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Abstract

Zero-shot Human-Object Interaction detection aims to localize humans and objects
in an image and recognize their interaction, even when specific verb-object pairs
are unseen during training. Recent works have shown promising results using
prompt learning with pretrained vision-language models such as CLIP, which
align natural language prompts with visual features in a shared embedding space.
However, existing approaches still fail to handle the visual complexity of inter-
action—including (1) intra-class visual diversity, where instances of the same
verb appear in diverse poses and contexts, and (2) inter-class visual entanglement,
where distinct verbs yield visually similar patterns. To address these challenges,
we propose VDRP, a framework for Visual Diversity and Region-aware Prompt
learning. First, we introduce a visual diversity-aware prompt learning strategy
that injects group-wise visual variance into the context embedding. We further
apply Gaussian perturbation to encourage the prompts to capture diverse visual
variations of a verb. Second, we retrieve region-specific concepts from the human,
object, and union regions. These are used to augment the diversity-aware prompt
embeddings, yielding region-aware prompts that enhance verb-level discrimination.
Experiments on the HICO-DET benchmark demonstrate that our method achieves
state-of-the-art performance under four zero-shot evaluation settings, effectively
addressing both intra-class diversity and inter-class visual entanglement. Code is
available at https://github.com/mlvlab/VDRP.

1 Introduction

Human-Object Interaction (HOI) detection [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] aims to localize
humans and objects in an image and recognize the interactions between them, serving as a cornerstone
for fine-grained scene understanding. Unlike standard HOI detection, which assumes supervision
over all interactions, zero-shot HOI detection must generalize to unseen combinations of verbs and
objects. While recent advances in Vision-Language Models (VLMs) have significantly improved
the zero-shot recognition of object and attribute classes [14, 15, 16, 17, 18, 19, 20], zero-shot HOI
detection remains fundamentally more challenging. As previous works [21, 22] pointed out, the
difficulty stems not only from the compositional novelty of interactions but also from the visual
complexity of interactions—where each verb class exhibits large intra-class visual diversity, and
different verbs frequently produce visually similar patterns.

First, verb classes exhibit substantial intra-class diversity. As shown in Fig. 1-(A), instances of the
verb “holding a baseball glove” may appear in drastically different poses, scales, or scene contexts,
yet must be classified under the same label. To quantify this, we compute a diversity score using
CLS features extracted from a frozen CLIP visual encoder. For verbs, we crop the union region; for
objects, the object bounding box is used. The average pairwise cosine similarity within each class is
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Figure 1: Analysis of the visual complexity in HOI detection. (A) Verb classes exhibit significant
intra-class visual diversity, where instances of the same verb (e.g., “holding a baseball glove") appear
under varied poses, viewpoints, and scene contexts. To quantify this, we crop the union region and
extract the CLIP visual CLS feature. A diversity score is then computed as the expected cosine
dissimilarity E[1 − cos(·)] across samples of the same class. Verb classes exhibit higher diversity
(0.364 ± 0.060) than object classes (0.274 ± 0.048), highlighting the difficulty of representing
verbs with a single static embedding. (B) Verb classification also suffers from inter-class visual
entanglement, where semantically distinct verbs (e.g., “eating”, “licking”, “sitting at”) yield visually
similar patterns. To visualize this, we randomly select five verb classes, extract their union-region
CLS features, and project them to 2D using t-SNE. The resulting clusters show significant overlap,
highlighting the need for region-aware prompts to improve verb separability in HOI detection.

measured, and the diversity score is defined as the expectation of 1 − cos(·). This analysis shows
that verbs have significantly higher intra-class diversity (0.364 ± 0.060) compared to objects (0.274 ±
0.048), indicating that a single prompt embedding is likely insufficient to capture such variation.

Second, interactions often exhibit inter-class visual entanglement, where different verbs produce
highly similar visual patterns. As illustrated in Fig. 1-(B), semantically distinct verbs such as “eating”,
“licking”, and “sitting at” frequently share similar human-object layouts. In such cases, accurate
classification depends on regional differences—often localized in the human or object region—which
global or union-level features may fail to capture. To analyze this phenomenon, we extract union-
region CLS features from a frozen CLIP visual encoder across five verbs and project them into a 2D
space using t-SNE. The resulting convex hulls show substantial overlap not only at the sample level
but also across verb prototypes, revealing poor inter-class separability. This entanglement poses a
major challenge for zero-shot HOI detection, where explicit class supervision is unavailable.

Recently, studies on zero-shot HOI detection have explored prompting strategies that leverage
pretrained CLIP models [23, 24, 25, 26, 27]. These methods map HOI triplets to textual descriptions
and embed them in a shared vision-language space. While effective for semantic alignment, most
approaches assume a single static prompt per verb [23, 10, 26], making them inadequate for modeling
the visual diversity within each class. Some incorporate spatial cues in the visual branch [24],
but leave the text prompts agnostic to region-specific semantics. Others rely on LLM-generated
descriptions [25], focusing on semantic differences across verbs but overlooking intra-class variation.

To overcome these limitations, we propose a new framework called VDRP (Visual Diversity and
Region-aware Prompt learning) for zero-shot HOI detection. Our method enhances prompt represen-
tations in two complementary ways. First, we inject group-wise visual variance into the learnable
context embeddings and apply Gaussian perturbation, allowing the prompts to reflect intra-class
appearance diversity and better adapt to varied visual realizations during training. Second, we retrieve
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region-specific concepts from the human, object, and union regions and use them to augment the
prompt embeddings, producing region-aware prompts that improve verb discriminability.

Our contributions are summarized as follows:

• We propose a visual diversity-aware prompt learning that models intra-class variation by in-
jecting group-wise variance into the context embedding and applying Gaussian perturbation,
enabling the prompts to generalize across diverse appearances of the same verb.

• We introduce a region-aware prompt augmentation that leverages region-specific concept
retrieval from human, object, and union regions to enrich the prompts, enhancing discrim-
inability among visually similar verbs.

• We integrate the two modules into a unified framework, VDRP, and demonstrate its effec-
tiveness on the HICO-DET benchmark, achieving new state-of-the-art performance under
multiple zero-shot evaluation settings.

2 Related works

HOI detection. Human-Object Interaction (HOI) detection typically involves three sub-tasks:
object detection, human-object pairing, and interaction classification. Thanks to advances in large-
scale benchmarks [28, 29, 4, 21] and transformer-based architectures [30, 9, 31], a wide range of
approaches have been proposed. Broadly, HOI methods fall into one-stage [23, 27, 4, 9, 11, 7]
and two-stage [10, 26, 24, 25, 5, 6] paradigms. One-stage methods jointly predict object locations
and interactions, often using set prediction frameworks such as DETR [30]. In contrast, two-stage
methods decouple the task into object detection and interaction classification: a pre-trained detector
localizes humans and objects, and a dedicated module predicts the verb label for each human-object
pair. The division of the HOI task in two-stage approaches allows efficient training [5, 6], and shows
promising results. Our work falls in the two-stage paradigm.
Zero-shot HOI detection. Zero-shot HOI detection aims to identify HOI triplets unseen during
training, a task challenged by the long-tail distribution of compositional datasets. With the rise of
Vision-Language Models (VLMs) [15, 32, 33, 14, 34] pretrained on large-scale image-text pairs,
many works leverage their generalization for HOI. Several methods [10, 23, 27, 35] align HOI models
with CLIP’s pretrained representations to enable effective transfer. Recent approaches [24, 26, 25]
adopt prompt learning to adapt CLIP with few learnable parameters for fine-grained interaction
understanding. However, most rely on a single static prompt per verb [10, 23, 26], limiting their
ability to capture intra-class visual diversity. Later works add spatial cues or LLM-generated
descriptions [24, 25], but still lack region-level adaptation or concept-level grounding. We address
these gaps with visual diversity-aware prompt learning and region-aware prompt augmentation.
Prompt learning. Prompt learning is a widely used strategy for adapting vision-language models
(VLMs) like CLIP to downstream tasks [36, 37, 38, 39, 40, 41, 42]. Early works such as CoOp [18]
and CoCoOp [19] optimize learnable or image-conditioned context vectors, while MaPLe [38] jointly
tunes visual and textual prompts to improve cross-modal alignment. In zero-shot HOI detection,
CMMP [24] and EZ-HOI [25] adopt multi-modal prompt learning, but do not account for visual
diversity of verbs and use the same verb prompt across regions. This limits their ability to adapt to
diverse verb appearances and handle visually similar interactions. Meanwhile, distribution-based
prompt learning [37, 36, 40, 43] has shown that leveraging feature variance improves generalization.
Inspired by this, we propose a method that injects group-wise visual variance—via modulation and
perturbation—into prompt embeddings, and augments them with region-specific concepts, enabling
effective handling of visual diversity and improving verb discriminability in zero-shot HOI detection.

3 Methods

In this section, we present our framework, VDRP, designed to address two key challenges in zero-shot
Human-Object Interaction (HOI) detection: (1) intra-class visual diversity, where instances of the
same verb exhibit a wide range of visual appearances, and (2) inter-class visual entanglement, where
semantically distinct verbs appear visually similar. To tackle these challenges, VDRP introduces two
complementary components. The first, visual diversity-aware prompt learning, addresses intra-class
diversity by injecting group-wise visual variance into the context embeddings and applying variance-
guided perturbation, resulting in visual diversity-aware prompts that better capture verb-specific
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Figure 2: Overview of our VDRP framework. (A) We adopt a two-stage HOI detection pipeline
with a frozen detector and a CLIP image encoder to extract human (xh), object (xo), and union (xũ)
features. A spatial head further refines the union feature into xu for region-aware prompts via spatial
encoding. (B) Visual diversity-aware prompts are generated by injecting group-wise variance and
perturbation to model intra-class variation. (C) Retrieved region concepts are then fused with these
prompts to produce final region-aware prompts Th, To, and Tu used for verb classification.

appearance variations. The second, region-aware prompt augmentation, enhances these prompts using
region-specific concepts retrieved from the human, object, and union regions, yielding region prompts
that improve inter-class discriminability. We begin by outlining the overall pipeline (Section 3.1),
followed by detailed descriptions of the two modules in Sections 3.2 and 3.3.

3.1 Overall pipeline

As illustrated in Fig. 2-(A), our method follows a two-stage HOI detection framework [10, 24, 5, 6],
consisting of (1) human-object detection and (2) interaction classification. In the first stage, a frozen
object detector (DETR [30]) is applied to the input image I to identify object instances. Each detection
yields a triplet (sn, ln, bn), representing the confidence score, object class embedding, and bounding
box of the n-th instance. In the second stage, we encode each instance into a prior embedding
p = Projdown([s; l; b]) ∈ Rddown , which serves as guidance for task adaptation. Using this prior, we
extract patch embeddings from a frozen CLIP encoder augmented with lightweight adapter layers
inserted into multiple transformer blocks. Each adapter applies a bottleneck structure that projects
the patch features, attends to the prior p, and reconstructs the output:

X ′
i = CrossAttn(Projdown(Xi),p,p),

Xi+1 = Xi + Projup(X
′
i),

(1)

where Xi ∈ RN×dup is the image feature map at layer i. The final image feature map X ∈ RN×d is
obtained from the last transformer layer with projection. Given the image features and the boxes for
the human (bh), object (bo), and union region (bu), we extract region features via RoIAlign [44]:

xh = RoIAlign(X, bh), xo = RoIAlign(X, bo), xũ = RoIAlign(X, bu), (2)

where xh,xo,xũ ∈ Rd denote the region features for the human, object, and union regions, respec-
tively. To enhance the union-region representation with spatial priors, we apply a spatial head that
fuses xũ with human and object features, as well as their bounding boxes:

xu = SpatialHead(xũ; xh,xo; bh, bo) ∈ Rd. (3)

More details on SpatialHead(·) are provided in the supplementary material. Next, each region
feature—xh, xo, and xu—is matched against a set of verb prompts.
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Figure 3: Detailed architecture of our methods. (A) To model intra-class variation, we compute
verb-wise visual variance σ2

v from union-region CLS features, average them over similar verbs to
obtain group-wise variance σ̄2

v , and inject it into the shared context embedding E via an MLP. This is
combined with the verb prompt P̄v and encoded by the CLIP text encoder to produce tv, which is
further perturbed using Gaussian noise scaled by visual variance. (B) For inter-class discriminability,
we retrieve region concepts from features x(·) using a Sparsemax over a concept pool Cv

(·), and add
the result to t̃v to obtain the final region-aware prompt t̂v(·).

As illustrated in Fig.2-(B) and (C), Each prompt t̂v(·) is constructed in two stages. Let T(·) =

[t̂1(·), . . . , t̂
V
(·)] ∈ Rd×V denote the region-aware prompts for (·) ∈ {h, o, u}. We first generate a

visual diversity-aware prompt t̃v via group-wise variance injection and Gaussian perturbation, then
augment it with region-specific concepts retrieved based on region feature x(·). This two-step design
allows the final region-aware prompts to reflect both the visual diversity of verbs and localized context.
See Sections 3.2 and 3.3 for details. The logits for each region prompts is computed as:

Logith = x⊤
h Th, Logito = x⊤

o To, Logitu = x⊤
u Tu, (4)

where Logit(·) ∈ RV . Finally, the overall HOI classification logit is obtained by averaging region-wise
logits:

Logithoi =
1

3
(Logith + Logito + Logitu) . (5)

We train the model using focal loss [45] for multi-label verb classification.

3.2 Visual diversity-aware prompt learning

To address intra-class visual diversity in HOI detection, we propose a visual diversity-aware prompt
learning method that incorporates visual variance into both the context modulation and prompt
perturbation processes. Static prompts—optimized as single points—struggle to represent the wide
variation of instances within the same verb class. Inspired by recent findings [40, 37, 36] showing
that variance-aware representations improve generalization, we explicitly encode class-level visual
variance to guide prompt adaptation and inject noise that reflects the extent of such diversity.

Group-wise variance estimation. As illustrated in Fig. 3-(A), we begin by extracting union-region
features from the training set using a frozen CLIP image encoder. Specifically, we crop the union
box of each human-object pair and extract the CLS token. For each verb v, let z(j)v denote the CLS
feature of the j-th instance. We compute the mean µv and variance σ2

v over all Nv samples. To
obtain a stable estimate for rare or unseen verbs, we construct a group of verbs G(v) by selecting the
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similar verbs based on cosine similarity between CLIP text embeddings. This grouping allows each
verb to inherit variance statistics from its semantically similar neighbors. The group-wise variance is
then computed as:

σ̄2
v =

1

|G(v)|
∑

v′∈G(v)

σ2
v′ . (6)

This group-wise variance serves as an inductive prior capturing the expected diversity of verb v.

Visual diversity-aware prompts. Then, we transform the group-wise variance into a modulation
vector using a lightweight MLP to perform variance injection as follows:

dv = MLP(σ̄2
v) ∈ Rd. (7)

This is added to the shared context embedding E ∈ RNctx×d to produce a verb-specific context:

Êv = E+ dv α, (8)

where α is a small scaling factor for stability. Given a verb prompt sentence Pv (e.g., “A photo of
a person is [v]+ing an object.”), we tokenize it into token embedding P̄v and concatenate it
with the modulated context to form the final input for CLIP text encoder T (·):

tv = T ([Êv; P̄v]) ∈ Rd. (9)

To further reflect visual variability, we perturb each prompt embedding using Gaussian noise scaled
by the group-wise standard deviation. We normalize σ̄v across dimensions and modulate it to match
the standard deviation of tv , producing σ̃v . Noise is then sampled and applied element-wise:

t̃v = tv + (ϵ⊙ σ̃v)β, ϵ ∼ N (0, I), (10)

where β is a small scaling factor controlling the perturbation strength. This results in prompt
embeddings that encode both the central semantics of the verb and its expected visual diversity.
Finally, we collect all perturbed prompts across the V verbs to form the diversity-aware prompts
T̃ = [t̃1, . . . , t̃V ] ∈ Rd×V , which serves as the base for region-aware prompts.

3.3 Region-aware prompt augmentation

To address inter-class visual entanglement—where semantically distinct verbs exhibit similar visual
patterns—we augment prompts using region-specific concepts from the human, object, and union
regions. While diversity-aware prompts reflect class-level variation, they cannot capture the region
concepts needed to distinguish visually similar verbs. To bridge this gap, we introduce retrieval-based
region-aware prompt augmentation, which allows each prompt to specialize based on regions.

Region concept generation. To enrich prompt embeddings with localized semantics, we follow [46,
47, 20] and query LLMs (e.g., LLaMA-7B [48] and ChatGPT-4 [49]) to generate K region-level
concepts for each verb v and region type R ∈ {human, object, union}. Each prompt follows
the format: “For the verb [Pv], giveK short visual concepts for the [R] region.”
The resulting concepts are encoded using the CLIP text encoder T (·) to form the concept pool:

Cv
(·) =

{
cv,1(·) , . . . , c

v,K
(·)

}
, cv,k(·) ∈ Rd,

where (·) ∈ {h, o, u} denotes the region. For more detailed examples, please refer to Fig.4-(A).

Region-aware prompts. As shown in Fig. 3-(B), given a region feature x(·) ∈ Rd and its corre-
sponding concept pool Cv

(·), we compute cosine similarity between the feature and each concept:

sv,k(·) =
⟨x(·), c

v,k
(·) ⟩

∥x(·)∥ ∥cv,k(·) ∥
. (11)

To highlight the most informative concepts while ignoring irrelevant ones, we apply Sparsemax [50]
to the similarity scores, which assigns exact zero weights to uninformative entries and retains only the
most relevant concepts. Using the resulting scalar weight W v,k

(·) , we compute a region concept vector:

c̄v(·) =

K∑
k=1

cv,k(·) W v,k
(·) ∈ Rd. (12)
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Table 1: Comparison under NF and RF settings. We report harmonic mean (HM) between Unseen
and Seen. Best in bold, second best underlined.

Method Backbone NF-UC RF-UC

HM Full Unseen Seen HM Full Unseen Seen

GEN-VLKT [23] Resnet50+ViT-B 24.17 23.71 25.05 23.38 26.08 30.56 21.36 32.91
EoID [52] Resnet50 26.71 26.69 26.76 26.66 26.11 29.52 22.04 31.39
HOICLIP [27] Resnet50+ViT-B 28.70 27.75 29.36 28.10 26.55 32.99 25.83 28.47
ADA-CM [10] Resnet50+ViT-B 31.76 31.39 32.41 31.13 30.48 33.01 27.63 34.35
CLIP4HOI [26] Resnet50+ViT-B 29.54 28.90 31.44 28.26 31.23 34.08 27.88 35.48
CMMP [24] Resnet50+ViT-B 30.82 30.18 32.09 29.71 31.10 32.18 29.45 32.87
EZ-HOI [25] Resnet50+ViT-B 31.76 31.17 33.66 30.55 31.18 33.13 29.02 34.15
Ours Resnet50+ViT-B 33.85 32.57 36.45 31.60 32.77 33.78 31.29 34.41

This concept vector is then used to augment the diversity-aware prompt tv, producing the final
region-aware prompt as follows:

t̂v(·) = tv + c̄v(·) γ ∈ Rd, (13)

where γ is a scalar controlling the degree of augmentation. The final set of region-aware prompts
T(·) = [t̂1(·), . . . , t̂

V
(·)] is used to compute classification logits, as described in Eq. (4). This improves

discriminability of the model by aligning each prompt with region-specific semantics.

4 Experiments

4.1 Experimental settings

Datasets. We conduct experiments on the HICO-DET benchmark for HOI detection. HICO-DET
contains 80 object categories from the COCO dataset [51] and 117 actions, forming 600 HOI classes.
It includes 47,776 images, with 38,118 for training and 9,658 for testing.

Zero-shot setting on HICO-DET. Following prior works [3, 2, 1, 23], we evaluate under four
settings: Non-rare First Unseen Composition (NF-UC), Rare First (RF-UC), Unseen Object (UO),
and Unseen Verb (UV). NF-UC and RF-UC define 120 unseen and 480 seen HOI triplets from 600
total, with unseen compositions drawn from head and tail categories, respectively. UO uses 68 object
classes to construct 500 seen and 100 unseen triplets. UV withholds 20 out of 117 verb classes,
yielding 516 seen and 84 unseen triplets.

Evaluation metric. Mean Average Precision (mAP) is used to evaluate the model for HOI detection.
Specifically, a sample is regarded as a true positive if two conditions are met: 1) the IoU of both
human and object bounding boxes is larger than 0.5, and 2) the HOI triplet prediction is correct.

Implementation Details. We follow the standard training setup used in prior zero-shot two-stage HOI
detection methods [24, 10, 25], where DETR is first fine-tuned on instance-level annotations from
the HICO-DET training split. Unless otherwise noted, we use CLIP ViT-B/16 as the visual backbone.
Additional implementation and training details are provided in the supplementary material.

4.2 Zero-shot HOI detection

We evaluate our method on four zero-shot HOI detection settings in HICO-DET: NF-UC, RF-UC, UO,
and UV. Table. 1, 2, and 3 report mAP (Full / Unseen / Seen), harmonic mean (HM), and trainable
parameters (#TP), comparing with state-of-the-art baselines. In NF-UC and RF-UC (Table. 1), our
method achieves the best scores across all metrics. In NF-UC, we obtain 36.45 (Unseen) and 33.85
(HM), surpassing CLIP4HOI by +5.01 (Unseen) and +4.31 (HM). In RF-UC, we outperform EZ-HOI
by +2.27 (Unseen) and +1.59 (HM). Our method uses only 4.50M trainable parameters, much fewer
than EZ-HOI (6.85M) and CLIP4HOI (56.7M). In UO (Table. 2), we achieve 36.13 (Unseen) and
34.41 (HM), outperforming CMMP and EZ-HOI by +1.97 and +2.27 HM, respectively. In UV
(Table. 3), we again achieve the best scores: 26.69 (Unseen), 32.72 (Full), and 29.80 (HM), with
a +1.59 gain on Unseen verbs over EZ-HOI. These results confirm the effectiveness of our visual
diversity-aware prompts and region-aware prompts in the zero-shot HOI detection.
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Table 2: Comparison under the UO (Unseen Object) setting. We report harmonic mean (HM) between
Unseen and Seen. #TP: trainable parameters. Best in bold, second best underlined.

Method Setting Backbone #TP HM Full Unseen Seen

FCL [1] UO Resnet50 – 17.65 19.87 15.54 20.74
ATL [2] UO Resnet50 – 17.79 20.47 15.11 21.54
GEN-VLKT [23] UO Resnet50 42.05M 20.11 25.63 15.01 28.92
HOICLIP [27] UO Resnet50+ViT-B 66.18M 20.32 28.53 16.30 30.99
CLIP4HOI [26] UO Resnet50+ViT-B 56.7M 31.98 32.58 31.79 32.73
CMMP [24] UO Resnet50+ViT-B 2.30M 32.44 31.59 33.76 31.15
EZ-HOI [25] UO Resnet50+ViT-B 6.85M 32.14 32.27 33.28 32.06
Ours UO Resnet50+ViT-B 4.50M 34.41 33.39 36.13 32.84

Table 3: Comparison under the UV (Unseen Verb) setting. We report harmonic mean (HM) between
Unseen and Seen. #TP: trainable parameters. Best in bold, second best underlined.

Method Setting Backbone #TP HM Full Unseen Seen

GEN-VLKT [23] UV Resnet50+ViT-B 42.05M 24.35 28.74 20.96 30.23
EoID [52] UV Resnet50 – 26.29 29.61 22.71 30.73
HOICLIP [27] UV Resnet50+ViT-B 66.18M 27.72 31.09 24.30 32.19
CLIP4HOI [26] UV Resnet50+ViT-B 56.7M 28.35 30.42 26.02 31.14
CMMP [24] UV Resnet50+ViT-B 2.30M 29.23 31.84 26.23 32.75
EZ-HOI [25] UV Resnet50+ViT-B 6.85M 29.09 32.32 25.10 33.49
Ours UV Resnet50+ViT-B 4.50M 29.80 32.73 26.69 33.72

Table 4: Ablation results under four zero-shot settings. VDP: visual diversity-aware prompts,
RAP: region-aware prompts, VDRP: full model with both.

NF-UC Full Unseen Seen

BASE 28.99 31.68 28.32
+ VDP 30.17 32.19 29.66
+ RAP 30.43 34.93 29.30
+ VDRP 32.57 36.45 31.60

RF-UC Full Unseen Seen

BASE 29.80 25.64 30.84
+ VDP 31.95 29.16 32.65
+ RAP 32.43 26.46 33.93
+ VDRP 33.78 31.29 34.41

UO Full Unseen Seen

BASE 28.92 28.60 30.50
+ VDP 31.49 33.29 31.13
+ RAP 31.85 33.90 31.44
+ VDRP 33.39 36.13 32.84

UV Full Unseen Seen

BASE 29.72 22.41 30.91
+ VDP 31.53 23.78 32.79
+ RAP 31.28 24.53 32.38
+ VDRP 32.73 26.69 33.72

4.3 Ablation studies

Component analysis. To assess each component’s contribution, we conduct an ablation study across
four zero-shot HOI settings (Table 4). Starting from a static prompt baseline, we add two modules: (1)
VDP models intra-class variation using group-wise visual variance and Gaussian noise, and (2) RAP
augments prompt embeddings with retrieved region-specific concepts. VDP improves generalization
by capturing the variance of diverse verb appearances, while RAP enhances discrimination among
visually similar verbs. The full model VDRP achieves the best performance across all settings,
demonstrating the complementary benefits of both modules.

Group-wise modeling in VDP. To evaluate the impact of group-wise visual variance, we compare
different configurations in the VDP module based on the number of verbs per group: (1) a single
global variance shared across all verbs (Global), (2) group-wise variance using clusters of 3 verbs
each (Group_3), and (3) clusters of 5 verbs each (Group_5). As shown in Table 5, we observe that
group-wise variance modeling generally improves over a global estimate, but performance varies
depending on the group size.

Impact of injection scale. We evaluate variance injection scale α ∈ {0.01, 0.02, 0.10} to analyze
its influence on the delta scaling in Eq. 8. Results across all settings are summarized in Table 6. We
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Table 5: Impact of group configuration in visual diversity-aware prompts (VDP). Best results in bold.

Method NF-UC RF-UC UO UV
Full Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen

Global 31.92 35.92 30.92 33.94 32.27 34.36 32.30 34.23 31.91 32.55 26.07 33.60
Group_3 32.43 35.89 31.57 33.15 29.57 34.04 32.70 34.76 32.29 32.75 26.25 33.81
Group_5 32.57 36.45 31.60 33.78 31.29 34.41 33.39 36.13 32.84 32.73 26.69 33.72

Table 6: Impact of injection scale α on performance across zero-shot settings. Best results in bold.

α
NF-UC RF-UC UO UV

Full Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen

0.01 32.03 35.29 31.22 33.51 30.58 34.24 32.81 35.52 32.27 32.48 25.97 33.54
0.10 32.02 35.80 31.07 33.16 29.86 33.98 32.81 35.11 32.35 32.54 24.73 33.81
0.02 32.57 36.45 31.60 33.78 31.29 34.41 33.39 36.13 32.84 32.73 26.69 33.72

Table 7: Effect of Gaussian perturbation across four zero-shot settings. Best results are in bold.

Method NF-UC RF-UC

HM Full Unseen Seen HM Full Unseen Seen

W/O perturbation 33.57 32.49 35.68 31.69 31.76 33.12 29.83 33.95
W/ perturbation 33.85 32.57 36.45 31.60 32.77 33.78 31.29 34.41

Method UO UV

HM Full Unseen Seen HM Full Unseen Seen

W/O perturbation 33.67 33.09 34.59 32.79 29.49 32.72 26.16 33.79
W/ perturbation 34.41 33.39 36.13 32.84 29.80 32.73 26.69 33.72

observe that α = 0.02 consistently achieves the best trade-off between unseen and seen performance.
This value was chosen to match the initialization scale of CLIP’s context embeddings, ensuring
stability as excessively large α causes over-perturbed context tokens and unstable training. Given
that context tokens are highly sensitive to initialization, keeping the scale aligned promotes stable
optimization while maintaining sufficient diversity.

Effect of Gaussian perturbation. We study the effect of Gaussian perturbation on prompt
embeddings by varying the scale β ∈ {0, 0.1}. Table 7 summarizes the results across all zero-shot
settings. Perturbation improves generalization in most unseen cases, confirming that stochastic
sampling helps the model capture diverse visual realizations of each verb.

Retrieval strategy. We compare three retrieval methods for region concepts: Softmax, Top-3, and
Sparsemax (Table 8). Overall, Sparsemax performs most consistently, benefiting from its ability to
suppress irrelevant concepts and emphasize informative ones.

Impact of augmentation scaling factor. We evaluate γ ∈ {0.2, 0.5, 1.0} in Eq. 13 to study how
strongly region-derived cues contribute to prompt adaptation. Results are reported in Table 9. A
moderate scaling of γ = 0.2 provides the best overall balance, whereas excessive cue weighting
(γ = 1.0) slightly degrades performance across multiple settings, likely due to noisy region concepts.

4.4 Qualitative results

Fig. 4 shows qualitative examples of region-specific concept generation and retrieval. Given a
verb prompt (e.g., “licking an object”), our method uses LLMs (e.g., LLaMA-7B [48] and GPT-
4 [49]) to generate K region concepts, capturing fine-grained concepts such as facial expression or
visual patterns. While LLaMA-7B provides diverse concept descriptions, we observed noise and
redundancy in object-related concepts; therefore, GPT-4 was additionally used (see Supplementary
for details). As illustrated, similar verbs like “licking” and “eating” are associated with distinct
region-specific signals—enabling the model to better distinguish subtle visual differences, enhancing
the discriminability.
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Table 8: Comparison of retrieval strategies for region-aware prompts (RAP). Best results in bold.

Method NF-UC RF-UC UO UV
Full Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen

Softmax(·) 32.01 35.93 31.03 33.32 30.37 34.06 32.91 35.83 32.32 32.57 25.45 33.74
Top-3 31.97 35.85 31.00 33.35 30.80 33.99 32.94 33.57 32.41 32.47 25.85 33.55
Sparsemax(·) 32.57 36.45 31.60 33.78 31.29 34.41 33.39 36.13 32.84 32.73 26.69 33.72

Table 9: Effect of augmentation scale γ on performance across all settings. Best results in bold.

γ
NF-UC RF-UC UO UV

Full Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen

0.5 32.14 35.92 31.19 33.52 30.73 34.21 33.08 35.17 32.66 32.72 27.06 33.64
1.0 31.85 35.15 31.02 33.48 30.67 34.18 32.60 34.74 32.17 32.54 25.92 33.62
0.2 32.57 36.45 31.60 33.78 31.29 34.41 33.39 36.13 32.84 32.73 26.69 33.72

Human

Object

Union

LLM

“For the “A photo of person is licking an object”,

 give 𝐾 short visual concepts for the [human/object/union] region”

'Tongue is extended and curled.’

'Cheeks are slightly puffed out.'

'Lips are parted and relaxed.'

𝐜h
1

𝐜h
2

𝐜h
𝐾

⋮

'Object has a smooth, glossy surface.'

'Object's surface has a distinct flavor or scent.'

'Object's shape or contour is altered by the licking.'

𝐜o
1

𝐜o
2

𝐜o
𝐾

⋮

𝐜u
1

𝐜u
2

𝐜u
𝐾

⋮

'The object is being touched with the tongue for tasting.'

'A person leans in to lick the surface of a food item.'

'The object is partially melted as it is licked by the person.'

(A) Generated region concepts (B) Qualitative results of concepts retrieval

Licking an object.

- Person is directing their tongue toward the object. 

- Lower jaw is slightly relaxed. ⋮

- Person's lips or mouth are close to the object.

- Traces of saliva or spit are visible. ⋮

- A close-up shows a person tasting the object with 

the tip of their tongue. ⋮

- Person is bringing food to their mouth.

- Cheeks are puffed outward with each bite⋮

- Person's mouth is near or on the object. 

- Food is visibly being consumed from the object.⋮

- The person's eyes are closed in concentration as they eat.

- The person's nose is wrinkled in pleasure as they 

savor the object.

⋮

Eating an object.

Retrieved concepts

Retrieved concepts

: Human region concepts

: Object region concepts

: Union region concepts

Figure 4: Qualitative examples of region concept generation and retrieval. (A) Given a verb
prompt and region type, an LLM generates K region concepts per verb. (B) Retrieved concepts
for “Licking” and “Eating” highlight subtle region concepts that help disambiguate visually similar
interactions. Concepts are color-coded by region: blue (human), red (object), yellow (union).

5 Conclusion

We present VDRP, a prompt learning framework for zero-shot HOI detection that addresses the
visual complexity of interaction, including intra-class diversity and inter-class entanglement among
verb classes. To this end, we propose a visual diversity-aware prompt learning that injects group-
wise visual variance into the prompt context and applies Gaussian perturbation, enabling prompt
embeddings to better reflect diverse visual appearances. We also introduce region-aware prompt
augmentation, which augments diversity-aware prompts with region-specific concepts from the
human, object, and union regions to improve verb discriminability. Extensive experiments on HICO-
DET show that our method outperforms prior work across four zero-shot settings while maintaining
high parameter efficiency. These results underscore the value of combining distributional modeling
and region-level augmentation for generalizable zero-shot HOI detection.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not include any theoretical results or formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details and training configurations in the supple-
mentary material to ensure reproducibility of all main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our code and data upon publication, along with instructions in
the supplementary material to reproduce all main results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training and evaluation protocols in Section 4 and provide
additional details on implementation and hyperparameters in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our evaluation follows standard zero-shot HOI detection benchmarks with
deterministic protocols, so statistical significance is not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report training time and GPU specifications in the supplementary material
to support reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research adheres to the NeurIPS Code of Ethics, including
responsible data usage and transparency in methodology and reporting.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss societal benefits and risks in the conclusion under “Societal
Impact.”

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve models or data with high risk of misuse, so this
question is not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets (HICO-DET) and pretrained models (e.g.,
CLIP, DETR) that are properly cited in the paper, and their licenses and usage terms are
fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We properly credit and cite all existing datasets, models (e.g., CLIP, HICO-
DET), and related assets used in our work, and follow their license terms as described in the
paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve human subjects and therefore does not require IRB
approval.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use a large language model to generate region-level concepts (e.g., LLaMA-
7B) as part of our retrieval-based prompt augmentation module.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Implementation details

We conduct all experiments using PyTorch with mixed-precision training. For the base model using
CLIP ViT-B/16, we train on two NVIDIA GeForce RTX 3090 GPUs with a batch size of 8 for 12
epochs. We use the AdamW [53] optimizer with an initial learning rate of 1 × 10−3, decayed to
1× 10−4 using a cosine scheduler and a weight decay of 8. We report the best results after applying
weight decay. The framework adopts CLIP ViT-B/16 as the visual encoder, where the adapter applies
a bottleneck transformation from dup = 768 to ddown = 64, followed by projection into a shared
embedding space of dimension d = 512. Human-object detection is performed by a frozen DETR
model with Resnet50 [54], and detections with confidence below the threshold θ = 0.2 are discarded.
The context embedding consists of Nctx = 24 learnable tokens, each initialized from a Gaussian
distribution with standard deviation 0.02. To incorporate group-wise variance, we inject a modulation
vector (scaled by α = 0.02) into the context embedding and apply Gaussian perturbation to the
resulting prompt embedding with a noise scale β = 0.1. For region-aware prompt augmentation, we
generate K = 10 region concepts per verb and region type (human, object, union) using LLaMA-
7B [48] and ChatGPT-4 [49]. These are encoded by the frozen CLIP text encoder and aggregated
via Sparsemax [50] to form a concept vector, which is added to the prompt embedding with scaling
factor γ = 0.2. We additionally conduct experiments with a scaled-up version using CLIP ViT-L/14
as the visual encoder. In this setting, the adapter transforms dup = 1024 to ddown = 64, with the final
embedding dimension set to d = 768. Due to memory constraints, these experiments are performed
on two NVIDIA RTX 6000 Ada Generation GPUs with a reduced batch size of 4 per GPU.

B Details of our architectures

Details of spatial head. To enhance the union-region representation with geometric priors, we
design a spatial head that encodes the spatial relationship between the human and object bounding
boxes and fuses it with the region features, inspired by prior works [55, 5, 6]. Given a human box
bh = [x1, y1, x2, y2] and an object box bo = [x′

1, y
′
1, x

′
2, y

′
2], we compute the center coordinates,

widths, and heights:

Ch =

(
x1 + x2

2
,
y1 + y2

2

)
, Co =

(
x′
1 + x′

2

2
,
y′1 + y′2

2

)
,

wh = x2 − x1, hh = y2 − y1, wo = x′
2 − x′

1, ho = y′2 − y′1.

We then extract spatial features including normalized positions, relative box areas, aspect ratios,
intersection-over-union (IoU), and direction-aware relative distances:

dx =
|Cox −Chx|

wh + ϵ
, dy =

|Coy −Chy|
hh + ϵ

.

These values are concatenated and passed through a small feedforward network to produce a spatial
encoding vector ES . To incorporate this geometric context, we apply a multi-modal fusion module
ϕMMF(·) that combines the human and object features [xh; Xo] with the spatial encoding:

fS = ϕMMF ([xh;xo], ES) .

Finally, the spatial query fS is concatenated with the union feature xũ, and passed through a projection
layer to obtain the final spatially-enhanced representation:

xu = Proj ([xũ; fS ]) ,

which is used for verb classification with visual diversity and region-aware prompts.
Details of sparsemax. To select region-level concepts relevant to each human-object interaction,
we adopt the Sparsemax [50] activation function in our region-aware prompt augmentation module.
Unlike Softmax, which produces dense probability distributions where all entries are non-zero,
Sparsemax enables sparse selection by assigning exact zeros to irrelevant entries. This property is
particularly useful in our setting, as only a subset of the K generated region concepts are semantically
aligned with the visual feature.
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Formally, given a score vector s ∈ RK—representing the cosine similarity between a region feature
and K region concept embeddings—we define Sparsemax as a projection onto the probability
simplex:

Sparsemax(s) := arg min
a∈∆K

∥a− s∥2, ∆K =

{
a ∈ RK |

K∑
k=1

ak = 1, ak ≥ 0

}
. (14)

This formulation yields a closed-form solution that projects the input vector onto the probability
simplex ∆K , resulting in a sparse vector a where low-scoring entries are assigned exact zeros. We
apply Sparsemax to the similarity scores between each region feature and the corresponding concept
pool, allowing the model to focus on the most informative region concepts while ignoring noisy or
irrelevant ones.

C Limitations

While our method demonstrates strong performance across multiple zero-shot HOI detection settings,
several broader limitations remain. First, the region-aware prompts (RAP) module builds upon
region-level concepts generated by large language models (LLMs). Although effective in capturing
contextual semantics, LLM-based concepts may be noisy or misaligned with visual concepts due to
inherent limitations in language–vision grounding. Improving robustness through confidence-aware
filtering or vision-aligned concept refinement is a promising direction. Second, our framework
builds on prompt learning, which presents structural challenges when applied to a large number of
classes or diverse interaction types. Prompt representations can be sensitive to scaling strategies,
initialization, and optimization dynamics, making them less stable in settings with limited data or rare
class compositions. This reflects a broader limitation of prompt-based models, where generalization
can be affected by prompt granularity, representation collapse, or lack of compositional structure.
Future directions may include more robust prompt initialization, adaptive scaling mechanisms, or
compositional prompt construction to improve stability and generalization.

D Broader impacts

Our work builds upon vision-language models (VLMs) such as CLIP, which are trained on large-scale
web-scraped image-text pairs. As a result, our model may inadvertently inherit biases present in
the pretraining data, such as cultural stereotypes or imbalanced representations across demographic
groups. While our method aims to improve generalization in zero-shot HOI detection, deployment in
real-world applications should be done with caution—particularly in contexts involving surveillance,
behavioral analysis, or human activity interpretation. Furthermore, the retrieval-based region prompt
augmentation using large language models (e.g., LLaMA-7B and ChatGPT-4), which may also
reflect biases or hallucinated associations. Misinterpretation of human-object interactions in sensitive
domains (e.g., law enforcement or healthcare) could lead to harmful outcomes if such biases are not
properly addressed. To mitigate potential misuse, we recommend restricting deployment to controlled
environments with human oversight, and further advocate for evaluating fairness metrics across
subpopulations when applying the model to downstream applications.

E Further experiments

V-COCO datasets. V-COCO [56] dataset has 80 object categories derived from COCO datasets [51]
and includes 29 interactions, resulting 263 HOI compositions. The number of image samples is
10,396 (5,400/4,964 for train/test).
Fully supervised settings. We further evaluate our method under the fully supervised HOI
detection setting on HICO-DET and V-COCO, as summarized in Table 10. Among two-stage
methods, our model achieves the best performance on HICO-DET, with an mAP of 39.07, surpassing
the prior state-of-the-art EZ-HOI [25]. While one-stage methods such as UniHOI and AGER
benefit from end-to-end optimization and full supervision of all components, they typically rely
on larger networks and longer training schedules. In contrast, our two-stage approach uses fewer
learnable parameters and is designed primarily for zero-shot generalization, which likely limits the
effectiveness of group-wise variance modeling and hinders the learning of cross-class structure. On
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Table 10: State-of-the-art comparison on HICO-DET and V-COCO under the fully-supervised setting.
Bold indicates the best-performing method within each group (one-stage vs. two-stage).

Method HICO-DET V-COCO

Full Rare Nonrare AP s1
role AP s2

role

One-stage Methods
GEN-VLKT [23] 33.75 29.25 35.10 62.4 64.5
HOICLIP [27] 34.69 31.12 35.74 63.5 65.0
RLIPV2 [57] 35.38 29.61 37.11 65.9 68.0
AGER [58] 36.75 33.53 37.43 65.7 67.9
LogicHOI [59] 35.47 32.03 36.64 64.6 65.6
UniHOI [11] 40.06 39.91 40.11 65.6 68.3

Two-stage Methods
UPT [5] 32.62 28.62 33.81 59.0 64.5
ADA-CM [10] 38.40 37.52 38.66 58.6 64.0
CLIP4HOI [26] 35.33 33.95 35.75 – 66.3
CMMP [24] 38.14 37.75 38.25 – 64.0
EZ-HOI [25] 38.61 37.70 38.89 60.5 66.2
Ours 39.07 39.08 39.06 60.6 66.2

Table 11: Zero-shot HOI detection results under four splits—NF-UC, RF-UC, UO, and UV—using
the scaled CLIP (ViT-L). HM is harmonic mean (HM) between Unseen and Seen. Best results are
shown in bold, and second best are underlined.

Method NF-UC RF-UC

HM Full Unseen Seen HM Full Unseen Seen

UniHOI [11] 30.40 31.79 28.45 32.63 30.76 32.27 28.68 33.16
CMMP [24] 34.50 35.13 33.52 35.53 36.69 37.13 35.98 37.42
EZ-HOI [25] 35.38 34.84 36.33 34.47 35.73 36.73 34.24 37.35
Ours 36.83 36.46 37.48 36.21 37.58 38.13 36.72 38.48

Method UO UV

HM Full Unseen Seen HM Full Unseen Seen

UniHOI [11] 25.17 31.56 19.72 34.76 30.50 34.68 26.05 36.78
CMMP [24] 37.83 36.74 39.67 36.15 33.75 36.38 30.84 37.28
EZ-HOI [25] 37.06 36.38 38.17 36.02 32.84 36.84 28.82 38.15
Ours 38.41 37.81 39.36 37.50 34.31 37.18 31.16 38.16

the V-COCO benchmark, our model achieves 60.6 and 66.2 AP under Scenario 1 and Scenario
2, respectively—comparable to other two-stage models. We attribute this to the small number of
verb classes (24 vs. 117 in HICO-DET) and limited dataset size, which reduce the effectiveness of
group-wise variance modeling and cross-class structure learning. Overall, these results demonstrate
that although our method is designed to address zero-shot HOI detection, it generalizes well to fully
supervised settings, retaining strong performance even when supervision is abundant.
Scaled-up CLIP (ViT-L) setting. To assess the effect of scaling the vision backbone, we evaluate
our method using the CLIP ViT-L/14 encoder in place of the default ViT-B/16. As shown in Table 11,
our model consistently improves performance across all four zero-shot evaluation splits—NF-UC,
RF-UC, UO, and UV. Notably, our method achieves the highest harmonic mean (HM) across all
settings, reflecting balanced generalization to both seen and unseen verb compositions. While prior
methods such as CMMP [24] and EZ-HOI [25] exhibit competitive results on specific splits, their
performance fluctuates across evaluation scenarios. In contrast, our scaled-up model maintains stable
gains throughout, demonstrating that visual diversity-aware prompt learning and region-aware prompt
augmentation remain effective even when paired with high-capacity vision-language encoders. These
results highlight the scalability of our framework even when scaled to stronger backbones.
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Table 12: Comparison of using both mean and variance (µ, σ2) vs. variance-only (σ2) in the VDP
across four zero-shot settings. Best in bold.

Setting Stats Full Unseen Seen

NF-UC (µ, σ2) 32.03 35.75 31.10
σ2 only 32.57 36.45 31.60

RF-UC (µ, σ2) 33.19 30.34 33.91
σ2 only 33.78 31.29 34.41

UO (µ, σ2) 33.03 34.87 32.66
σ2 only 33.39 36.13 32.84

UV (µ, σ2) 32.59 25.33 33.77
σ2 only 32.73 26.69 33.72

Table 13: Ablation study comparing region branches (Human, Object and Union) and the full model
(H+O+U) under different zero-shot settings. Best in bold.

Branch NF-UC RF-UC

HM Full Unseen Seen HM Full Unseen Seen

Human 33.27 32.03 35.77 31.09 32.19 33.34 30.53 34.04
Object 33.48 32.17 36.16 31.17 31.90 33.32 29.92 34.17
Union 33.26 32.17 35.40 31.37 32.01 33.23 30.28 33.96
H+O+U 33.85 32.57 36.45 31.60 32.77 33.78 31.29 34.41

Branch UO UV

HM Full Unseen Seen HM Full Unseen Seen

Human 34.08 32.90 36.11 32.26 29.35 32.66 25.97 33.75
Object 33.39 32.65 34.61 32.26 29.64 33.07 26.15 34.20
Union 33.39 32.70 34.52 32.34 29.55 32.60 26.36 33.62
H+O+U 34.41 33.39 36.13 32.84 29.80 32.73 26.69 33.72

F More ablation studies

Effect of mean vs. variance in VDP. To evaluate the contribution of distributional statistics in
our visual diversity-aware prompts (VDP) module, we compare two variants: one that uses only
group-wise variance (σ2), and another that combines both the group-wise mean (µ) and variance
(σ2) through concatenation followed by projection. Table 12 reports results across all four zero-shot
settings. Overall, we find that the variance-only variant consistently matches or outperforms the
mean-variance combination—especially on the Unseen splits in all settings. For instance, in NF-UC,
using variance alone yields the highest unseen mAP of 36.45, compared to 35.75 with µ+σ2. This
suggests that variance alone serves as a stronger signal for modeling intra-class visual diversity,
particularly under zero-shot generalization conditions. Prior studies such as Zhu et al. [40] also report
that variance-centered prompt representations improve generalizability by capturing the dispersion of
visual features without overfitting to sample means. Our results align with this observation, indicating
that the inclusion of the mean may introduce redundant or unstable signals—especially for low-shot
or noisy verb clusters, where the class prototype is poorly defined. An exception arises in the UV
setting, where the combined variant slightly improves performance on seen metrics. Nonetheless,
the overall trend supports the effectiveness and robustness of variance-only modeling for capturing
distributional diversity in the prompt space.
Effect of branches in RAP. We compare the individual contributions of the human, object, and union
region branches under four zero-shot HOI detection settings. The results are summarized in Table 13.
Across all settings, the full model consistently outperforms each individual branch, confirming
the complementary nature of region-level concepts. Notably, the proposed combination achieves
the best unseen mAP in all settings, demonstrating the effectiveness of region-aware prompts in
enhancing discriminability. These findings highlight that human and object concepts capture distinct
but complementary contextual signals, while the union branch provides holistic spatial grounding
that reinforces interaction understanding.
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Table 14: Zero-shot verb variance robustness under the UV setting. We remove the top-3 semantic
neighbors for each unseen verb before computing visual variance.

HM Full Unseen Seen

W/O Top-3 29.48 32.64 26.21 33.69
W/ Top-3 29.80 32.73 26.69 33.72

Table 15: Sensitivity analysis of τ -Sparsemax under four zero-shot settings. Best results are in bold.

τ value NF-UC RF-UC

Full Unseen Seen Full Unseen Seen

0.10 32.23 35.85 31.33 33.59 30.92 34.26
0.05 32.38 35.76 31.53 33.10 29.56 33.99
0.00 32.57 36.45 31.60 33.78 31.29 34.41

τ value UO UV

Full Unseen Seen Full Unseen Seen

0.10 32.90 35.84 32.31 32.85 26.95 33.81
0.05 32.95 34.63 32.62 32.73 25.91 33.84
0.00 33.39 36.13 32.84 32.73 26.69 33.72

Table 16: Robustness of VDP under few-shot variance sampling (Nv = 5). Best results are in bold.
NF-UC Full Unseen Seen

Few-shot 32.23 35.90 31.31
All 32.57 36.45 31.60

RF-UC Full Unseen Seen

Few-shot 33.40 30.59 34.10
All 33.78 31.29 34.41

UO Full Unseen Seen

Few-shot 32.55 34.75 32.11
All 33.39 36.13 32.84

UV Full Unseen Seen

Few-shot 32.89 25.88 34.04
All 32.73 26.69 33.72

G Robustness of visual diversity-aware prompt learning

Zero-shot verb variance robustness. To evaluate the robustness of group-wise variance estimation
for unseen verbs, we conduct an additional experiment under the UV setting. Specifically, we remove
the top-3 semantic neighbors (based on CLIP similarity) for each unseen verb from the training set
before computing the group-wise visual variance. This setup simulates a scenario where certain verbs
lack semantically related support, allowing us to analyze the stability of variance estimation under
reduced contextual guidance. As shown in Tab 14, the removal of neighboring classes results in only
a marginal performance drop in unseen verbs (-0.48 mAP). This indicates that the proposed grouping
mechanism maintains its generalization ability even when semantic support is limited.

τ -Sparsemax sensitivity. To investigate the effect of sparsity calibration in concept retrieval,
we introduce τ -Sparsemax(·), where all values below a threshold τ ∈ {0.0, 0.05, 0.1} are zeroed
post-Sparsemax(·). This modification controls the degree of sparsity in the region-concept selection
process. The results in Tab 15 show that excessive pruning (τ = 0.05) slightly decreases overall
performance, while higher sparsity (τ = 0.10) recovers seen-class precision at the cost of unseen
generalization. The default τ = 0.0 provides the most balanced outcome, indicating that the original
Sparsemax(·) formulation already achieves an effective level of adaptive sparsity.

Robustness of visual variance under few-shot sampling. We further test the stability of visual
variance estimation when fewer visual samples are available. For this experiment, group-wise
covariance matrices are computed using only five randomly sampled features per verb (Nv = 5),
compared to using all available samples. As summarized in Tab 16, the performance reduction across
all settings is minimal (typically less than 0.6 mAP), demonstrating that VDP remains robust even
under limited sample diversity.
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Figure 5: Pairwise inter-class distances between prompts and visual features. We report the
average pairwise cosine distance (i.e., D = Ei ̸=j [1− cos(zi, zj)]) across verb classes, for both visual
and prompt embeddings, before and after training. Visual features are extracted from union regions.
Before training, we use the CLS token from the CLIP visual encoder applied to cropped union
region images. After training, we follow the RoI-Align feature extraction pipeline consistent with
the two-stage method (i.e., pooling patch embeddings within the union box). For each verb class, a
medoid is selected among all union features to represent its prototype. While prompt embeddings are
initially collapsed with low diversity, VDRP maintains a balanced and aligned distribution relative to
visual features, unlike CMMP which over-separates prompts and disrupts cross-modal structure.

H Inter-class alignment of visual and prompt representations

To assess inter-class alignment between visual and prompt representations, we analyze the distri-
butional structure of each modality after training. Specifically, we examine whether our visual
diversity-aware prompt learning preserves class-level relationships that are consistent with those
observed in the visual embedding space. We measure the pairwise cosine distance between class-level
prototypes in both visual and prompt embedding spaces:

D = Ei̸=j [1− cos(zi, zj)],

where zi denotes the prototype embedding of the i-th verb class. For the visual side, we extract
features from the union region of each verb instance using the CLIP visual encoder. Before training,
we use the CLS token of the encoder applied directly to the union-cropped image. After training,
we adopt a region-specific pooling approach: patch embeddings within the union RoI-Align [44] are
aggregated to match the training architecture of our method. To mitigate over-smoothing effects from
averaging, we define the visual prototype for each class as the medoid—the instance whose embedding
minimizes the average distance to others within the same class. For the prompt side, we collect the
final trained verb embeddings for each class. Fig. 5 presents the average inter-class distance for
both modalities across three conditions: (1) before training, (2) after training with CMMP [24], and
(3) after training with our method (VDRP). We observe that CMMP significantly increases prompt
diversity (0.937) while visual diversity remains moderate (0.420), indicating a modality mismatch.
In contrast, VDRP maintains a comparable level of diversity in both modalities (prompt: 0.550,
visual: 0.518), suggesting improved distributional alignment. This outcome implies that our prompt
learning strategy—though primarily guided by intra-class visual variance—can indirectly induce
a structured inter-class layout without over-amplifying semantic separation. We draw inspiration
from recent works [60, 43, 36, 39, 40, 37], which emphasize distributional approaches to improving
visual–prompt alignment. Motivated by this perspective, we interpret the improved visual–prompt
alignment as a natural byproduct of our variance-aware design, even though cross-modal matching
was not explicitly enforced.
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Discussion. This inter-class alignment result further substantiates the novelty of our visual diversity-
aware design. Unlike prior distribution-based prompt learning methods such as ProDA [37] and
DAPT [36], which regularize textual embeddings, VDP explicitly grounds the prompt distribution
in the visual modality by injecting group-wise variance extracted from union-region features. This
design enables structured yet balanced prompt distributions that mirror the visual embedding space,
achieving semantic coherence without explicit regularization losses. Consequently, VDP naturally
promotes inter-class consistency and zero-shot generalization—key objectives that motivated our
dual-module framework.

I Qualitative Results

Retrieved conceptsRetrieved concepts

Straddling an object.

(0.39) Knees are bent, with feet flat on the ground.

(0.31) Buttocks are slightly raised off the ground.

(0.11) Ankles are flexed, with feet pointing toward the object.

(0.54) Saddle or seat is in use.

(0.19) Object appears to be a bicycle.

(0.16) Frame is in good condition.

(0.33) The object is being pierced in a deliberate downward motion.

(0.23) A pointed tool is used to puncture the surface of the object.

(0.17) A person is pushing a sharp tool into a soft material.

(0.44) Back is straight and upright.

(0.24) Legs are extended in front of them, pedaling.

(0.21) Chest is expanded with each breath.

(0.45) Object has a sleek or aerodynamic shape.

(0.28) Object has a distinctive shape or design.

(0.22) Object has a seat or saddle for the person.

(0.46) The person's feet are off the ground as they ride over a bump.

(0.25) A person is seated on the object, with their legs extended in 

front of them.

(0.17) The person's legs are bent and ready to pedal the object.

Riding an object.

(0.49) Mouth is open and exhaling forcefully.

(0.38) Person is blowing air toward the object.

(0.14) Nose is wrinkled in concentration.

(0.32) Object appears to be lifted or moved by air.

(0.23) Object's position appears unstable or shifting.

(0.21) Object's shape or form changes due to air pressure.

(0.44) The person's lips are parted as they blow.

(0.38) A person is blowing air onto the object with their mouth.

(0.15) The person's cheeks are slightly puffed out as they blow.
Blowing an object.

(0.38) Hands are positioned near the top of the object.

(0.32) Shoulders are relaxed and slightly hunched.

(0.16) Person is grasping the object with both hands.

(0.30) Load is being inserted or removed.

(0.27) Load is balanced or centered within the object.

(0.26) Load is secured with straps or clips.
(0.17) Load is heavy or awkward to handle.

(0.33) The object is being lowered into a vehicle.

(0.26) The person's face is focused intently on the task at hand.

(0.24) The object is being lifted into position by the person's 

arms.

Loading an object.

: Human region concepts : Object region concepts : Union region concepts : Human box : Object box

Retrieved conceptsRetrieved concepts

(0.42) Wrists are flexed during the swing.

(0.25) Hands are moving in a circular motion.

(0.13) Hair may be blown back by the motion.

(0.42) Object's weight or momentum creates a subtle arc or 

curve in the swinging motion.

(0.26) Swinging motion creates blur or motion blur around 

the object.

(0.53) The person's hand is gripping the object firmly as it is swung.

(0.30) The person's arm is extended and the object is at the peak of 

its arc.

(0.10) A person is swinging the object in a wide arc.

(0.55) Mouth is open and water is flowing in.

(0.27) Cheeks are puffed out as they inhale.

(0.15) Chin is tilted upward, suggesting a sense of 

satisfaction.

(0.42) Liquid level in the object is low.

(0.20) Person's lips are curled back in a sip motion.

(0.19) Object is tilted towards the person's mouth.

(0.44) The person's throat moves as they drink, their Adam's apple 

visible.

(0.20) The person's head is tilted back slightly as they drink.

(0.18) A person brings a cup to their lips, sipping from the object.

(0.59) Arms are extended and pulling on oars.

(0.20) Legs are bent and feet are planted firmly on the 

platform.

(0.14) Back is straight and facing forward.

(0.67) Rowing motion creates ripples in the water.

(0.20) Object is positioned at an angle in the water.

(0.13) Object is partially submerged in water.

(0.82) The person's legs are tucked in to maintain balance.
(0.07) The person's face is focused on the task at hand.
(0.05) The water is calm and reflective of the surrounding 
scenery.

Rowing an object.

(0.33) Legs are bent, providing additional power for the pull.

(0.19) One foot is planted firmly on the ground, providing 

stability.

(0.19) Fingers are spread wide, using maximum leverage.

(0.44) Object's surface is wet or dirty from dragging.

(0.26) Object is partially or fully dragged away from its 

original position.

(0.13) Surface of object is scuffed or disturbed.

(0.21) The object is heavy, and the person is struggling to move it.

(0.18) The person's legs are moving in a slow, steady rhythm as 

they pull the object.

(0.18) The object is bouncing and jolting as the person pulls it along 

the ground.

Dragging an object.

Swinging an object.

Drinking with 

an object.

: Human region concepts : Object region concepts : Union region concepts : Human box : Object box

Figure 6: Region-aware concept retrieval results (1/2). Each row shows retrieved human, object,
and union concepts. Concepts are color-coded by region: blue (human), red (object), yellow (union).

We present qualitative examples in Fig. 6 and 7 to illustrate how region-specific concepts contribute
to verb classification. Each example visualizes the top-weighted concepts retrieved from three region
branches—human, object, and union—based on sparsemax-normalized concept weights. The full
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Retrieved conceptsRetrieved concepts

(0.59) Hands are raised and gesturing toward the object.

(0.19) Shoulders are relaxed and slightly hunched.

(0.17) Chin is slightly raised, as if directing attention.

(0.22) Object is positioned near the person's hand.

(0.22) Object is positioned at eye level.

(0.17) Person's hand is pointing towards the object.

(0.14) Object is partially obscured by the person's body.

(0.33) The person's eyes are fixed intently on the object.

(0.28) The person's posture is relaxed, but their eyes are focused on 

the object.

(0.14) The person's body language suggests urgency or importance.

Directing an object.

(0.33) Person is holding a glass or cup with one or both 

hands.

(0.26) Hands are raised and angled toward the object.

(0.20) Chin is slightly raised.

(0.90) Person's body language suggests celebration or 

appreciation.

(0.08) Person's hand or arm is raised towards the object.

(0.01) Object has a distinctive shape or design.

(0.45) The person's smile is subtle as they toast the object.

(0.29) The person's face is lit by the light of the object.

(0.14) The object's surface glows softly in the light of the 

person's glass.

Toasting an object.

(0.35) Arms wrap around the object, enveloping it.

(0.34) Entire body is tense with emotion.

(0.24) Chest is pressed against the object, heart beating 

against it.

(0.37) Object's shape is emphasized by the person's embrace.

(0.28) Object's surface is warm to the touch.

(0.14) Object is curved or rounded in shape.

(0.12) Person's face is close to the object's surface.

(0.53) The object is cradled in the person's arms, with their hands 

holding it securely.

(0.19) The person's hug is gentle and affectionate, conveying a 

sense of warmth and care.

(0.12) The person's hands are intertwined with the object's surface.

Hugging an object.

: Human region concepts : Object region concepts : Union region concepts : Human box : Object box

Kicking an object.

(0.27) Buttocks are tense and slightly lifted.

(0.27) Person is extending leg to make contact with object.

(0.25) Lower leg is straight and foot is flat on ground.

(0.21) Back is straight and shoulders are relaxed.

(0.50) Object appears to be in mid-air or suspended.

(0.35) Object's surface appears to be vibrating or 

trembling.

(0.07) Object's position changes or shifts.

(0.27) The object is propelled through the air.

(0.14) The person's foot is cocked back before making contact.

(0.13) The object is sent flying in a diagonal direction.

(0.13) The object is struck with a firm, direct kick.

Retrieved conceptsRetrieved concepts

(0.31) Eyes are focused on the object and the hand.

(0.25) Arm is extended and bent at the elbow.

(0.22) Shoulder is relaxed or tensed depending on effort.

(0.20) Person is reaching out with one or both hands.

(0.33) Object's movement creates a sense of dynamism or 

energy.

(0.27) Light sources create a sense of depth or motion.

(0.16) Object appears to be flying or floating in the air.

(0.28) The person's palm is facing upwards, ready to catch the 

object.
(0.27) The object is suspended in mid-air as the person reaches for it.

(0.17) The object is falling towards the person's outstretched hand.

Catching  an object.

(0.54) Weight is evenly distributed across both feet.

(0.12) Chest expands subtly while wearing the object.

(0.11) Head is tilted slightly to accommodate the object.

(0.31) Clothing or accessories around object are well-

coordinated or match.

(0.26) Object is draped over person's body.

(0.26) Object's weight is evident on person's body.

(0.44) The person wears the object around their neck.

(0.27) The object is nestled in the person's pocket.

(0.20) The object is tucked into the person's shirt.
Wearing an object.

(0.46) Fingers are extended to feed the object.

(0.34) Hands are cupped around food, as if to scoop.

(0.20) Person is holding food in their hands.

(0.47) Food is visible in the mouth or opening.

(0.40) Object has a mouth or opening to receive food.

(0.13) Person's hand or utensil is inserted into the object.

(0.41) Food is being offered to the object with a gentle touch.

(0.24) The person's fingers are stained with food.

(0.17) A piece of food is being placed on the object's tongue.

(0.15) The person's hand is positioned near the object's mouth.

Feeding an object.

: Human region concepts : Object region concepts : Union region concepts : Human box : Object box

Lying on an object.

(0.59) Person is lying flat on their back.

(0.37) Eyelids are slightly closed.

(0.04) Arms are relaxed and slightly bent.

(0.30) Person's body is positioned at an angle.

(0.29) Object appears to be a soft or cushioned surface.

(0.26) Person's face is visible and relaxed.

(0.31) The person's face is relaxed and peaceful.

(0.28) The person's head is resting on a soft, cushioned surface.

(0.27) The object's surface is covered in a patterned blanket.

(0.12) The person's arms are folded behind their head.

Figure 7: Region-aware concept retrieval results (2/2). Additional examples illustrating how
different regions contribute to enhancing discriminability.

concept pool contains K = 10 entries per region type and verb class, and weights are displayed in
parentheses. Due to sparsemax activation, concepts with low similarity scores are often assigned
zero weight, resulting in more selective and interpretable retrieval. For instance, in kicking an object,
the object region retrieves dynamic descriptions such as “(0.50) Object appears to be mid-air or
suspended,” while the human region emphasizes posture concepts like “(0.27) Buttocks are tense and
slightly lifted.” These complementary signals capture both motion and pose indicative of a kicking
action. Similarly, in distinguishing hugging from toasting, human concepts like “(0.35) Arms wrap
around the object” help identify close physical contact, whereas in toasting, object and union concepts
highlight celebratory gestures such as “(0.90) Person’s body language suggests celebration” and
“(0.45) The person’s smile is subtle as they toast the object.” These examples show how our model
selectively retrieves fine-grained region-specific concepts that support verb disambiguation in subtle
interaction contexts. Overall, these results show that our region-aware prompt augmentation (RAP)
selects meaningful concepts from distinct regions, supporting both interpretability and fine-grained
HOI discrimination.
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“For the “A photo of person is [lifting] an object”, 

give 𝐾 short visual concepts for the [object] region”

ChatGPT-4

"The object is a shiny 

metallic surface."
𝐜o
1

"The object has a solid, 

dense appearance."
𝐜o
2

"The object is bulky 

and oversized."
𝐜o
𝐾

⋮

"The object is angular 

and boxy."
𝐜o
3

LLaMA-7B

"Person's muscles 

tense as they lift"
𝐜o
1

"Person's arm or hand 

strains under the load"
𝐜o
2

"Person's face contorts 

in effort or strain."
𝐜o
𝐾

⋮

"Person's breathing quickens 

or becomes labored."
𝐜o
3

Figure 8: Qualitative comparison of concept generation for the object region. LLaMA-7B often
yields human-centric concepts (left), while ChatGPT-4 provides more object-centered descriptions
(right). This difference highlights the source of semantic noise in object-region concept retrieval.

Table 17: Comparison of performance when using object concepts from LLaMA-7B and ChatGPT-4
across four zero-shot settings. Best results are in bold.

NF-UC Full Unseen Seen

LLaMA-7B 32.18 36.16 31.18
ChatGPT-4 32.57 36.45 31.60

RF-UC Full Unseen Seen

LLaMA-7B 33.55 31.24 34.13
ChatGPT-4 33.78 31.29 34.41

UO Full Unseen Seen

LLaMA-7B 32.79 35.04 32.34
ChatGPT-4 33.39 36.13 32.84

UV Full Unseen Seen

LLaMA-7B 32.78 26.88 33.74
ChatGPT-4 32.73 26.69 33.72

J Analysis of object concept noise from LLaMA-7B

We further analyze the qualitative and quantitative effects of noisy object concepts generated by
LLaMA-7B [48]. As discussed in the main paper, the prompt template “a photo of a person [verb]-
ing the object” sometimes causes semantic leakage from the human region, producing human-centric
descriptions for the object region. Fig. 8 visualizes this issue for the verb lift, where LLaMA-7B
frequently associates object concepts with human body parts or actions. In contrast, ChatGPT-4 [49]
produces more object-centered and visually grounded descriptions, effectively reducing such leakage.
To quantitatively evaluate the impact of concept quality, we compare the model performance when
object concepts are generated by LLaMA-7B versus ChatGPT-4. As shown in Table 17, GPT-4
generally achieves higher performance across all zero-shot settings, confirming that cleaner concept
representations improve robustness without altering the model architecture.
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