on two time-scales. Hessian–β uses σ̂ requiring JVPs/finite differences; esti-
mator noise can miscalibrate damping ratio. Bias–β assumes B(π) is reliably estimated and locally
monotone in log β; distribution shift or small probe sets can break this. LLM results are micro-scale
and limited to LoRA fine-tuning. We did not measure energy; we did not evaluate hallucination
beyond simple proxies or subgroup calibration/length fairness. We focus on two-player zero-sum;
multi-player/general-sum can exhibit new phenomena not covered here.

7 CONCLUSION AND FUTURE WORK

We presented a geometric account of reverse–KL Nash mirror dynamics: β provides uniform damp-
ing that leaves rotational geometry unchanged, yielding decaying spirals with rate β and frequencies
σk. We characterised β-NEs as quantal responses around µ, proved an O(β) equilibrium sensitivity,
and introduced two adaptive controllers. Toy and micro-scale results support the theory.

Future work. (i) Stochastic analysis and finite-sample rates with adaptive β; (ii) boundary/global
geometry; (iii) co-adapted (µt, βt); (iv) hierarchical/PID/robust controllers; (v) architecture-aware
β; (vi) multi-player/general-sum extensions; (vii) broader operational budgets; (viii) standardising
β-sweeps, spectra, and budget-tracking diagnostics.
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A PROOFS AND ADDITIONAL DETAILS FOR SECTION 2

A.1 ODE LIMIT AND INTERIOR INVARIANCE

Preliminaries and gradient conventions. Recall the reverse–KL game fβ(x, y) = x⊤Ay −
β DKL(x∥µ) + β DKL(y∥µ) on ∆m × ∆m, µ ∈ relint(∆m). Gradients on the simplex are de-
fined up to multiples of 1; we work on the tangent T = {v : 1⊤v = 0} and implicitly project
onto T, which removes constant shifts (e.g., the +1 in ∇xDKL(x∥µ)). Let ψ(p) =

∑
i pi log pi;

its Fenchel conjugate ψ∗(z) = log
∑
i e
zi yields ∇ψ∗(z) = softmax(z) and the Bregman duality

Dψ(p
∗∥p) = Dψ∗(z∥z∗) with z = ∇ψ(p).

Discrete mirror step and limit. Nash mirror descent/ascent in dual variables is

zt+1
x = ztx+η∇xfβ(xt, yt), zt+1

y = zty−η∇yfβ(xt, yt), xt = softmax(ztx), y
t = softmax(zty).

With ∇xfβ = Ay − β(log x − log µ) and −∇yfβ = −A⊤x − β(log y − logµ) (both understood
on T), rescale time t = kη and let η → 0:

żx = Ay − β(log x− logµ), ży = −A⊤x− β(log y − log µ).

This proves Theorem 2.2.

Interior invariance and normalization. For any z ∈ Rm, softmax(z) ∈ relint(∆m); thus the
ODE in z defines a flow whose pushforward x = softmax(zx), y = softmax(zy) always lies
in relint(∆m)2. In the primal form (Eq. equation 3), the Jacobians Jx = Diag(x) − xx⊤ and
Jy = Diag(y)− yy⊤ satisfy Jx1 = Jy1 = 0, hence d

dt

∑
i xi = 1⊤ẋ = 1⊤Jx[·] = 0 and similarly

for y, so the simplex constraints are preserved.

A.2 WELL-POSEDNESS ON relint(∆m)2

Lemma 1 (Local Lipschitzness and existence/uniqueness). Fix a compact neighbourhood U ⊂
relint(∆m)2 around (x∗β , y

∗
β) with mini xi ≥ α, minj yj ≥ α on U for some α > 0. Then the

primal vector field in equation 3 is locally Lipschitz on U , and the ODE admits a unique solution
for any initial condition in U .

Proof. On U , x 7→ log x and y 7→ log y are Lipschitz with constants α−1 coordinatewise; Jx(x) and
Jy(y) are smooth with operator norms bounded on U . Thus x 7→ Jx[Ay−β(log x−logµ)] and y 7→
Jy[A

⊤x+β(log y− log µ)] are locally Lipschitz, and Picard–Lindelöf yields existence/uniqueness.

Remark A.1 (Local forward completeness). In the dual variables, the field is smooth everywhere;
the softmax map keeps (x, y) interior for all finite times. On a small enough neighborhood of
(x∗β , y

∗
β), solutions remain in U , so the flow is forward complete there.

A.3 QUANTAL-RESPONSE CHARACTERIZATION

[Prop. 2.3, detailed] Stationarity (żx, ży) = (0, 0) is equivalent to

Ay∗β = β(log x∗β − log µ) + cx1, −A⊤x∗β = β(log y∗β − log µ) + cy1

for some scalars cx, cy . Subtracting per-coordinate means eliminates cx, cy , and exponentiation
yields x∗β ∝ µ⊙ exp( 1βAy

∗
β), y

∗
β ∝ µ⊙ exp(− 1

βA
⊤x∗β).

Proof. Directly from Theorem 2.2, stationarity implies the linear relations above. Let Π(v) =
v − 1

m (1⊤v)1 denote mean subtraction. Applying Π to both sides removes cx, cy , so Π(log x∗β −
log µ) = 1

βΠ(Ay∗β), and similarly for y. Exponentiate elementwise and renormalise to the simplex.

13
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A.4 HAMILTONIAN/METRIC STRUCTURE AND SPECTRAL CALCULUS

We linearise the dual field in log-probability coordinates

u := log x− 1
m (1⊤ log x)1, v := log y − 1

m (1⊤ log y)1,

which parametrise the quotient by additive constants and agree with z up to gauge. At an interior
equilibrium (x∗β , y

∗
β), variations satisfy

δx = J∗
x δu, δy = J∗

y δv,

since for the softmax map δx = (Diag(x∗)− x∗x∗⊤) δ(log x) = J∗
x δu.

Lemma 2 (Block Jacobian in (u, v)). The Jacobian of the (u, v)-dynamics at (x∗β , y
∗
β) restricted to

T× T is

Jβ =

[
−βI H
−K −βI

]
, H := AJ∗

y , K := A⊤J∗
x .

Proof. Differentiate the right-hand sides of Theorem 2.2 w.r.t. (u, v) using δ(log x) = δu,
δ(log y) = δv, and δy = J∗

y δv, δx = J∗
xδu. The diagonal blocks yield −βI; the off-diagonal

blocks are Aδy and −A⊤δx.

Lemma 3 (Nonnegativity of HK on T). On T, J∗
x , J

∗
y are symmetric positive definite. Then

HK = AJ∗
yA

⊤J∗
x ∼

(
J∗1/2
x AJ∗1/2

y

)(
J∗1/2
x AJ∗1/2

y

)⊤ ⪰ 0,

and similarly KH ⪰ 0. Thus the eigenvalues of HK and KH are real and nonnegative.

Proof. Similarity with the symmetric product follows by inserting J∗1/2
x J

∗−1/2
x and J∗1/2

y J
∗−1/2
y

and regrouping.

[Thm. 2.4, detailed] Let {σ2
k}
m−1
k=1 be the nonzero eigenvalues of HK on T. Then

spec(Jβ) = {−β ± iσk}m−1
k=1 .

Proof. With J =
[

0 H
−K 0

]
, we have J2 = diag(−HK,−KH). By Lemma 3, HK and KH

are diagonalizable with nonnegative spectra and share the same nonzero eigenvalues. Hence the
eigenvalues of J are ±iσk, and adding −βI shifts the real parts by −β.

Remark A.2 (Metric viewpoint (optional)). Let G = diag(J∗−1
x , J∗−1

y ) on T × T. Then J is
G-skew-adjoint in the sense that J⊤G + GJ = 0 when K = H⊤ (e.g., when A is such that
AJ∗

y = (AJ∗
y ) and K = H⊤); in general the spectral result follows from J2 without assuming

skew-adjointness.

A.5 LYAPUNOV DECAY AND DISCRETE-TIME LAST-ITERATE RATES

Define the Lyapunov function

V (x, y) = DKL(x
∗
β∥x) +DKL(y

∗
β∥y) = Dψ(x

∗
β∥x) +Dψ(y

∗
β∥y).

By Bregman duality,

d

dt
DKL(x

∗
β∥x(t)) = ⟨x(t)− x∗β , żx(t)⟩,

d

dt
DKL(y

∗
β∥y(t)) = ⟨y(t)− y∗β , ży(t)⟩.

Hence, along solutions of Theorem 2.2,

V̇ (t) = ⟨x− x∗β , ∇xfβ(x, y)⟩+ ⟨y − y∗β , −∇yfβ(x, y)⟩
= ⟨(x− x∗β , y − y∗β), F (x, y)− F (x∗β , y∗β)⟩,

since F (x∗β , y
∗
β) = 0 at equilibrium.

14
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Lemma 4 (Local strong monotonicity). Under Assumption A2, there exist constantsmβ , L > 0 and
a neighborhood N of (x∗β , y

∗
β) such that for all (x, y) ∈ N ,

⟨u− u∗, F (u)− F (u∗)⟩ ≥ mβ ∥u− u∗∥2, ∥F (u)− F (u∗)∥ ≤ L∥u− u∗∥,

with u = (x, y), u∗ = (x∗β , y
∗
β) and mβ ≥ c β for some c > 0.

Proof. The reverse–KL terms contribute a symmetric part proportional to β in the Jacobian on T×T.
Continuity of derivatives yields the bounds locally; the proportionality mβ ∝ β follows from the
diagonal −βI in Lemma 2.

[Thm. 2.6, detailed] There exist C0, c0 > 0 and a neighborhoodN such that solutions starting inN
satisfy V (x(t), y(t)) ≤ C0 e

−c0βt. Moreover, for sufficiently small steps η, discrete Nash–MD and
Nash–MP converge linearly to (x∗β , y

∗
β) with factors 1 − Θ(βη) (MD) and 1 − Θ(βη) (MP with a

larger admissible step).

Proof. Strong monotonicity (Lemma 4) implies V̇ ≤ −mβ∥u− u∗∥2. On a compact neighborhood
where xi, yj ∈ [α, 1] and

∑
i xi =

∑
j yj = 1, the Hessian ∇2ψ(p) = Diag(1/pi) is bounded

above and below, so V is locally equivalent to ∥u − u∗∥2: c∥u − u∗∥2 ≤ V ≤ c∥u − u∗∥2. Thus
V̇ ≤ −(mβ/c)V , giving exponential decay with c0 = mβ/c = Θ(β). For the discrete schemes,
standard results for (mirror) gradient methods on strongly monotone and Lipschitz VIs yield linear
factors 1− ηmβ + O(η2L2); choosing η small enough gives the stated rates. Full details appear in
Appendix A.5.1.

A.5.1 Sketch for discrete mirror descent and mirror-prox. Let Φ(u) = Dψ(u
∗∥u) with

u = (x, y). One-step analysis for mirror descent with step η gives Φ(ut+1) ≤ Φ(ut) − η⟨ut+1 −
u∗, F (ut)⟩+ η2L2

2 ∥u
t+1 − ut∥2. Strong monotonicity and Lipschitzness bound the right-hand side

by (1− ηmβ)Φ(u
t) up to O(η2); mirror-prox admits a larger step via an intermediate evaluation of

F . (We omit routine constants; see any standard VI text for details.)

A.6 IMPLICIT-FUNCTION SENSITIVITY AND CONSTANTS

Let g(x, y, β) = (∇xfβ(x, y),−∇yfβ(x, y)) on T×T. At β = 0, suppose (x∗0, y
∗
0) ∈ relint(∆m)2

is an interior NE and J0 := D(x,y)g(x, y, 0)
∣∣
(x∗

0 ,y
∗
0 )

is nonsingular on T×T (Assumption A3). Then

g(x∗β , y
∗
β , β) = 0 defines a C1 curve (x∗β , y

∗
β) for small β by the implicit-function theorem.

Lemma 5 (Directional derivative at β = 0).

d

dβ

∣∣∣
β=0

[
x∗β
y∗β

]
= −J−1

0

[
∂β∇xfβ(x∗0, y∗0)
−∂β∇yfβ(x∗0, y∗0)

]
= −J−1

0

[
∇xDKL(x

∗
0∥µ)

−∇yDKL(y
∗
0∥µ)

]
,

where gradients are taken on T (constants along 1 vanish).

Proof. Differentiate g(x∗β , y
∗
β , β) = 0 at β = 0: J0 [ ddβ (x

∗
β , y

∗
β)]

⊤ + ∂βg(x
∗
0, y

∗
0 , 0) = 0. Since

∂β∇xfβ = −(log x− log µ) and ∂β(−∇yfβ) = −(log y− logµ), projection to T yields the stated
expression, which coincides with ∇DKL(·∥µ) up to a constant shift along 1 that vanishes.

[Thm. 2.7, constants] There exist δ > 0 and C > 0 such that for β ∈ [0, δ], ∥(x∗β −x∗0, y∗β − y∗0)∥ ≤
C β. One admissible constant is C = κM with κ = ∥J−1

0 ∥ and M = sup{∥∂βg(x, y, β)∥ :
(x, y) ∈ N , β ∈ [0, δ]} on a small neighborhood N .

Proof. The implicit-function theorem gives (x∗β , y
∗
β) continuously differentiable near 0 with deriva-

tive given by Lemma 5. Local Lipschitzness of g in (x, y, β) and boundedness of J−1
0 imply

∥(x∗β , y∗β)− (x∗0, y
∗
0)∥ ≤

∫ β
0
∥J−1

0 ∥ ∥∂βg(x∗s, y∗s , s)∥ ds ≤ κM β.
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Bounding ∥∂βg∥. On T, ∂βg(x, y, β) = (−(log x − logµ),−(log y − log µ)). On a compact
neighborhood with xi, yj ≥ α > 0, the map p 7→ log p is 1/α–Lipschitz coordinatewise, hence
∥∂βg∥ ≤ c(α, µ).

Norm equivalences used throughout. On any compact subset of relint(∆m), there exist con-
stants 0 < λ ≤ λ <∞ such that for all v ∈ T,

λ ∥v∥22 ≤ v⊤∇2ψ(p) v ≤ λ ∥v∥22,
with ∇2ψ(p) = Diag(1/p). This yields equivalence between Euclidean norms and the local
information-geometric (entropic) norms and underlies the conversions between ∥u− u∗∥2 and V in
A.5.

Summary. A.1–A.6 establish: (i) the entropic Nash mirror ODE and interior invariance; (ii) local
well-posedness; (iii) logit/quantal equilibria; (iv) a block Hamiltonian linearization with spectra
−β ± iσk; (v) Lyapunov decay and discrete linear rates with constants proportional to β; and (vi)
O(β) equilibrium sensitivity with explicit constants from J−1

0 and Lipschitz moduli.
Corollary A.3 (Parametric Taylor bound (specialization of Thm. 2.7)). Let θ 7→ (πθ, π

′
θ) be a C2

local parametrization of policies near an interior unregularised NE θ∗0 , and define Pθ := P (πθ ≻
π′
θ). Suppose the reduced Hessian HP (θ

∗
0) := ∇2

θPθ
∣∣
θ∗0

is positive definite on the tangent (with
smallest eigenvalue λmin > 0). Then for sufficiently small β,

∥θ∗β − θ∗0∥ ≤
β

λmin

∥∥∇θDKL(πθ∗0∥µ)
∥∥ + O(β2),

where θ∗β is the β-regularised NE in parameter space.

Sketch. Write the stationarity conditions for Pθ − β DKL(πθ∥µ), subtract the unregularised condi-
tion at θ∗0 , and first-order expand∇θPθ around θ∗0 : HP (θ

∗
0)(θ

∗
β−θ∗0) = β∇θDKL(πθ∗0∥µ)+O(β2).

Taking norms and using ∥H−1
P ∥= 1/λmin yields the claim. This is a parametric specialization of

Theorem 2.7; see Appendix A.6 for the general IFT-based constants.

B PROOFS FOR SECTION 3

B.1 PROOF OF PROPOSITION 3.1 (HESSIAN–β: INSTANTANEOUS DAMPING)

Setup and notation. Fix an iteration index t and suppose the controller updates β every K ≥ 1
steps (Assumption C1). During the t-th primal step (or the K-step mini-epoch), β is held constant
at βt; the dual/primal dynamics are those of the open-loop ODE with parameter βt:

ż = G(z;βt), z = (zx, zy), x = softmax(zx), y = softmax(zy).

Let J(z;β) := ∇zG(z;β) be the Jacobian of the dual field. At a neighborhood of the equilibrium
(x∗βt

, y∗βt
), Section 2 shows that

J(z∗;βt) =

[
−βtI H
−K −βtI

]
, spec

(
J(z∗;βt)

)
= {−βt ± iσk}m−1

k=1 , (8)

with H = AJ∗
y , K = A⊤J∗

x , and {σ2
k} the nonzero eigenvalues of HK (Theorem 2.4).

Real parts (instantaneous damping). Because β is constant within the step, the linearization of
the closed-loop system along the primal dynamics coincides with the open-loop linearization at βt,
hence equation 8 applies. Therefore, instantaneously the eigenvalues satisfy ℜλt = −βt, proving
the first claim.

One-step lower bound on βt+1. By the controller update equation 5,

βt+1 = proj[βmin,βmax]

(
(1− ρ)βt + ρ ζ∗ σ̂t

)
.

Assumption C2 gives |σ̂t−σt| ≤ ϵ σt for a representative modal frequency σt. Hence σ̂t ≥ (1−ϵ)σt
and

βt+1 ≥ (1− ρ)βt + ρ ζ∗(1− ϵ)σt
before projection; the projection can only increase this lower bound if it clips up to βmin. This
proves the inequality in Proposition 3.1.
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Uniform contraction rate. If ζ∗(1− ϵ)σ ≥ βmin > 0 for a local lower bound σ of the represen-
tative modal frequency, then βt+1 ≥ βmin holds inductively (assuming the projection box contains
βmin). Since ℜλt = −βt, the local contraction rate of the linearised flow is uniformly bounded
below by βmin at every step, completing the proof.
Remark B.1 (Two time-scales and mid-epoch linearization). Assumption C1 ensures β varies on a
slower time-scale than the primal dynamics. For K > 1, the intra-epoch linearization uses fixed βt;
for K = 1, small ρ produces the same effect. Either way, the instantaneous real parts remain −βt.

B.2 PROOF OF THEOREM 3.3 (BIAS–β: BUDGET TRACKING)

Closed-loop map in log β. Let ut := log βt. The controller equation 6 updates

ut+1 = ut + ηβ δt, δt = clamp
(
B(πt)−B∗, −b, b

)
. (9)

Let u∗ = log β∗ with B(π∗
β∗) = B∗.

Quasi-static approximation and linearization. By two time-scales (C1) and local convergence
(Theorem 2.6), the policy iterate tracks the regularised equilibrium: πt = π∗

βt
+ et with a small

tracking error et that decays geometrically between controller updates. Write the budget map in the
equilibrium proxy:

B̄(u) := B(π∗
eu), B̄′(u∗) = s∗ > 0 (Assumption C3).

Near u∗ and ignoring saturation (|δt| < b), we have

δt = B̄(ut)−B∗ + νt = s∗(ut − u∗) + rt + νt,

where rt collects higher-order terms of the Taylor remainder (bounded by c |ut−u∗|2) and νt collects
measurement/tracking noise from et and mini-batching1. Substituting into equation 9 yields

ut+1 − u∗ = (1− ηβs∗) (ut − u∗) + ηβ(rt + νt), (10)

until clamps activate. When clamps activate (|δt| = b), the increment is deterministically bounded
by |ηβb| and we can treat saturation as an additional bounded disturbance.

Mean stability and geometric rate. Taking expectations and using E νt = 0 and E rt = O(E|ut−
u∗|2) gives

E[ut+1 − u∗] = (1− ηβs∗)E[ut − u∗] +O
(
E|ut − u∗|2

)
.

For 0 < ηβs
∗ < 2, the linear part has contraction factor ϕ := |1 − ηβs∗| < 1. For small enough

neighbourhoods (so that the quadratic term is dominated), this yields the claimed geometric rate
|E[ut − u∗]| ≤ ϕt|u0 − u∗|.

Variance bound under bounded noise. From equation 10, ignoring higher-order rt (or absorbing
it into the disturbance as a bias term), we have an AR(1) recursion with bounded additive noise:

ut+1 − u∗ = ϕ (ut − u∗) + ηβξt, ϕ = 1− ηβs∗, ξt := rt + νt,

where |ξt| ≤ b almost surely when clamps are active, and Var(ξt) ≤ σ2
ξ < ∞ by C4 otherwise.

Standard AR(1) variance calculus gives the stationary bound

sup
t

Var(ut) ≤
η2β σ

2
ξ

1− ϕ2
≤

η2β b
2

1− (1− ηβs∗)2
,

where the second inequality uses the saturation envelope |ξt| ≤ b and thus σ2
ξ ≤ b2. This proves

Theorem 3.3.
Remark B.2 (On the sign and size of s∗). Assumption C3 (strict increase in u = log β) is natural
when B measures drift toward µ (e.g., length ratio, ECE), because Theorem 2.7 implies

dπ∗
β

dβ

∣∣
β=0

points in the ∇DKL(·∥µ) direction; if B correlates positively with this direction, then s∗ > 0. In
parametric models, this matches the first-order Taylor bound derived in the memo (Appendix A.6,
Corollary A.3).

1Under C4, νt is zero-mean with bounded variance; et can be folded into νt due to geometric decay between
controller steps.
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B.3 COMPOSITION: FEASIBILITY FIRST, DAMPING SECOND

We justify the priority composition

βbias
t+1 from equation 6, βhess

t+1 from equation 5, βt+1 = max{βbias
t+1, β

hess
t+1}.

Proposition B.3 (Budget feasibility and damping lower bound). Suppose C1–C4 hold. If the Bias–
β loop is mean-stable at u∗ = log β∗ (Theorem 3.3), then the composed update preserves budget
feasibility in the limit: B(π∗

βt
)→ B∗ and B(πt) ≤ B∗+o(1) almost surely. Moreover, the realised

damping obeys ℜλt = −βt ≥ min{βbias
t , βhess

t }, and thus is at least the Hessian-target when the
bias budget admits it (i.e., when βhess

t ≥ βbias
t ).

Proof. By construction βt+1 ≥ βbias
t+1, so the composed loop cannot pick a β smaller than the

bias-feasible one. Under mean stability of Bias–β (Theorem 3.3), βbias
t → β∗ and therefore

B(π∗
βt
) → B∗; two time-scales ensure B(πt) − B(π∗

βt
) → 0 in mean, yielding the stated feasi-

bility. The damping statement follows from ℜλt = −βt (Proposition 3.1).

Summary. Hessian–β sets the instantaneous damping via a spectral proxy, while Bias–β enforces
a budget in expectation; the max-composition attains the larger of the two β values, ensuring feasi-
bility first, speed second.

C ADDITIONAL METHOD EXPLANATIONS

C.1 DIAGNOSTICS, HYPERPARAMETERS, AND SAFEGUARDS

Diagnostics. (i) β-sweeps: plot DKL(π
∗
β∥π∗

0), ℓ2, exploitability; (ii) Spectral panels: ℜλ vs. β,
ℑλ (test Theorem 2.4); (iii) Budget tracking: B(πt) curves (overshoot and rate).

Hyperparameters. Hessian–β: ζ∗ ∈ {0.6, 0.8, 1.0}, ρ ∈ {0.2, 0.5}, update every K ∈ {1, 2}
steps. Bias–β: ηβ ∈ {0.2, 0.4, 0.6}, b ∈ {0.25, 0.5}, K ∈ {1, 2, 4}. Bounds: choose [βmin, βmax]
from task ranges.

Complexity. Hessian–β: one JVP per controller step (two for centered differences); negligible
vs. LLM forward. Bias–β: one scalar measurement on a small probe set. Memory overhead is
negligible.

Safeguards. Two time-scales (small ρ, ηβ or largerK), projection β ∈ [βmin, βmax] and clamping
for anti-windup, EMA for noisy σ̂, and periodic re-estimation of µ to avoid lock-in.

D ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

D.1 EXPERIMENTS A: TOY GEOMETRY ON RPS

Setup. RPS payoff A (antisymmetric), biased reference µ = (0.36, 0.32, 0.32). We implement
Nash-MD/MP, APMD-like, MPO/GRPO-like, and the two controllers. We render vector fields
(symmetric restriction x = y), simulate trajectories, sweep β, and compute Jacobian spectra nu-
merically at fixed points.

Hyperparameters. Stepsizes η ∈ [0.1, 0.2]; grid step 0.08 for fields; 600 steps for trajectories;
finite difference h = 10−6 for spectra. All seeds and code are released (see Reproducibility).

Findings. (i) Vector fields and trajectories confirm spiral steepening with β; (ii) DKL(x
∗
β∥x∗0)

increases with β (bias amplification); (iii) real parts of spectra scale as −β, while imaginary parts
remain roughly constant; (iv) Nash-MP and adaptive-β controllers converge faster than fixed-β MD
while controlling bias.

Quantitative comparison. Table 2 summarises exploitability and budget-violation fractions
(mean±CI over n=6 random initializations).
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(a) Vector field (β = 0). (b) Vector field (β = 1).

Figure 5: Simplex vector fields: larger β yields steeper spirals (increased damping).

(a) β = 0.2 (b) β = 2.0

Figure 6: Trajectory bundles: faster radial decay for larger β.

D.2 ABLATIONS AND DIAGNOSTICS

We ablate controller gains and β values to stress the speed–bias trade-off.

β-sweep. β ∈ {0, 0.1, 0.3, 1.0, 3.0}. Observed: (i) bias to µ (KL, ℓ2) increases monotonically
with β; (ii) exploitability decreases; (iii) spectral real parts follow −β while imaginary parts are
nearly constant. Expected figures: see Fig. 3 (right) for the toy setting; for LLMs we plan a small
diagnostic panel mirroring these trends.

Bias–β gains. ηβ ∈ {0.2, 0.4, 0.6}, clamp b ∈ {0.25, 0.5}. Observed: larger ηβ improves budget
tracking yet overshoots without clamps; clamps bound transients.

Hessian–β scaling. Target ratios ζ⋆ ∈ {0.6, 0.8, 1.0}, relaxation ρ ≤ 0.5. Observed: increasing
ζ⋆ accelerates convergence but may drift bias if σ̂ is noisy; clamping σ̂ and EMA smoothing mitigate
this. Expected figure: step vs. exploitability for different ζ⋆.
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(a) Real parts vs. β. (b) Imag parts vs. β.

Figure 7: Spectra: real parts track −β (uniform damping); rotation stays near-constant.

Table 2: Toy RPS (n=6 inits). Takeaway: Bias–β satisfies the bias budget with low variance while
keeping exploitability competitive; Adaptive-KL meets a KL target but violates the operational bias
budget frequently.

Method final exploit (mean) std 95% CI bias viol. frac (mean) std 95% CI

Nash–MD (β=0.5) 0.0562 0.0000 [0.0562, 0.0562] 0.138 0.021 [0.121, 0.155]
Nash–MP (β=0.5) 0.0562 0.0000 [0.0562, 0.0562] 0.164 0.041 [0.131, 0.197]
APMD-like (β=0.5, σ=0.02) 0.0606 0.0000 [0.0606, 0.0606] 0.817 0.014 [0.806, 0.829]
Adaptive–KL (KL∗=0.03) 0.0398 0.0429 [0.0054, 0.0742] 0.814 0.059 [0.767, 0.861]
Bias–β (B∗=0.04) 0.0489 0.0005 [0.0485, 0.0493] 0.042 0.008 [0.036, 0.048]

APMD noise. σ ∈ {0, 0.01, 0.02}. Observed: noise breaks cycles but raises final exploitability at
fixed targets. Expected figure: cycle magnitude vs. σ and final exploitability vs. σ.

D.3 REPRODUCIBILITY AND ARTIFACTS

We release anonymised code/notebooks/figures/eval scripts (https://anonymous.4open.science/r/geonash-
263B/). We log harness versions and commit hashes, and fix decoding settings (temperature, top-p,
max tokens). All hyperparameters, data splits, and seeds are documented. Toy/micro plots are
reproducible on CPU/1×GPU in minutes; benchmark inference on 1×A100/H100 80GB completes
within one day with SC(10) on GSM8K.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

The LLMs are used for assisting

• Manuscript structuring and editing
• Mathematical exposition (proof sketches and readability)
• LaTeX engineering

.
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