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Abstract

Inspired by ConvNets leveraging hierarchical representations, we introduce Tensor-
based ConvNets (TConvNets) employing hierarchical neurons. TConvNets, a more
generalized form of ConvNets, necessitate a generalized version of components
and operations. Unlike ConvNets with scalar neurons, TConvNets use tensor-based
neurons, relying on tensor production and combination as core operations instead of
linear combinations. Key components, including tensor-based batch normalization
and initialization, are developed for TConvNets. Additionally, methods for structur-
ing/unstructuring input/output allow the utilization of ConvNets components like
loss functions in TConvNets. Although TConvNets may offer many new attributes,
this paper focuses solely on parameter-wise efficiency. Through constructing a
TConvNet with high-rank neuron tensors, we conducted performance compar-
isons on CIFAR10, CIFAR100, and Tiny ImageNet datasets, revealing TConvNets’
superior efficiency in parameter utilization.

1 Introduction

1.1 Overparameterization of Neural Networks

ConvNets are continually growing in size. While the initial motivation for the increasing size of
models was primarily driven by their improved performance on large datasets, subsequent research has
revealed additional advantages associated with these larger models. One of them is discriminability.
With an increased number of parameters, larger models have the potential to capture intricate
and complex features when provided with ample data and training epochs, leading to improved
performance on challenging tasks. Recent advancements in generative models for languages, images,
and videos further substantiate this claim [1].

Consequently, researchers have been reflecting the necessity of using so many parameters. This
contemplation has revealed that ConvNets often suffer from the problem of overparameterization. In
response, researchers have devised various approaches to compress neural networks.

1.2 Pruning of Neural Networks

Pruning involves the removal of connections or neurons in a network that has limited contribution to
the final output or limited impact on performance. This can be accomplished by directly removing
connections with small weights or activations, or by applying heuristic algorithms to selectively
remove neurons to achieve a balance between maximizing neuron removal and preventing significant
degradation in the pruned model’s performance [2, 3, 4]. Compression generally adopts matrix
decomposition techniques like SVD or Tucker decomposition, etc. to replace the original weight
matrix with smaller ones [5, 6, 7, 8]. Quantization replaces float weights with quantized numbers,
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Figure 1: Tensor-based convolution (a) versus normal convolution (b). The main idea of (a) is
utilizing a tensor-based neuron with dimensions [3, 1, 4, 4, 4, 4] to transform input data of shape [1,
3] into a structured representation of shape [4, 4, 4, 4] through tensor production. Subsequently, all
otput tensors, each with a shape of [4, 4, 4, 4], are aggregated to obtain a final output tensor with
a shape of [4, 4, 4, 4]. In (b), a linear combination is applied between the input and the neurons
(kernels).

which may reduce a model’s size at the cost of performance [9, 10]. Distillation has the classic
teacher-student framework, where a smaller neural network (the student) is trained using soft targets
provided by the original network (the teacher) [11]. As a result, the knowledge is transferred from the
teacher network to the student network, resulting in the student achieving comparable performance
while being more compact. Each of these techniques may have varying degrees of impact on the
performance compared to the original model.

All of the mentioned approaches follow a common principle: initially constructing large ConvNets
and subsequently reducing their sizes. By employing pruning and compression techniques, it is
possible to reduce the size of many large ConvNets, sometimes up to 90%. This raises the question:
if a significant portion of parameters in ConvNets can be reduced, why not utilize fewer parameters
from the beginning? Can we create a compact neural network in the first place? Some researchers
have discovered that ConvNets with some structured neurons help alleviate overparameterizations [12,
13]. A logical question emerges: Can we further take advantage of the structured neuron attributes?

1.3 Tensor-based Neurons

In this context, scalar neurons mean that the neurons are not organized in a hierarchical manner,
such as those in ConvNets. The capsules in CapsNets fall into the slot of structured neurons. In
particular, CapsNets leverage feature maps originating from convolutional layers and subsequently
re-organize these feature maps in a structured way, finally use capsules (matrix neurons) to map these
representations.

Why not generate structured representations directly from neurons? TConvNets utilize tensor neurons
to produce these representations, eradicating the need for a feature-extraction process. Moreover, we
can adapt the matrix neurons in capsules to higher-rank tensor-based neurons to maximize advantages.
This is the fundamental concept of TConvNets. Of course, we must establish appropriate basic
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operations across layers, such as “tensor-based convolution", initialization, batch normalization, and
other components for TConvNets.

So how are we supposed to build TConvNets? First, we employ high-rank tensor-based neurons and
utilize the tensor product as the fundamental operations within the network. Next, we incorporate
parameter sharing within each layer, similar to how convolutions operate, but with the use of
tensor neurons. In summary, we adopt high-rank tensors as structured neurons, employ parameter
sharing within each layer similar to ConvNets, package and unpackage the input/output to form and
decompose tensors, modify batch normalization & initialization, maintain the same, activation & loss
functions, and make the tensor product the default operation across layers. This new neural network,
known as Tensor-based Convolutional Neural Networks (TConvNets), follows a similar organizational
structure to ConvNets, except that the basic unit is a high-rank neuron tensor. Therefore, when each
structured neuron comprises only a single scalar neuron, TConvNets essentially reduce to regular
ConvNets. In other words, ConvNets can be viewed as a specialized type of TConvNets, while
TConvNets represent a more general form of ConvNets. Figure 1 shows one example of tensor-based
convolutions.

2 Related Work

2.1 Parameter Efficiency of Neural Networks

The effectiveness of neural networks can be assessed from various perspectives, such as the number
of parameters, FLOPS, memory consumption, and training/inference time, etc. The number of
parameters employed is a crucial aspect, as ConvNets are well known for their overparameterization,
which restricts their deployment on resource-constrained environments like mobile devices. To
mitigate this issue, two approaches can be taken: either compress the neural networks [5, 6, 7, 8],
or design more efficient neural network architectures, such as SqueezeNets [14], MobileNets [15],
ResNets [16], EfficientNets [17], and ShuffleNets [18]. Furthermore, reducing the model size by
tailoring it to specific tasks or devices [19, 20, 21] is another viable option. In this paper, we consider
these classic ConvNets as benchmarks and compare them with TConvNets.

2.2 Capsule Networks

Capsule networks [12] aims to better model hierarchical relationships between parts of objects in
data. A typical CapsNet is composed of several convolutional layers, a final fully-connected capsule
layer with a routing procedure, and a loss function, as Figure 2 shows. There are two key designs
in CapsNets, one is the rouging mechanism, which helps in determining the optimal routing of
information between capsules. In this way, the network can focus on relevant parts of the input
data and ignore irrelevant information. For example, the CapsNet with dynamic routing [12] can
separate overlapping digits more accurately, while the CapsNet with EM routing [13] achieves a
lower error rate on smallNORB [22]. The other design is the capsule architecture. CapsNets organize
data into a hierarchical structure, allowing for better representation and recognition of complex
objects/relationships. In this way, capsules can effectively compress high-dimensional input data into
lower-dimensional representations, making it easier for the network to learn meaningful patterns and
relationships with fewer parameters. In summary, the above two key designs make CapsNets be able
to effectively represent complex relationships within data.

Figure 2: Capsule Networks.

The hierarchical attributes of CapsNets enables them to effectively represent information at different
levels of abstraction. This is similar to the organization of cerebral cortex, which is also organized
hierarchically to handel different tasks. Consequently, CapsNets can achieve similar accuracy while
requiring significantly fewer parameters compared to ConvNets. In contrast, ConvNets are usually
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overparameterized. As shown in [23, 24, 25, 26, 27], their compressed/pruned neural networks have
much smaller sizes with hardly any accuracy drop.

Both TConvNets and CapsNets encode representations in a structured way. However, TConvNets
differentiate from CapsNets in three key aspects:

• TConvNets employ tensor neurons to directly generate these structured hidden representa-
tions, whereas CapsNets produce these structured representations by rearranging the feature
maps from ConvNets.

• tensor neurons serve as the fundamental units throughout the entire TConvNets, as opposed
to being specialized components integrated into ConvNets.

• TConvNets do not rely on information routing mechanisms or specific encoding algorithms.
The relationships between adjacent structured hidden representations in TConvNets are
learnable, enabling the model to capture the necessary information without predefined
procedures.

2.3 Other Tensor-based Neural Networks

Several other papers share similar titles to ours [28, 29, 30, 31]. For instance, [28] introduces a
specialized operator based on Entangled Plaquette States (EPS), while [29] and [31] focus on com-
pressing ConvNets. I believe [30] and our initialization are mathematically equivalent, though [30] is
based on hypergraphs. These papers primarily aim to compress models built on ConvNets, whereas
our work focuses on constructing tensor-based ConvNets from the ground up.

3 Tensor-based Convolutional Neural Networks

The primary operation at the core of ConvNets is convolution, which is a linear combination consisting
of two sequential steps. Initially, it involves performing an element-wise multiplication between scalar
neurons of the kernel size and feature maps of the same size. Following this, the resultant scalar values
are aggregated to yield a single scalar value in the subsequent layer. In contrast, the foundational
operation in TConvNets, known as tensor-based convolution, entails a linear combination of tensors.
Unlike traditional convolutions, tensor-based convolutions commence by conducting tensor product
operations between tensor neurons of the kernel size and structured hidden representations of the
same size. Afterward, a combination operation is applied to these output tensors, which are structured
hidden representations.

As a consequence, every convolution operation yields a single value, whereas each step of tensor-based
convolution generates a multidimensional tensor. This leads to ConvNets and TConvNets having
analogous yet distinct types of feature maps. Standard feature maps maintain a consistent homogeneity
across layers, primarily differing in their dimensions (height, width, and number). Conversely, feature
maps within TConvNets can display varying structures across layers. For example, a ConvNet feature
map might be denoted as 32x128x128, signifying the presence of 32 channels, each with dimensions
128x128. In contrast, TConvNets’ feature maps are expressed as 32x128x128xT, where T can vary
between layers, ranging from T=1 to more complex tensors like T=3x4x5x6. When T equals 1, a
tensor-based convolutional layer essentially becomes a conventional convolutional layer. Moreover,
if T remains consistently equal to 1 throughout the network, TConvNets essentially transform into
ConvNets.

Next, we provide a comprehensive explanation of tensor-based convolution and elaborate on certain
adjustments we implement to ensure the feasibility of training TConvNets.

3.1 Batch Normalization for TConvNets

Batch normalization plays an important role in stabilizing the gradients in forward/backward passes.
Similar to batch normalization in ConvNets, where batch normalization is typically applied in each
channel, we generalized this idea, namely, not only applying batch normalization across channels but
also across each structured feature dimension. Without this adapted batch normalization for TCon-
vNets, the overall performance sees a significant decline. For more details on this implementation,
refer to the Supplemental Material A.1.
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3.2 Initialization for TConvNets

To give good initial values to the neuron tensors, we build upon the methods in [32] and [33], adapting
them to suit TConvNets. In particular, we ensure that the variance and covariance among neuron
tensors remain constant across layers, preventing gradient vanishing or exploding issues. For the
forward pass, initialize using a zero-mean Gaussian distribution with a standard deviation of

√
2

nld
,

where nl = k2 × c, where k is the kernel size, c is the input channel. Here, d represents the total
dimensionality of the neuron tensor, calculated as t1 × t2 . . . tn, where each t denotes a dimension in
the neuron tensor. The details are available in the Supplemental Material A.2.

3.3 Tensor-based Convolution

Tensor neurons serve as the fundamental units within the entire TConvNets architecture, responsible
for converting input feature maps into output feature maps. For instance, they can transform an input
tensor, denoted as U ∈ R1×2×3×4, into an output tensor, denoted as V ∈ R1×2×7×8, through the
application of a tensor product operation with W ∈ R4×3×7×8, as Equation 1 shows. In theory, the
tensor neurons within TConvNets have the capability to convert tensors of any shape into tensors of
any other shape.

Vi = Ui

⊗
Wi (1)

After the tensor production, TConvNets apply liner combinations, which can be defined as,

V =

n∑
i

Vi (2)

Where n = k × k ×m, k is the kernel size and m is the number of input channels. In comparison,
the basic operation of ConvNets is linear combinations of scalars, V =

∑n
i Vi.

3.4 Input&Output in TConvNets

We process each input image as in Figure 1 shows. To illustrate, consider a 128x128x3
color image, which can be regarded as a one-channel structured feature map with dimen-
sions of U ∈ R1×128×128×(1×3). If we employ a tensor neuron with dimensions of (W ∈
R(3×3)×1×1×3×1×4×4×4×4), the input can be transformed to a one-channel structured feature map
with dimensions of V ∈ R4×63×63×(4×4×4×4), as Equation 5 shows. In this context, we are assuming
a kernel size of 3, a stride of 2, and no padding.

With both the input and the neurons structurized, the resulting output naturally inherits a structured
format. Consequently, this necessitates the loss functions specifically designed to handle structured
data, such as the margin loss in CapsNets. However, these loss functions often require additional
steps. A more convenient approach is to destructurize the output and then use a regular loss function.
Compared to the final output of ConvNets, TConvNets’ final output has an extra dimension, namely
the structured feature dimension T

′
∈ Rt

′
1×t

′
2...t

′
n , and d1 = t

′

1×t
′

2 . . . t
′

n. Our solution is compressing
the last dimension by using W whose last dimension T ∈ Rt

′
1×t

′
2...t

′
n , make it become normal feature

maps. In other words, the final layer’s outout of TConvNets becomes the same as ConvNets, as
Equation 3 shows.

Vf
i = Ui

⊗
Wi (3)

For example, assume we need to compress the tensors of the last layer U ∈ R4×4×4×4 to Vf ∈
R1×1×1×1 to fit a loss function. The neuron tensors is still Win ∈ R4×4×4×4, with all the dimensions
to contract.
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4 Experiments

We conducted experiments with TConvNets on several small datasets, specifically CIFAR10 [34],
CIFAR100 [34], and TinyImageNet [35]. Initially, we evaluated TConvNets against other ConvNets
in a conventional manner, employing various data augmentation techniques such as resizing, cropping,
flipping, and normalization. Subsequently, we conducted experiments without applying these tech-
niques, maintaining the original input size and avoiding resizing, cropping, or flipping. Additionally,
we omitted the normalization step based on prior knowledge. This approach was chosen to eliminate
extraneous factors and provide a more accurate assessment and comparison of the performance across
different neural network architectures. Throughout this paper, we maintain the same choice of a
learning rate of 1e-3, a mini-batch size of 32, and the utilization of the Adam optimizer [36] across
all datasets and settings. All experiments are carried out utilizing the NVIDIA RTX A6000 unless
otherwise stated. All the benchmark models are from the PyTorch library [37].

We employ a singular TConvNets, referred to as t_conv_net, for all the datasets. The comprehensive
configuration of this network can be observed in the Supplemental Material A.3.

4.1 CIFAR10 [34], CIFAR100 [34] and Tiny ImageNet [35]

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images. For every sample in CIFAR10, our
preprocessing pipeline involves resizing each image to dimensions of 42x42. Subsequently, we apply
random cropping, resulting in a final size of 38x38. We also incorporate horizontal flipping for data
augmentation purposes. Finally, each channel of an image is normalized using mean values of (0.485,
0.456, 0.406) and standard deviations of (0.229, 0.224, 0.225).

We then refrain from any preprocessing of the original CIFAR10 data. Specifically, we utilize the
original input size of 32x32 and do not apply resizing, cropping, or normalization. As Table 1 shows,
t_conv_net achieves the best performance with/without data augmentations than most models using
far fewer parameters.

CIFAR100 has 100 classes containing 600 images each. There are 500 training images and 100 testing
images per class. We first use exactly the same data augmentations as in section 4.1. Subsequently,
we eliminate all augmentation techniques and re-evaluate our model. As evidenced by Table 1,
t_conv_net exhibits the most superior performance among all models, both with and without data
augmentations.

We observe similar findings in Tiny ImageNet [35]. For more detailed results, please refer to
Supplemental Material A.4.

4.2 Ablation Study

We have seen some good results from pure TConvNets on classification tasks. It would be insightful
to explore a neural architecture that combines both TConvNets and ConvNets. Semantic segmentation
tasks, typically composed of backbones and heads, offer an ideal scenario to evaluate such a hybrid
model.

Specifically, we evaluate a hybrid model featuring the same pre-trained ResNet101 backbone along-
side different heads. These heads are sourced from FCN, DeepLab, or TConvNets. The ResNet101
backbone comes pre-trained (utilizing weights=DeepLabV3_ResNet101_Weights.DEFAULT) from
the PyTorch library [37], while the heads are initialized randomly. The overarching learning rate is
set at 1e-2, with a weight decay of 1e-1, and we adjust the heads to learn 200 times faster. The input
size for both training and testing is 256. Similar to the setup for classification tasks, we refrain from
using data augmentations apart from normalization. For optimization, we employ AdamW [40].

As depicted in Table 2, our model attains the highest IoU with fewer parameters on the CITYSCAPES
dataset. On the Pascal VOC dataset, our model achieves the second-highest performance, surpassing
the FCN model but falling short of the DeepLab model. We argue that our model employs only one
head (DeepLab uses four heads) and abstains from utilizing dilated convolutions. In scenarios where
a single head without dilated convolutions, akin to FCN, is employed, our TConvNets-based head
demonstrates superior performance.
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Table 1: TConvNets Performance Results on CIFAR10, CIFAR100, and Tiny ImageNet. The epoch#
here is the epoch number when the lowest validation loss is recorded. For each accuracy item, the
number on the left indicates the utilization of augmentations, while the number on the right indicates
the absence of any augmentations.

Datasets Model Acc. #Params #Epochs

CIFAR10

shufflenet_v2_x0_5 [18] 76.5%/60.5% 0.35M 47/9
t_conv_net 88.4%/ 78.4% 1.43M 71/11

mobilenet_v3_small [15] 80.0%/63.2% 1.53M 17/13
mobilenet_v2 [15] 84.4%/73.0% 2.24M 32/17

regnet_y_400mf [38] 82.7%/68.0% 3.91M 30/14
EfficientNet-B0 [17] 85.6%/70.0% 4.0M 79/8
regnet_y_800mf [38] 82.9%/33.5% 5.66M 21/6
EfficientNet-B1 [17] 87.2%/72.9% 6.5M 66/14
EfficientNet-B2 [17] 86.1%/75.0% 7.72M 43/20

resnet18 [16] 86.1%/73.9% 11.18M 13/6
resnet34 [16] 86.5%/74.2% 21.29M 17/8

convnext_tiny [39] 76.2%/60.4% 27.82M 19/5
convnext_small [39] 84.6%/59.8% 49.45M 15/5

CIFAR100

shufflenet_v2_x0_5 [18] 39.7%/32.3% 0.44M 14/14
t_conv_net 56.8%/44.4% 1.46M 81/23

mobilenet_v3_small [15] 37.2%/33.8% 1.62M 20/28
mobilenet_v2 [15] 54.5%/38.8% 2.35M 46/20

regnet_y_400mf [38] 46.0%/31.9% 3.95M 19/8
EfficientNet-B0 [17] 53.0%/35.0% 4.14M 38/21
regnet_y_800mf [38] 49.2%/38.2% 5.73M 13/10
EfficientNet-B1 [17] 53.2%/32.2% 6.64M 80/8
EfficientNet-B2 [17] 54.2%/44.3% 7.84M 13/14

resnet18 [16] 53.8%/42.9% 11.23M 12/9
resnet34 [16] 53.4%/42.4% 21.34M 17/7

convnext_tiny [39] 42.8%/30.4% 27.89M 15/5
convnext_small [39] 44.1%32.6% 49.52M 16/8

Tiny ImageNet

shufflenet_v2_x0_5 [18] 35.7%/28.6% 0.55M 40/13
t_conv_net 48.5%/34.8% 1.49M 75/25

mobilenet_v3_small [15] 33.8%/28.7% 1.72M 83/18
mobilenet_v2 [15] 39.1%/32.4% 2.35M 35/16

regnet_y_400mf [38] 38.2%/29.3% 3.99M 21/12
EfficientNet-B0 [17] 42.6%/32.4% 4.26M 90/13
regnet_y_800mf [38] 40.5%/35.2% 5.8M 18/8
EfficientNet-B1 [17] 44.4%/32.2% 6.77M 92/17
EfficientNet-B2 [17] 40.4%/31.3% 7.98M 109/16

resnet18 [16] 40.0%/33.0% 11.28M 12/5
resnet34 [16] 39.9%/34.2% 21.39M 19/5

convnext_tiny [39] 37.7%/26.9% 27.97M 14/9
convnext_small [39] 38.2%/27.6% 49.59M 14/9

Table 2: TConvNets Performance Results on CITYSCAPES [41], and PASCAL VOC [42]. The
epoch# here is the epoch number when the lowest validation loss is recorded.

Datasets Model Avg IoU #Params #Epochs

CITYSCAPES [41] resnet101+t_conv_net1 65.3% 2.9M 30
resnet101+fcn [37] 64.1% 9.4M 24

resnet101+deeplab3 [37] 64.7% 16.1M 33

PASCAL VOC [42] resnet101+t_conv_net1 64.7% 2.9M 30
resnet101+fcn [37] 64.6% 9.4M 30

resnet101+deeplab3 [37] 65.4% 16.1M 18
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4.3 Some Other Experiments

Although this paper primarily emphasizes the parameter efficiency of TConvNets, their distinctive
structure may offer other notable advantages. We explore the superior performance of TConvNets
over CapsNets and their enhanced adversarial robustness compared to ConvNets. For further details,
please refer to Supplemental Material A.5 and Supplemental Material A.6.

4.4 Discussion

4.4.1 Why TConvNets Perform Better than ConvNets?

It is not accurate to claim that TConvNets outperform ConvNets in terms of parameter-wise efficiency
since TConvNets are essentially a generalized version of ConvNets. Unlike many state-of-the-art
neural architectures [43, 44, 45], which are fundamentally based on convolutional layers, TConvNets
utilize tensor-based convolutions. Consequently, the techniques employed in these works can also be
applied to TConvNets.

TConvNets provide a way of “organizing neurons hierarchically, ” which is akin to the capsules in
CapsNets and resembles similar structures found in human brains. Therefore, the tensor neurons in
TConvNets can represent information hierarchically, allowing for better generalization and recognition
of complex patterns. Essentially, CapsNets can be viewed as a fusion of convolutional layers with
one or two matrix-based TConvNet layers along with a routing mechanism.

The evidence supporting the reduced susceptibility to overfitting in TConvNets becomes apparent
when observing their comparatively narrower generalization gaps. To illustrate, both ResNet34 [16]
and EfficientNet-b3 [17] can attain nearly 100% accuracy on the Tiny ImageNet training set, yet their
accuracy on the validation set remains consistently at around 30%.

4.4.2 Limitations

One limitation of our study is that we did not compare TConvNets with the latest architectures [43, 44,
45]. One reason is that they fall into different technique slots. ConvNets are based on convolutions
while TConvNets are based on tensor-based convolutions. It makes more sense to compare TConvNets
with plain ConvNets. Our primary objective is to introduce a generalized form of ConvNets, rather
than achieving state-of-the-art performance. It would be interesting to apply the techniques in [43,
44, 45] to TConvNets, and we plan to consider this in our future work.

Another limitation of our work is that our TConvNets models are much slower than ConvNets
during training/inference. To illustrate, when we compare the forward pass times of a tensor-based
convolutional layer and a traditional convolutional layer, both with identical parameter counts
(3x3x27=243), on a GTX TITAN, we find average elapsed times of 876ms and 0.376ms respectively.
Consequently, this paper primarily focuses on classification tasks with smaller datasets due to these
slower training and inference speeds. This sluggish performance can be attributed to the lack of
acceleration APIs for tensor-based operations, such as those found in CUDA/CUDNN. Theoretically,
TConvNets should match ConvNets in training and inference speed when they possess similar sizes
of parameters, as their primary difference lies in the number of parallel matrix multiplications (where
conventional convolutions can be seen as a few large matrix multiplications, while tensor-based
convolutions involve numerous small matrix multiplications).

5 Conclusions

We introduce Tensor-based Convolutional Neural Networks, TConvNets. Unlike ConvNets that use
scalar neurons, TConvNets utilize tensor neurons instead. This involves extending the convolution
operation from a linear combination of scalars to encompass tensor product and aggregation, making
ConvNets a specialized case of TConvNets. To support TConvNets, we propose adjustments to
batch normalization, initialization, and methods for structurizing and unstructurizing input/output.
Additionally, we retain certain components from ConvNets, such as ReLU and cross-entropy loss.
Through experiments, we demonstrate that TConvNets offer improved parameter efficiency when
applied to classification tasks across different datasets. We expect that TConvNets hold promise in
various other artificial intelligence tasks and datasets.
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A Supplemental Material

A.1 Batch Normalization for TConvNets

Figure 3: The convergence curve of t_conv_net (see Section 4) on CIFAR10, CIFAR100 and Tiny
ImageNet. The red line represents the learning curve of t_conv_net with He Initialization [33] and
normal batch normalization. The black line is the learning curve of t_conv_net with He Initializa-
tion [33] and the batch normalization in Section 3.1. The green line is the case when both the batch
normalization in Section 3.1 and the initialization in Section A.2 are used.

Batch normalization is designed to address the “internal covariate shift" issue [46]. The primary idea
involves normalizing each layer’s activations using a learned mean and standard deviation vector
for each batch. Typically, batch normalization is applied in a channel-wise manner to preserve the
independence across channels. In TConvNets, we apply batch normalization not only across channels
but also across each structured feature dimension. In particular, for a layer with c input channels and
d dimension structured features, x =

(
x1, x2, . . . , xc+d

)
x̂i =

xi − E
[
xi
]√

Var [xi]
(4)

We found that applying batch normalization across each structured feature dimension brings extra
benefits, as Figure A.1 shows.

A.2 Initialization for TConvNets

Initialization sets appropriate initial weights for a neural work. A bad initialization may result in slow
convergence or poor local minimum. When linear activations are assumed, [32] propose the Xavier
initialization. On the other hand, [33] take ReLU activations into consideration and propose Kaiming
initialization, which works better in deep neural networks. The key idea of both methods is keeping
the variance of each layer unchanged to prevent the network from suffering gradients vanishing
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or exploding. We follow the same idea and design a modified version of He Initialization [33] for
TConvNets. Specifically, in each layer,

Yl = Ul

⊗
Wl (5)

Here, W is a k2× c×T tensor that represents the k× k kernel, c input channel, and the neuron tensor
T respectively. T ∈ Rd, and d = t1 × t2 . . . tn. Please note that no bias is employed in this context.
Y is the corresponding response. l is the layer index. Let f be the activation function,

Ul = f(Yl−1) (6)

where the default f is ReLU.

We assume both the neurons in W and features in U are mutually independent and share the same
distribution. W and U are independent with each other. To simplify the computation, we also assume
the tensor features or tensor neurons are vectors though they may have varied dimensions. Here we
set nl = k2 × c, The we have,

Cov (Yl) = nlCov
(
Ul

⊗
Wl

)
(7)

where Yl, Ul, and Wl represent the random vectors in Yl, Ul and Wl respectively. We let Wl’s mean
be a all-zero vector. Given Ul and Wl are independent with each other, then we have,

Cov (Yl) = nlCov (Wl)
⊗

E
(
UlU

T
l

)
(8)

We assume both Wl−1 and Yl−1 have a symmetric distribution around zero, then we have E
[
UlU

T
l

]
=

1
2Cov [Yl−1]. Putting this into Equation 8, we have,

Cov [Yl] =
1

2
nlCov [Wl] Cov [Yl−1] (9)

We want to avoid exploding or vanishing gradients so identity matrix Covariance is a reasonable
choice. Thus we have,

1

2
nlCov [Wl] = Id, ∀l (10)

We assume the d variables within each tensor neuron are independent with each other, we thus only
need to consider the d variances at the diagonal. Thus for each neuron in the neuron tensor,

1

2
nldVar [wl] = 1, ∀l (11)

In conclusion, for a forward pass we should set a zero-mean Gaussian distribution whose standard
deviation is

√
2

nld
. Here we assume not using bias, so we should set bias as 0 for initialization. The

backward case is similar. Here we assume ReLU is used. If there is a negative slope a, the standard
deviation becomes

√
2

nld(1+a2) . In this paper we use PReLU [33], a is set as 0.25. As Figure A.1
shows, the initialization approach for TConvNets yields superior performance compared to that for
ConvNets.

A.3 The TConvNets’ Structure

Figure 4 and Table 3 show the TConvNet model used in this paper.
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Figure 4: Two TConvNets residual structures. Left: the triple skips block, Block#1 Right: the
quadruple skips block, Block#2. W ∈ Rk1×k2×k3×k4 is the neuron tensor. Each layer is followed by
a PReLU [47] layer and a Batch Normalizaiton Layer [46].

Table 3: The structure of g_conv_net. The neuron tensor of Layer#0 is Win ∈ R3×1×9×9 that
can transforms each input tensor Uin ∈ R3×1 to an output tensor V ∈ R9×9. Layer#0 is followed
by a BatchNorm Layer and a PReLU layer. So are the following layers. In the immediate layers,
Win ∈ R9×9×9×9 that can transforms each tensor Uin ∈ R9×9 to an output tensor V ∈ R9×9. In
Layer#4, Wf ∈ R4×9×9×9×9. In Layer#6, the final output number depends on the number of classes.

#Layer Neural Tensors #Channel

0 Block#1 1
1 Block#2 1
2 Block#1 1
3 Block#2 1
4 3× 3× Wf 4
5 Pooling 4
6 324× 10/100/200 10/100/200

A.4 Tiny ImageNet [35]

Tiny ImageNet [35] is a subset of the ImageNet dataset [48], which contains 100,000 images of
200 classes (500 for each class) downsized to 64×64. The preprocessing pipeline encompasses the
resizing of each image to dimensions of 80x80. Following this, random cropping is applied, resulting
in a final size of 64x64. Additionally, horizontal flipping is incorporated for the purpose of data
augmentation. Lastly, each channel of an image is normalized using mean values of (0.485, 0.456,
0.406) and standard deviations of (0.229, 0.224, 0.225).

Upon removing all preprocessing steps and retesting our model, we obtained results of 48.5% and
34.8% for the two respective settings. The utilization of data augmentation techniques leads to the
highest performance for t_conv_net. Without augmentations, t_conv_net still achieves the second-best
result with significantly fewer parameters compared to the best one.

A.5 Plain TConvNets versus CapsNets on MNIST

Given the resemblance between TConvNets and CapsNets, it’s intriguing to compare TConvNets
with various CapsNets variants. To conduct this comparison in a relatively impartial manner, we
constructed a simple four-layer TConvNet without residual connections. We use a small neural tensor
who has a shape of Tin ∈ R2×2×2×2. As Table 4 shows, both versions of TConvNets exhibit superior
efficiency in terms of parameters compared to the CapsNets variations.
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Table 4: Comparison between TConvNets and several CapsNets in terms of error rate on MNIST.
The number in each routing type means the number of routing times.

Models Routing Error rate(%) Param #

DCNet++ ([49]) Dynamic (-) 0.29 13.4M
DCNet ([49]) Dynamic (-) 0.25 11.8M
CapsNets ([12]) Dynamic (1) 0.34±0.03 6.8M
CapsNets ([12]) Dynamic (3) 0.35±0.04 6.8M
Atten-Caps ([50] Attention (-) 0.64 ≈ 5.3M
CapsNets ([13]) EM (3) 0.44 320K
TConvNet - 0.32±0.03 171K
TConvNet - 0.41±0.05 22.2K

A.6 Comparison of TConvNets and ConvNets in Terms of Adversarial Robustness on the
MNIST

TConvNets have demonstrated superior parameter efficiency, making it intriguing to explore how their
structured neurons affect adversarial robustness. Here, we present a comparison of several TConvNet-
based models and ConvNet-based models in terms of attack success rates. When comparing the
robustness of models, we always take their sizes into account, as larger models generally tend to be
more robust.

We use the FGSM [51] algorithm on the MNIST dataset, aiming to manipulate correctly predicted
samples by applying varying levels of perturbations (with epsilon values ranging from 0.05 to 0.3)
to the original images. No clipping algorithm is applied to the input after the perturbations are
introduced.

The baseline ConvNets are all sourced from the PyTorch library [37]. In particular, they include
shufflenet_v2_x0_5(351K) [18], MobileNet(2.2M) [15], regnet_y_400mf(3.9M) [38], efficient-
net_b0_b0(4M) [17], and resnet18(11M) [16]. Since these models are designed for three-channel
inputs, which is incompatible with MNIST, we modify the input channel to one and adjust the final
layer to match MNIST’s number of classes.

We designed three TConvNets: the first is a simple TConvNet with 4 layers and 179 thousand
parameters. The other two are deeper models with 18 layers—one containing 558 thousand parameters
and the other with 1.24 million parameters. Both of the deeper models have residual structures.

We make all three TConvNets attack the previously mentioned ConvNet models, and vice versa. The
results are presented in Table 5, Table 6, and Table 7.

In all three tables, when epsilon equals 0, the diagonal elements represent the accuracy of each model
without any perturbations. For example, in Table 5, the red number 99.08% (the first row, eps=0)
indicates that the prediction accuracy of the TConvNet with 179 thousand parameters is 99.08%.

How do we determine which model is more robust? Take Table 5 as an example: when EfficientNet
attacks the TConvNet at epsilon 0.15, the accuracy drops from 99.08% to 98.81% (third column,
highlighted in red). In contrast, when the TConvNet attacks EfficientNet at the same epsilon, the
accuracy decreases from 97.67% to 95.6% (seventh column, highlighted in green). We observe
that as a defender, the TConvNet’s accuracy is less impacted by the perturbations generated by
EfficientNet. Meanwhile, as an attacker, the TConvNet can reduce EfficientNet’s prediction accuracy
by a larger margin. We can draw the same conclusion when we when testing the TConvNet models
with 558K and 1.24M parameters, as shown in Table 6 and Table 7. Moreover, we can observe the
same pattern for other models across varying epsilon values. Specifically, TConvNets demonstrate
greater robustness than the ConvNets listed when defending and are more effective as attackers.
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Table 5: Comparison of TConvNets (4 layers, 179K parameters) and ConvNets in terms of adversarial
robustness on the MNIST. The epsilon ranges from 0.05 to 0.3.

Models TconvNets ShuffleNet MobileNet RegNet EfficientNet ResNet

eps:0

TConvNets 99.08% N/A N/A N/A N/A N/A
ShuffleNet N/A 97.02% N/A N/A N/A N/A
MobileNet N/A N/A 96.74% N/A N/A N/A

RegNet N/A N/A N/A 96.86% N/A N/A
EfficientNet N/A N/A N/A N/A 97.67% N/A

ResNet N/A N/A N/A N/A N/A 98.46%

eps:0.05

TConvNets 97.8% 96.61% 96.27% 96.56% 97.26% 98.15%
ShuffleNet 99.05% 92.38% N/A N/A % N/A
MobileNet 98.93% N/A 89.71% N/A N/A N/A

RegNet 99% N/A N/A 93.18% N/A N/A
EfficientNet 98.81% N/A N/A N/A 92.82% N/A

ResNet 98.89% N/A N/A N/A N/A 96.84%

eps:0.1

TConvNets 94.88% 96.07% 95.95% 96.28% 96.61% 97.89%
ShuffleNet 98.98% 84.54% N/A N/A N/A N/A
MobileNet 98.76% N/A 79.17% N/A N/A N/A

RegNet 98.84% N/A N/A 86.94% N/A N/A
EfficientNet 98.58% N/A N/A N/A 82.64% N/A

ResNet 98.64% N/A N/A N/A N/A 94.6%

eps:0.15

TConvNets 89.65% 95.53% 95.56% 95.83% 95.6% 97.47%
ShuffleNet 98.87% 74.48% N/A N/A N/A N/A
MobileNet 98.6% N/A 65.9% N/A N/A N/A

RegNet 98.68% N/A N/A 77.68% N/A N/A
EfficientNet 98.11% N/A N/A N/A 65.17% N/ A

ResNet 98.28% N/A N/A N/A N/A 90.36%

eps:0.2

TConvNets 78.89% 94.78% 94.93% 95.52% 94.37% 97.08%
ShuffleNet 98.76% 61.74% N/A N/A N/A N/A
MobileNet 98.14% N/A 51.89% N/A N/A N/A

RegNet 98.39% N/A N/A 65.43% N/A N/A
EfficientNet 97.49% N/A N/A N/A 42.97% N/A

ResNet 97.7% N/A N/A N/A N/A 83.4%

eps:0.25

TConvNets 63.59% 93.68% 94.04% 95.14% 92.85% 96.49%
ShuffleNet 98.61% 48.82% N/A N/A N/A N/A
MobileNet 97.46% N/A 37.66% N/A N/A N/A

RegNet 97.92% N/A N/A 53.06% N/A N/A
EfficientNet 96.47% N/A N/A N/A 25.96% N/A

ResNet 97.03% N/A N/A N/A N/A 73.26%

eps:0.3

TConvNets 47.61% 91.93% 93.32% 94.63% 90.72% 95.86%
ShuffleNet 98.38% 37.43% N/A N/A N/A N/A
MobileNet 96.51% N/A 25.79% N/A N/A N/A

RegNet 97.34% N/A N/A 42.36% N/A N/A
EfficientNet 94.78% N/A N/A N/A 14.14% N/A

ResNet 95.8% N/A N/A N/A N/A 59.98%
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Table 6: Comparison of TConvNets (18 layers, 558K parameters) and ConvNets in terms of adversar-
ial robustness on the MNIST. The epsilon ranges from 0.05 to 0.3.

Models TconvNets ShuffleNet MobileNet RegNet EfficientNet ResNet

eps:0

TConvNets 98.53% N/A N/A N/A N/A N/A
ShuffleNet N/A 97.02% N/A N/A N/A N/A
MobileNet N/A N/A 96.74% N/A N/A N/A

RegNet N/A N/A N/A 96.86% N/A N/A
EfficientNet N/A N/A N/A N/A 97.67% N/A

ResNet N/A N/A N/A N/A N/A 98.46%

eps:0.05

TConvNets 96.58% 97.41% 96.35% 96.61% 97.41% 98.11%
ShuffleNet 98.36% 92.38% N/A N/A N/A N/A
MobileNet 98.33% N/A 89.71% N/A N/A N/A

RegNet 98.41% N/A N/A 93.18% N/A N/A
EfficientNet 98.32% N/A N/A N/A 92.82% N/A

ResNet 98.19% N/A N/A N/A N/A 96.84%

eps:0.1

TConvNets 93.17% 96.87% 95.74% 96.32% 96.87% 97.8%
ShuffleNet 98.19% 84.54% N/A N/A N/A N/A
MobileNet 98.13% N/A 79.17% N/A N/A N/A

RegNet 98.22% N/A N/A 86.94% N/A N/A
EfficientNet 98.01% N/A N/A N/A 82.64% N/A

ResNet 97.8% N/A N/A N/A N/A 94.6%

eps:0.15

TConvNets 88.41% 96.04% 95.19% 96% 96.04% 97.44%
ShuffleNet 98.01% 74.48% N/A N/A N/A N/A
MobileNet 97.88% N/A 65.9% N/A N/A N/A

RegNet 98% N/A N/A 77.68% N/A N/A
EfficientNet 97.56% N/A N/A N/A 65.17% N/A

ResNet 97.35% N/A N/A N/A N/A 90.36%

eps:0.2

TConvNets 80.42% 95.06% 94.47% 95.63% 95.06% 96.84%
ShuffleNet 97.82% 61.74% N/A N/A N/A N/A
MobileNet 97.46% N/A 51.89% N/A N/A N/A

RegNet 97.71% N/A N/A 65.43% N/A N/A
EfficientNet 96.95% N/A N/A N/A 42.97% N/A

ResNet 96.47% N/A N/A N/A N/A 83.4%

eps:0.25

TConvNets 67.13% 93.68% 93.59% 95.31% 93.68% 96.28%
ShuffleNet 97.57% 48.82% N/A N/A N/A N/A
MobileNet 96.46% N/A 37.66% N/A N/A N/A

RegNet 97.12% N/A N/A 53.06% N/A N/A
EfficientNet 95.28% N/A N/A N/A 25.96% N/A

ResNet 96.02% N/A N/A N/A N/A 73.26%

eps:0.3

TConvNets 49.5% 91.96% 92.62% 94.75% 91.96% 95.56%
ShuffleNet 97.06% 37.43% N/A N/A N/A N/A
MobileNet 94.52% N/A 25.79% N/A N/A N/A

RegNet 95.87% N/A N/A 42.36% N/A N/A
EfficientNet 87.78% N/A N/A N/A 14.14% N/A

ResNet 92.21% N/A N/A N/A N/A 59.98%
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Table 7: Comparison of TConvNets (18 layers, 1.24M parameters) and ConvNets in terms of
adversarial robustness on the MNIST. The epsilon ranges from 0.05 to 0.3.

Models TconvNets ShuffleNet MobileNet RegNet EfficientNet ResNet

eps:0

TConvNets 98.88% N/A N/A N/A N/A N/A
ShuffleNet N/A 97.02% N/A N/A N/A N/A
MobileNet N/A N/A 96.74% N/A N/A N/A

RegNet N/A N/A N/A 96.86% N/A N/A
EfficientNet N/A N/A N/A N/A 97.67% N/A

ResNet N/A N/A N/A N/A N/A 98.46%

eps:0.05

TConvNets 97.63% 96.54% 96.27% 96.61% 97.39% 98.1%
ShuffleNet 98.74% 92.38% N/A N/A N/A N/A
MobileNet 98.67% N/A 89.71% N/A N/A N/A

RegNet 98.74% N/A N/A 93.18% N/A N/A
EfficientNet 98.63% N/A N/A N/A 92.82% N/A

ResNet 98.61% N/A N/A N/A N/A 96.84%

eps:0.1

TConvNets 95.36% 96.1% 95.69% 96.19% 96.86% 97.66%
ShuffleNet 98.63% 84.54% N/A N/A N/A N/A
MobileNet 98.47% N/A 79.17% N/A N/A N/A

RegNet 98.56% N/A N/A 86.94% N/A N/A
EfficientNet 98.4% N/A N/A N/A 82.64% N/A

ResNet 98.27% N/A N/A N/A N/A 94.6%

eps:0.15

TConvNets 90.61% 95.3% 94.96% 95.87% 96.38% 97.15%
ShuffleNet 98.51% 74.48% N/A N/A N/A N/A
MobileNet 98.24% N/A 65.9% N/A N/A N/A

RegNet 98.41% N/A N/A 77.68% N/A N/A
EfficientNet 98.07% N/A N/A N/A 65.17% N/ A

ResNet 97.8% N/A N/A N/A N/A 90.36%

eps:0.2

TConvNets 82.91% 94.4% 94.2% 95.48% 95.59% 96.59%
ShuffleNet 98.21% 61.74% N/A N/A N/A N/A
MobileNet 97.89% N/A 51.89% N/A N/A N/A

RegNet 98.15% N/A N/A 65.43% N/A N/A
EfficientNet 97.57% N/A N/A N/A 42.97% N/A

ResNet 97.2% N/A N/A N/A N/A 83.4%

eps:0.25

TConvNets 72.3% 93.1% 93.21% 95.01% 94.57% 95.87%
ShuffleNet 98.04% 48.82% N/A N/A N/A N/A
MobileNet 97.23% N/A 37.66% N/A N/A N/A

RegNet 97.79% N/A N/A 53.06% N/A N/A
EfficientNet 96.71% N/A N/A N/A 25.96% N/A

ResNet 95.9% N/A N/A N/A N/A 73.26%

eps:0.3

TConvNets 58.97% 91.49% 92.01% 94.33% 93.08% 95.2%
ShuffleNet 97.6% 37.43% N/A N/A N/A N/A
MobileNet 95.92% N/A 25.79% N/A N/A N/A

RegNet 97.09% N/A N/A 42.36% N/A N/A
EfficientNet 94.29% N/A N/A N/A 14.14% N/A

ResNet 93.45% N/A N/A N/A N/A 59.98%
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