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Abstract

We study offline learning of factored stochastic policies over extremely large,
combinatorial action spaces and show how standard conjoint data can be
used to estimate such policies with valid statistical uncertainty. Conjoint
analyses typically report AMCEs by averaging over opponent attributes
and thus ignore strategic interdependence. We instead learn stochastic
interventions—product-of-Categorical policies over factor levels—that (i)
optimize expected outcomes in an average-case setting and (ii) extend to
a two-player minimax (adversarial) setting that realistically captures si-
multaneous strategic candidate selection. Methodologically, we derive a
closed-form solution for the average-case optimizer under two-way interac-
tions with L2 variance regularization, and provide a general gradient-based
procedure for richer model classes. Uncertainty from the outcome model
propagates exactly to both the optimal policy and its value via the Delta
method. We further model institutional details (e.g., primaries) inside the
minimax objective and introduce a data-driven measure of strategic diver-
gence between parties. On synthetic data, we characterize sample com-
plexity and coverage as dimensionality and n vary. On a U.S. presidential
conjoint, adversarially learned policies produce equilibrium vote shares that
align with historical election ranges, in stark contrast to non-adversarial
(averaging) optimizers. To facilitate reproducibility and further research,
we release an open-source dataset of mapped historical U.S. presidential
candidate features on Hugging Face. Our framework connects causal pol-
icy learning with multi-agent RL in high-dimensional discrete action spaces
while preserving interpretability and statistical guarantees.

Over the past decade, conjoint analysis, which is an application of high-dimensional factorial
design, has become the most popular survey experiment methodology to study multidimen-
sional preferences (Hainmueller et al., 2014). One of the most common political science
applications of conjoint analysis is the evaluation of candidate profiles (e.g., Franchino &
Zucchini, 2015; Ono & Burden, 2019; Christensen et al., 2021; Kirkland & Coppock, 2018).
In such experiments, respondents are asked to choose between two hypothetical political
candidates whose features (e.g., gender, race, age, education, partisanship, and policy po-
sitions) are randomly selected. This design often employs a forced-choice format, where
respondents must select one of the two candidates without an option to abstain or express
no preference (Abramson et al., 2023). Researchers then proceed by estimating the average
causal effect of each feature while marginalizing the remaining features over a particular
distribution of choice. This popular quantity of interest is termed the Average Marginal
Component Effect (AMCE) (Hainmueller et al., 2014).
AMCEs average a feature’s effect over a chosen distribution for the other features, which
means the answer depends on that averaging choice (de la Cuesta et al., 2019). In practice,
researchers often use a uniform distribution, but real candidate pools are not uniform, and
candidates do not choose their profiles in strategic isolation from opponents.
We therefore replace effect estimation with policy learning. Instead of asking for the marginal
effect of a single attribute, we learn a factored stochastic policy over full profiles: a mixed
distribution that assigns independent categorical probabilities to each attribute level and
thus remains interpretable (one can read off how much weight the policy puts on, say,
“economy” versus “immigration” as policy priority). In the non-adversarial, average-case
setting, this policy is chosen to maximize expected win probability against a fixed reference
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distribution for the opponent. We control variance and preserve interpretability by shrinking
the learned policy toward the experimental assignment.
To capture strategic interaction, we extend to an adversarial setting in which both sides
simultaneously choose their own mixed profile distributions. The objective is minimax—each
side selects a profile distribution that is best against the other’s—and institutional details are
built in. Specifically, we model two stages: primary elections within each party (which induce
a distribution over nominees) followed by the general election. The resulting equilibrium
policies reflect how strategic opponents and institutions jointly shape feasible profile choices.
Under a linear outcome model with two-way interactions, the average-case optimizer with
squared-distance regularization has a closed-form solution; uncertainty for both the optimal
policy and its value is obtained by propagating the outcome-model uncertainty using the
Delta method. For richer models, we optimize the logits of the factored policy by gradient
methods while enforcing the simplex constraints implicitly, and we carry uncertainty through
the optimization by differentiating end-to-end. The same machinery applies when we move
from average-case to the adversarial, institution-aware game.
Our contributions are: (1) A shift from AMCEs to a conjoint estimand that is a factored
stochastic policy over profiles, learned to maximize expected electoral performance, and in-
terpretable at the attribute-level. (2) A closed-form average-case optimizer under two-way
interactions with squared-distance variance control, together with uncertainty quantification
for both the optimal policy and its value via the Delta method. (3) A general gradient-based
procedure for richer outcome models (including regularized GLMs and neural models) with
end-to-end differentiation for standard errors. (4) An adversarial, minimax extension that
embeds institutional structure (primaries then general), yielding equilibrium mixed strate-
gies and a data-driven measure of strategic divergence between parties. (5) Empirical evi-
dence from simulations and a U.S. presidential conjoint showing that adversarially learned
policies produce equilibrium vote shares aligned with historical ranges, plus an open-source
mapping of historical candidate features to conjoint levels to facilitate replication.
Related literature. We contribute to the methodological literature on conjoint analysis
and policy learning. In the growing field of conjoint analysis, we are, to our knowledge, the
first to address optimal profile selection, particularly in adversarial settings. Related work
in sequential decision-making includes multi-armed bandit problems (Audibert et al., 2010),
while non-sequential conjoint studies focus on causal effect estimation (Hainmueller et al.,
2014; Egami & Imai, 2019; de la Cuesta et al., 2019), hypothesis testing (Ham et al., 2022;
Liu & Shiraito, 2023), causal estimand interpretation (Abramson et al., 2022), experimental
design (Bansak et al., 2018), and stable preference analysis (Abramson et al., 2022; 2023).
We also connect to causal inference literature on treatment rules, where recent advances in
policy learning from granular data—both experimental and observational—have proliferated
(see e.g., Dudik et al., 2011; Imai & Strauss, 2011; Zhao et al., 2012; Kitagawa & Tetenov,
2018; Athey & Wager, 2021; Ben-Michael et al., 2021; Kallus & Zhou, 2021; Zhang et al.,
2022, and others), yielding individualized rules for binary treatments based on observables.
Our work can be seen as framing our problem as an offline contextual bandit with combi-
natorial actions, where conjoint randomization serves as the logging policy. The proposed
optimal stochastic intervention learns a mixed policy over candidate attributes—a factor-
ized Categorical distribution for interpretability and variance control—extending welfare-
oriented policy learning (Kitagawa & Tetenov, 2018; Athey & Wager, 2021).The adversarial
case models a two-player zero-sum game, with equilibria as minimax solutions to a single-step
Markov game (Littman, 1994). Conjoint randomization identifies counterfactuals via direct
modeling or off-policy estimators (e.g., doubly robust (Dudik et al., 2011)), sidestepping of-
fline RL confounding (Levine et al., 2020). Overall, we adapt these tools to high-dimensional
conjoints for interpretable stochastic policies and equilibria with uncertainty quantification.
Learning Factored Stochastic Policies from Conjoint Data
Suppose that we have a simple random sample of n respondents from a population. We
consider a conjoint design of candidate choice with a total of D factorial features per can-
didate. Each factorial feature d ∈ {1, 2, . . . , D} has Ld ≥ 2 levels. The random variable
representing an entire candidate profile presented to respondent i in the design is labeled
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Ti. The support of Ti, denoted T , is the space of all possible treatment assignments and
will vary based on the experimental design. For example, if each feature has L levels, i.e.,
L1 = · · · = LD = L, we have t ∈ T = {1, 2, ..., L}D, where t is a specific realization of Ti.
Usually, each respondent i faces a choice between two candidate profiles, Ta

i and Tb
i . The

observed outcome will be an indicator of whether candidate a is chosen over b, which occurs
when the latent utility of a, represented as Yi(Ta

i ), is higher than that of b, which is repre-
sented as Yi(Tb

i ). This choice variable can be quantified as C(Ta
i , Tb

i ) = I{Yi(Ta
i ) > Yi(Tb

i )},
representing the standard paired–profile conjoint in which respondents must select exactly
one of two profiles as preferable, so that C(Ta

i , Tb
i ) ∈ {0, 1} (Hainmueller et al., 2014).

Often, each treatment combination is equally likely to be realized, in which case
Pr (Ti = t) = |T |−1 for all treatment combinations, t. When factor levels have possibly
different assignment probabilities, some treatment combinations will be more likely than
others. Usually, each factor is assigned using draws from independent Categorical distribu-
tions so that we can write the probability of treatment combination t as

Pr (Ti = t) =
D∏

d=1

Ld∏
l=1

p
I{td=l}
dl ,

where pdl is the Categorical probability for factor d taking on level l and I{td = l} is the
indicator function that is 1 when td takes on value l and 0 otherwise. We let p define the
vector of Categorical probabilities defining the data-generating distribution.
For simplicity, we make standard assumptions of conjoint analysis. That is, we assume that
there is no interference between units and that the treatment assignment is randomized,
i.e., {Yi(ta), Yi(tb)}{Ta

i , Tb
i} and Pr (Tc

i = tc) > 0 for c ∈ {a, b} and all tc ∈ T .
Optimal Selection of Conjoint Profiles in a Non-Adversarial Setting. We consider
the optimal selection of conjoint profiles, enabling us to study the types of political candi-
dates who are likely to receive greater support from different types of voters. The standard
approach, dominant in the policy learning literature, is to identify the following optimal
treatment combination, t∗ = arg maxt∈T E[Yi(t)], where t∗ is the treatment combination
that maximizes the average value of some generic outcome, Yi. In the forced-choice conjoint
case, this quantity would amount to ta∗

= arg maxta∈T E[C(Yi(ta), Yi(Tb
i ))], so investigators

find the vote-share-maximizing candidate profile ta∗ , averaging over opposing candidate b
features (as in AMCE analysis). This approach has two limitations. First, high-dimensional
treatments in conjoint analysis prevent identifying t∗, as |T | far exceeds the sample size.
Second, when multiple equally optimal profiles exist, identifying several is more informative
than a single one.
To address this challenge, we propose finding an optimal stochastic intervention: we con-
sider a parametric distribution of profiles Prπ(·) that maximizes the average outcome. By
considering a parametric model, we are able to effectively summarize a set of profiles that
perform well. Formally, we seek the optimal stochastic intervention,

Q(π∗) = max
π

Q(π) where Q(π) =
∑
t∈T

E[Yi(t)] Prπ (Ti = t) , (1)

where π parameterizes the distribution of profiles. In the forced-choice conjoint case, this
quantity can be written in the average case as agent A optimizing their strategy, averaging
over B’s fixed strategy:

Q(πa∗
) = max

πa

∑
ta,tb∈T

E
[

C(Yi(Ta
i ), Yi(Tb

i ))
]

Prπa (Ta
i = ta)Prp(Tb

i = tb).

The interpretation here is that πa∗ characterizes the highest possible vote share for a given
counterfactual strategy of assigning the candidate characteristics of a, while features of b
are assigned according to a static averaging distribution (e.g., uniform).
Building on Equation 1, we preserve interpretability by restricting the counterfactual pro-
file distribution for candidate a to the same product-of-Categoricals used by the con-
joint randomization Prp. Concretely, Prπa(Ta

i = ta) has the identical factorized form
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as Prp(Ti = t), but with per-attribute probabilities πa replacing p. This choice yields
an attribute-readable policy and keeps off-policy evaluation tractable. The deterministic
“best profile” appears as a degenerate special case, Prπ∗(Ti = t) = I(t = t∗), but in high-
dimensional conjoints that target is unidentifiable and statistically brittle; we therefore
optimize over stochastic policies that summarize families of high-performing profiles.
To allow meaningful deviations from the design while controlling variance, we impose an L2
(or KL) trust-region around the logging distribution:

max
πa

Q(πa) − λn ∥πa − p∥2
2,

equivalently constraining ∥πa − p∥2 ≤ ϵn. This regularization is motivated by the increase
in off-policy variance as πa departs from p. The restriction–regularization pair—matching
the conjoint’s factorized assignment and shrinking toward p—is important because it (i)
preserves interpretability, (ii) stabilizes estimation, and (iii) yields a closed-form average-
case optimizer under two-way interactions (Proposition 1), while still admitting general
gradient-based solutions for richer (e.g., neural) outcome models.
Outcome model (Bernoulli GLM). Let Ci = I{Yi(Ta

i ) > Yi(Tb
i )} denote the forced

choice. We model Ci | (Ta
i , Tb

i ) ∼ Bernoulli(σ(ηi)), where σ(x) = {1 + exp(−x)}−1 is the
logistic link and

ηi = µ̃+
D∑

d=1

Ld∑
l=1

βdl

(
I{T a

id = l}−I{T b
id = l}

)
+
∑
d<d′

Ld∑
l=1

Ld′∑
l′=1

γdl,d′l′

(
I{T a

id = l, T a
id′ = l′}−I{T b

id = l, T b
id′ = l′}

)
.

(2)
where βdl denotes the main effect of factor d with level l, γd′l′,d′′l′′ denotes the interaction
effect of treatment d′l′ and d′′l′′. We impose sum-to-0 constraints on {βdl}l and on each
{γdl,d′l′}l,l′ for identifiability (Egami & Imai, 2019). Parameters (µ̃,β,γ) are estimated via
GLM (e.g., logistic) with optional sparsity (lasso) if desired. An intuition here is that the
difference between utilities under candidates a and b defines the choice between a and b.
This model makes calculation of the average outcome under a stochastic intervention
straightforward if the policies, πa and πb, over candidate a and b features define Cate-
gorical distributions. Then, the Stochastic Intervention Under Forced Choice Conjoint can
be written as:

Q(πa,πb) = ETa∼πa, Tb∼πb

[
σ

(
µ̃ +

∑
d,l

βdl (I{T a
d =l}−I{T b

d =l}) +
∑
d<d′

∑
l,l′

γdl,d′l′ (I{T a
d =l, T a

d′ =l′}−I{T b
d =l, T b

d′ =l′})

)]
.

Under a linear probability approximation, this becomes:

Q(πa,πb) = Eπa,πb

[
Pr(Yi(Ta

i ) > Yi(Tb
i )
]

= µ̃ +
D∑

d=1

Ld∑
l=1

βdl (πa
dl − πb

dl) +
∑

d,d′:d<d′

Ld∑
l=1

Ld′∑
l′=1

γdl,d′l′ (πa
dlπ

a
dl′ − πb

dlπ
b
dl′ ).

Motivated by the opponent candidate marginalization in AMCE analysis, we first consider
the optimal average-case stochastic intervention where a optimizes against a uniform dis-
tribution over candidate features. In this case, πa∗ , can here be derived in closed form,
assuming the features of the opposing candidate, b, are assigned according to a fixed dis-
tribution such as p. We will call this kind of analysis the Average Case Optimal Stochastic
Intervention for Forced-Choice Conjoints in that the behavior of the opponent, b, is static.

Proposition 1 Under a linear-probability approximation and with two-way interactions
and Ld levels for factor d, the average-case optimal L2 regularized stochastic intervention
is, for large enough value of λn, given by

πa∗
= C−1B, where Br(dl),1 = −βdl − 4λnpdl − 2λn

∑
l′ ̸=l,l′<Ld

pdl′

Cr(dl),r(dl) = −4λn; Cr(dl),r(dl′) = −2λn; Cr(dl),r(d′l′′) = γdl,d′l′′ ,

where r(dl) denotes an indexing function returning the position associated with its factor d
and level l into the rows of B and rows or columns of C. For proof, see §A.I.2.
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Here, the optimal stochastic intervention, Prπa∗ , is a deterministic function of the outcome
model parameters. The parameters defining the outcome model, β and γ, are not known a
priori, but can be estimated via GLM, with uncertainties calculated using asymptotic SEs.
Intuitively, the analysis done here allows researchers to investigate the implications of models
for candidate choice fit on the data. Instead of examining marginals via AMCE, they can
examine joint effects by looking at the optimal behavior implied under their choice of model.
Estimates of the optimal distribution over candidates are generated using uncertain model
parameters; however, the Delta method enables the rigorous propagation of uncertainty.
Because the values, πa∗ defining Prπa∗ are a deterministic function of modeling parameters,
the variance-covariance matrix of {Q̂(π̂a∗), π̂a∗} can be obtained via the Delta method:

Var-Cov({Q̂(π̂a∗
), π̂a∗

}) = J Σ̂ J′,

where Σ̂ is the variance-covariance matrix from the modeling strategy for Yi using regression
parameters {β,γ} and J is the Jacobian of partial derivatives (e.g., of Q̂(π̂a∗) and π̂a∗

w.r.t. the outcome model parameters): J = ∇{β̂,γ̂}{Q̂(π̂a∗), π̂a∗}. Under i.i.d., correct
specification, regularity conditions, and standard moment conditions of the MLE,

√
n
(

{Q̂(π̂a∗
), π̂a∗

} − {Q(πa∗
), πa∗

}
)

→ N (0, J Σ J′) .

The approach here thereby gives researchers a recipe for finding optimal stochastic inter-
ventions given choice of outcome model. Uncertainties from the outcome model parameters
propagate into uncertainties over the optimal strategy. In sum, a closed-form expression
for the regularized optimal stochastic intervention can be found in the base case of conjoint
analysis where one candidate optimizes against a fixed opponent distribution.
General Optimal Stochastic Interventions in Non-Adversarial Environments.
There are limitations to the approach just described. One limitation is that while pre-
serving the sum-to-1 constraint on the probabilities, the analytical solution in Proposition
1 does not guarantee the non-negativity of π̂a∗ for small values of λn. Another limitation
is that, as soon as we generalize the outcome model to the GLM or > 2-way interactions,
we have no analytical formula for the optimal solution.
To address these limitations, we can perform the stochastic intervention optimization for
π̂a∗ using iterative methods instead of an analytical closed form.1 For example, to ensure
that the entries in π̂a∗ lie on the simplex, we can re-parameterize the objective function
using αdl’s, which inhabit an unconstrained space (see §A.I.7) for details). In particular,
the stochastic interventional factor probabilities, π, are now a function of a, defined as so:

Prπ(a)(Td = l) =


exp(αdl)

1+
∑Ld−1

l′=1
exp(αdl′ )

if l < Ld

1
1+
∑Ld−1

l′=1
exp(αdl′ )

if l = Ld (baseline category)

We can optimize this via gradient ascent, which, for almost every starting point, arrives at
least at a local maximum or stationary point in polynomial time, assuming the strict saddle
property of the function to be optimized (Lee et al., 2016). We update the unconstrained
parameters using the gradient information, ∇α{O(a)}, where the full expression is found in
§A.I.4. In particular, we iteratively update the initial state of a in S gradient ascent update
steps: {

for s ∈ {1, ..., S} : { α(s+1) := α(s) + γ(s)∇a{O(α(s))} }
}︸ ︷︷ ︸

gradients traced through all S updates for Jacobian J

Inference proceeds analogously to the closed-form case, via the delta method. With a closed-
form expression for π̂a∗ , it is evident how we could write an expression for the derivative of
optimal as a function of the regression parameters using the closed-form Jacobian. With an

1With two-way interactions, this setup can be framed as a quadratic programming problem with
linear constraints, which can be solved efficiently using interior point or simplex methods. We focus
on gradient ascent as a more general solution, allowing neural network models of outcome.
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iterative computation needed to obtain π̂a∗ , we can consider the same quantity: although the
closed-form derivatives of the iterative solution may be unknown, we can still evaluate these
values using automatic differentiation—tracing the gradient information through the entire
sequence of S gradient ascent updates. Specifically, since the ascent procedure defines a
deterministic mapping from β̂, γ̂ to π̂a∗ (and thence to Q̂(π̂a∗)), reverse-mode differentiation
can backpropagate sensitivities through the full unrolled sequence of S updates, yielding J.
Adversarial Dynamics. Thus far, we have considered optimal stochastic interventions
under the assumption that one party (or candidate) chooses its profile distribution to maxi-
mize expected vote share, while treating the distribution of the opposing candidate’s profile
as fixed. Although this framework is useful in settings without direct strategic interaction
(e.g., analyzing hiring choices), it is less suitable when two agents strategically select their
own profiles in direct electoral competition. In many contexts, both the focal candidate and
the opposing candidate are engaged in simultaneous strategic optimization.
To capture these adversarial dynamics, we introduce an Adversarial Case Optimal Stochastic
Intervention framework that explicitly models two agents, which we label as A and B, each
attempting to maximize their expected probability of victory in a forced-choice setting. This
is a two-player, simultaneous action zero-sum game. Let Yi(Tc

i ) represent respondent i’s
latent utility for candidate c ∈ {A, B}, where Tc

i is the candidate’s profile randomly drawn
from some distribution. The observed forced-choice outcome is:

C(TA
i , TB

i ) = I{Yi(TA
i ) > Yi(TB

i )}.

We define candidate profile distributions for A and B as πA and πB , respectively. Each dis-
tribution assigns probabilities to the set of all possible profiles, T . The choice of a stochastic
(mixed) rather than deterministic profile stems from the combinatorics of potential profiles
and impossibility of identifying a unique optimal profile with finite samples.
We consider a zero-sum environment where one candidate’s gain is the other’s loss. In
this setting, it is natural to characterize the optimal profile distributions through a min-
max optimization problem. Letting Q(πA,πB) = EπA,πB

[
C(TA

i , TB
i )
]

denote the expected
probability that candidate A wins against candidate B, the adversarial objective is:

max
πA

min
πB

Q(πA,πB). (3)

In equilibrium, neither candidate can improve their expected performance by unilaterally
changing their distribution. Such a pair (πA∗

,πB∗) constitutes a Nash equilibrium for the
adversarial environment, evoking classic results in game theory (Kreps, 1989). In other
words, given πB∗ , no deviation from πA∗ improves A’s performance, and vice versa.
Institutional Constraints. Without institutional asymmetries, the adversarial game just
described can admit trivial or symmetric equilibria. Real strategic environments such as
elections, however, are structured by rules that determine who votes when, and therefore
shape both feasible strategies and equilibria. We model a two-stage system—party primaries
followed by a general election—under potentially asymmetric institutions across parties.
Let A and B index the two parties. Denote by IA and IB the (possibly overlapping) primary
electorates for A and B, respectively (closed, semi-open, and open primaries are special
cases), and by E the general-election electorate. Institutions determine these sets and their
sampling weights (e.g., turnout, inclusion of independents); we bundle these parameters as ℶ.
Each party c ∈ {A, B} chooses a factored, product-of-Categorical mixed profile distribution
πc (our policy); the rest of that party’s field is summarized by a counter-distribution πc′ .2

Primary Stage (Pairwise Head-to-head Model). For two profiles t, t′ ∈ T and party
c, define the primary head-to-head win probability

κc(t, t′) = E i∈Ic

[
C(t, t′)

]
= Pr

i∈Ic

(
Yi(t) > Yi(t′)

)
,

2Empirically, πc′
can be an empirical mixture over other entrants, a calibrated baseline, or

set equal to πc under symmetry. Multi-candidate or multi-round procedures can be handled by
replacing the pairwise mechanism below with the appropriate implied choice probabilities.
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where C(·, ·) is the forced-choice indicator introduced earlier. In a large electorate, κc(t, t′)
approximates the majority outcome. A simple and differentiable pushforward from primary
strategies to the nominee distribution is obtained by drawing one entrant from the party
strategy and one from the field (drawn from the counter distribution, πc′):

π̄c(t) = πc(t) Et′∼πc′
[
κc(t, t′)

]︸ ︷︷ ︸
t drawn as party entrant and wins

+ πc′
(t) Et′∼πc

[
1 − κc(t′, t)

]︸ ︷︷ ︸
t drawn from field and defeats the party entrant

. (4)

Thus π̄c is the induced distribution over the party’s nominee after the primary.

Independence Across Primaries. Conditional on profiles and voter utilities, we assume
the two primaries resolve independently,{

I[Yi(t) > Yi(t′)]
}

i∈IA
⊥
{
I[Yj(u) > Yj(u′)]

}
j∈IB

∣∣∣ t, t′, u, u′,ℶ (5)

which permits factorization of the joint nominee distribution as π̄A⊗π̄B .

General Election and Institutionalized Value. Given nominees t ∼ π̄A and u ∼ π̄B ,
the probability that A wins the general election—averaging over the general electorate E—is
Ei∈E

[
C(t, u)

]
= Pri∈E

(
Yi(t) > Yi(u)

)
. The expected (institution-aware) payoff to A is then

Qinst
(
πA,πB ; πA′

,πB′
,ℶ
)

= E t∼π̄A(πA,πA′
,ℶ)

u∼π̄B(πB ,πB′
,ℶ)

[
Ei∈E

[
C(t, u)

]]
. (6)

Equilibria Under Institutions. The minimimax problem over interpretable, variance-
controlled policies using factored, product-of-Categorical distributions, ΠA

fact, ΠB
fact ⊂ ∆(T )

becomes (assuming fixed πA′
,πB′):

max
πA

min
πB

Qinst
(
πA,πB ; πA′

,πB′
,ℶ
)
,

defining a restricted minimax problem. Von Neumann’s minimax theorem guarantees a
saddle point on the full simplices ∆(T ) × ∆(T ); however, within the restricted factored
distribution class, Πc

fact is in general non-convex, so a saddle point need not exist within the
restricted class. In practice, we compute a stationary point via gradient ascent–descent on
unconstrained logits; see Appendix for a discussion of how to certify how close the learned
pair (π̂A, π̂B) is to a full mixed-strategy equilibrium.
We evaluate the pushforward map πc 7→ π̄c by re-parameterized Monte Carlo over t ∼ πc

and t′ ∼ πc′ and optimize via gradient-based ascent–descent on the unconstrained logits
that parameterize the factored Categorical policies, with KL or L2 variance-control regu-
larization from Eq. 1. As in the non-institutional case, Delta-method inference follows by
backpropagating sensitivities of Qinst to the outcome-model parameters through the unrolled
optimization, yielding standard errors for ̂̄πA

, ̂̄πB and Q̂inst.

Remarks. (i) Open vs. closed primaries, heterogeneous turnouts, and the participation
of independents are encoded by ℶ via the composition/weighting of IA, IB , and E . (ii)
Hard rules (eligibility constraints, ballot-access requirements) are enforced by restricting the
support of πA and πB to admissible profiles. (iii) Multi-round or multi-candidate primaries
can be accommodated by replacing κc with the appropriate implied choice probabilities; the
pushforward Eq. 4 remains a differentiable functional of (πc,πc′

,ℶ). The framework here
can accommodate respondent covariates; see Appendix.
Quantifying Strategic Divergence. Unlike AMCE analysis, which cannot quantify ob-
served candidate information through experimental findings, the methodology here enables
the measurement of strategic divergence using actual candidate profiles and the elicited
conjoint preferences. In particular, given the optimal candidate distribution for one party,
πA, and another, πB , in a given institutional context, we can find the strategic divergence
factor, D, of a given candidate profile, t, using the estimated strategies:

D(t) =
∣∣∣∣ log

(
PrπA (t)
PrπB (t)

)∣∣∣∣ =
∣∣ log {PrπA (t)} − log {PrπB (t)}

∣∣. (7)
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When D(t) is 0, the candidate profile t would be equally likely under the strategic action
of party A and B; when D(t) is large, this is an indication that a given profile would be
likely under the strategy of one party, but unlikely under the strategy of another.
Experiments: Synthetic Scaling & Sample Complexity
Average Case Simulation. In Monte Carlo simulations using synthetic binary conjoint
data under a linear outcome model with interactions (scaled to R2 = 0.70 for main effects),
we assess finite-sample convergence of the average-case optimal stochastic intervention by
varying sample sizes (n ∈ 500, 1500, 3500, 10000) and dimensions (K ∈ 5, 10, 20), with L2
regularization tuned to diverge moderately from the uniform data-generating distribution.
Results demonstrate negligible bias and rapidly declining RMSE (variance-dominated) for
π̂∗ and Q̂(π̂∗) even at small n, with inference reliable as coverage nears nominal levels across
settings; details, including Figures 4–9, are in §A.I.8. This approach also substantially
outperforms a baseline AMCE-based policy (selecting per-factor maximizers), achieving
higher expected outcomes on average; see Figure 5 and Appendix for details.
Adversarial Case Simulation Design. To assess finite-sample performance in the ad-
versarial setting, we simulate two-party strategic competition between Republicans (R) and
Democrats (D) in a two-stage electoral process: primaries for nominee selection, followed by
a general election. Voters are affiliated with R (fraction pR) or D (pD = 1 − pR), with only
affiliated voters participating in their primary. We grid over pR ∈ {0.2, 0.3, 0.5, 0.65, 0.8}
and sample sizes n ∈ {1000, 5000, 10000}, with Monte Carlo replications per cell.

In primaries, each party offers two profiles (TR,1
i , TR,2

i for R; similarly for D), with one
selected via the party’s mechanism and the other uniform. Voter choices follow logistic
models based on features (gender, for tractable ground-truth equilibria). General elections
pit primary winners (TR,∗

i , TD,∗
i ) against each other, with all voters choosing via separate

R- and D-specific logistic models.
Ground-truth mixed strategies πR,πD approximate Nash equilibria via grid search, max-
imizing Q(πR,πD) = E[Pr(Yi(TR

i ) > Yi(TD
i ))]. Equilibria satisfy maxπR minπD Q =

minπD maxπR Q, where neither party can unilaterally improve expected vote share. For
each run, we estimate equilibria and outcomes, evaluating how pR and n affect strategies
and vote shares. We report RMSE and 95% CI coverage for πR. (Details in §A.4.)
Adversarial Case Simulation Results. Simulation results indicate that the estimation
error depends primarily on the conjoint sample size, with only modest sensitivity to the
proportion of Republican voters. Larger sample sizes reduce uncertainty by stabilizing the
estimates of voter utilities: with larger sample sizes, the overall estimation error declines
sharply for all values of pR. Coverage rates fall below the nominal level for n = 1000 but
approach the nominal 95% level for larger sample sizes. The stronger performance under
increasing n reflects the fact that voters’ utilities are more precisely estimated, allowing
us to obtain better approximations of the zero-sum equilibrium in a two-party adversarial
competition. In sum, these simulations highlight the key role of sample size and voter-party
composition in estimating equilibrium strategies under adversarial conditions. Next, we
apply these approaches to real data to explore optimal strategic dynamics in practice.
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Figure 1: Finite-sample perfor-
mance of π̂R in the adversarial simu-
lation. The top panel shows the root-
mean-squared error (RMSE) of π̂R

for different sample sizes and propor-
tions of Republican voters, pR. The
bottom panel illustrates the coverage
probability of 95% confidence inter-
vals for components of π̂R.

Experiments: Real-World Conjoint (U.S. Presidential)
We now apply our methods to analyze policy positioning and optimal candidate selection
using presidential preference data from Ono & Burden (2019). Here, our outcome is a
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binary indicator stating whether candidate a or b was selected by respondent i in a forced
conjoint experiment. In the latent utility formulation above, this can be characterized as
C(Yi(Ta

i ), Yi(Tb
i ))—an indicator indicating whether profile Ta

i yields higher utility for the
respondent than profile Tb

i ; see §A.1 for a list of candidate factors. (Here, all standard
errors for Delta method uncertainty propagation are clustered at the respondent level.)
Average vs. Adversarial Case Results. We optimize expected vote share for subpopula-
tions (all, Democrats, Republicans, independents) against a uniform opponent distribution,
using a GLM with interactions (lasso-regularized coefficients). Optimal stochastic inter-
ventions (Fig. 6) diverge on immigration, abortion, and policy expertise (e.g., economy
vs. public safety preferences), but converge on personality traits. Under closed primaries,
we compute minimax equilibria for Republican vs. Democrat strategies. Optimal policies
(Fig. 7) differ from average-case (Fig. A.III.2); e.g., Democrats deprioritize immigration in
average case but counter Republican guest-worker stances adversarially. Equilibrium vote
shares drop markedly (Fig. A.III.1), aligning closer to historical elections.
Results with Data-Driven Clustering. Prior analyses of regularized optimal stochastic
interventions—with and without adversarial dynamics—ignored respondent characteristics
beyond party affiliation. Yet, heterogeneous voter types often favor distinct candidate pro-
files. To uncover these differences, we apply optimal stochastic interventions under data-
driven respondent clustering, revealing how subgroups respond uniquely to high-dimensional
features. Leveraging the clustered outcome model of Goplerud et al. (2022), Fig. 11 shows
that covariate-sensitive strategies recover the underlying Democrat-Independent-Republican
preference structure a priori, without explicit inputs. This highlights the approach’s value
in non-adversarial settings, where subgroup discovery enables tailored treatment strategies.
Historical Comparison. In contrast to AMCEs, our methods yield distributions over
profiles, enabling likelihood-based evaluation of observed candidates. We map the 2016 pri-
mary contenders to the conjoint levels of Ono & Burden (2019) (details in §A.III.1; we make
this historical data on observed candidate features available open source on Hugging Face
(anonymous URL)); when a stance is ambiguous, we average uniformly over plausible lev-
els. Fig. 2 shows that the average-case optimizer (uniform opponent) implies vote shares far
outside the historical two-party range since 1976, whereas the adversarial optimizer closely
matches the 2016 result and its confidence interval covers the historical range. We then score
each 2016 contender by the log probability of their features under the estimated optimal
stochastic interventions. As seen in the table accompanying Fig. 2, log probabilities under
the adversarial strategies are higher than with average-case. Fig. 10 highlights heterogeneity
in polarization. Finally, Fig. A.III.5 aggregates the strategic divergence factor from Eq. 7;
overall, Democratic candidates show somewhat higher divergence.
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Party Quantity Mean Log Prob. (s.e.)

Democrats Average case -16.18 (0.62)
Democrats Adversarial case -16.77 (0.71)
Democrats Log likelihood ratio -0.59

Republicans Average case -15.87 (0.35)
Republicans Adversarial case -15.77 (0.37)
Republicans Log likelihood ratio 0.10

Figure 2: Compar-
ing the average case
and adversarial case re-
sults with real histori-
cal data. The adversar-
ial case expected opti-
mal outcomes are well
within the range of his-
torical experience; the
average case outcomes
are not.

Limitations. This approach has limitations (Table 1). Unlike non-parametric AMCE
estimation, optimal stochastic interventions integrate all factors and strategic dynamics but
rely on a two-step estimator requiring assumptions. While generalizable to complex outcome
models (e.g., neural networks (Zhang et al., 2025)), inference is difficult without accessible
variance-covariance matrices. Uncertainty estimates for equilibrium selection do not account
for preference formation. And, inferred strategic behavior depends on institutional design,
which may be hard to quantify. □
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Main Appendices

A Appendix

A.1 Ono & Burden, Context

To fix ideas, we consider a conjoint analysis of candidate choice for the U.S. President,
originally conducted by Ono & Burden (2019). The survey was fielded in March 2016, with
choice of conjoint features influenced by the context of the 2016 US presidential elections.
In this experiment, the outcome is a binary indicator stating whether one hypothetical
candidate or the other was selected by a respondent. Candidate features were randomized
with uniform probability and included age, sex, family context, and race.
The authors investigated various AMCEs, with a particular focus on gender. The AMCEs
are computed non-parametrically by taking the difference between the fraction of female
versus male candidates selected, averaging over all other (uniformly allocated) features of
the candidate and its opponent. Fig. 3 summarizes all factor-level AMCEs; the authors
concluded that female candidates are disadvantaged but the effect magnitude is small.

−0.05 0.00 0.05
AMCE:

Change in Pr(Selection)

68−76
52−67

*Age* (Baseline: 36−51)

12 years
8 years
4 years

*Experience* (Baseline: 0 years)

Single (never married)
Single (divorced)

Married (two children)
*Family* (Baseline: Married (no child))

70%
61%
52%
43%

*Favorability* (Baseline: 34%)

Republican Party
*Party* (Baseline: Democratic Party)

Public safety (crime)
Health care

Foreign policy
Environmental issues

Education
*Experience* (Baseline: Economic policy)

Pro−life
Pro−choice

*Abortion Policy* (Baseline: No opinion (neutral))

Reduce deficit through tax increase
Reduce deficit through spending cuts

*Deficit Policy* (Baseline: Don't reduce deficit now)

Opposes giving guest worker status
*Immigrant Policy* (Baseline: Favors giving guest worker status)

Maintain strong defense
*Security Policy* (Baseline: Cut military budget)

White
Hispanic

Black
*Race* (Baseline: Asian American)

Really cares about people like you
Provides strong leadership

Knowledgeable
Intelligent

Honest
*Personality* (Baseline: Compassionate)

Male
*Sex* (Baseline: Female)

Figure 3: An AMCE analysis using presidential candidates from the conjoint data of Ono
& Burden (2019).
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A.2 Methodological Details

Certifiability.

Definition 1 (Restricted equilibrium and exploitability) Let ΠA
fact, ΠB

fact be the
factored policy classes. A pair (πA,πB) ∈ ΠA

fact × ΠB
fact is a restricted minimax equilib-

rium if it is a saddle point of Qinst when each player is constrained to Πc
fact. Given a

candidate pair (πA,πB), define

ϵA
ext = maxσ∈∆(T ) Qinst(σ,πB ; πA′

,πB′
,ℶ) − Qinst(πA,πB ; πA′

,πB′
,ℶ),

ϵB
ext = Qinst(πA,πB ; πA′

,πB′
,ℶ) − minσ∈∆(T ) Qinst(πA, σ; πA′

,πB′
,ℶ).

The external exploitability is ϵext = max{ϵA
ext, ϵB

ext}; ϵext = 0 certifies a full mixed-strategy
equilibrium.

Next, we show that when the opponent’s strategy is fixed, the institution-aware payoff is
linear in the focal player’s joint distribution, so the focal player’s best response (over the
full simplex) is always a pure profile and can be found by simply evaluating a scalar score
for each profile. This lets us compute exploitability exactly (or by approximation) without
solving an inner optimization.

Proposition 2 (Linearity) Fix πA′
,πB′

,ℶ and πB. Then Qinst(πA,πB) is linear in
πA. Specifically,

Qinst(πA,πB) =
∑
t∈T

πA(t) GA(t),

where V (t, u) denotes the general-election win probability for A when nominees t and u face
off:

V (t, u) := Ei∈E
[
C(t, u)

]
= Pr

i∈E

(
Yi(t) > Yi(u)

)
and

ΨB(t) =
∑

u π̄B(u) V (t, u), GA(t) =
∑

s π
A′(s)

{
ΨB(t) κA(t, s)+ΨB(s) [1−κA(t, s)]

}
,

as the expected general-election win probability for A if A nominates profile t and B’s nom-
inee is drawn from its post-primary distribution π̄B (which itself reflects the primary rules
ℶ). Hence a full-simplex best response for A is the pure profile t⋆ ∈ arg maxt GA(t), and
ϵA

ext = maxt GA(t) −
∑

t π
A(t)GA(t). The symmetric statement holds for B.

Proof sketch. Substitute the primary pushforward (Eq. 4) into Qinst and collect terms in
πA.

Covariate-Sensitive Strategies The approach discussed here can accommodate respon-
dent covariates, as is possible in the sequential decision-making context (Lu et al., 2010). In
our discussion up to now, the new treatment probabilities were assigned without considering
the specific characteristics of each respondent. We could consider stochastic interventions
that took into account covariate information in the targeting of the high-dimensional treat-
ments:

Q(π∗) = max
π

Q(π) = max
π

EX
[
EY |X [Yi(t) | Xi = x] Prπ (Ti = t | Xi = x)

]
= max

π

{∑
x

∑
t∈T

E[Yi(t) | Xi = x] Prπ (Ti = t | Xi = x) Pr(Xi = x)
}

.

The covariate-sensitive distribution, Prπ(Ti |Xi), can be operationalized by having different
factor-level probabilities for each cluster, with a model predicting the cluster probabilities for
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each unit. If we let πdlk denote the probability of factor d, level l, for cluster k ∈ {1, ..., K}:

Prπ(Ti |Xi) =
K∑

k=1
Prπk

(Ti |Zik = 1) Pr(Zik = 1|Xi)

=
K∑

k=1

{
D∏

d=1
Prπk

(Tid|Zik = 1)
}

︸ ︷︷ ︸
Categorical probabilities for cluster k

Pr(Zik = 1|Xi = x)︸ ︷︷ ︸
Softmax regression

(8)

In this context, estimation can be conducted using outcome models that cluster main and
interaction effects (Goplerud et al., 2022).

A.3 Simulation Details, Average Case

Simulation Design: Average Case. To probe finite-sample dynamics of the proposed
optimal stochastic intervention methodologies for conjoint analysis, we employ Monte Carlo
methods. In our simulations, we analyze synthetic factorial experiments with binary treat-
ments where each treatment is drawn from an independent Bernoulli with probability pa-
rameter 0.5. We adopt a linear outcome model with interactions3:

Yi(Ti) = β0+
D∑

d=1

Ld−1∑
l=1

β′
dl I{Tid = l}+

∑
d′,d′′:d′<d′′

Ld′ −1∑
l′=1

Ld′′ −1∑
l′′=1

γd′,d′′ I{Tid′ = l′}I{Tid′′ = l′′}+ϵi,

with ϵi ∼ N(0, 0.1), since this makes the computation of Q(θ) straightforward (in particular,
Q(π) = β′π +

∑
d,d′:d<d′ γd,d′πdπd′). The coefficients are drawn i.i.d. from N(0, 1), and the

interaction coefficients are scaled so that the R2 in using the main effects only to predict
the outcome is 0.70 (ensuring some effective non-linearity). We obtain the true value of π∗

fixing λ and solving for π∗ using Proposition 1.
To analyze finite sample convergence of π̂∗, we vary the number of observations, n ∈
{500, 1500, 3500, 10000}. To analyze performance in the high-dimensional setting, where
the number of treatment combinations is greater than the number of observations, we vary
the number of factors, K ∈ {5, 10, 20}. We fix λ so that the regularized optimal stochas-
tic interventions have no factor probabilities greater than 0.9, while having a degree of
divergence from the (uniform) data-generating probabilities.

Simulation Results: Average Case. First, we examine the degree to which π̂∗, the
optimal stochastic intervention factor probabilities, and Q̂(π̂∗), the average outcome under
the regularized stochastic intervention, converge to the true values as the sample size grows.
We see in the left panel of Fig. 4 that, with a small number of factors (5), the bias of π̂∗

is insignificant even with a small sample size (500). The variance of estimation contributes
more prominently to the overall RMSE for all numbers of covariates; the variance decreases
rapidly with the sample size. We see a similar pattern for Q̂(π̂∗) in right panel of Fig.
4, where the bias is nominal with a small number of factors and the variance contributes
more prominently to the overall RMSE, which still decreases with the sample size. Results
are consistent with the idea that the optimal stochastic interventions are more difficult to
estimate if there are more candidate features involved.
We next compare the value of the optimal stochastic intervention, Q(π̂∗), against a simple
baseline policy that, for each factor, places all mass on the level with the highest estimated
main effect from a main-effects-only model (i.e., a degenerate policy selecting per-factor
AMCE maximizers, ignoring interactions). As shown in Figure 5, the optimal SI method
yields a higher mean value of 1.550 compared to the baseline, demonstrating the benefits of
accounting for interactions in policy optimization.
We next consider estimated uncertainties compared against true sampling uncertainties.
We see in Fig. A.I.1 that the asymptotic variance of Q̂(π̂∗) is somewhat underestimated

3For simplicity, we here do not adopt the sum-to-0 coefficient constraint, and instead use a
baseline category.
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Table 1: Comparing different approaches to conjoint analysis. Pr here refers to the data-
generating probability distribution over candidate features; Prπ refers to the distribution
defining an optimal stochastic intervention. SI denotes “stochastic intervention”; GLM
denotes “generalized linear model.”

Average
Marginal
Component
Effect
(AMCE)

Average
Marginal
Interaction
Effect
(AMIE)

Average Case
Optimal
Stochastic
Intervention

Adversarial
Case Optimal
Stochastic
Intervention

Character
Components
considered at a time

1 2+ All All

Baseline factor
category specified?

Yes Yes No No

Marginalization
over:

Respondents;
other factors
of reference
profile via
Pr; all factors
of opponent
profile via Pr

Respondents;
other factors
of reference
profile via
Pr; all factors
of opponent
profile via Pr

Respondents;
factors of
reference via
Prπ,
opponent
profile via Pr

Respondents;
factors of
reference
profile via
Prπa ,
opponent
profile via
Prπb

Informative about
strategy in an
adversarial setting?

No No No Yes

Hyper-parameters Strength of
regulariza-
tion in
outcome
model (rarely
used)

Strength of
regulariza-
tion in
outcome
model if used

Strength of
regulariza-
tion in
outcome
model; SI
regulariza-
tion

Strength of
regulariza-
tion in
outcome
model; SI
regulariza-
tion

Uncertainty
estimation

GLM
variance-
covariance;
bootstrap

GLM
variance-
covariance;
bootstrap

GLM
variance-
covariance +
Delta
method

GLM
variance-
covariance +
Delta
method

Data Requirements
Requires
forced-choice design?

No No No Yes

Requires distinct
respondent and
profile sub-groups?

No No No Yes

for small sample sizes. Fig. A.I.2 in §A.I.8 reports the true sampling variability of π̂∗

against the average standard error estimate from asymptotic inference; estimates are neither
systematically too wide nor too narrow. Finally, we examine coverage, which combines
information about point with variance estimates. We see in Fig. 8 coverage close to the
target coverage rate across the number of factors and observations for the components of
π∗ and (in Fig. 9) for Q̂(π̂∗) itself.
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Figure 4: Left. Estima-
tion bias and RMSE of π∗.
Each line represents one en-
try in π∗. The bold line and
closed circles represent the
average value.
Right. The estimation
bias and RMSE of Q(π∗).
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Figure 5: Comparison against a baseline.

A.4 Simulation Design: Adversarial Case

In order to investigate finite-sample performance under the more complex adversarial setting,
we simulate strategic behavior between two hypothetical political parties denoted by R
(Republican) and D (Democrat). We design a two-stage electoral process in which each
party first selects a nominee via a primary election, and then those nominees compete
in a general election. Voters differ by party affiliation, which determines whether they
participate in the corresponding primary. Let pR denote the fraction of Republican voters
in the electorate, so that pD = 1 − pR is the fraction of Democratic voters. For each
simulation run, we fix pR ∈ { 0.2, 0.3, 0.5, 0.65, 0.8} along a grid, and we vary the conjoint
sample size n ∈ {1000, 5000, 10000}. Each grid cell is replicated across Monte Carlo draws.
Within each simulated dataset, we generate responses for primary and general-election
stages. In the first stage, only voters from party R or party D participate in their own party’s
primary. We assign two potential candidate profiles for party R and two for party D; one of
these candidates is selected using the party’s assignment mechanism, the other uniformly.
Let these be TR,1

i , TR,2
i for R and TD,1

i , TD,2
i for D. We specify probabilities with which
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Figure 6: Optimal strategies in the average case setting. Black, blue, red, and green denote
the average case optimal among all, Democrat, Republican, and Independent respondents
in the sample.

each candidate profile is chosen by each respondent in that primary, using logistic models
to capture how voters respond to candidate features—here, simply gender for tractability
when computing ground truth equilibria via grid search. In the second stage, all voters, R

and D, face a forced choice in the general election between TR,∗
i and TD,∗

i , winners of the
respective primaries. In the second stage, Republican and Democrat voters select candidates
again using two logistic models.
Having outlined the data-generating process, we now discuss how we compute the ground-
truth strategies approximating a Nash equilibrium in the space of possible profile distribu-
tions for each party. The quantities πR and πD describes a mixed strategy over candidate
characteristics for R and D, respectively. We define

Q
(
πR,πD

)
= ETR

i
∼πR, TD

i
∼πD

[
Pr
(
Yi(TR

i ) > Yi(TD
i )
)]

,

where TR
i and TD

i represent each party’s selection (who competes against the primary
challenger). To find a Nash equilibrium, we compute each party’s best response to the other
via a discrete grid search. In practice, this means we scan over πR and πD, computing

max
πR

min
πD

Q
(
πR,πD

)
= min

πD
max
πR

Q
(
πR,πD

)
,

checking which (πR,πD) satisfies the equilibrium condition that neither party can unilat-
erally improve its expected vote share; we label these as the equilibrium strategies.
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Figure 7: Optimal strategies in an adversarial setting. Blue/red denote the equilibrium
strategy for the agent facing Democratic/Republican voters in the primary stage, respec-
tively.

In order to evaluate the finite-sample performance of the proposed algorithm for the adver-
sarial setting, we implemented the two-stage design described in the preceding section while
varying the proportion of Republican voters, pR, in the electorate. That is, for each Monte
Carlo run, we save the estimated equilibrium distribution for πR and πD, along with the
realized general-election outcomes under those strategies. By aggregating results across the
grid of {pR, nobs} and across replications, we examine trends in how party composition pR

and sample size nobs affect equilibrium strategies, estimated vote shares, and convergence.
This design allows us to evaluate the proposed adversarial methodology under changing
population compositions and sample sizes. We focus on summarizing estimation accuracy
for πR: we record root-mean-squared error (RMSE) and coverage of confidence intervals
under repeated sampling, with coverage targeting the nominal rate of 95%.

A.5 Empirical Results Referenced in Main Text
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Figure 8: Finite-sample coverage of π∗. Each line represents one entry in π∗. The bold line
and closed circles represent the average value.
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Figure 9: Finite-sample coverage for Q(π∗).
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Figure 10: Candidate analysis. In all plots, the y axis displays the evaluated log probability
under a given policy. Figure sorted from left to right, arranged by how strongly their log
probabilities trend across partisan ordering.
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Figure 11: Optimal strategies in the covariate sensitive case, where a different strategy for
allocating candidate features can be used for three data-derived clusters of voters.
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Supplementary Appendices

Appendix I: Theoretical Analysis

A.I.1 The Optimal Stochastic Intervention in a Two-Way Interaction
Model With Binary Factors

Recall that the objective function to maximize is

O(π) = Q(π) − λ||p − π||2

= β0 +
D∑

d=1
βdπd +

∑
d′<d′′

γd′,d′πd′πd′′ − λ

D∑
d′′′=1

{(πd′′′ − pd′′′)2 + ([1 − πd′′′ ] − [1 − pd′′′ ])2}

so that
dO

dπd
= βd +

∑
d,d′′ ̸=d′

γd,d′π′
d − 4λ(πd − pd) = 0

=⇒∑
d,d′ ̸=d

γd,d′πd′′ − 4λπd = −βd − 4λpd

where we use pd to denote the vector of Categorical probabilities for all levels in factor d.
This sets up a system of D linear equations with D unknowns, which can be represented in
matrix form:

Cπ∗ = B
π∗ = C−1B,

where Bd,1 = −βd − 4λpd, Cd,d = −4λ and Cd,d′′ = γd,d′ .

A.I.2 The Optimal Stochastic Intervention in a Two-Way Interaction
Model With Multiple Factor Levels

The outcome model with multiple factor levels is

Yi(t) = β0 +
D∑

d=1

Ld−1∑
l=1

βdltdl +
∑

d′,d′′:d′<d′′

Ld′ −1∑
l′=1

Ld′′ −1∑
l′′=1

γd′l′,d′′l′′ td′l′ td′′l′′ + ϵi,

where tdl denotes the binary indicator for whether level l in factor d is assigned. By linearity
of expectations and independence of factors:

Q(π) = β0 +
D∑

d=1

Ld−1∑
l=1

βdlπdl +
∑

d′,d′′:d′<d′′

Ld′ −1∑
l′=1

Ld′′ −1∑
l′′=1

γd′l′,d′′l′′ πd′l′ πd′′l′′ .

The objective is now

O(π) = Q(π) − λ||p − π||2

= β0 +
D∑

d=1

Ld−1∑
l=1

βdl πdl +
∑

d′,d′′:d′<d′′

Ld′ −1∑
l′=1

Ld′′ −1∑
l′′=1

γd′l′,d′′l′′ πd′l′πd′′l′′

− λ

D∑
d′′′=1

{ Ld−1∑
l′′′=1

(πd′′′l′′′ − pd′′′l′′′)2 +

1 −

Ld′′′ −1∑
l′′′′=1

πd′′′l′′′′

−

1 −

Ld′′′ −1∑
l′′′′=1

pd′′′l′′′′

2}
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so that, for l < Ld:

dO

dπdl
= βdl +

∑
d,d′ ̸=d

Ld−1∑
l=1

Ld′ −1∑
l′=1

γdl,d′l′ πd′l′ − 2λ(πdl − pdl) − 2λ

(
Ld−1∑
l′=1

(πdl′ − pdl′)
)

= 0

=⇒∑
d,d′ ̸=d

Ld−1∑
l=1

Ld′ −1∑
l′=1

γdl,d′l′ πd′l′ − 4λπdl − 2λ
∑

l′ ̸=l,l′<Ld

πdl′ = −βdl − 4λpdl − 2λ
∑

l′ ̸=l,l′<Ld

pdl′

with This again sets up a system of
∑D

d=1(Ld − 1) linear equations with the same number
of unknowns, which can be represented in matrix form:

Cπ∗ = B
π∗ = C−1B.

where, letting r(·) denote a function returning the appropriate index into the matrix
rows/columns:

Br(dl),1 = −βdl − 4λpdl − 2λ
∑

l′ ̸=l,l′<Ld

pdl′

Cr(dl),r(dl) = −4λ

Cr(dl),r(dl′) = −2λ

Cr(dl),r(d′l′′) = γdl,d′l′′

A.I.3 The Optimal Stochastic Intervention in a Two-Way Interaction
Model Under Forced Choice Outcomes

The outcome model with multiple factor levels is

Pr(Yi(Ta
i ) > Yi(Tb

i ) | Ta
i , Tb

i ) = µ̃ +
D∑

d=1

Ld∑
l=1

βdl (I{T a
id = l} − I{T b

id = l})

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ (I{T a
id′ = l′, T a

id′′ = l′′} − I{T b
id′ = l′, T b

id′′ = l′′}) + ϵi,

where tdl denotes the binary indicator for whether level l in factor d is assigned. By linearity
of expectations and independence of factors:

Q(πa,πb) = Eπa(Ta),πb(Tb)

[
Pr(Yi(Ta

i ) > Yi(Tb
i ) | Ta

i , Tb
i )
]

= µ̃ +
D∑

d=1

Ld∑
l=1

βdl (π∗
dl − πb

dl)

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ (π∗
d′l′π∗

d′l′ − πb
d′l′πb

d′l′)

• Case 0: Choose πa and πb jointly to maximize the selection probability for Ta
i .

Problem: Not an interpretable solution: Choose best candidate strategy A to go
against worst possible candidate B.

• Case 1: Average Case Analysis: Set πb to be p. Interpretation: Best candidate
strategy A uniformly averaging over all possible candidate B’s.

• Case 2: Minimax Analysis: Set πa to maximize, πb to minimize objective. In-
terpretation: Optimally select candidate strategy A to compete against optimally
selected candidate strategy B.
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The objective is now
O(πa,πb) = Q(πa,πb) − λ

(
||p − πa||2 + ||p − πb||2

)
= µ̃ +

D∑
d=1

Ld∑
l=1

βdl (π∗
dl − πb

dl)

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ (π∗
d′l′π∗

d′l′ − πb
d′l′πb

d′l′)

− λ
∑

#∈{∗,b}

D∑
d′′′=1

{ Ld∑
l′′′=1

(π#
d′′′l′′′ − pd′′′l′′′)2

}
Under the Average Case Maximizer:

O(πa, p) = µ̃ +
D∑

d=1

Ld∑
l=1

βdl (π∗
dl − pdl)

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ (π∗
d′l′π∗

d′′l′′ − pd′l′pd′′l′′)

− λ

D∑
d′′′=1

{ Ld∑
l′′′=1

(π∗
d′′′l′′′ − pd′′′l′′′)2

}
so that

dO

dπ∗
dl

= βdl +
∑

d,d′ ̸=d

Ld∑
l=1

Ld′∑
l′=1

γdl,d′l′ π∗
d′l′ − 2λ(π∗

dl − pdl) = 0

=⇒∑
d,d′ ̸=d

Ld∑
l=1

Ld′∑
l′=1

γdl,d′l′ π∗
d′l′ − 2λπ∗

dl = −βdl − 2λpdl

This sets up a system of
∑D

d=1 Ld linear equations with the same number of unknowns,
which can be represented in matrix form:

Cπ∗ = B
π∗ = C−1B.

where, letting r(·) denote a function returning the correct index into the matrix:
Br(dl),1 = −βdl − 2λpdl

Cr(dl),r(dl) = −2λ

Cr(dl),r(dl′) = 0
Cr(dl),r(d′l′′) = γdl,d′l′′

Here, the optimal stochastic intervention is a deterministic function of the outcome model
parameters. The parameters defining the outcome model, β and γ, are not known a priori,
but can be estimated via generalized linear methods, with the asymptotic standard errors
then employed. Because the parameters, πa, that define Pra

π are a deterministic function of
the regression parameters, the variance-covariance matrix of {Q̂(π̂a), π̂a} can be obtained
via the delta method:

Var-Cov({Q̂(π̂a), π̂a}) = J Σ̂ J′,

where Σ̂ is the variance-covariance matrix from the modeling strategy for Yi using regression
parameters β and γand J is the Jacobian of partial derivatives (e.g., of Q̂(π̂a) and π̂a with
respect to the outcome model parameters):

J = ∇{β̂,γ̂}{Q̂(π̂aa

), π̂aa

}.
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If the assumptions of the first-stage model hold, then
√

n
(

{Q̂(π̂a), π̂a} − {Q(πa),πa}
)

→ N (0, J Σn J′)

A.I.4 Gradients for Obtaining the Variance-Constrained Optimal
Stochastic Intervention in the Two-Way Constrained Case

The gradients for the simplex-constrained objective function are, l < Ld,

∂O

∂adl
= βdlAdl +

∑
l(a) ̸=l

βdl(a)

(
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

)

+
∑

d,d′ ̸=d

Ld′ −1∑
l′=1

γdl,d′l′Adl
exp(ad′l′)

{1 +
∑Ld′ −1

l′(m)=1 exp(ad′l′(m))}

+
∑

d,d′ ̸=d

∑
l(a) ̸=l

Ld′ −1∑
l′=1

γdl(a),d′l′
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

exp(ad′l′)
{1 +

∑Ld′ −1
l′(m)=1 exp(ad′l′(m))}

− 2λAdl

(
exp(adl)

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}
− pdl

)

− 2λ
∑

l(a) ̸=l

{
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

(
exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}
− pdl(a)

)}

− 2λ
exp(adl)

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

Ld−1∑
l′=1

(
exp(adl′)

{1 +
∑Ld−1

l′(m)=1 exp(adl′(m))}
− pdl′

)
,

where

Adl =
exp(adl){1 +

∑Ld−1
l(m)=1 exp(adl(m)) − exp(adl)}

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2
.

A.I.5 Gradients for Obtaining the Variance-Constrained Optimal
Stochastic Intervention in the Two-Way Constrained Case under a
Fully Parameterized Model under Forced Choice

The objective is

O(πa,πb) = Q(πa,πb) − λ
(
||p − πa||2 + ||p − πb||2

)
= µ̃ +

D∑
d=1

Ld∑
l=1

βdl (π∗
dl − πb

dl)

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ (π∗
d′l′π∗

d′l′ − πb
d′l′πb

d′l′)

− λ
∑

#∈{∗,b}

D∑
d′′′=1

{ Ld∑
l′′′=1

(π#
d′′′l′′′ − pd′′′l′′′)2

}
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A.I.6 Gradients for Obtaining the Variance-Constrained Optimal
Stochastic Intervention in the Two-Way Constrained Case under a
Fully Parameterized Model

With a fully parameterized, ANOVA-type model, we have:

Q(a) = β0 +
D∑

d=1

Ld∑
l=1

βdl · 1
1 + exp(−adl)

+
∑

d′,d′′:d′<d′′

Ld′∑
l′=1

Ld′′∑
l′′=1

γd′l′,d′′l′′ πd′l′πd′′l′ .

The gradients for the simplex-constrained objective function are, l < Ld,

∂O

∂adl
= βdlAdl +

∑
l(a) ̸=l

βdl(a)

(
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

)

+
∑

d,d′ ̸=d

Ld′∑
l′=1

γdl,d′l′Adl
exp(ad′l′)

{1 +
∑Ld′ −1

l′(m)=1 exp(ad′l′(m))}

+
∑

d,d′ ̸=d

∑
l(a) ̸=l

Ld′∑
l′=1

γdl(a),d′l′
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

exp(ad′l′)
{1 +

∑Ld′ −1
l′(m)=1 exp(ad′l′(m))}

− 2λAdl

(
exp(adl)

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}
− pdl

)

− 2λ
∑

l(a) ̸=l

{
− exp(adl) exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

(
exp(adl(a))

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}
− pdl(a)

)}

− 2λ
exp(adl)

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2

Ld−1∑
l′=1

(
exp(adl′)

{1 +
∑Ld−1

l′(m)=1 exp(adl′(m))}
− pdl′

)
,

where

Adl =
exp(adl){1 +

∑Ld−1
l(m)=1 exp(adl(m)) − exp(adl)}

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}2
.

A.I.7 Objective Function in Unconstrained Space

O(a) = Q(a) − λn||p − π||2

= β0 +
D∑

d=1

Ld−1∑
l=1

βdl
exp(adl)

{1 +
∑Ld−1

l(m)=1 exp(adl(m))}

+
∑

d′,d′′:d′<d′′

Ld′ −1∑
l′=1

Ld′′ −1∑
l′′=1

γd′l′,d′′l′′′
exp(ad′l′)

{1 +
∑Ld′ −1

l′(m)=1 exp(ad′l′(m))}
exp(ad′′l′)

{1 +
∑Ld′′ −1

l′(m)=1 exp(ad′′l′(m))}

− λn

D∑
d′′′=1

{
Ld−1∑
l′′′=1

(
exp(ad′′′l′′′)

{1 +
∑Ld′′′ −1

l′′′(m)=1 exp(ad′′′l′′′(m))}
− pd′′′l′′′

)2

+

1 −

Ld′′′ −1∑
l′′′′=1

exp(ad′′′l′′′′)
{1 +

∑Ld′′′ −1
l′′′′(m)=1 exp(ad′′′l′′′′(m))}

−

1 −

Ld′′′ −1∑
l′′′′=1

pd′′′l′′′′

2}

Appendix II: Supplementary Simulation Results

A.I.8 Supplementary Simulation Results with the Two-Step Estimator

A.I.9 Estimation Details
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Figure A.I.1: Points depict the average estimated standard deviation obtained via the Delta
method. Colors depict the sample size (with n = 500 being light gray and n=10,000 being
black).
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Figure A.I.2: True sampling variability of π̂∗ plotted against the variability estimated via
asymptotic inference. Colors depict the sample size (with n=500 being light gray and
n=10,000 being black).
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Appendix III: Additional Application Results

A.III.1 Mapping the 2016 Candidate Primary Features onto the Conjoint
Levels of Ono & Burden (2019)

We map the features of the 2016 presidential election candidates onto the conjoint features of
Ono & Burden (2019). In some cases, this mapping is straightforward (e.g., with candidate
gender). In other cases, the mapping is less straightforward. For example, the factor levels
associated with marital status do not encompass the full range of possibilities seen among
2016 candidates. In such cases, we select the closest mapping (see Replication Data for full
details). For example, a real, married candidate with 4 children would be mapped to the
“Married with 2 children” level (not the “Single, divorced” or“Married, no children” levels).
We will explore these substantive questions by integrating the experiment mentioned above
from Ono & Burden (2019). In this election, 17 Republican and 6 Democrat candidates
vied for their respective partie’ nomination in primaries. These candidates have a large
number of features, which we mapped onto the conjoint factors of Ono & Burden (2019)
(see §A.III.1 for details). Below we present this mapping for four of the candidates:

∗ Ben Carson: Republican, Black, male, 68-76, married (with children), 0 years of
political experience, compassionate, policy focus on health care, emphasis on main-
taining strong defense, opposes giving guest worker status, pro-life, don’t reduce
deficit now.

∗ Hillary Clinton: Democrat, White, female, 68-76, married (with children), 16 years
of political experience, provides strong leadership, foreign policy, maintains strong
defense, favors giving guest worker status, pro-choice, don’t reduce deficit now.

∗ Bernie Sanders: Democrat, White, male, 68-76, married (with children), 34 years of
political experience, compassionate, policy focus on economy, cut military budget,
ambiguous position on immigration, pro-choice, reduce deficit through tax increase.

∗ Donald Trump: Republican, White, male, 68-76, married (with children), 0 years of
political experience, provides strong leadership, policy focus on economy, emphasis
on maintaining strong defense, opposes giving guest worker status, pro-life, reduce
deficit through spending cuts.

Implementation Details: Implementation deploys JAX for performing differentiable opti-
mization routines. All analyses run in under 12 hours on consumer-grade PC hardware
(CPU or GPU).
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 Race (*=White)

 Age (*=36−51)

 Policy area of expertise (*=Health care)

 Party affiliation (*=Democratic Party)

 Family (*=Married (two children))

 Salient personal characteristics (*=Honest)

 Favorability rating among the public (*=70%)

 Position on immigrants (*=Opposes giving guest worker status)

 Position on national security (*=Maintain strong defense)

 Position on abortion (*=Pro−choice)

 Experience in public office (*=12 years)

 Position on government deficit (*=Reduce deficit through spending cuts)
Q̂(π̂

o
, π̂

t) 
Q̂(π̂

o) 

Figure A.III.1: Expected optimized vote share in the population in the average (uniform)
case (denoted by Q̂(π̂a)), compared against factor-wise marginal means. The ∗ for the
marginal means indicates the level with the highest marginal outcome (with that level listed
on the right-hand side of the figure along with the factor name). Q̂(π̂a, π̂b) denotes the
expected optimized vote share in the population under adversarial conditions compared
against factor-wise marginal means.
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Figure A.III.2: Comparing optimal strategies in the non-adversarial vs. adversarial setting.
Blue and red denote the equilibrium strategy for the agent facing Democratic and Republican
voters in the primary stage, respectively.
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Figure A.III.3: Marginal means analysis, among all (left) and Democrat respondents (right).
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Figure A.III.4: Marginal means analysis, among Republican (left) and Independent
(right)respondents.
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Figure A.III.5: Strategic divergence factor computed for major candidates in the 2016 pri-
maries.
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