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ABSTRACT

Data from the real world contains a vast amount of multimodal information,
among which vision and language are the two most representative modalities.
Moreover, in recent years, increasingly heavier models, e.g., Transformers, have
attracted the attention of researchers to model compression. However, how to
compress multimodal models, especially vison-language Transformers, is still
under-explored. This paper proposes the Unified and Progressive Pruning (UPop)
that compresses vision-language Transformers via pruning. UPop incorporates 1)
unifiedly searching multimodal subnets in a continuous optimization space from
the original model; 2) progressively retraining the subnet while searching. Specif-
ically, to ease the progress of pruning, we design Unified Pruning to automatically
assign the appropriate pruning ratio to each compressible component, which com-
prises Self-Attentions, Cross-Attentions, and MLPs in both vision and language
branches, instead of manually assigning each component a pruning ratio. Further-
more, to attain a higher compression ratio, we propose Progressive Pruning to
maintain convergence between the search and retrain. In addition, UPop enables
zero-cost subnet extraction after the search, and the searched subnet can even be
used without further retraining. Experiments on multiple generative and discrim-
inative vision-language tasks demonstrate the effectiveness and versatility of the
proposed UPop. For example, we achieve 2× compression on Image Caption with
0.5 SPICE drop and 4× compression on VQA with 2.9% accuracy drop.

1 INTRODUCTION

The number of parameters and FLOPs of deep learning models (Devlin et al., 2018; Shoeybi et al.,
2019; Brown et al., 2020; Shao et al., 2021; Smith et al., 2022) have proliferated in recent years,
which makes model compression exceedingly critical for deploying the increasingly heavier models
on edge devices. There are lots of approaches that can be used to compress or accelerate deep
learning models, such as weight sharing (Lan et al., 2019), low-rank factorization (Yu et al., 2017),
pruning (He et al., 2017), quantization (Tao et al., 2022), parameter bootstrapping Chen et al. (2022),
and knowledge distillation (Yang et al., 2022).

Recently, compression approaches dedicated to the Transformers (Vaswani et al., 2017) have also
attracted much attention. According to the compressed components, these approaches can be sum-
marized into two categories. The first category is token compression. By eliminating the number
of input tokens, these approaches (Goyal et al., 2020; Rao et al., 2021) can reduce the FLOPs of
models. The second category is model compression. By reducing the model size, these approaches
(Wang et al., 2020; 2021) can reduce both the parameters and FLOPs of models. This paper focuses
on model compression so that the parameters and FLOPs of models can be reduced simultaneously.

In real applications, there are prevalent situations where humans need to receive and process infor-
mation from multiple modalities, among which vision and language are the two most representative
ones. There are lots of multimodal tasks that have been extensively studied, including but not lim-
ited to Image Caption (Lin et al., 2014) that requires generating a text description for a given image,
Text-Image Retrieval (Jia et al., 2015) that requires selecting one image from the candidate list based
on a given text description, and NLVR2 (Suhr et al., 2018) that requires predicting whether a given
sentence correctly describes a pair of given images.
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To tackle these multimodal tasks, various multimodal models (Kiros et al., 2014; Karpathy et al.,
2014; Antol et al., 2015; Vinyals et al., 2015; Yang et al., 2016; Huang et al., 2017) have been
proposed accordingly. Furthermore, as Transformer (Vaswani et al., 2017) has been more and more
popular among deep models, transformer-based models (Tan & Bansal, 2019; Lu et al., 2019; Zhou
et al., 2020; Li et al., 2020; Kim et al., 2021; Jia et al., 2021; Yu et al., 2022; Wang et al., 2022a) have
also dominated the recent studies of multimodal models. For example, CLIP (Radford et al., 2021)
and BLIP (Li et al., 2022) are some of the most representative multimodal models among them.
Benefiting from massive image-text pairs as pre-training datasets, they can learn joint representations
of multiple modalities and can be further used to fine-tune on kinds of multimodal tasks.

Although compression on unimodal tasks has been widely investigated, how to compress multimodal
models, especially vision-language Transformers, is still under-explored. Only a few works (Jin
et al., 2021; Fang et al., 2021; Wang et al., 2022b) have paid attention to this problem, while all
of them have been trying to conduct compression from knowledge distillation. In this paper, we
propose a novel multimodal compression approach, Unified and Progressive Pruning (UPop).

A straightforward design of multimodal compression is to compress each modality separately via
the unimodal compression approach. However, there exist two main challenges. One of the chal-
lenges is that we have to manually explore suitable compression ratios for different components in
different modalities, which is inefficient, especially when the model has multiple types of modules.
To overcome this shortcoming, we propose to unifiedly search on different modalities and different
structures, which enables our approach to adaptively assign compression ratios among all com-
pressible components given a total compression ratio. The second challenge is that the traditional
two-stage compression paradigm (i.e., retraining after search) fails when the compression ratio is
high. The significant gap of parameter weights between the searched model (i.e., model after the
search phase) and the pruned subnet to be retrained severely degrades the final performance and
even causes it hard to converge. Consequently, we propose an improved compression paradigm that
conducts search and retraining progressively and simultaneously, which can effectively eliminate
the gap mentioned above.

Our main contributions can be summarized as

• For the first time, we propose a multimodal pruning approach UPop for vision-language
Transformers. UPop searches multimodal models in continuous optimization space, and a
round of search can yield numerous multimodal subnets.

• The proposed Unified Pruning enables adaptive compression ratio assignment among
all compressible components. Progressive Pruning proposes an improved compression
paradigm that gains better convergence and supports higher compression ratios.

• As a deployment-friendly pruning approach, UPop’s effectiveness and versatility are val-
idated on various multimodal tasks, datasets, and model architectures (e.g., dual-stream
CLIP (Radford et al., 2021) and mixed-stream BLIP (Li et al., 2022)). UPop is also evalu-
ated on the unimodal task (e.g., image classification on ImageNet-1k Deng et al. (2009)).

2 RELATED WORK

Vision-Language Transformer Recently, significant progress in vision-language tasks has been
achieved by various Vision-Lanauge Transformers (Radford et al., 2021; Yu et al., 2022; Wang
et al., 2022a), among which BLIP (Li et al., 2022) is one of the most representative models. BLIP
is a pure transformed-based multimodal model, which employs a Bert (Devlin et al., 2018) and a
ViT (Dosovitskiy et al., 2020) as text encoder and image encoder, respectively. To allow interaction
between vision and language modalities, BLIP injects vision information from the image encoder
into the text encoder by inserting an additional cross-attention layer after the self-attention layer of
each transformer block in the text encoder.

Transformer Pruning There are several works exploring Transformers pruning on unimodal
tasks. For example, structured pruning that removes layers (Fan et al., 2019), headsMichel et al.
(2019), or channels (Zhu et al., 2021), and unstructured pruning (Yang et al., 2021; Chen et al.,
2021b) that removes individual weights. The closest work to ours is ViT-Slimming (Chavan et al.,
2022), a SOTA unimodal pruning approach applied to image classification. ViT-Slimming inserts
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trainable masks into the original model for searching subnets and retraining the searched subnets.
Compared with ViT-Slimming, the proposed UPop is different in 3 aspects: 1) Unified Pruning en-
ables adaptively instead of manually assigning the appropriate pruning ratio to each compressible
component, and Progressive Pruning gains better convergence and performance at high compres-
sion ratios. 2) The subnets searched by UPop support real deployment without specific hardware
requirements. 3) UPop focuses on the compression of vision-language tasks and can also be applied
to unimodal tasks, like image classification.

3 METHODOLOGY

In this section, we first illustrate a straightforward approach for compressing vision-language Trans-
formers, which we denote as Multimodal Slimming in Section 3.1. We then discuss its weakness
and accordingly propose Unified and Progressive Pruning as illustrated in Figure 1 of Section 3.2.
Necessary notations and their corresponding descriptions are listed in Table 1.

Table 1: Here we list the notations table. In the later part of the article, superscript {v,l,c} indicates notations for
vision, language, and cross-modality, respectively, subscript {a,m} indicates notations for Attention and MLP
structure, respectively.

NOTATION DESCRIPTION NOTATION DESCRIPTION

L Number of layers H Number of heads
N Number of patches / Sequence length D Embedding size
d Embedding size of each head p Total compression ratio
θ Parameters of the orignal model ζ Parameters of the trainable mask
w Regularization coefficient in searching Fp p% compressed model Fp(x|θ, ζ)
α, β Learning rate during{search, retrain} T{s,r} Iterations in {search, retrain} phase

3.1 PRELIMINARY

Multimodal Slimming straightforwardly applies the unimodal slimming to the multimodal scenario.
Typically, we consider a multimodal model consisting of a ViT as vision encoder and a Bert as
language encoder. Multimodal Slimming compresses ViT and Bert separately via the unimodal
slimming approach, consisting of a search phase and a retraining phase. At the beginning of the
search, trainable masks ζ are initialized to 1 and inserted into the Self-Attention, Cross-Attention,
and MLP of each Transformer layer in each modality.

Search To search on Self-Attentions of Vision Transformer, denote the input of Self-Attention
in the lth layer as al ∈ RN×D. Every head h in the Self-Attention will transform al into query
ql,h ∈ RN×d, key kl,h ∈ RN×d, and value vl,h ∈ RN×d. Then trainable mask ζva ∈ RL×1×d will
be inserted into the original model, and the attention map of each head can be derived from

Al,h = Softmax((ql,h ⊙ ζva,l)× (kl,h ⊙ ζva,l)
T /
√
d). (1)

The output of each head h can be derived from
Ol,h = Al,h × (vl,h ⊙ ζva,l) ∈ RN×d. (2)

And the final output can be obtained by concatenating all heads. Note that more fine-grained mask
with the shape of RL×H×d, like ViT-Slimming uses, results in pruned heads within a layer has dif-
ferent dimensions, and matrix computation of attention map becomes unfeasible on regular devices.

To search on MLPs of Vision Transformer, denote the input of MLP in the lth layer as ml ∈ RN×D.
Then trainable mask ζvm ∈ RL×DI , where DI is the intermediate size of MLP, will be inserted, and
the output of MLP can be derived from

al+1 = f2(f1(ml)⊙ ζvm,l) ∈ RN×D, (3)

where f1 and f2 are the first and second fully connected layers in MLP. Search on Cross-Attentions
and Language Transformer can be derived similary.

Besides, the ℓ1-norm of masks ζ are added as additional loss items to drive the magnitude of masks
smaller and smaller while searching:

L = LO + wa

∑
ζi∈ζa

∥ζi∥1 + wm

∑
ζi∈ζm

∥ζi∥1 (4)
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where LO is the loss to learn a multimodal model that typically contains contrastive loss and match-
ing loss, and wa and wm are coefficients to balance the magnitude of loss items. It means that the
model parameters θ and trainable masks ζ are optimized jointly in search phase.

Retraining After the search, the subnet can be pruned from the searched model based on mask
ζ. The magnitude of the mask is used as the metric to evaluate the importance of corresponding
neurons. Neurons in the compressible component with the smallest magnitude of p% in the mask
are removed (i.e., binarized as zero during retraining) from the searched model. The obtained subnet
is retrained to get the final compressed model.

The major weakness of Multimodal Slimming is two-fold: 1) the mask ζi ∈ ζ on each module is
assigned with a compression ratio manually, which is inefficient and sub-optimal, especially when
the modules are usually various in a multimodal model; 2) for those neurons to be removed after
search, their corresponding magnitude in the searched mask is not guaranteed to be zero. There are
a lot of non-zero neurons with relatively small mask magnitudes, and suddenly binarizing them to
zero after search harms the convergence of the pruned subnet. We tackle the aforementioned issues
with Unified Pruning and Progressive Pruning, respectively.

3.2 UNIFIED AND PROGRESSIVE PRUNING

Figure 1: Diagram of Unified and Progressive Pruning (UPop). (1) Trainable masks are initialized to ones
and inserted into Self-Attention, Cross-Attention, and MLP (Feed Forward Network) in each modality. (2)
Combine all compressible components and trainable masks as a unified search space. Then, the current pruning
mask is generated based on unified ranking and selecting the importance metric (i.e., accumulated gradients of
the trainable masks). (3) Repeat the cycle consisting of unified search and progressive pruning until the target
total compression ratio is reached. (4) Pruned subnet can be further fine-tuned to achieve better performance.

Vision 

Embeddings

Language 

Embeddings

Compressible

Feed Forward

Compressible

Self-Attention

Compressible

Feed Forward

Compressible

Cross-Attention

Compressible

Self-Attention

  Uncompressed Model   Unified Search

Trainable

Mask

ALL

Compressible

Components

Unified Rank and SelectUnified Search Space

  Progressive Pruning

Vision 

Layer 2

Vision 

Layer Lv

Language 

Layer Ll

Pruned

Components

  Retrain (Optional)

Unified 

Search

 Progressive 

Prune

Different 

Ratios 

Pruning

Mask

Different 

Ratios 

CPU GPU

3.2.1 UNIFIED PRUNING

The core idea of Unified Pruning is to unifiedly instead of separately searching on different modali-
ties and structures. This enables Unified Pruning to adaptively assign the appropriate pruning ratio
to each compressible component, instead of manually assigning each component a pruning ratio like
Multimodal Slimming does.

Unified Search on Different Modalities Unified Pruning groups the pruning masks with respect
to the same computation mechanisms. For typical vision-language Transformers, we divide the
masks ζ = {ζvatt, ζlatt, ζcatt, ζvmlp, ζ

l
mlp} into two groups:

ζa = {ζvatt, ζlatt, ζcatt}, ζm = {ζvmlp, ζ
l
mlp}. (5)

One group ζa for different attention modules and another ζm for different MLP modules. The
ranking and selection of masks are performed within each group.
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Instead of searching on each ζi ∈ ζ separately as Multimodal Slimming does:
Mi ← TopKMask(ζi(Ts), p · Size(ζi)) for ζi ∈ ζ, (6)

where Mi is a binary mask used for pruning components of the subnet from the searched model.
Mi is obtained by ranking and binarizing trainable mask ζi at the final iteration Ts, which keeps the
most important p · Size(ζi) parameters.

Unified Pruning searches on different modalities within each group which ranks important weights
across different components.:

Ma ← TopKMask({ζi(Ts)|ζi ∈ ζa}, p · Size(ζa)), (7)

Mm ← TopKMask({ζi(Ts)|ζi ∈ ζm}, p · Size(ζm)), (8)

where Ma and Mm are binary masks used for pruning Attention and MLP structures, respectively.
Ma and Mm are obtained by ranking and binarizing the corresponding trainable masks ζa and ζm
at the final iteration Ts of search phase, respectively. Unified search on different modalities enables
Unified Pruning to automatically assign the appropriate pruning ratio to each modality within the
structures with the same computation mechanisms.

Unified Search on Different Structures We notice that simply uniting different structures de-
grades performance, and the reason why simple union fails is that the magnitude of the learned
masks ζi used for different structures vary greatly.

Intuitively, it is feasible to conduct unified searching after transforming the magnitudes distributions
of different structures’ masks to have the same mean and standard deviation, and thus masks ζi used
for different structures can be comparable. For the simplicity of implementation, we individually
transform the mean and standard deviation of magnitudes distributions of different structures’ mask
to the 0 and 1 by z-score standardization, respectively.:

ζ(Ts)
a ← ζ

(Ts)
a − E[ζ(Ts)

a ]√
E[[ζ(Ts)

a − E[ζ(Ts)
a ]]2]

, ζ(Ts)
m ← ζ

(Ts)
m − E[ζ(Ts)

m ]√
E[[ζ(Ts)

m − E[ζ(Ts)
m ]]2]

. (9)

Then search on different modalities of different structures can be feasible:
M ← TopKMask({ζi(Ts)|ζi ∈ ζ}, p · Size(ζ)), (10)

where M is a binary mask used for pruning all compressible components, and M is obtained by
ranking and binarizing the whole trainable masks ζ at the final iteration Ts of the search phase.
Unified search on different modalities further enables Unified Pruning to automatically assign ap-
propriate pruning ratios to all compressible components.

3.2.2 PROGRESSIVE PRUNING

Retrain the pruned model after the search is a traditional two-stage paradigm for the model pruning.
However, this paradigm fails when it comes to high compression ratios, because there is no guarantee
that the magnitude of searched mask ζ(Ts) corresponding to the eliminated neurons in compressible
components will converge to 0, which makes the pruned subnet with the parameters θ̂ sliced from
θ(Ts) difficult to converge. When the compression ratio becomes higher, the eliminated non-zero
neurons from the parameters θ(Ts) of the searched model is more, and the gap between θ̂ and θ(Ts)

is larger, thereby increasing the difficulty for the pruned subnet F(x|θ̂, ζ(Ts)) to converge.

To address the above issue, we further propose the Progressive Pruning. The core idea of Progres-
sive Pruning is to ensure each magnitude of the trainable mask ζ corresponding to the eliminated
neurons in compressible components converges to 0. This is achieved by updating trainable mask ζ
with a customed optimizer that is a function of the current iteration number t, instead of updating
trainable mask ζ with the same optimizer as the parameter θ of the original model used.

Specifically, gradients G(t) of ζ in each iteration of the search phase is first collected:

G(t) ← 1

n

n∑
i=1

∇ζL(θ(t), ζ(t)), (11)

where n is the number of batch size. Then the accumulated gradients
∑t

i=0 G(i) can be used as a
new metric to evaluate the importance of corresponding neurons. And the pruning mask M t at this
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iteration can be generated based on this metric:

M t ← TopKMask(
t∑

i=0

G(i), pt · Size(ζ)), (12)

where pt is the current compression ratio when the iteration number is t. And the update strategy
for optimizing ζ in each iteration of the search phase can be written as

ζ(t+1) ← (1−M t
i ) + (1− pt

p
)M t

i , (13)

which ensures that as pt progressively increases to p, each magnitude of mask ζ corresponding to
the removed neurons in compressible components will exactly converge to 0. Progressive Pruning
eliminates the parameter gap between the searched model and the pruned subnet to be retrained,
therefore gaining better convergence and performance, especially at high compression ratios.

Algorithm 1 UPop: Unified and Progressive Pruning
Input: ζ, ζa, ζm, θ, F , p, Ts, Tr , α, β

1 for t← 0 to Tr − 1 do
2 if t < Ts then
3 L ← LO + wa

∑
ζi∈ζa

∥ζi∥1 + wm

∑
ζi∈ζm

∥ζi∥1
4 θ(t+1) ← θ(t) − α 1

n

∑n
i=1∇θL(θ(t), ζ(t))

5 G(t) ← 1
n

∑n
i=1∇ζL(θ(t), ζ(t))

6 G
(t)
a ← G

(t)
a −E[G(t)

a ]√
E[[G(t)

a −E[G(t)
a ]]2]

, G
(t)
m ← G

(t)
m −E[G(t)

m ]√
E[[G(t)

m −E[G(t)
m ]]2]

7 pt = p
√

(1− cos( πt
Ts−1

)) 1
2

8 M t ← TopKMask(
∑t

i=0 G
(i), pt · Size(ζ))

9 ζ(t+1) ← (1−M t) + (1− pt
p
)M t

10 Fpt+1 ← Fpt(x|θ(t+1), ζ(t+1))
11 else
12 θ(t+1) ← θ(t) − β 1

n

∑n
i=1∇θLO(θ(t))

13 return F⋆ ← Fp(x|θ(Tr))

The proposed UPop combines unified search and progressive pruning as outlined in Algorithm 1.
Line 2 ∼ 10 implements the search phase, and Line 12 implements the optional retraining phase.
During the search phase, Line 3 computes the loss function consisting of the original loss and ad-
ditional regularization items of trainable mask ζ. Line 4 normally updates the parameters θ of the
original model with the original optimizer. Line 5 ∼ 9 updates the parameter of the trainable mask
ζ with a customed optimizer. Specifically, Line 5 computes gradient of the loss function L with
respect to the ζ. Line 6 conducts z-score standardization introduced in Section 3.2.1 to make Ga

and Gm comparable. Line 7 computes the current compression ratio pt to be achieved (pt is a func-
tion of the current iteration number t, and a detailed discussion is provided in Appendix B.3). Line
8 generates the current pruning mask Mt by ranking and selecting the top pt percent of positions
based on accumulated gradient

∑t
i=0 G

(i). Line 9 progressively compresses ζ based on Mt and
accordingly Line 10 progressively compresses Fpt to Fpt+1 . The search phase ends after Ts cycles
of Line 3∼ 10. After the search phase, Line 12 provides an optional retrain phase to further finetune
the pruned subnet by the normal optimizer of the original model.

4 EXPERIMENTS

We report the performance of UPop on a series of multimodal tasks, including Visual Reasoning,
Image Captioning, Visual Question Answer, and Image-Text Retrieval. In addition, due to space
constraints, we provide more ablation studies of the proposed Unified and Progressive Pruning, and
the application on the unimodal classification task in the Appendix B.

4.1 COMPRESSION EXPERIMENTS ON THE VISUAL REASONING TASK

NLVR2 is a typical binary classification visual reasoning task with two images and a text description
as inputs. To quantitatively evaluate the proposed UPop, we compress the BLIP model fine-tuned
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Table 2: Compression results on the NLVR2. Bold indicates the best performance at the same compression
ratio. The “Reduce” column indicates the compression times. The marker ✓ or ✗ indicates whether the model
converges at the current compression times.

Approach Reduce Status Dev Acc(↑) Test Acc(↑) Params(M) FLOPs(G)

Uncompressed 1× ✓ 82.48 83.08 259.45 132.54

Multimodal
Slimming

2× ✓ 75.74 76.44 146.18 66.88
3× ✗ ✗ ✗ ✗ ✗

Unified Pruning
(Section 3.2.1)

2× ✓ 79.50 80.32 149.90 95.01
3× ✓ 71.25 71.66 106.33 68.19
4× ✗ ✗ ✗ ✗ ✗

Unified and
Progressive

Pruning
(Section 3.2)

2× ✓ 80.33 81.13 150.15↓42% 89.36↓33%
3× ✓ 76.89 77.61 109.01↓58% 65.29↓51%
4× ✓ 72.85 73.55 88.61↓66% 50.35↓62%
5× ✓ 68.71 68.76 76.81↓70% 39.93↓70%
10× ✓ 57.17 57.79 54.48↓79% 19.08↓86%

on this task at a ratio of 2, 3, 4, 5, and 10 times, respectively. The model consists of two weight-
shared ViT as image encoder and a Bert with two cross-attention as text encoder, therefore the mask
ζ corresponding to the compressible components on this model is ζ = {ζva , ζvm, ζla, ζ

l
m, ζc0a , ζc1a }.

We compress the original model with three aforementioned multimodal compression approaches,
Multimodal Slimming, Unified Pruning, and UPop, respectively. Experimental results are shown in
Table 2. It is worth noting that at a compression ratio of N times, the total number of parameters
of the compressed model will not be strictly equal to the 1

N of the original model. This is because
some modules of the original model are not covered by the mask ζ, such as the patch embedding
module of the image encoder, the word embedding module of the text encoder, and the classification
head. In addition, at the same compression ratio, different searched masks will also lead to different
structures and FLOPs of the compressed model.

4.2 EFFECT OF UNIFIED PRUNING

At the 2× compression ratio, Table 2 shows that compared to the Multimodal Slimming, Unified
Pruning gains 3.76% and 3.88% accuracy improvement on the dev set and test set, respectively.
Furthermore, Unified Pruning converges successfully at the 3× compression ratio, while Multimodal
Slimming does not. We provide visualization results and more analyses in Appendix B.1 and B.2

4.3 EFFECT OF PROGRESSIVE PRUNING

As shown in Table 2, at the 2× compression ratio, the Unified and Progressive Pruning (UPop)
gains further 0.83% and 0.81% accuracy improvement on the dev set and test set compared to the
Unified Pruning. Moreover, at the 3× compression, the improvements are extended to 5.64% and
5.95%, respectively. At the higher 4×, 5×, and 10× compression ratio, the Progressive Pruning can
still enable the compressed model to converge successfully, while both Multimodal Slimming and
Unified Pruning fail.

To further illustrate how Progressive Pruning strengthens the convergence capability of the com-
pressed model, we compare the performance of pruned subnets in the situation of search without
any retraining or search with only one epoch retraining. Tabel 3 shows that the model compressed
by UPop can converge without any retraining while the other two compression approaches fail. Fur-
thermore, with only one epoch retraining, the model compressed by UPop converges at significantly
superior performance to the other two approaches. The experiments in Tabel 3 indicate that Pro-
gressive Pruning maintains the convergence capability of the compressed model by initializing the
pruned subnet to be retrained with better parameter weights.

4.4 EFFECT OF UNIFIED AND PROGRESSIVE PRUNING

Unified Pruning and Progressive Pruning boost the performance of Multimodal Slimming in two
aspects, respectively. At the same and relatively low compression ratio, Unified Pruning gains sig-
nificant performance improvements by adaptively assigning appropriate compression ratios among
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Table 3: Performance of the compressed model while searching without any retraining or with only one epoch
retraining.

Approach Reduce Search Only One Epoch Retrain

Dev Acc(↑) Test Acc(↑) Dev Acc(↑) Test Acc(↑)
Multimodal Slimming 2× ✗ ✗ 62.82 63.35

Unified Pruning 2× ✗ ✗ 75.42 75.30
UPop 2× 76.89 77.84 79.08 80.08

all compressible components. As the compression ratio rises, the gap in parameter weights between
the searched model and the pruned subnet to be retrained becomes larger and larger. Therefore the
compressed model will be increasingly difficult to converge. In such a situation, Progressive Prun-
ing plays the role of maintaining the convergence capability of the compressed model. Combined
Progressive Pruning with Unified Pruning, the UPop gains the ability to achieve better performance
at the same compression ratio and push the limit of compression ratio to a greater extent.

4.5 COMPRESSION EXPERIMENTS ON THE IMAGE CAPTION TASK

To validate the versatility of the proposed UPop, we further conducted experiments on the Image
Caption task. We compress the fine-tuned BLIP model on the COCO dataset at a ratio of 2 and
4 times, respectively. The model consists of a ViT as the image encoder and a Bert with cross-
attention as the text decoder. Therefore the mask ζ corresponding to the compressible components
on this model is ζ = {ζva , ζvm, ζla, ζlm, ζca}. Table 4 shows that UPop also achieves superior
performance on the Image Caption task.

Table 4: Compression results on the Image Caption task and the Visual Question Answering task. The higher
the CIDEr, SPICE, test-dev, and test-std, the better the model performance. The units of Params and FLOPs
are M and G, respectively.

Approach Reduce Image Caption Visual Question Answering

CIDEr SPICE Params FLOPs test-dev test-std Params FLOPs

Uncompressed 1× 133.3 23.8 224.0 65.7 77.4 77.5 361.6 186.1

Multimodal
Slimming

2× 112.9 21.0 124.9 33.2 71.6 71.6 205.8 96.4
4× 60.7 12.8 75.4 17.1 69.2 69.3 128.4 51.7

Unified Pruning
(Section 3.2.1)

2× 127.9 23.1 124.7 44.2 75.2 75.4 216.4 118.7
4× 100.3 19.1 77.5 25.6 73.5 73.6 135.3 77.3

UPop
(Section 3.2)

2× 128.9 23.3 127.1↓43%39.8↓39% 76.3 76.3 211.3↓42%109.4↓41%
4× 117.4 21.7 76.5↓66% 22.2↓66% 74.5 74.6 133.3↓63%62.3↓67%

4.6 COMPRESSION EXPERIMENTS ON THE VISUAL QUESTION ANSWERING TASK

We also conducted experiments on the Visual Question Answering task. We compress the fine-tuned
BLIP model on the VQA2.0 dataset at a ratio of 2 and 4 times, respectively. The model consists of
a ViT as the image encoder, a Bert with cross-attention as the text encoder, and a Bert with cross-
attention as the text decoder. Therefore the mask ζ corresponding to the compressible components
on this model is ζ = {ζva , ζvm, ζl,ena , ζl,enm , ζl,dea , ζl,dem }. Table 4 shows the improved performance
of UPop on the Visual Question Answering task.

4.7 COMPRESSION EXPERIMENTS ON THE IMAGE-TEXT RETRIEVAL TASK

We also conducted experiments on the Image-Text Retrieval task. We compress the fine-tuned BLIP
model on the COCO and Flickr30K datasets at a ratio of 2 and 4 times, respectively. The model
consists of a ViT as the image encoder, a Bert with cross-attention as the text encoder, an extra
ViT as the momentum image encoder, and an extra Bert with cross-attention as the momentum
text encoder. Since the momentum models are updated by taking the moving average of normal
models, we do not add the compression mask into the momentum models. Therefore the mask ζ
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corresponding to the compressible components on this model is ζ = {ζva , ζvm, ζla, ζ
l
m, ζca}. Table

5 shows the improved performance of UPop on the Image-Text Retrieval task.

Table 5: Compress BLIP on the COCO and Flickr30K datasets of the Image-Text Retrieval task. The higher
the R@1, R@5, and R@10, the better the model performance. The units of Params and FLOPs are M and G,
respectively.

Dataset Approach Reduce Image→ Text Text→ Image Params FLOPs
R@1 R@5 R@10 R@1 R@5 R@10

COCO
(5K test set)

Uncompressed 1× 81.9 95.4 97.8 64.3 85.7 91.5 447.6 153.2

Multimodal
Slimming

2× 61.7 85.0 91.1 46.0 73.2 82.6 249.5 77.3
4× ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Unified Pruning
(Section 3.2.1)

2× 75.4 92.9 96.3 57.6 81.9 88.7 253.1 103.4
4× 40.3 69.3 80.2 31.3 58.8 70.7 148.7 61.4

UPop
(Section 3.2)

2× 77.4 93.4 97.0 59.8 83.1 89.8 248.9↓44%88.3↓42%
4× 62.9 86.2 92.3 47.4 74.8 83.9 147.9↓67%50.2↓67%

Flickr30K
(1K test set)

Uncompressed 1× 96.8 99.9 100.0 86.9 97.3 98.7 447.6 153.2

Multimodal
Slimming

2× 78.9 92.7 95.5 63.8 85.1 90.1 249.3 77.2
4× ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Unified Pruning
(Section 3.2.1)

2× 92.2 99.0 99.8 78.5 93.7 96.1 252.3 104.1
4× 50.0 76.1 84.3 40.8 68.1 77.0 148.7 60.8

UPop
(Section 3.2)

2× 94.0 99.5 99.7 82.0 95.8 97.6 250.5↓44%91.0↓41%
4× 85.8 97.4 98.4 71.3 91.0 94.8 147.6↓67%51.0↓67%

To further validate the versatility of UPop on different model architectures, we also compressed
the dual-stream architecture, CLIP (Radford et al., 2021), on the Image-Text Retrieval task. Table 6
shows that UPop is able to achieve comparable effectiveness to BLIP on CLIP. It is worth noting that
we use the momentum distillation method proposed by BLIP to finetune CLIP on the Image-Text
Retrieval task. Due to the introduction of momentum models, the number of parameters and FLOPs
in Table 6 are approximately twice as high as the original CLIP, respectively.

Table 6: Compress CLIP on the COCO and Flickr30K datasets of the Image-Text Retrieval task. Notations are
the same as in Table 5.

Dataset Approach Reduce Image→ Text Text→ Image Params FLOPs
R@1 R@5 R@10 R@1 R@5 R@10

COCO
(5K test set)

Uncompressed 1× 71.5 90.8 95.4 56.8 80.7 87.6 856.0 395.7

UPop
(Section 3.2)

2× 70.8 90.8 95.2 53.1 79.9 87.3 473.7↓45%196.3↓50%
4× 56.1 82.4 90.2 41.1 71.0 81.4 280.2↓67%105.9↓73%

Flickr30K
(1K test set)

Uncompressed 1× 96.8 100.0 100.0 86.6 97.8 99.1 856.0 395.7

UPop
(Section 3.2)

2× 93.2 99.4 99.8 80.5 95.4 97.6 474.3↓45%201.1↓49%
4× 82.9 95.7 97.8 67.3 89.5 93.5 278.5↓67%102.6↓74%

5 CONCLUSION

This paper proposes a multimodal compression approach, Unified and Progressive Pruning (UPop),
for vision-language Transformers. UPop unifiedly searches on all compressible components, which
consists of Self-Attentions, MLPs, and Cross-Attentions of all modalities, and thus can adaptively
assign appropriate compression ratios for all components. Moreover, analysis of masks indicates
that the importance of components for compression varies. Therefore, the proposed unified search
is a better choice than manually assigning compression ratios among different components, which
is inefficient and sub-optimal. Furthermore, UPop conducts search and retraining progressively
and simultaneously, which effectively strengthens the convergence capability of the compressed
model and enables higher compression ratios. Finally, UPop is a practically deployable compression
approach that physically extracts the pruned subnet from the original model.
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A IMPLEMENTATION DETAILS

A.1 SCOPE OF COMPRESSIBLE COMPONENTS

Self-Attentions, Cross-Attentions, and MLPs are widely used components in multimodal trans-
former layers. Consequently, the scope of compressible components in our experiments includes
Self-Attentions, MLPs, and Cross-Attentions of both Vision Transformers and Language Trans-
formers. Note that Cross-Attention only needs to be compressed if it exists. In early multimodal
Transformers, e.g., LXMERT (Tan & Bansal, 2019) and ViLBERT (Lu et al., 2019), Cross-Attention
exists within both vision and language Transformers. In some more modern works, Cross-Attention
exists in only one of the modalities, such as CoCa (Yu et al., 2022) and BLIP (Li et al., 2022). In
addition, there are also a few models, such as CLIP (Radford et al., 2021), that do not have explicit
Cross-Attention but only conduct cross-modality interaction by maximizing the cosine similarity of
outputs from different modalities.

A.2 DEPLOYABILITY

UPop is a deployable pruning approach that allows the compressed model to be physically extracted
from the original model and can further be deployed in real scenarios, whiles some pruning ap-
proaches are non-deployable. For example, ViT-Slimming(Chavan et al., 2022) compress heads of
Self-Attentions with unrestricted compression ratio, and thus the compressed model may have dif-
ferent embedding sizes of heads within a layer. However, the matrix computation of the attention
map on regular hardware (e.g., GPU cards) requires the query and key of each head within a layer
have the same embedding size. By restricting each head within the same layer to have the same com-
pression ratio, UPop frees from non-deployable matrix computation, and becomes structured across
heads within individual layers, which enables UPop to support real deployment without specific
hardware requirements.

A.3 HYPERPARAMETER SETTINGS

Table 7: Training hyperparameters for compressing BLIP-based models.

Hyperparameters BLIP-NLVR BLIP-Caption BLIP-VQA BLIP-Retrieval

NLVR2 COCO VQAv2 COCO Flickr30K

Optimizer AdamW
AdamW β (0.9, 0.999)
Weight decay 0.05
Batch size 256
Search epochs 15 5 10 6 12
Search LR 3e-6 1e-5 2e-5 1e-5 1e-5
Rtrain epochs 15 5 10 6 12
Rrtrain LR 3e-6 1e-5 2e-5 1e-5 1e-5
Search LR schedule N/A
Retrain LR schedule CosineLRScheduler (Loshchilov & Hutter, 2016)
Data augmentation RandomAugment (Cubuk et al., 2020)
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Table 8: Training hyperparameters for compressing CLIP and DeiT.

Hyperparameters CLIP DeiT

COCO Flickr30K ImageNet

Optimizer AdamW
AdamW β (0.9, 0.999)
Weight decay 0.2 0.2 0.05
Batch size 256 256 4096
Search epochs 6 12 60
Search LR 1e-5 1e-5 8e-4
Rtrain epochs 6 12 300
Rrtrain LR 1e-5 1e-5 8e-4
Search LR schedule N/A
Retrain LR schedule CosineLRScheduler (Loshchilov & Hutter, 2016)

Data augmentation RandomAugment
(Cubuk et al., 2020)

RepeatedAugment
(Touvron et al., 2021)

Table 9: Structure hyperparameters for all models used in our experiments. “∗” indicates 2 Transformers share
parameters.

Model Input
resolution

Vision Transformer Language Transformer
number layers width heads number layers width heads

BLIP-NLVR 384×384 2∗ 12 768 12 1 12 768 12
BLIP-Caption 384×384 1 12 768 12 1 12 768 12
BLIP-VQA 480×480 1 12 768 12 2 12 768 12
BLIP-Retrieval 384×384 2 12 768 12 2 12 768 12
CLIP 336×336 2 24 1024 16 2 12 768 12
DeiT 224×224 1 12 384 6 0 - - -

A.4 IMPLEMENTATION OF MULTIMODAL SLIMMING

Algorithm 2 Multimodal Slimming
Input: ζ, ζa, ζm, θ, F , p, Ts, Tr, α, β

1 for t← 0 to Ts − 1 do
2 L ← LO + wa

∑
ζi∈ζa

∥ζi∥1 + wm

∑
ζi∈ζm

∥ζi∥1
3 θ(t+1) ← θ(t) − α 1

n

∑n
i=1∇θL(θ(t), ζ(t))

4 ζ(t+1) ← ζ(t) − α 1
n

∑n
i=1∇ζL(θ(t), ζ(t))

5 for ζi ∈ ζ do
6 Mi ← TopKMask(ζi

(Ts), p · Size(ζi))

7 θ̂ ← {θ(Ts)
i |Mi = 1}, Fp ← F(x|θ̂, ζ(Ts))

8 for t← 0 to Tr − 1 do
9 θ̂(t+1) ← θ̂(t) − β 1

n

∑n
i=1∇θ̂LO(θ̂

(t))

10 return F⋆ ← Fp(x|θ̂(Tr))
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A.5 IMPLEMENTATION OF UNIFIED PRUNING

Algorithm 3 Unified Pruning
Input: ζ, ζa, ζm, θ, F , p, Ts, Tr, α, β

1 for t← 0 to Ts − 1 do
2 L ← LO + wa

∑
ζi∈ζa

∥ζi∥1 + wm

∑
ζi∈ζm

∥ζi∥1
3 θ(t+1) ← θ(t) − α 1

n

∑n
i=1∇θL(θ(t), ζ(t))

4 ζ(t+1) ← ζ(t) − α 1
n

∑n
i=1∇ζL(θ(t), ζ(t))

5 ζ
(Ts)
a ← ζ(Ts)

a −E[ζ(Ts)
a ]√

E[[ζ(Ts)
a −E[ζ(Ts)

a ]]2]
, ζ

(Ts)
m ← ζ(Ts)

m −E[ζ(Ts)
m ]√

E[[ζ(Ts)
m −E[ζ(Ts)

m ]]2]

6 M ← TopKMask(ζ(Ts), p · Size(ζ))

7 θ̂ ← {θ(Ts)
i |Mi = 1}, Fp ← F(x|θ̂, ζ(Ts))

8 for t← 0 to Tr − 1 do
9 θ̂(t+1) ← θ̂(t) − β 1

n

∑n
i=1∇θ̂LO(θ̂

(t))

10 return F⋆ ← Fp(x|θ̂(Tr))

B SUPPLEMENTARY EXPERIMENTS AND ANALYSES

B.1 RETAINED COMPONENTS IN THE COMPRESSION MODEL

Figure 2: The proportion of all compressible components retained in the compression model. These six sub-
figures represent the original model and the compressed model at the 2×, 3×, 4×, 5×, and 10× compression
ratio, respectively. In each subfigure, the horizontal axis represents the layer number, the vertical axis repre-
sents the compressible components corresponding to each ζi, and the number in cells represents the retained
proportion of a certain component’s certain layer.
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Figure 2 visualizes the proportion of all compressible components retained in the compression
model. It can be observed from the figure that retained proportion of each compressible component
has significantly different trends as the compression ratio increases. Moreover, there are obviously
unbalanced compression assignments in different layers at different compression ratios.

B.2 VARIATION OF COMPRESSIBLE COMPONENTS AND LAYERS

Unified Pruning enables the model to adaptively assign appropriate compression ratios among dif-
ferent compressible components. Accordingly, we demonstrate the variation of all components and
layers as the total compression ratio increases in Figure 3. The left subfigure shows that the retained
percentage of Self-Attention of ViT and Self-Attention of Bert among all compressible components
significantly increases as the compression ratio increases. In contrast, the retained percentage of
MLP of ViT and MLP of Bert decreases. This indicates that Self-Attentions have higher impor-
tance than MLPs when the number of parameters is limited. It can also be observed that vision
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Figure 3: The left subfigure: variation of compressible components as the compression ratio increases. The
right subfigure: variation of layers as the compression ratio increases.
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modality is more important than language modality in this task. The trend of the retained percentage
of Cross-Attention generally decreases and then increases. This phenomenon indicates that at low
compression ratios, the parameters of the visual and language modalities are relatively adequate.
Therefore cross-attention is less important at this time. At high compression ratios, the vision and
language modality lacks sufficient parameters, and cross-attention becomes more critical.

Similarly, the right subfigure of Figure 3 demonstrates the variation of all layers as the total com-
pression ratio increases. It can be observed that the middle layers occupy an increasing proportion
as the total compression ratio increases, which indicates that the majority of modalities’ information
is generated in the middle layers of the model. In the earlier layers, the information is not detailed
enough. In contrast, in the last several layers, the refinement of the information becomes less critical
when the number of parameters is limited.

B.3 STUDY ON UPDATE STRATEGY OF COMPRESSION RATIO

Compression ratio pt is a monotonically increasing function of iteration number t, and an intuitive
design for updating pt is to increase pt evenly as t increases, i.e.:

pt = p
t

Ts − 1
(14)

It is worth noting that according to the implementation of Algorithm 1, the current compression ratio
pt of tth iteration means that pt% of embeddings has been compressed by pt

p %. As a consequence,
the actual compression ratio at should be the ratio of the compressed embedding size multiplied by
the ratio of each embedding that is compressed:

at = pt ×
pt
p

=
p2t
p

(15)

In addition to the monotonically increasing property, a more appropriate update strategy than a
uniform update strategy also needs to satisfy:

• On the one hand, the actual compression ratio should increase relatively slowly at the begin-
ning of searching. Because when the iteration number t is small, the cumulative gradients
are relatively volatile, and the generated mask is relatively inaccurate.

• On the other hand, the actual compression ratio should also increase relatively slowly to-
ward the end of searching. Because as the current compression ratio gradually increases,
the difficulty of compression also increases.

Formally speaking, at is supposed to satisfy:
a0 = 0

aTs−1 = p
dat

dt ≥ 0, ∀t ∈ [0, Ts − 1]

∃ t0 ∈ (0, Ts) s.t. d2at

dt2 > 0, ∀t ∈ (0, t0), and d2at

dt2 < 0, ∀t ∈ (t0, Ts − 1)

(16)
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For example, the integration of trigonometric function f(x) = sin πx
Ts−1 defined on interval [0, Ts −

1] satisfies the latter two requirements of the Equation 16. To further satisfy the first two properties,
we only need to let

p

∫ t

0
sin πx

Ts−1dx∫ Ts−1

0
sin πx

Ts−1dx
=

p

2
(1− cos

πt

Ts − 1
) = at =

p2t
p

(17)

And thus

pt = p

√
(1− cos(

πt

Ts − 1
))
1

2
(18)

is a function that satisifies all requirements.

Table 10: Study on how the update strategy of compression ratio pt affects the model performance. The last
one is adopted as our update strategy.

pt Dev Acc(↑) Test Acc(↑)

p t
Ts−1

79.94 80.84

p (2Ts−t+1)t
((Ts+1)Ts)

80.38 81.13

p
√

(1 − cos( πt
Ts−1 ))

1
2 80.33 81.13

Table 10 shows the performance of the compressed BLIP-NLVR model with different pt update
strategies. The first one is the uniform update, while the last one is the strategy we adopted. There is
obvious performance improvement when replacing the uniform update with p

√
(1− cos( πt

Ts−1
)) 1

2
.

Besides, the last one is not the only feasible strategy, and other update strategies that satisfy require-
ments in Equation 16 should also achieve better performance than uniform update. For example, the
second strategy p (2Ts−t+1)t

((Ts+1)Ts)
also satisfies requirements and also achieves comparable performance

to the strategy we adopted.

B.4 STUDY ON THE FREQUENCY OF UPDATING COMPRESSION MASK ζ

We also explore how the frequency of updating mask ζ affects the model performance. Experimental
results on the BLIP-NLVR model are reported in Table 11. Update compression mask ζ at intervals
has two benefits:

• On the one hand, it can reduce a small amount of computation during searching.

• On the other hand, it can be observed from Table 11 that updating the ζ too frequently
causes the compressed model to tend to overfit on the validation set.

Table 11: Study on how the frequency of updating compression mask ζ affects the model performance. Fre-
quency 50 is adopted by us.

Frequency Dev Acc(↑) Test Acc(↑)
1 80.97 80.14

10 80.48 80.86
50 80.33 81.13

The frequency 1 means updating ζ each time the model parameters θ are updated, while frequency
100 means updating ζ once every 100 times the model parameters θ are updated. Consequently,
frequency 50 is adopted by us, which mitigates the overfitting in the validation set and improves
the performance on the test set. It is worth noting that the appropriate frequency varies in different
situations. Empirically, setting the frequency to the number of iterations corresponding to the 1%
compression ratio will be appropriate. For example, if we aim to accomplish 50% compression ratio
in 10,00 iterations, then a frequency about 1000× 1

50 = 20 is recommended.
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B.5 COMPRESSION EXPERIMENTS ON THE IMAGE CLASSIFICATION TASK

In addition to the multimodal tasks that UPop mainly focuses on, UPop can also be adapted to
unimodal tasks by combining Unified Search on different structures and Progressive Pruning. As
reported in Table 12 and illustrated in Figure 4, we conduct unimodal DeiT (Touvron et al., 2021)
compression on the ImageNet dataset, and UPop can also achieve competitive performance com-
pared to other unimodal compression SOTA approaches.

Table 12: Compress DeiT on the ImageNet dataset. The units of Params and FLOPs are M and G, respectively.
“∗” indicates the performance of the deployable model if the original model is non-deployable. For fairness of
comparison, all reported experimental results, including UPop, do not use knowledge distillation.

Approach Top-1 (%) Top-5 (%) Params FLOPs

DeiT (Touvron et al., 2021) 79.9 95.0 22.0 4.6
GLiT (Chen et al., 2021a) 80.5 - 24.6 4.4
DynamicViT (Rao et al., 2021) 79.3 - 22.0 2.9
S2ViTE (Chen et al., 2021b) 79.2 - 14.6 3.1
ViTAS Su et al. (2022) 80.2 95.1 23.0 4.9
ViT-Slimming (Chavan et al., 2022) 77.9 94.1 11.4 2.3
ViT-Slimming∗ (Chavan et al., 2022) 77.1 93.6 11.4 2.3
EViT (Liang et al., 2022) 78.5 94.2 22.0 2.3
A-ViT (Yin et al., 2022) 78.6 - 22.0 3.6

UPop1.11× 81.1↑1.2 95.4↑0.4 19.9↓10% 4.1↓11%
UPop1.25× 80.8↑0.9 95.4↑0.4 17.8↓19% 3.7↓20%
UPop1.42× 80.2↑0.3 95.1↑0.1 15.7↓29% 3.2↓30%
UPop1.67× 79.6↓0.3 94.8↓0.2 13.5↓39% 2.8↓39%
UPop2× 78.9↓1.0 94.6↓0.4 11.4↓48% 2.3↓50%

Figure 4: Comparison of DeiT compressed by various approaches listed in Table 12. The left subfigure illus-
trates the Accuracy-FLOPs trade-off, and the right subfigure illustrates the Accuracy-Parameter trade-off. Two
subfigures demonstrate that the proposed UPop (marked with the blue triangle) achieves better performance on
both trade-offs. Note that token-specific compression approaches only reduce FLOPs and not the number of
parameters. Therefore they are vertical lines in the Accuracy-Parameter trade-off figure.
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