Medical Imaging with Deep Learning — Under Review 2021 Short Paper — MIDL 2021 submission

ReconResNet: Regularised Residual Learning for MR Image
Reconstruction of Undersampled Cartesian and Radial Data

Soumick Chatterjee ' SOUMICK.CHATTERJEEQOVGU.DE
Mario Breitkopf ! MARIO.BREITKOPFQOVGU.DE
Chompunuch Sarasaen ! CHOMPUNUCH.SARASAEN@QOVGU.DE
Hadya Yassin ! HADYA.YASSINQOVGU.DE
Georg Rose ! GEORG.ROSEQOVGU.DE
Andreas Niirnberger ! ANDREAS.NUERNBERGER@QOVGU.DE
Oliver Speck ! OLIVER.SPECK@QOVGU.DE

L Otto von Guericke University Magdeburg, Germany
Editors: Under Review for MIDL 2021
Abstract

MRI is an inherently slow process, which leads to long scan time for high-resolution imaging.
The speed of acquisition can be increased by ignoring parts of the data (undersampling).
Consequently, this leads to the degradation of image quality. This work proposes a deep
learning based MRI reconstruction framework to reconstruct highly undersampled Carte-
sian or radial MR acquisitions, which includes a modified regularised version of ResNet as
the network backbone to remove artefacts from the undersampled image, followed by data
consistency steps that fusions the network output with the data already available from
undersampled k-space in order to further improve reconstruction quality. The performance
of this framework for various undersampling patterns has also been tested, and it has been
observed that the framework is robust to deal with various sampling patterns - results in
very high quality reconstruction (highest SSIM being 0.990+0.006 for acceleration factor
of 3.5), while being compared with the fully sampled reconstruction. It has been shown
that the proposed framework can successfully reconstruct even for an acceleration factor
of 20 for Cartesian (0.968+0.005) and 17 for radially (0.962+0.012) sampled data.
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1. Introduction

Magnetic resonance imaging (MRI) can provide high spatial resolution for detecting minute
pathological changes in tissues. However, due to consecutive data acquisition, MRI is an
inherently slow process. Fast imaging can improve patient compliance, reduce motion arte-
facts, increase patient throughput etc. The speed of acquisition can be increased by ignoring
parts of the data (k-space), known as undersampling. Taking the inverse Fourier transform
from not densely enough sampled k-space frequency data might cause the resultant image
to lose resolution and might also have artefacts due to the violation of the Nyquist-Shannon
sampling theorem. Many of the approaches that are currently available for the reconstruc-
tion of undersampled data are very slow, due to the fact they are very computationally
heavy or iterative in nature.

2. Methodology

The proposed framework NCC1701 contains two main components: the network backbone
architecture - ReconResNet and the data consistency step. This paper proposes ReconRes-
Net with a modified regularised version of the Residual Block (He et al., 2016), by adding a
Spatial Dropout between the two convolution layers of the Residual Block. In this model,
first, the input is down-sampled with two down-sampling blocks, each decreases the input
size by half in all dimensions, while increasing the number of feature maps by two (starting
with 64). Next, the network contains 14 modified Residual Blocks. After the residual blocks,
the network contains two up-sampling blocks, each doubles the input size and reduces the
number of feature maps by half, to obtain the original image size back. Finally, a fully-
connected convolution layer is added, followed by Sigmoid as the final activation function.
Furthermore, Parametric ReLU (PReLU) has been used as the internal activation function.
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The second component of the framework is the data consistency step, which replaces the
actual acquired undersampled data in the network’s output. In this way, the final output
is not entirely depended on the network. The network only helps to fill-in the data, which
were ignored during the undersampled acquisition. For undersampled Cartesian data, data
consistency was performed following Hyun et al. (2018). For undersampled radial data
this paper introduces a new technique where a sampling pattern was generated for a fully
sampled image (referred as Qpg), considered to have twice the number of spokes than its
pixel resolution and a NUFFT (Fessler et al., 2007) object was created from it. Then using
that object, a forward transform was performed on the output image of the network to
obtain its fully sampled radial k-space. The measured spokes were then inserted into the
output k-space. A density compensation function (DCF) was applied, followed by adjoint
NUFFT using the same NUFFT object was performed to obtain the final output. Only
the network backbone is used during the training process. Whereas during inference, the
complete framework is used. To train the ReconResNet, the loss has been calculated with
the help of the Structural Similarity Index (SSIM), where higher SSIM means closer image
similarity. The negative of the SSIM value has been used as the loss value, and it was then
be minimised using Adam Optimiser (Initial learning rate 0.0001, decayed by 10 after 50
epochs), and was trained for 100 epochs with a batch size of one. The code of available
publicly on GitHub: https://github.com/soumickmj/NCC1701.

Two different datasets were used in this research: OASIS-1 dataset, 150 subjects were
used for training and 100 were used for testing, 20% of the training set were used as
the validation set and the remaining 80% as the actual training set; and T1 weighted
volumes from the IXI-dataset, 100 volumes each were used for training validation and
testing. Images from both the datasets were treated as fully sampled images and various
undersampled datasets were artificially generated using MRUnder (Chatterjee et al., 2020)
pipeline: https://github.com/soumickmj/MRUnder. Artificial Cartesian undersamplings
were achieved performed using 1D and 2D variable density masks (Lustig et al., 2007) and
radial undersamplings were performed using PyNUFFT (Lin et al., 2018) with the golden
angle of 111.25° between the radial acquisitions (spokes).

3. Evaluation
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Figure 1: Reconstruction quality (SSIM) of the proposed method for different sampling
patterns: (a) OASIS-1 dataset - Cartesian undersamplings, (b) IXI dataset - comparison
with L1-wavelet regularised compressed sensing, (c) IXI dataset - comparison with UNet

Different levels of Cartesian undersamplings were evaluated (Fig. la) using OASIS-1
dataset: Four levels of 1D Varden (30%, 15%, 10% and 5% of the k-space) and two levels
of 2D Varden (30% and 5%). It was observed that the proposed framework could per-
form successfully even for the highest acceleration factor evaluated in this research, 5% of
the k-space - 2D Varden resulted in 0.968+0.005 SSIM, however, 1D Varden resulted in
0.906+0.017. For IXI dataset, four different levels of 1D Varden sampling (30%, 15%, 10%
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Figure 2: Example output (OASIS-1) of NCC1701: (b) Cartesian 1DVarden30% (c) Carte-
sian 2DVarden30%, (d) Cartesian Uniform step 4 (e) Radial 60 spokes (f) Radial 30 spokes

and 5% of the k-space) and two different levels of radial sampling (60 and 30 spokes) were
evaluated (Fig. 1b) - it can be observed that the proposed method performed significantly
better than L1l-wavelet regularised compressed sensing reconstruction (Lustig et al., 2007).
Moreover, it can be observed (Fig. 1c) that the performance of the proposed method per-
formed significantly better than UNet (Hyun et al., 2018). Independent two-sample t-test
has shown that all the observed improvements are statistically significant (p-values always
less than 10714). Fig. 2 shows an example reconstruction from the OASIS-1 dataset for
three different Cartesian and two different Radial undersamplings.

4. Conclusion

Evaluation using multiple datasets has shown that the proposed framework can efficiently
work with both Cartesian and radial undersampled data, even while trained together, and
provides results with high accuracy (SSIM value as high as 0.99) and achieved statisti-
cally significant improvements over the baseline methods. Experiments presented here have
shown that the framework was able to reconstruct properly for undersampled data with an
acceleration factor of 20 for Cartesian (2D Varden 5%) and an acceleration factor of 17 for
radial (60 spokes) acquisitions.

Acknowledgments
This research was supported by the ESF (project no. ZS/2016,/08/80646).
References

Chatterjee et al. soumickmj/mrunder: Initial release, 06 2020. URL 10.5281/zenodo.
3901455.

Fessler et al. On nufft-based gridding for non-cartesian mri. Journal of magnetic resonance,
188(2):191-195, 2007.

He et al. Deep residual learning for image recognition. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7T70-778, 2016.

Hyun et al. Deep learning for undersampled mri reconstruction. Physics in Medicine &
Biology, 63(13):135007, 2018.

Lin et al. Python non-uniform fast fourier transform (pynufft): An accelerated non-cartesian
mri package on a heterogeneous platform (cpu/gpu). Journal of Imaging, 4(3):51, 2018.

Lustig et al. Sparse mri: The application of compressed sensing for rapid mr imaging.
Magnetic resonance in medicine, 58(6):1182-1195, 2007. ISSN 0740-3194.


10.5281/zenodo.3901455
10.5281/zenodo.3901455

	Introduction
	Methodology
	Evaluation
	Conclusion

