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ABSTRACT

A thorough theoretical understanding of the surprising generalization ability of
deep networks (and other overparameterized models) is still lacking. Here we
demonstrate that simplicity bias is a major phenomenon to be reckoned with in
overparameterized machine learning. In addition to explaining the outcome of
simplicity bias, we also study its source: following concrete rigorous examples,
we argue that (i) simplicity bias can explain generalization in overparameterized
learning models such as neural networks; (ii) simplicity bias and excellent gen-
eralization are optimizer-independent, as our examples show, and although the
optimizer affects training, it is not the driving force behind simplicity bias; (iii)
simplicity bias in pre-training models, and subsequent posteriors, is universal and
stems from the subtle fact that uniformly-at-random constructed priors are not
uniformly-at-random sampled; and (iv) in neural network models, the biasing
mechanism in wide (and shallow) networks is different from the biasing mech-
anism in deep (and narrow) networks.

1 INTRODUCTION

Contemporary practice in deep learning has challenged conventional approaches to machine learn-
ing. Specifically, deep neural networks are highly overparameterized models with respect to the
number of data points and are often trained without explicit regularization. Yet they achieve state-
of-the-art generalization performance. It is interesting to note that these observations are not limited
just to neural network models. Qualitatively similar behaviour has also been observed when using
boosting with decision trees and random forests (Wyner et al., 2017) and other non-network learning
problems, with some examples dating back to the early 1990s (Loog et al., 2020).

A thorough theoretical understanding of the unreasonable effectiveness of deep networks (and other
overparameterized models) is still lacking. Previous work (e.g., (Neyshabur et al., 2014; 2018))
has suggested that an implicit regularization is occurring in neural networks via an implicit norm
minimization; in particular, the minimization of the (generalized) norm was conjectured to be a
by-product of the “optimizer”, the method by which the network is trained (i.e., stochastic gradi-
ent descent, SGD). However, this has been questioned by theoretical and empirical work showing
strong evidence to the contrary (Razin & Cohen, 2020; Huang et al., 2019; Kawaguchi et al., 2017).
Furthermore, although the reasoning behind SGD as an implicit regularizer (Hochreiter & Schmid-
huber, 1997; Keskar et al., 2016) is insightful (“solutions that do not generalize well correspond to
sharp minima, and added noise prevents convergence to such solutions”), there are examples where
a good generalization is obtained irrespective of the optimizer used (Huang et al., 2019; Kawaguchi
et al., 2017; Wu et al., 2017).

Here we propose an entirely different and new approach: instead of implicitly assuming that
learning-models are uniformly-probable random objects (prior to training), we suggest that the
probability space over models is in fact biased towards simple functions. Thus, the trained
model will likely extrapolate well without fluctuating wildly in-between the training data-points.

Despite some preliminary results (Arpit et al., 2017; Valle-Perez et al., 2018; Mingard et al., 2019;
De Palma et al., 2019), a theoretical treatment with a rigorous proof of such a bias is still lack-
ing. Here, in addition to explaining the outcome of simplicity bias, we also study its source. This
work suggests that, for typical overparameterized models (in addition to explaining generalization),
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simplicity bias is in fact universal and nearly unavoidable. The crux of the matter is that the func-
tions obtained (at initialization) are uniformly-at-random constructed but not uniformly-at-random
sampled. In other words, the naive “default” probability space over functions, where each unique
function is sampled with equal probability, is actually conceptually wrong and irrelevant for this
domain. Instead, it is well-known that if a construction process is used to “sample” complex objects
then the resulting probability space is not a uniform space (even if the construction itself is uniformly
random, i.e., in each sub-step we choose uniformly from several construction options). Moreover,
different (spaces of) construction processes yield different probability spaces over functions. How-
ever, several properties can be expected to be universal in some sense, with simplicity bias being a
case in point (Chauvin et al., 2004).

Below we present a concrete rigorous example; we then identify two distinct mechanisms that bias
towards simplicity and provide further theoretical evidence to dispute the relevance of focusing on
shallow (and wide) networks while researching deep (and narrow) networks.

2 RESULTS

We now describe three concrete examples: overparameterized learning of a Boolean function,
infinitely-wide neural networks (where we revisit known results), and infinitely-deep non-wide
neural networks.

Learning a Boolean function. Let Fn be the set of all Boolean functions on n variables.
There are 2n possible binary inputs, and thus there are 22

n

such Boolean functions, |Fn| “ 22
n

.

For f P Fn, let pX,Yf q denote a uniformly random sample of observations regarding f , and
|pX,Yf q| denote the sample size (i.e., the number of input–output pairs observed).

How likely are we to overfit when fitting f̂ based on a small sample? Consider the following
negative claim:

Claim 1. The vast majority of functions that agree with f over the sample obtain only chance
agreement with f out-of-sample (i.e., agreement « 1{2 out-of-sample).

More precisely, for a fixed sample size and a fixed ϵ ą 0, the law of large numbers immedi-
ately entails that if we choose a function f̂ completely at random (subject to fitting the sample) then
the probability of agreement on more than 1{2 ` ϵ out-of-sample goes to 0 as n Ñ 8 (note that f
need not be fixed).

However, our main claim here is that this negative result is actually misleading and demonstrates
a misguided way of thinking. It is true that when fitting by choosing a function at random we are
likely to overfit; however, in practice we seldom choose a function at random, instead we construct
a function at random or choose a representation at random. In particular, Boolean functions are
typically implemented using circuits or binary AND/OR trees. Thus, a more nuanced question
would be: if we choose a Boolean circuit t completely at random (subject to fitting the sample) what
is the probability of agreement on more than 1{2 ` ϵ out-of-sample?

Let Tm,n denote the set of all binary Boolean trees withm internal nodes over n input variables (and
consider large and “overparameterized” trees with m " n). Formally, a uniform probability space
over Tm,n was introduced in (Chauvin et al., 2004) in the following manner: choose uniformly at
random a rooted binary tree and label its m internal nodes randomly with AND and OR, and the
m ` 1 external nodes with a literal, i.e., a variable or its negation. Each of the m inner nodes is
labeled with AND or OR with equal probability 1{2 and independently of the other nodes; each
leaf is labeled with a literal, chosen according to the uniform distribution on the 2n literals and
independently of the labeling of all other nodes.

Again, if we construct a tree ti P Tm,n, we can find many candidates that agree with f perfectly over
the sample pX,Yf q while agreeing with f over only « 1{2 of the out-of-sample data (i.e., chance
agreement). Therefore, you might surmise that the following learning algorithm is (statistically)
ill-advised:
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Naive Algorithm. Given pX,Yf q:

1. Construct uniformly at random a tree ti P Tm,n.

2. Check if fi, the function corresponding to ti, agrees with f
over pX,Yf q. If so, return fi. If not, go to step 1.

Nevertheless, we have the following surprising result linking the complexity1 of f , the sample size,
and ϵ (generalization):

Theorem 1 (Random trees interpolate without overfitting) Let Lf denote the complexity of f ,
and s the sample size, s “ |pX,Yf q|. For a given 0 ă ϵ ă 1{2, fix b such that logp1{2 ` ϵq ă ´b.
As n Ñ 8, if Lf ď b s

logn then with high probability the output of the naive algorithm:
(i) agrees with f completely over the sample, and
(ii) agrees with f over more than 1{2 ` ϵ of the out-of-sample data.

Remark: note that ϵ and b are fixed, but Lf and s (and m) are not.

Proof. According to theorem 3.1 of Lefmann & Savickỳ (1997)2, the probability of ran-
domly constructing a tree that corresponds to f is ě 1

4

`

1
8n

˘Lf . Therefore, the number of attempts
by the naive algorithm is dominated by a geometric random variable with mean 4p8nqLf , and a
perfect fit to the data is found in Op

`

p8nqLf
˘

attempts.

The functions in Fn can be partitioned according to their agreement with f :

• Poor or chance agreement. Each function in this class has a probability of less than 1{2` ϵ
of agreeing with f for a random input.

• Adequate agreement (or better) 3 . Each function in this class has a probability of more
than 1{2 ` ϵ of agreeing with f for a random input.

The naive algorithm results in overfitting if it samples a function f̂ from the first class (the
poor/chance agreement class) which agrees with f over the sample data; however, for a given f̂ ,
since the sample data is sampled uniformly at random, the probability of such an agreement is
ď p1{2 ` ϵqs. Finally, since the naive algorithm performs Op

`

p8nqLf
˘

attempts, an application of
the union bound provides the following upper bound on the probability of overfitting:

P poverfitq “ Op

`

p1{2 ` ϵqsp8nqLf
˘

(1)

but now

p1{2 ` ϵqsp8nqLf ď p1{2 ` ϵqsp8nq
b s
log n “

“

´

p1{2 ` ϵqp8nq
b

log n

¯s

and bearing in mind that limn
b

log n “ eb, we get that the right-hand side is op1q for large s. b

The following example illustrates the point:
Example 1. Consider a binary classification task of black/white images with n “ 28 ˆ 28 “ 784

pixels (with 22
784

« 1010
235

classifiers to choose from). If we provide the naive algorithm a
sample of s “ 106 images, when will it avoid overfitting? Theorem 1 says that overfitting
is avoided if Lf “ Ops{ log nq, in other words: if f can be implemented using an order of

1Here, following (Chauvin et al., 2004) we define the complexity of a Boolean function, f , as Lf “ minimal
size of a tree computing f , where the size of a tree is the number of internal nodes it has.

2Note we use the notations of Chauvin et al. (2004), not Lefmann & Savickỳ (1997). See also theorem 1 in
Chauvin et al. (2004).

3It is possible to further add here an almost sure agreement class, agreeing with f with probability 1´op1q.
A similar proof, with additional bookkeeping beyond the scope of this note, can show that for a large enough
sample size (or simple enough f ) the naive algorithm will provide f̂ almost surely agreeing with f .
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s{ log n “ 106{ log 784 « 0.35 ˆ 106 gates, which seems quite a lot and is very permissive.

Wide neural networks. In a very wide network (see Fig. 1A) with random weights, the sit-
uation is in fact straightforward: under the appropriate conditions, the output layer simply sums
up a large number of random variables and thus the central limit theorem kicks in. The result
is that the network is a Gaussian process (at initialization), which is a simple and well-behaved
function of the input. Moreover, previous work regarding very wide networks (Jacot et al., 2018)
demonstrated this Gaussian process and further found that after training via gradient descent the
result is akin to Gaussian process regression (Jacot et al., 2018) (i.e., a Gaussian process conditioned
on interpolating the sample data; see (Williams & Rasmussen, 2006)). Denote by Btrainp¨q a
Gaussian process (whose mean function and covariance are training-data dependent) conditioned on
passing through the sample points4. From ref. (Jacot et al., 2018) we can summarize the following
proposition:

Proposition 1 In the setting of ref. (Jacot et al., 2018), a wide network trained on a noise-free data
pX,Yf q via gradient descent after a random initialization is distributed as Btrainp¨q.

Remark: Needless to say, the mean function and covariance are training-data dependent, but given
pX,Yf q they are deterministic. The only randomness is due to the random Gaussian initialization
of the network weights.

Consider again the following naive “training” algorithm:

Naive Algorithm (for neural networks). Given pX,Yf q:

1. Initialize the weights of a network (f̂) at random from a
normal distribution.

2. Check if the network f̂ agrees with f over pX,Yf q. If so,

return f̂. If not, go to step 1.

Remark: This algorithm is obviously non-constructive. In particular, the probability of agreement
is zero. However, (i) it could be modified to check if the disagreement is smaller than a predefined
threshold (ii) efficiency is not the issue here, rather the following question: what could be said about
the result if the algorithm does stop?

Proposition 2 In the setting of ref. (Jacot et al., 2018), a wide network trained on a noise-free data
pX,Yf q via the naive algorithm (given the algorithm has stopped) is distributed as Btrainp¨q.

Remark: Here too the randomness is due to the random Gaussian initialization of the weights.

This highlights that it is not gradient-based training which contribute to the statistical effi-
ciency and generalization of the outcome (although GD is indeed important for computational
efficiency - and for speeding up training). Rather, there is an inherent simplicity bias due to the
random construction of the network via random weights initialization.

However, the main driving force for the emergence of these simple functions in the setting above
is the large width of the network, and not its depth (Lee et al., 2019). For a “narrow” but deep
neural network we show below an entirely different mechanism which produces simplicity bias
nevertheless.

Deep neural networks. In a multi-layered network (see Fig. 1B) each layer can be viewed
as an operator in a dynamical system that acts on the output of its preceding layer. Under the
appropriate conditions, this should lead to convergence to a fixed point5 regardless of the initial
input - i.e. a simple “constant function”.

Example 2. Consider a standard fully connected ReLu network with no bias, and Gaussian

4The notation B is due to the analogy to the Brownian bridge process.
5The notion of a fixed point is more subtle in the case of random dynamical systems, but similar behavior

is expected nonetheless (Boxler, 1995; Bhattacharya & Majumdar, 2007).
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weights initialization; i.e., prior to training, the output of xj,l, the jth unit in the lth layer, is

R
´

řw
k“1 a

plq
j,kxk,l´1

¯

, where w is the width of the network, each weight aplq
j,k is a standard normal

random variable independent of the rest, and Rpxq “ maxp0, xq.

Let Xl denote the output of the lth layer, and 0 denote the zero vector. Notice the following
properties:
(i) if Xl “ 0 then the same would be true for all Xk with k ą l.
(ii) since P pxj,l “ 0q ě P p@k : a

plq
j,k ă 0q “ 0.5w ą 0 we get P pXl “ 0q ą 0.

Taken together we conclude the following:
as l Ñ 8 we have P pXl “ 0q Ñ 1, and the output is a simple constant regardless of the input.

The example above presents the core ideas and notation, while keeping the analysis pretty straight-
forward (thanks to the positive mass on P pxj,l “ 0q due to the activation function). We now show
that networks with other activation functions (with zero mass on P pxj,l “ 0q, but a finite derivative
at zero) exhibit similar phenomena.

Definition 1. Asymptotic stability. Let X0, X1, X2... denote the states of a dynamical sys-
tem, with }X} as the Euclidean norm. We say that a point X˚ is asymptotically stable if there exists
a δ ą 0 such that for all X0 in the δ-neighborhood of X˚ we have Xl Ñ X˚ as l Ñ 8.

Theorem 2 (Asymptotic stability in deep networks) In the setting above, consider a deep net-
work with activation function σ

´

řw
k“1 a

plq
j,kxk,l´1

¯

with σp0q “ 0 and a finite derivative at zero,

σ1
0 ă 8. If the weights ta

plq
j,kuj,k,lě1 are i.i.d. zero-mean with standard deviation smaller than 1?

wσ1
0

then 0 is asymptotically stable.

Proof (sketch). Consider the dynamical system linearized at 0. Its Jacobian matrix, J , is a w ˆ w
random matrix with i.i.d. zero-mean entries with variance ă 1

w . Now:

• Large width case: for large w, according to the circular law (see theorem 1.10 in Tao et al.
(2010)), the eigenvalues of J lie in the unit disk with high probability. Standard theory
(see, e.g., Boxler (1995) for additional details) entails that 0 is a (local) attractor and that
for any initial point (close to 0) the system will converge to 0.

• Fixed width case: although less elegant, it is still possible to bound the Lyapunov exponent
of the system, λ1 ď 1

2 pln 1
w ` ln2`ψpw{2qq where ψ is the digamma function (see details

and definitions in chap. 2 sec. 4 in Crisanti et al. (1993), and Cohen & Newman (1984)).
Since ψpzq « lnz´ 1

2z ´Op 1
z2 q we have λ1 ď ´ 1

w ´Op 1
w2 q ă 0. Thus, again we conclude

from standard theory that 0 is a (local) attractor and that for any initial point (close to 0) the
system will converge to 0. b

Remark 1: A similar result was obtained by Xiao et al. (2020) for infinitely-wide networks (the
crux of the methods in ref. Xiao et al. (2020), which requires the large width, is the use of the
central limit theorem to approximate the pre-activations as a gaussian). Our result, in contrast, is
not limited to wide networks, and applies to “narrow” networks as well; and although the sketch
of the proof mentioned the circular law, and thus a wide network with large w is implied, this is
actually not essential. This is merely the most immediate way to bound the eigenvalues of J below
1 in magnitude, and any other way would suffice (see, for example, the second part addressing fixed
width). Furthermore, this sheds light on the Op 1?

w
q scaling of ta

plq
j,kuj,k,lě1 required.

Remark 2: In the next section we also discuss more relaxed and realistic versions of Theorem 2; in
particular, including biases and finite-depth networks.

Theorem 2, however, primarily acts as an initial starting point, mainly for didactic purposes. A
more interesting question to consider is: Can we establish for deep neural networks a counterpart
to Theorem 1 and proposition 2 that sheds light on the behavior after training with examples? Our
naive algorithm for training deep neural networks is similar to before: initialize the weights from a
normal distribution, and check if the outcome fits the sample data. However, we now also consider
a tolerance for disagreement smaller than a predefined threshold:
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Figure 1: Limiting simplicity for large neural networks. (A) A wide (and shallow) neural network.
When the weights are random, summing over the output of the large hidden layer will entail a
Gaussian process for the output and thus simplicity. (B) A deep (and narrow) neural network. Here
the hidden layers might act as an operator in a dynamical system, driving the initial input towards a
fixed point, given as the output of the penultimate layer. Thus, in a deep network the driving force
for the emergence of a simple function (the “constant” fixed point) and generalization is different
from the one in a wide network.

Naive Algorithm (for neural networks). Given pX,Yf q and a
tolerance, τ:

1. Initialize the weights of a network (f̂) at random from a
normal distribution with variance 1

w.

2. Check if the network f̂ agrees with f over pX,Yf q up to τ;
i.e., each output given by the network on the sample data is
within a distance τ from the correct output. If so, return
f̂. If not, go to step 1.

Note that for typical networks, with a continuous activation-function, the resulting network is con-
tinuous - both with respect to its input and moreover with respect to its weights6. From this follows:

Proposition 3 If f can be described over the sample-data by the neural network (i.e., there is a
choice of the weights for the neural network such that it fits the sample-data perfectly), then the
naive algorithm terminates successfully in finite time with probability 1.

Proof. Due to continuity with respect to weights, the set of “perfect fit” weights is contained in a
ball with radios δτ ą 0, i.e. having a strictly positive mass. Thus, the number of attempts by the
naive algorithm is dominated by a geometric random variable.

Remark: throughout the rest of the paper we will assume that f can indeed be described over the
sample-data by the neural network.

Consider the following conditions regarding the network-structure and the data:

• N1: the network is a fully connected convolutional neural network. Let d denote the di-
mension of the input xj ; each layer in the network has also width d.

• N2: the activation function is linear near the origin; for example, a shifted hard sigmoid:
maxp´1,minp1, xqq.

• S1: small sample size. We assume the sample size is smaller than d, i.e. d ą |pX,Yf q|.
• S2: orthonormal samples. For each xi, xj in the sample, we have that xi and xj are orthog-

onal (and have unit length).

Assume the existence of an interpolating solution (i.e., a set of weights with which the network
fits the data perfectly) possessing the following properties, and that the naive algorithm succeeds in
finding it:

6For brevity, we focus on regression, though a continuity argument could be made for classification as well.
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• A1: Similar length mapping. Assume that for each xi, xj in the sample, each one of the
layers in the network produces for xj an output which is roughly the same length, cl, as for
xi (this will be made clear below, and further discussed in the discussion section).

• A2: Quasi-linear prologue. Assume that for each input near the origin, the first layers in
the network act on it linearly; only at layer lb, with 1 ! lb, the non-linearity first takes its
effect (this too will be made clear below, and further discussed in the discussion section).

Remark. Notice that if a network with depth m is an interpolating solution, then there is an interpo-
lating solution with depth m` lb satisfying assumptions A1-A2; for example, a solution where the
first lb layers act as the identity function on the training data.

Theorem 3 (Probabilistic nearest-neighbor classification) Denote the s samples pX,Yf q byX “

tx1, x2, ...xsu and Yf “ ty1, y2, ...ysu. Assume a neural network satisfying conditions N1-S2 is
trained with the naive algorithm, and a solution satisfying assumptions A1-A2 is found.

Let xnew denote an out-of-sample data-point and ynew the output by the network corresponding to
it.

With high probability (tending to 1 as lb Ñ 8) we have:
i) ynew P ty1, y2, ...ysu.
ii) For yj P ty1, y2, ...ysu, P pynew “ yjq is an increasing function of the cosine similarity between
xnew and xj .

Proof. Let xp1q

j denote the output of the first layer of the network (after training) given xj as input;

more generally, let xpkq

j denote the output of the kth layer of the network given xj as input.

Lemma 1 Let xort be a new input, orthogonal to the training samples tx1, x2, ...xsu. Then the
output of the first layer, xp1q

ort is a zero-mean normally distributed random variable, independent of
tx1, x2, ...xsu and independent of tx

p1q

1 , x
p1q

2 , ...x
p1q
s u

(see proof in the appendix).

Consider the orthogonal decomposition of xnew:

xnew “

d
ÿ

j“1

hjxj “

s
ÿ

j“1

hjxj ` hortxort (2)

Based on A1-2 and lemma (1) we have

xp1q
new “

s
ÿ

j“1

hjc1x
p1q

j ` z (3)

where z is a zero-mean normally distributed random variable independent of tx
p1q

1 , x
p1q

2 , ...x
p1q
s u.

Clearly, if for some j we have xp1q
new equal to xp1q

j , or in the δτ neighborhood of xp1q

j , then ynew “ yj .
For which j is this most likely?

Proposition 4 The larger the magnitude of hj , the more likely it is that xp1q
new is in the δτ neighbor-

hood of xp1q

j .

Without loss of generality, assume that c1 “ 1 (just to simplify the notations). Pick some index, k,
and rewrite (3) in the following manner:

xp1q
new “ z`

s
ÿ

j“1

hjx
p1q

j “ z`

s
ÿ

j “ 1
j ‰ k

hjx
p1q

j `hkx
p1q

k “ z`

¨

˚

˚

˚

˚

˝

s
ÿ

j “ 1
j ‰ k

hjx
p1q

j ` phk ´ 1qx
p1q

k

˛

‹

‹

‹

‹

‚

`x
p1q

k
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In order for xp1q
new to be in the δτ neighborhood of xp1q

k the terms inside the parentheses need to be
canceled out by z. Since the Euclidean norm of the (vector) term in the parentheses is

řs
j“1 h

2
j `

1 ´ 2hk, while z is concentrated at the origin (i.e., a zero-mean unimodal spherically symmetric
random variable) we conclude that the larger the magnitude of hk, the more likely it is that xp1q

new is
in the δτ neighborhood of xp1q

k .

Next, if xp1q
new is not within the δτ -neighborhood of any xp1q

k , we should examine the probabilities
of xp2q

new being within the δτ -neighborhood of certain x
p2q

k . Unfortunately, unlike the case with
lemma (1), xp2q

ort is not a normally distributed7. However, xp2q

ort is nevertheless a zero-mean unimodal
spherically symmetric random variable; thus, similarly to proposition (4), we conclude that the larger
the magnitude of hk, the more likely it is that xp2q

new is in the δτ neighborhood of xp2q

k . Furthermore,
based on A1-2, the same applies to layers 3, 4, ...lb, and thus as lb Ñ 8 we conclude that with high
probability:
i) ynew P ty1, y2, ...ysu.
ii) For yj P ty1, y2, ...ysu, P pynew “ yjq is an increasing function of the cosine similarity between
xnew and xj .

Corollary 1 If a large ensemble of networks is trained under the conditions of theorem 3 then the
ensemble-average of their output for ynew is a kernel-machine.

3 DISCUSSION

Although Boolean networks and the deep neural networks in Theorems 2-3 are perhaps the simplest
“overparameterized” models, and are much simpler than other practical models, we feel there are a
few lessons to be learnt from Theorem 1 and Theorems 2-3.

Shannon effect vs. the ‘no Shannon effect’. Unlike the intuitive Shannon effect (i.e., that most
Boolean functions are complex (Riordan & Shannon, 1942)), the so-called no Shannon effect in
randomly constructed functions (Genitrini et al., 2014) is virtually unknown in the disciplines of
machine learning and statistics. Nevertheless, we hypothesize it plays a key role not only in explain-
ing the generalization of binary neural networks, but also more broadly for other overparameterized
models (albeit through analogous phenomena). Indeed, in (Valle-Perez et al., 2018) the authors
rightly argued that general Kolmogorov complexity reasoning entails simplicity bias; however, their
argument was non-constructive and abstract, whereas below we argue that simplicity bias is not
much more than a nearly-inevitable outcome of the central limit theorem (for wide networks) or a
dynamical system fixed-point theorem (for deep networks).

Wide vs. deep networks. There are two very different mechanisms that bias towards simplicity
in neural networks. In a very wide network (see Fig. 1A) with random weights, the situation is
governed by the central limit theorem, and thus the network is a Gaussian process (at initialization),
which is a simple and well-behaved function of the input.

The main driving force for the emergence of these simple functions in the setting above is the large
width of the network, and not its depth (Lee et al., 2019). For a “narrow” but deep neural network
we present an entirely different mechanism that produces simplicity bias nevertheless. In a multi-
layered network (see Fig. 1B) each layer can be viewed as an operator in a dynamical system, or
Markov chain, that acts on the output of its preceding layer; this should lead to convergence to a
fixed point regardless of the initial input - i.e. a simple “constant function”.

The aforementioned viewpoint of a Markov-chain “forgetting” its initial condition (i.e., input) eluci-
date also why adding biases in Theorem 2 would not change the result substantially. Adding external
biases, unrelated to the initial input, should not prevent forgetting the initial condition and converg-
ing to an output independent of the input (although now instead of having 0 as the output, the output
is drawn from the stationary distribution). Similarly, the asymptotic phrasing of Theorem 2 does not
imply it is irrelevant for finite-depth networks; on the contrary, like many other “asymptotic conv-

7Interestingly, when the width of the layers is rapidly decreasing, similarity to autoencoders, subsequent
outputs are again near-normal Li & Woodruff (2021).
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Perfect fit (interpolating solutions)
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Lack of fit

Nearest-neighbors / Kernel-machines
? ? ? ?
? ? ? ?
? ? ? ?

Figure 2: Network space. With random weights, most networks would not fit the sample (white
area). Among the networks that do fit the data perfectly, most are simple Nearest-neighbors / Kernel-
machines (dotted area). We conjecture that only a small fraction of solutions are more involved.

erence” results, here too convergence to the fixed-point up to an ϵ-tolerance distance from it, occurs
within a finite depth (possibly exponentially fast).

Note also that our new conjecture is different and complementary to the edge of chaos hypothe-
sis (Langton, 1990), which states that in order for a (post-training) dynamical system to carry out
“computations”, it needs to be between ordered and chaotic, i.e. at the edge of chaos (e.g., with a
Lyapunov exponent « 0 in absolute value). Our new hypothesis states that a pre-training system
needs to be in an ordered state (e.g., with a Lyapunov exponent ă 0 in absolute value) for it to gen-
eralize well after seeing the data (see also Xiao et al. (2020); Schoenholz et al. (2016) for additional
discussion in a specific setting).

Regardless to the universality and veracity of our conjecture above, the following (known) caution-
ary tale regarding research on generalization in wide networks should be reiterated: generalization
in deep networks is likely to be driven by a different mechanism, and thus insights from shallow-
and-wide networks might not be relevant.

Training and optimizers. In addition to providing a concrete and rigorous example of simplicity
bias and its contribution to learning, Theorem 1 also suggests a lack of optimizer-dependence. The
continuous neural network analogous to the (computationally inefficient) naive algorithm would be
“many initializations plus early stopping8”, suggesting that the role of the specific optimizer is not
crucial (and Theorem 3 demonstrates it for regression for an almost-perfect fit). As proposition 2
also implies, the optimizer clearly affects which representation will be sampled (i.e., which function
will be obtained after training), but it is not the driving force behind simplicity bias.

Nevertheless, there is certainly merit in research studying specific optimizers. Here we did not
address training or the standard optimizers; in Theorem 1 we only addressed learning via “toy train-
ing” mostly as a proof of concept - that good learning can be performed in overparameterized models
merely via the build-in simplicity bias (and without the use of an optimizer). Additionally, Theorem
2 does not address learning at all, it only serve to show that (randomly initialized) deep networks
are biased towards simple functions; nevertheless, there is reason to think that this prior bias will
affect the posterior obtained after training. This seem even more likely when considering training
which start at a random initialization and is updated via iterations of a local search (as most common
optimizers do). Indeed, ref. Xiao et al. (2020) demonstrated similar results for infinitely-wide deep
networks (while here we also address finite-width, or “narrow”, networks).

Theorem 3 show that random constructions that fit the sample act as simple nearest-neighbors clas-
sification or kernel-machines, suggesting that perhaps the vast majority of interpolating solutions
behave so as well (see fig. 2). After a random initialisation, SGD merely changes the weights greed-
ily to find the closest solution, without any ingenious hidden addition; thus, we conjecture that the
solutions SGD finds are of similar nature (see Domingos (2020)), while “sophisticated” solutions
are very rare.

8Note that for classification, unlike regression, even if the weights are continuous random variables, there is
a non-zero probability of random weights yielding a network that fits the training data perfectly (albeit possibly
a very small probability, and subject to the existence of such a fit).
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A APPENDIX

Here we provide the proof of lemma 1.

Recall the following affine transformation theorem:

Theorem 4 (Affine Transformation Theorem) Let X be a p-dimensional multivariate normal
random variable, i.e., X „ N pµ,Σq, where µ is the mean vector and Σ is the covariance matrix
of X . Let A be a constant q ˆ p matrix. Then, the random variable Y “ AX is also multivariate
normally distributed, and its distribution is given by:

Y „ N pAµ,AΣAT q

Rearrange the (transpose) of the inputs, xTj , and xTort in the following block matrix:
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»

—

—

—

—

—

—

—

—

—

—

—

—

—
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—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

xT1 0 ¨ ¨ ¨ 0
0 xT1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT1
xT2 0 ¨ ¨ ¨ 0
0 xT2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT2
...

...
. . .

...
xTs 0 ¨ ¨ ¨ 0
0 xTs ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTs
xTort 0 ¨ ¨ ¨ 0
0 xTort ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTort

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where each “0” is a vector of an appropriate dimension.

Recall that for the first layers, under A2 and our previous notation, the output of xj,l, the jth unit in
the lth layer, is

řw
k“1 a

plq
j,kxk,l´1. Focusing on the first layer, we drop the superscript notation and

write aj “ paj,1, aj,2, aj,3, ...aj,wqT .

Concatenate the weights in the following column vector:

»

—

—

—

—

–

a1
a2
a3
...
aw

fi

ffi

ffi

ffi

ffi

fl

obtaining
»

—

—
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—

—

—

—

—

—
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—
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—
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—
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—

—

—

—

—

—

—

—

—

—

—

—

–

xT1 0 ¨ ¨ ¨ 0
0 xT1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT1
xT2 0 ¨ ¨ ¨ 0
0 xT2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT2
...

...
. . .

...
xTs 0 ¨ ¨ ¨ 0
0 xTs ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTs
xTort 0 ¨ ¨ ¨ 0
0 xTort ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTort

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

–

a1
a2
a3
...
aw

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

x
p1q

1

x
p1q

2

x
p1q

3
...

x
p1q

ort

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Recall that pa1, a2, a3, ...awqT is normally distributed with a diagonal covariance matrix, and that it
is here multiplied by a matrix with orthogonal rows; thus, by Theorem (4) their product is normally
distributed with a diagonal covariance matrix. In particular, xp1q

ort is a zero-mean normally distributed
random variable, and conditioning on tx

p1q

1 , x
p1q

2 , ...x
p1q
s u does not change its distribution.
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