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ABSTRACT

Molecular dynamics (MD) simulations are essential for understanding biomolec-
ular systems but remain challenging to automate. Recent advances in large lan-
guage models (LLM) have demonstrated success in automating complex scientific
tasks using LLM-based agents. In this paper, we introduce MDCrow, an agentic
LLM assistant capable of automating MD workflows. MDCrow uses chain-of-
thought reasoning over 40 expert-designed tools for handling and processing files,
setting up simulations, analyzing the simulation outputs, and retrieving relevant
information from literature and databases. We assess MDCrow’s performance
across 25 tasks of varying complexity, and we evaluate the agent’s robustness
to both task complexity and prompt style. gpt-4o is able to complete com-
plex tasks with low variance, followed closely by 11ama3-405b, a compelling
open-source model. While prompt style does not influence the best models’ per-
formance, it may improve performance on smaller models.

1 INTRODUCTION

Molecular dynamics (MD) simulations have a longstanding role in understanding the behavior of
dynamic and complex systems in chemistry and biology. Although MD is an established field, its
use in scientific workflows has grown substantially in recent decades (Sinha et al., 2022; Karplus &
McCammon, 2002; Hollingsworth & Dror, 2018). This growth is driven by two main factors: (1)
MD simulations offer valuable insights into structural and dynamic phenomena, and (2) improved
computational hardware and user-friendly software packages have made MD more accessible to a
broader range of researchers (Hollingsworth & Dror, 2018). Despite these advances, designing an
MD workflow remains challenging. Researchers must select force fields, integrators, simulation
lengths, and equilibration protocols, often guided by expert intuition. The process also requires ex-
tensive pre- and post-processing, such as preparing protein structures, adding solvents, or analyzing
stability under varied conditions.

For a protein simulation, users typically provide a PDB file (Velankar et al., 2021), choose a force
field (e.g., CHARMM (Brooks et al., 2009), AMBER (Ponder & Case, 2003)), and set parameters
such as temperature, time step, and overall simulation length. They may also clean or trim the
structure, add ions or solvent, and analyze the resulting trajectory—choices that depend on the
biochemical system and the research goals. Although various tools automate parts of MD workflows
or target specific niches (Baumgartner & Zhang, 2020; Hayashi et al., 2022; Singh et al., 2023;
Ribeiro et al., 2018; Gygli & Pleiss, 2020; Yekeen et al., 2023; Maia et al., 2020; Ganguly et al.,
2022; Régo et al., 2022; Groen et al., 2016; Carvalho Martins et al., 2021; Suruzhon et al., 2020),
a truly domain-agnostic solution remains elusive. Community-driven toolkits (e.g., EasyAmber
(Suplatov et al., 2020), PACKMOL (Martinez et al., 2009), MDAnalysis (Michaud-Agrawal et al.,
2011), MDTraj (McGibbon et al., 2015), OpenMM (Eastman et al., 2017), GROMACS (Abraham
et al., 2015), LAMMPS (Thompson et al., 2022), SimStack (R&go et al., 2022)) and visualization
interfaces (Goret et al., 2017; Ribeiro et al., 2018; Rusu et al., 2014; Hildebrand et al., 2019; Biarnés
et al., 2012; Humphrey et al., 1996; Sellis et al., 2009; Martinez-Rosell et al., 2017; Ribeiro et al.,
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2018) have improved accessibility, but the high variability of MD workflows continues to impede
full automation.

Large-Language Model (LLM)-powered agents (Schick et al., 2023; Karpas et al., 2022; Yao et al.,
2022; Narayanan et al., 2024) offer a new approach for automating technical tasks by leveraging
reasoned tool usage, and have shown promise in chemical synthesis (Bran et al., 2023; Boiko et al.,
2023; Villarreal-Haro et al., 2023), materials research (Jablonka et al., 2023; Su et al., 2024; Chiang
et al., 2024; Kim et al., 2024), and data aggregation (Lee et al., 2024; Skarlinski et al., 2024).
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Figure 1: A. MDCrow’s chain-of-thought workflow starts with a user prompt, uses a set of MD
tools, and completes each subtask before producing a final response, along with relevant analyses
and files. B. Tool usage falls into four categories: information retrieval, PDB/protein handling, sim-
ulation, and analysis. Representative tools from each category are shown. C. Two example prompts
tested with MDCrow: one with a single subtask and one with 10 subtasks. D. Average subtask com-
pletion across all 25 prompts versus task complexity. Among the top three base-LLMs, gpt-40
and 11ama3-405b maintain high completion rates, staying near 100% even as complexity rises.

Here, we introduce MDCrow, an LLM-agent capable of autonomously completing MD workflows
in biochemical contexts. We evaluate MDCrow across 25 tasks of varying difficulty and compare
its performance using different base models (e.g., gpt—40 or 11ama3-405b). We also measure
robustness to prompt style and task complexity, and benchmark MDCrow against both single-query
LLM approaches and a ReAct-style LLM-agent equipped with a Python interpreter. In all cases,
MDCrow outperforms these alternatives (see Figure 1D). By bringing together reasoning, tool usage,
and adaptability, MDCrow addresses a longstanding need for a fully autonomous MD agent—one
that can lower the barrier to entry for novices while streamlining the workflow for experts.
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2 METHODS

2.1 MDCROW TOOLSET

MDCrow is an LLM-powered agent built on Langchain (Chase, 2022), which follows a chain-of-
thought reasoning process to complete complex tasks (Figure 1A). We focus the simulation and
analysis toolsets in this study on the OpenMM (Eastman et al., 2017) and MDTraj (McGibbon et al.,
2015) packages, but it is important to note that this framework is generalizable to any package,
provided the appropriate tools. MDCrow’s tools can be categorized in four groups: Information
Retrieval, PDB & Protein, Simulation, and Analysis (see Figure 1B).

Information Retrieval Tools These tools handle context-building and quick user queries, includ-
ing wrappers for UniProt API (UniProt Consortium, 2022) to access protein data and a Literature-
Search tool based on PaperQA (Skarlinski et al., 2024) for relevant PDFs (details in the Supplemen-
tary Information). Such data can guide parameter selection or simulation strategies.

PDB & Protein Tools MDCrow uses these tools to interact directly with PDB files, performing
tasks such as cleaning structures with PDBFixer (Eastman et al., 2017), retrieving PDBs for small
molecules and proteins, and visualizing PDBs through Molrender (Developers, 2019) or NGLview
(Nguyen et al., 2018).

Simulation Tools OpenMM (Eastman et al., 2017) is used for simulation, while PackMol
(Martinez et al., 2009) handles solvent addition. The tools detect incomplete pre-processing or
missing parameters, and MDCrow can revise simulation scripts if errors arise. These tools ulti-
mately generate Python scripts that MDCrow can edit on the fly.

Analysis Tools This group of tools is the largest in the toolset, designed to cover common MD
workflow analysis methods, with many built on MDTraj (McGibbon et al., 2015) functionalities.
Examples include computing the root mean squared distance (RMSD) with respect to a reference
structure, analyzing the secondary structure, and various plotting functions.

3 RESULTS

3.1 MDCROW PERFORMANCE ON VARIOUS TASKS

We evaluated MDCrow on 25 tasks, each requiring between 1 and 10 subtasks.  For
example, the simplest prompt needed just one step, while a complex prompt in-
volved downloading a PDB file, running three simulations, and performing multiple anal-
yses. MDCrow could perform extra actions without penalty but was penalized for
omitting required subtasks. These 25 prompts were tested across three GPT mod-
els (gpt—-3.5-turbo-0125, gpt-4-turbo-2024-04-09, gpt—-40-2024-08-06), two
Llama models (11lama-v3pl-405b-instruct, llama-v3pl-70b-instruct), and two
Claude models (claude-3-opus—-20240229, claude-3-5-sonnet-20240620). A
newer Claude model (claude-3-5-sonnet-20241022) showed no improvement and was not
included in these tests.

All parameters except the model choice remained the same, and each MDCrow version ran each
prompt only once. Expert evaluators recorded how many subtasks were completed correctly, noting
whether a run contained inaccuracies, runtime errors, or hallucinations. Accuracy was judged based
on consistency with the expected workflow rather than a fixed reference solution, acknowledging
that agent trajectories may vary even when tasks are successfully completed.

We also compared MDCrow against two baselines: (1) a ReAct (Yao et al., 2022) agent with a
Python REPL tool and (2) a single-query LLM. All were tested on the same 25 prompts with
gpt—40. We provided different system prompts to align each framework with MDCrow’s tool
stack (details in Supplemental Information). The single-query LLM generated code for all subtasks,
while the ReAct agent wrote and executed code using a chain-of-thought approach.
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Figure 2: MDCrow performance across different Large Language Models. A. Accuracy (acceptable
final answer) by LLM. gpt—-40 outperforms other GPT models significantly (0.004 < p-value <
0.046) but does not differ significantly from Claude or Llama models. B. Distribution of subtasks
(1-10) across 25 prompts. Each step count is used in at least two prompts. C. Percentage of accu-
rate solutions vs. subtask count for each LLM. All models show a significant negative correlation
between accuracy and task complexity (3.9 x 10~7 < p-value < 1.1 x 10~2). D. Percentage of
subtasks completed by MDCrow for top four LLMs across all tasks. E. Performance among LLM
frameworks, using gpt-40. MDCrow is more accurate and completes more subtasks than direct
LLM and ReAct with only Python REPL tool. F. Percentage of accurate solutions vs. subtask count
for each LLM framework type. All show a significant negative correlation between accuracy and
task complexity (1 x 10~* < p-value < 7 x 1072)

MDCrow outperformed both baselines by a notable margin in completing subtasks and producing
accurate solutions (Figure 2E). While the baseline performance quickly dropped to near-zero after
just three steps, MDCrow sustained more reliable performance across the full complexity range,
aided by robust file handling, simulation setup, and the capacity to recover from errors.

3.2 MDCROW ROBUSTNESS

We tested MDCrow’s robustness on increasingly complex prompts and different prompt styles. To
explore how well each model handled growing complexity, we created 10 prompts that successively
added subtasks. Each prompt was tested twice: once in a conversational style and once with explicit
step-by-step instructions. We then calculated the coefficient of variation (CV) for the percentage
of completed subtasks across all tasks. A lower CV means more consistent performance and thus
higher robustness. Results showed marked differences among models and prompt types: gpt—4o0
and 11ama3-405b demonstrated moderate to high robustness, while the Claude models scored
notably lower (see Figure 3C).

4  DISCUSSION

Although LLMs’ scientific abilities are growing (Jaech et al., 2024; Hurst et al., 2024; Laurent et al.,
2024), they cannot yet independently complete MD workflows, even with a ReAct framework and
Python interpreter. However, with frontier LLMs, chain-of-thought reasoning, and an expert-curated
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Figure 3: A. Tasks categorized by subtask count, starting with one subtask (Download a PDB file)
and increasing to 10. B. Examples of “Natural” vs. “Ordered” prompts for a three-step task. C.
Robustness (coefficient of variation, CV) of each model and prompt style: lower CV indicates
more consistent performance. gpt—40 and 11ama3-405b are more robust, while Claude models
have higher CVs. D. Subtask completion comparison across models and prompt types. In the 9-
subtask prompt, gpt -4 o exited after an early error. Overall, gpt-40 and 11ama3-405b handle
complexity better, while claude—-3-opus and claude-3.5-sonnet struggle, especially with
complex tasks.

toolset, MDCrow successfully handles a broad range of tasks. It performs almost 180% better than
gpt—-4o in ReAct workflows, which is expected due to MD workflows’ need for file handling, error
management, and real-time data retrieval.

For all LLMs, task accuracy and subtask completion drop as task complexity increases. gpt—4o0
can handle multiple steps with relatively low variance, followed closely by 11ama3-405b, an
open-source model. Other models, such as gpt-3.5 and claude-3.5-sonnet, struggle with
hallucinations or inability to follow complex instructions. Performance on these models, however,
is improved with explicit prompting.

These tasks were focused on routine applications of MD with short simulation runtimes, limited
to proteins, common solvents, and force fields included in the OpenMM package. We did not
explore small-molecule force fields, especially related to ligand binding. Future work could explore
multi-modal approaches (Wang et al., 2024; Gao et al., 2023) for tasks like convergence analysis
or plot interpretations. The current framework relies on human-created tools, but as LLM-agent
systems become more autonomous (Wang et al., 2023), careful evaluation and benchmarking will
be essential.

5 CONCLUSION

MDCrow uses LLMs’ automation and reasoning capabilities through conversational agents for di-
verse MD tasks. MDCrow, built on gpt —40 or 11ama3-405Db, consistently exhibits robust perfor-
mance across task complexities and prompt variations. While MD automation remains a significant
challenge, MDCrow offers an adaptable and user-friendly solution, underscoring the potential for
LLM-based agents to further improve MD automation with minimal errors.
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A APPENDIX

A.1 MEMORY

A key challenge in developing an automated MD assistant is ensuring it can manage a large number
of files, analyses, and long simulations and runtimes. Although MDCrow has been primarily tested
with shorter simulations, it is designed to handle larger workflows as well. Its ability to retrieve and
resume previous runs allows users to start a simulation, step away during the long process, and later
continue interactions and analyses without needing to stay engaged the entire time. An example of
this memory feature is shown in Figure 4.

Memory is an optional feature that creates an LLM-generated summary of the user prompt and agent
trace, which is assigned to a unique run identifier provided at the end of the run (but accessible at any
time during the session). Each run’s files, figures, and path registry are saved in a unique checkpoint
folder linked to the run identifier.

When resuming a chat, the LLM loads the summarized context of previous steps and maintains
access to the same file corpus, as long as the created files remain intact. To resume a run, the user
simply provides the checkpoint directory and run identifier. MDCrow then loads the corresponding
memory summaries and retrieves all associated files, enabling seamless continuation of analyses.

User: Hello MDCrow. | want to study hemoglobin with and without
oxygen. Please download the PDB files of these variants.

[m]]
(en] Final Answer:
e Downloaded! X
‘:,"I’;;‘:a ‘;“l")';"; 3A66 is the PDB ID for oxygenated hemoglobin
2HBS is the PDB ID for deoxygenated hemoglobin
User: How many chains and residues are in each PDB file? 8
1  MDCrow:
(en] ;{; Final Answer:
Secondary  Secondary 3A06 contains 287 residues and 2 chains.
Structure  Structure 2HBS contains 1,148 residues and 2 chains.
Analysis 1 Analysis 2
User: Please simulate each for 10 ps. 8
8 MDCrow:
............. )} Final Answer:
Setup & Setup & 3A06 simulation done! Files saved.
Simulate 1 Simulate 2 24Bg simylation done! Files saved.
User: Calculate RMSD for both simulations. 8
(]
MDCrow:
D

............. hﬁm Final Answer:

c 3ABG RMSD analysis complete. Files saved.
ompute Compute
RMSDYI RMSD2 2HBS RMSD analysis complete. Files saved.

RMSD of 3A06 RMSD of 2HBS

0.25,
0.2
0.20) ~
=
015 £ 0.5

6.10f o 0.10
@

RMSD (nm)

0.05, & o0

6.60! 0.68
6 10 26 30 48 50 60 b 10 20 30 4o 50 6d
time i

Figure 4: Example Chat Example of chat with MDCrow. The user first asks to download PDB
files for two systems. Then, once MDCrow has completed this task, the user asks for analysis of the
files. Next, the user asks for a quick 10 ps simulation of both files, and MDCrow saves all files for
later handling. Lastly, the user asks for plots of RMSD for each simulation over time, and MDCrow
responds with each plot.
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A.2 CLAUDE-SPECIFIC ENGINEERING

While both of Claude’s Sonnet models achieved poor performance during the robustness experiment,
it can be noted that a single common error arose consistently. When running an NPT simulation,
MDCrow requires that all parameters be passed to the simulation tool. However, both Sonnet mod-
els consistently neglected to provide a value for pressure, even when directly prompted to do so.
The claude—-3-opus made this mistake a single time. This is a relatively simple fix, providing
MDCrow with a default pressure of 1 atm when no pressure is passed.

Subtask Completion for Claude Models

claude-3.5-sonnet claude-3.5-sonnet
claude-3-opus (20241022) (20240620)
10 5 10 10
9 9 9
8 8 8
7 7 7
—_
S 6 6
8 s 5 5
=2
o] 4 4 4
S
e 3 3 3
= 2 2 2
£
S 172 5 45 6 7 6 610 1 5 3 45 6 7 8 910 1 2 3 45 6 7 6 9 10
L
9]
s claude-3.5-sonnet claude-3.5-sonnet
= claude-3-opus (20241022) (20240620)
a 10 5 10 10
= o ? 9 9
g3 8 8
[
—~ 7 7 7
[&]
"6 6 6
& s 5 5
94 4 4
s 3 3
.3
02 2 2
<3 1 1

12 3 45 6 7 8 910 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N Subtasks Required

—e— Ordered Prompt
—e— Natural Prompt

Figure 5: Performance of MDCrow with three Claude models on 10 tasks. As the number of
subtasks increase, we all subtasks completed for both prompt types. The top row shows MD-
Crow’s performance as-is, and the bottom row shows MDCrow’s performance when given a di-
rect fix for missing parameters. There is a clear change in performance after the fix for both
claude-3.5-sonnet-20241022 and claude-3.5-sonnet-20240620.

As can be seen in Figure 5, including this fix drastically improves the performance of these models,
with performance comparable to the top models. However, no other models made this mistake, and
no other model-specific optimization was conducted. Thus, for all experiments shown in this paper,
MDCrow does not accommodate this Claude-specific missing parameter fix.

A.3 MDCROW EXTRAPOLATION

We further show MDCrow’s ability to harness its memory feature and extrapolate outside of its
toolset to complete new tasks. This task requires MDCrow to perform an annealing simulation,
which is not part of the current toolset. The agent achieves this by first setting up a simulation
to find appropriate system parameters and handle possible early errors. Then, the agent modifies
the script according to the user’s request. Once the simulation is complete, the user later asks for
simulation analyses, shown in Figures 6A,B.

11
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User: Run a simulated annealing simulation of the protein 1L2Y in Radius of Gyration

vaccuum. First set it up, and then modify the given script to
simulate at 303 K for 3 ns (3000ps), then go to 498K and simulate ~0.76

0.78

Calculate Calculate
RMSD RGy

analyses for the
protein have
been completed.

there for 2 ns, then return to 303 K and simulate for 3 extra ns. H] o.70
&0.72
. & 0.70
Final Answer: ’
The simulation
gfﬁhgnp\?ggﬁﬁg Root Mean Square Deviation (RMSD)
Download S.et Up, Mod'ify Simulate for 10 ns at 303 0.5
PDB  Simulate Script K has been ~ 0.4
successfully g
completed — o3
3 0.2
E 0.1
User: Now that the simulation is done, please analyze RMSD and 0.0
Radius of gyration of the protein
Temperature
<
MDCrow: Final Answer: ~
The RMSD and &
.............. |/|\|/| |,|\I/| Radiu§ of 2
Gyration 4
g.
E
©

© 1000 2000 3000 4600 5000 6000 7000 800
Time (ps)

Figure 6: A. MDCrow simulating annealing. The user directly instructs to simulate an annealing
simulation of protein 1L.2Y. The user then utilizes the memory feature to ask for further analyses. B.
RMSD, RGy, and temperature throughout the simulation, as requested by the user in A.

A.4 PROMPTS
MDCrow Prompt

You are an expert molecular dynamics scientist, and your task is to
respond to the question or solve the problem to the best of your ability
using the provided tools.

You can only respond with a single complete ’'Thought, Action, Action
Input’ format OR a single ’'Final Answer’ format.

Complete format:

Thought: (reflect on your progress and decide what to do next)

Action:

{{
"action": (the action name, it should be the name of a tool),
"action_input": (the input string for the action)

b}

OR

Final Answer: (the final response to the original input

question, once all steps are complete)

You are required to use the tools provided, using the most specific tool
available for each action. Your final answer should contain all
information necessary to answer the question and its subgquestions.
Before you finish, reflect on your progress and make sure you have
addressed the question in its entirety.

If you are asked to continue or reference previous runs, the context
will be provided to you. If context is provided, you should assume you
are continuing a chat.

Here is the input:
Previous Context: {context}
Question: {input}

12
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During the comparison study between MDCrow, GPT-only, and ReAct with Python REPL tool, we
used different system prompts for each of these LLM frameworks.
Direct-LLM Prompt

You are an expert molecular dynamics scientist, and your task is to
respond to the question or solve the problem in its entirety to the best
of your ability. If any part of the task requires you to perform an
action that you are not capable of completing, please write a runnable
Python script for that step and move on. For literature papers, use and
process papers from the ‘paper_collection' folder. For .pdb files,
download them from the RSCB website using ‘requests‘. To preprocess PDB
files, you will use PDBFixer. To get information about proteins,
retrieve data from the UniProt database. For anything related to
simulations, you will use OpenMM, and for anything related to analyses,
you will use MDTraj. At the end, combine any scripts into one script.

ReAct Agent Prompt

You are an expert molecular dynamics scientist, and your task is to
respond to the question or solve the problem to the best of your
ability. If any part of the task requires you to perform an action that
you are not capable of completing, please write a runnable Python script
for that step and run it. For literature papers, use and process papers
from the ‘paper_collection’ folder. For .pdb files, download them from
the RSCB website using ‘requests‘. TO preprocess PDB files, you will use
PDBFixer. To get information about proteins, retrieve data from the
UniProt database. For anything related to simulations, you will use
OpenMM, and for anything related to analyzes, you will use MDTraj.

You can only respond with a single complete ’'Thought, Action, Action
Input’ format OR a single ’'Final Answer’ format.

Complete format:

Thought: (reflect on your progress and decide what to do next)

Action:

{{
"action": (the action name, it should be the name of a tool),
"action_input": (the input string for the action)

b}

OR

Final Answer: (the final response to the original input

question, once all steps are complete)

You are required to use the tools provided,

using the most specific tool available for each action. Your final
answer should contain all information necessary to answer the question
and its subquestions. Before you finish, reflect on your progress and
make sure you have addressed the question in its entirety.

Here is the input:
Question: {input}

A.5 EXPERIMENT TASK PROMPTS & REFERENCES USED IN EXPERIMENTS

13
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Table 1: Details of 25 task prompts used in experiments

genated hemoglobin (6BBS5). Plot the PCA of both trajecto-
ries.

Prompt Prompt # List of required sub-
ID sub- | tasks
tasks

1 Simulate PDB ID 1MBN at two different temperatures: 300 | 8 Download PDB, simu-
K and 400 K for 1 ns each. Plot the RMSD of both over time late (x2), RMSD (x2),
and compare the final secondary structures at the end of the DSSP (x2), summa-
simulations. Get information about this protein, such as the rize_protein
number of residues and chains, etc.

2 Download the PDB file for protein 1LYZ. 1 Download PDB

3 Download the PDB file for protein 1GZX. Then, analyze | 3 Download PDB, DSSP,
the secondary structure of the protein and provide informa- GetProteinFunction (or
tion on how many helices, sheets, and other components are literature)
present. Get the gene names for this protein.

4 What are the common parameters used to simulate fi- | 1 literature search
bronectin?

5 Simulate 1VII for 1 ns at a temperature of 300 K. Then, tell | 5 Download PDB, simu-
me if the secondary structure changed from the beginning of late, DSSP before, DSSP
the simulation to the end of the simulation. after, comparison

6 Simulate 1A3N and 7VDE (two PDB IDs matching | 7 Download PDB (x2), lit-
hemoglobin) with identical parameters. Find the appropriate erature, simulate (x2),
parameters for simulating hemoglobin from the literature. RGy (x2)

Then, plot the radius of gyration throughout both simula-
tions.

7 Simulate 1ZNI for 1 ns at a temperature of 300 K in water. | 10 Download PDB, sim-
Then, simulate it again in acetonitrile. Compute the RMSD, ulate (x2), packmol,
final secondary structure, and PCA for each simulation. RMSD (x2), SASA (x2),

PCA (x2)

8 Simulate 4RMB at 100K, 200K, and 300K. Then, for each | 10 Download PDB, simu-
simulation, plot the radius of gyration over time and com- late (x3), RGy (x3),
pare the secondary structure before and after the simulation. DSSP (x3)

9 Download the PDB file for 1AEE. Then tell me how many | 2 download PDB, count
chains and atoms are present in the protein. atoms/chains

10 Simulate protein 1ZNI at 300 K for 1 ns and calculate the | 3 Download PDB, simu-
RMSD. late, RMSD

11 Download the PDB files for 8PFK and 8PFQ. Then, com- | 4 Download PDB (x2),
pare the secondary structures of the two proteins, includ- DSSP (x2)
ing the number of atoms, secondary structures, number of
chains, etc.

12 Simulate fibronectin (PDB ID 1FNF) for 1 ns, using an ap- | 8 Download PDB, litera-
propriate temperature found in the literature. Compute the ture, simulate, RMSD,
RMSD and the final secondary structure. By using the PDB DSSP, get uniprot, sub-
ID to get the Uniprot ID, obtain the subunit structure and the unit structure, get beta
number of beta sheets, helices, etc. Compare this informa- sheets/helices
tion to the structure we computed.

13 Compare the RMSF of 1UBQ under high pressure and low | 7 Download PDB, simu-
pressure. Perform the simulation for 1 ns, varying only the late (x2), RMSF (x2),
pressure. Plot the moments of inertia over time for both MOI (x2)
simulations.

14 Simulate deoxygenated hemoglobin (1A3N) and oxy- | 6 Download PDB (x2),

simulate (x2), PCA (x2)
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Prompt Prompt # List of required sub-
ID sub- | tasks
tasks
15 Simulate trypsin (ITRN) for 1 ns at 300 K and plot eneRGy | 9 Download PDB, sim-
over time. Compute SASA, RMSF, and radius of gyration. ulate, output figures,
Get the subunit structure, sequence, active and binding sites. SASA, RMSE RGy,
subunit structure, se-
quence info, all known
sites
16 Download the PDB file for 1C3W and describe the sec- | 5 Download PDB, DSSP,
ondary structure. Then, simulate the protein at 300 K for simulate, RMSD, RGy
1 ns. Plot the RMSD over time and the radius of gyration
over time.
17 Download the PDB file for 1XQS8, and then save the visual- | 2 Download PDB, visual-
ization for it. ize
18 Download the PDB for 2YXF. Tell me about its stability as | 4 Download PDB, liter-
found in the literature. Then, simulate it for 1 ns and plot its ature search, simulate,
RMSD over time. RMSD
19 Simulate IMBN in water and methanol solutions. 4 Download PDB, pack-
mol to get appropriate
non-water solvent, simu-
late (x2)
20 Download protein 1ATN. 1 Download PDB
21 Download and clean protein 1A3N. 2 Download PDB, clean
22 Perform a brief simulation of protein 1PQ2. 2 Download PDB, simu-
late
23 Analyze the RDF of the simulation of 1A3N solvated in wa- | 3 Download PDB, simu-
ter. late, RDF
24 Simulate oxygenated hemoglobin (IA3N) and deoxy- | 6 Download PDB (x2),
genated hemoglobin (6BB5). Then analyze the RDF of simulate (x2), RDF (x2)
both.
25 Simulate 1L6X at pH 5.0 and 8.8, then analyze the SASA | 9 Download PDB, clean

and RMSF under both pH conditions.

at pH 5.5 and 8.0, sim-
ulate(x2), SASA(x2),
RMSF(x2)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

List of References Used for Literature Search During the Experiments.

. The folding space of protein S2-microglobulin is modulated by a single disulfide bridge,

10.1088/1478-3975/ac08ec

. Molecular Dynamics Simulation of the Adsorption of a Fibronectin Module on a Graphite

Surface, 10.1021/1a0357716

. Predicting stable binding modes from simulated dimers of the D76N mutant of 352-

microglobulin, 10.1016/3.¢csbj.2021.09.003

. Deciphering the Inhibition Mechanism of under Trial Hsp90 Inhibitors and Their

Analogues: A Comparative Molecular Dynamics Simulation, 10.1021/acs. jcim.
9001134

. Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tu-

berculosis, 10.3389/fbinf.2023.1125479

. Molecular Dynamics Simulation of Rapl Myb-type domain in Saccharomyces cerevisiae,

10.6026/97320630008881

. A Giant Extracellular Matrix Binding Protein of Staphylococcus epidermidis Binds

Surface-Immobilized Fibronectin via a Novel Mechanism, 10.1128/mbio.01612-20

. High Affinity vs. Native Fibronectin in the Modulation of av/33 Integrin Conformational

Dynamics: Insights from Computational Analyses and Implications for Molecular Design,
10.1371/journal.pcbi.1005334

. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics

simulations, 10.1006/jmbi1.1999.2670

Adsorption of Fibronectin Fragment on Surfaces Using Fully Atomistic Molecular Dynam-
ics Simulations, 10.3390/1jms19113321

Fibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth
Type-IIl Repeat, 10.1371/journal .pone.0002373

Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed
by multiscale simulations, 10.1038/s41598-017-11259-0

Oxygen Delivery from Red Cells, 10.1016/s0006-3495(85) 83890-x

Molecular Dynamics Simulations of Hemoglobin A in Different States and Bound to DPG:
Effector-Linked Perturbation of Tertiary Conformations and HbA Concerted Dynamics,
10.1529/biophysj.107.114942

Theoretical Simulation of Red Cell Sickling Upon Deoxygenation Based on the Physical
Chemistry of Sickle Hemoglobin Fiber Formation, 10.1021/acs. jpcb.8b07638

Adsorption of Heparin-Binding Fragments of Fibronectin onto Hydrophobic Surfaces, 10 .
3390/biophysica3030027

Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with
varying chemistries by a combination of experimental strategies and molecular simulations,
10.1016/7j.biocactmat.2021.02.021

Anti-Inflammatory, Radical Scavenging Mechanism of New 4-Aryl-[1,3]-thiazol-2-yl-
2-quinoline Carbohydrazides and Quinolinyl[1,3]-thiazolo[3,2-b][1,2,4]triazoles, 10.
1002/s1ct.201801398

Trypsin-Ligand binding affinities calculated using an effective interaction entropy method
under polarized force field, 10.1038/s41598-017-17868-z

Ubiquitin: Molecular modeling and simulations, 10.1016/3.jmgm.2013.09.006

Valid molecular dynamics simulations of human hemoglobin require a surprisingly large
box size, 10.7554/eLife.35560

Multiple Cryptic Binding Sites are Necessary for Robust Fibronectin Assembly: An In
Silico Study, 10.1038/s41598-017-18328-4

Computer simulations of fibronectin adsorption on hydroxyapatite surfaces, 10.1039/
c3ra47381lc
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28.

An Atomistic View on Human Hemoglobin Carbon Monoxide Migration Processes, 10 .
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livecoms.1.1.5957

Unfolding Dynamics of Ubiquitin from Constant Force MD Simulation: Entropy-Enthalpy
Interplay Shapes the Free-Energy Landscape, 10.1021/acs. jpcb.8b09318
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