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ABSTRACT

Achieving efficient data augmentation (DA) in time series classification is not a
trivial task due to the high complexity of temporal data. Generative models, such
as GANs (Generative Adversarial Networks), diffusion models, and Variational
Autoencoders (VAEs), are powerful techniques to address the generative learn-
ing trilemma of producing (1) high-quality samples, (2) fast sampling, and (3)
diversity. These methods vary in their ability to address the trilemma. Diffusion
models allows for high diversity and high quality samples, while GAN allows for
high quality samples and fast sampling, and VAE for high diversity and fast sam-
pling. In this paper, we introduce a novel generative method, ASCENSION (VAE
and GMM-controlled latent space class expansion), that retains the strengths of
VAE in terms of diversity and fast sampling, while enabling controlled and quan-
tifiable exploration of uncharted regions in the latent space. This approach not
only enhances classification performance but also yields higher quality (more re-
alistic) samples. ASCENSION leverages the probabilistic nature of the VAE’s
latent space to represent classes as Gaussian mixture models (GMMs). By mod-
ifying this mixture, we enable precise manipulation of class probability densi-
ties and boundaries. To ensure intra-class compactness and maximize inter-class
separation, we apply clustering constraints. Empirical evaluations on the UCR
benchmark (102 datasets) show that ASCENSION outperforms state-of-the-art
DA methods, achieving an average classification accuracy improvement of ap-
proximately 7% and excelling in all aspects of the generative learning trilemma.

1 INTRODUCTION

The complexity of time series data, represented as X = x1, x2, . . . , xN , where each sample xi be-
longs to a class yi ∈ 1, 2, . . . , C, combined with limited availability of real-world data due to privacy
concerns, poses challenges for effective machine learning training. Data augmentation (DA) helps
mitigate this issue by generating synthetic data to enhance the training set. DA involves creating an
augmented dataset Xaug, which adds new, diverse samples that remain consistent with their respec-
tive classes, with the goal of improving the efficiency of the classification model. Formally, let Dtrain
represent the original training dataset and Daug the augmented dataset. The conventional approach
aims to achieve Dtrain ∪Daug ∼ dtrue, where dtrue denotes the true underlying data distribution.

DA methods fall into two categories: Traditional and Generative DA models/methods (Iglesias et al.,
2023b). Traditional DA methods, such as AutoAugment (AA) Cubuk et al. (2019) and Fast Au-
toAugment (FAA) (Lim et al., 2019), automate the application of predefined transformations like
window slicing, jittering, or scaling (Iglesias et al., 2023a). However, the reliance on these pre-
defined transformations – often adapted from the computer vision domain – restricts the ability to
maintain intra-class consistency and preserve the original data semantics, which diminishes the over-
all effectiveness of the augmentation process. Generative DA models like GANs, diffusion models
and VAEs (Cheung & Yeung, 2020) address the generative learning trilemma of producing (1)
high-quality samples, (2) fast sampling, and (3) diversity. While GAN-based DA methods, such as
TimeGAN (Zhang et al., 2022), TS-GAN and LatentAugment (Tronchin et al., 2023), excel at gen-
erating high-quality samples with speed, they often fall short in terms of diversity (see Figure 1(a)).
This limitation arises because these models tend to interpolate within the existing data or introduce
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Figure 1: Overview of how state-of-the-art generative DA models (GANs, Diffusion Models, VAEs)
tackle the Generative Learning trilemma versus ASCENSION (the method proposed in this paper).
ASCENSION leverages the strengths of VAEs in diversity and fast sampling while enabling con-
trolled, quantifiable exploration – through data extrapolation – of uncharted latent space regions,
resulting in higher quality samples and improved classification performance.

noise, leading to generated samples that remain confined to the same latent space region as the orig-
inal data (Xiao et al.). Unlike GANs, diffusion models progressively refine noise into the target data
distribution, resulting in highly diverse and high-quality samples. However, they are computation-
ally expensive, making them less efficient than GANs and VAEs for fast sampling (Feng et al., 2024)
(see Figure 1(b)). VAEs offer several advantages over GANs and diffusion models. Although GANs
achieve fast sampling, VAEs are often even quicker due to their simpler training and generation
process. Additionally, the probabilistic nature and structured latent space of VAEs allow for easier
control over diversity compared to GANs (see Figure 1(c)). However, to our knowledge, existing
methods in the literature (see Appendix A - Related Work) are limited in their capacity to progres-
sively and meaningfully expand class boundaries during synthetic data generation. This limitation
presents challenges in situations where the training data distribution does not match the true data
distribution, particularly when the training data is collected over a short time frame and does not
encompass all potential scenarios encountered during operational phases.

In this research work, we assume that a controllable progressive expansion mechanism is crucial
to prevent the exploration of regions with a high risk of class overlap, which would degrade sample
quality. Despite the advances in state-of-the-art generative DA methods, as outlined in Appendix A
and Figure 7, none have ever proposed and integrated such a mechanism into VAEs. To overcome
this limitation, we introduce a novel method, ASCENSION, which uses the probabilistic nature
of the VAE’s latent space to represent classes as Gaussian Mixture Models (GMMs). The core
of this approach lies in adjusting the mixture, enabling controlled and measurable exploration of
class probability densities and boundaries. This is illustrated in Figure 1(d) where the progressive
expansion (shown by successive dashed shapes) reflects different mixture values. Additionally, to
ensure that the GMMs faithfully capture the data distribution and retain statistical significance, we
impose clustering constraints that enhance the structural properties of the VAE’s latent space. These
constraints foster intra-class compactness while maximizing inter-class separation.

The main contributions of this paper are:

C1 (Novel generative DA method for time series) We introduce ASCENSION, a novel generative
method that retains the strengths of VAE in terms of diversity and fast sampling, while enabling
controlled and quantifiable exploration of uncharted regions in the latent space. This approach
not only improves classification performance but also generates higher-quality samples (cf.,
Figure 1(d)) through a well-conditioned latent space;

C2 (Empirical benchmarking on time series data) We empirically validate ASCENSION’s effec-
tiveness and efficiency in addressing the generative learning trilemma and improving classifica-
tion performance, even in the presence of discrepancies in distance between the training and test-
ing set distributions (cf., Appendix E.2). ASCENSION is benchmarked against both traditional
DA methods (FAA) and generative methods (TTS-GAN, LatentAugment, and MODALS);

C3 (Comprehensive evaluation of conditions enhancing ASCENSION’s operational effi-
ciency) We provide an in-depth analysis of the types of time series – based on their features
– that are most suitable for augmentation with ASCENSION and the benchmarked methods;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ASCENSION augmentation process Forward pass Backpropagation

Training data

. . .

Add synthetic data Synhtetic data

. . .
Modified GMM

Training process

Encoder

ε

σ

µ

×
+

Clustered
Latent
space

Decoder Reconstruction
loss

Classifier Classification
loss

KL divergence
loss

Clustering
loss

U
se

au
gm

en
te

d
da

ta
se

t

Sam
ple Fi

t

Figure 2: Overview of ASCENSION, leveraging the probabilistic nature of the VAE’s latent space to represent
classes as GMMs. By modifying this mixture, we enable precise manipulation of class probability densities
and boundaries. To ensure intra-class compactness and maximize inter-class separation, clustering constraints
are applied. The iterative process enriches, at each round, the training dataset with synthetic samples, resulting
in a new dataset DtrainAUG such as: Dtrain INIT ⊂ Diter 1 ⊂ Diter 2 ⊂ ... ⊂ Diter N = Dtrain AUG

2 ASCENSION METHOD

ASCENSION builds on a VAE-based generative model, leveraging its fast sampling and diversity
capabilities, while introducing a controllable mechanism for progressive expansion of the latent
space. Instead of focusing solely on class-consistent augmentation, ASCENSION approximates
each class distribution with a GMM. By gradually increasing the variances of GMM components,
it expands the space for each class, enabling boundary exploration while minimizing overlap risk.
Figure 2 shows ASCENSION’s architecture, featuring (i) a deep clustering VAE that learns latent
representations, and (ii) a GMM that models the latent space and generates new samples. Encoder
and Decoder architectures vary based on data type: fully connected networks for univariate time
series, and CNNs or RNNs for multivariate data. The ASCENSION augmentation process involves
three steps, outlined in sections 2.1 to 2.3.

2.1 VAE TRAINING

The VAE fVAE to learn a low-dimensional representation of the input time series data. It consists of
an encoder fenc that maps the input data to a latent space, and a decoder fdec that reconstructs the
input data from the latent space. It is worth noting that we implement the re-parametrization trick
to differentiate the encoder and decoder during training. In summary: fVAE = fdec ◦ fenc ∶ x ↦ x̂,
where x̂ is the reconstructed version of the input x.

2.1.1 LATENT SPACE

We denote the latent space as Z = {z1, z2, . . . , zN}, where each latent point zi corresponds to the
encoded vector of the input sample xi. We denote K as the dimension of the latent space. Optimally,
K should be chosen as low as possible to capture the essential features of the data while reducing
the risk of overfitting. The VAE models the posterior distribution over the latent variables given the
input data through the variational distribution qϕ(z∣x). This distribution is typically assumed to be
Gaussian and is parameterized by the encoder network with parameters ϕ. Specifically, qϕ(z∣x) is
defined as:

qϕ(z∣x) = N (z;µϕ(x),Σϕ(x)), (1)

where µϕ(x) and Σϕ(x) represent the mean and covariance of the Gaussian distribution, respec-
tively, both of which are functions of the input x and are learned by the encoder network.
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2.1.2 CLUSTERING CONSTRAINTS

Hypothesis 1 (Latent space clustering) [H1] We hypothesize that adding a clustering constraints
during VAE training will create a more structured latent space, improving class-consistent sample
generation and classification performance.

To ensure that the latent space representations learned by the VAE are semantically meaningful and
aligned with the classification task, we introduce clustering constraints during the training process.
These constraints encourage samples from the same class to cluster together while maintaining a
significant distance from samples of other classes. This approach is vital for generating synthetic
samples that are class-consistent and reflect the underlying data distribution. The constraints are
incorporated as additional loss terms in the VAE training process, penalizing pairwise distances
between samples from the same class in the latent space. By minimizing this clustering loss, the
VAE learns to encode the input data in a manner that promotes the generation of diverse and class-
specific synthetic samples. In this context of multiple loss terms, normalizing these terms is essential
to ensure proper model convergence, preventing any single loss term from dominating the training
process. Consequently, we augment the standard VAE loss function with an additional term:

L = Lrecon + LKL + Lclass + Lcluster (2)
where Lrecon represents the MSE between the VAE’s input and output, LKL denotes the Kullback-
Leibler divergence loss, Lclass is the classification loss, and Lcluster is defined as in (3).

Lcluster =

N

∑
i=1

N

∑
j=1

δyi,yj
⋅ d(zi, zj) (3)

Given the high dimensionality of the data, we use cosine similarity as the distance metric for d.
Examples showing how the latent space is evaluating through the learning phase in ASCENSION
(using specific UCR datasets) are given and discussed in Appendix F.

2.2 GMM MANIPULATION

Hypothesis 2 (Distribution discrepancies) [H2] We hypothesize that current state-of-the-art gen-
erative DA methods are hindered by significant discrepancies in distance between the training and
testing set distributions.

Hypothesis 3 (Consistency through expansion) [H3] We hypothesize that adjusting class distri-
bution to expand training set boundaries will improve accuracy, especially in datasets with discrep-
ancies between training and testing distributions.

ASCENSION approximates the distribution of each class yi using a GMM, denoted as GMM(yi).
The augmentation process generates synthetic samples by sampling from these GMMs while grad-
ually expanding the class boundaries by increasing the covariance matrices Σ of the Gaussian com-
ponents. Statistically, samples are generated according to the following formula:

x ∼

K

∑
k=1

πkN (µk, αΣk) (4)

where πk represents the weights of the mixture, N (µk, αΣk) is the k-th Gaussian distribution com-
ponent with mean µk, and αΣk is a scaled covariance matrix. The scaling factor α is used to flatten
the distribution. Figure 3 illustrates the evolution of class distributions for three different classes as
the parameter α changes (α = 1, 2 and 3). As the covariance increases, the overlap between classes
may become more pronounced. When significant overlap occurs, the synthetic sample x is assigned
to the class yi with the highest posterior probability, where Pj(x) denotes the posterior probability
that sample x belongs to class yj . Formally, the label is chosen as:

yi = argmax
yj

Pj(x) (5)

By carefully controlling the augmentation process, we aim to enrich the training set with synthetic
samples that expand decision boundaries while maintaining intra-class consistency and preserving
the semantic properties of the original data, ultimately enhancing the model’s generalization capa-
bilities. Based on our experiments (see section 3.2.2 and Appendix C), the optimal value for α is
found to be slightly above 1, facilitating a gradual exploration of the latent space.
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Figure 3: Smoothing process of multi-class GMM. When α = 1 the model adheres to the standard GMM
definition. As α increases, the model explores less dense regions of the distribution.

2.3 SAMPLING, DATA GENERATION & RETRAINING

New samples are generated from this newly fit distribution, decoded, and then incorporated into the
base training set. To ensure a clear distinction between classes and to control the overlap between
different density functions, a safety measure is implemented. This measure stipulates that if any
sampled point from a class has a higher density value in another class, that point is discarded and
not added to the training set.

Subsequently, the classifier is retrained using the new samples generated in step 3. This augmenta-
tion loop is formally outlined in Algorithm 1. The loop is iteratively repeated until convergence is
achieved, resulting in an augmented training dataset that enhances the performance of the classifi-
cation model.

Algorithm 1: Augmentation Loop with distinct classes
Input: Original time series data X = {x1,x2, . . . ,xn} with class labels Y = {y1, y2, . . . , yn}
Output: Augmented training dataset Xaug,Yaug
Initialization:
Xaug ← X ;
Yaug ← Y ;
while augmentation desired do

Train VAE:
LVAE = Lrecon + LKL + Lcluster + Lclass
θ
∗
, ϕ

∗ ← argminθ,ϕ LVAE using X,Y ;
Fit GMM:
Let Z = {z1, z2, . . . , zn} be the latent representations where zi ∼ q

∗
ϕ(z∣xi) ;

Fit a GMM p(z∣y) = ∑K

k=1 πk(y)N (z∣µk(y),Σk(y)) to Z for each class y ;
Sample Latent Points:
for each class y do

Z
y
new = {z′y1 , z

′y
2 , . . . , z

′y
m} ∼ p(z∣y) ;

for each z
′y
i ∈ Z

y
new do

if density of z′yi is higher in another class y′ then
Drop z

′y
i ;

Decode Latent Points:
for each class y do

X
y
syn = {x′y

1 ,x
′y
2 , . . . ,x

′y
m} where x

′y
i = f

∗
θ (z

′y
i ), ∀z

′y
i ∈ Z

y
new ;

Update Training Set:
Xaug ← Xaug ∪ (⋃y X

y
syn) ;

Yaug ← Yaug ∪ (⋃y{y} ×X
y
syn) ;
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Train/Test datasets: Experiments were conducted using the UCR Time Series Archive, which com-
prises 120 univariate time series datasets from various applications and domains, including sensors,
ECG, etc. (a complete list of the dataset types is provided in Table 4).

Classification models: Classifiers selected for our experiments were chosen based on the findings
of Fawaz (2020), which reports that ResNet-50 and Fully Connected Networks (FCN) are the two
most effective classifiers (out of 9 evaluated for the UCR datasets. We use the architectures from
(Koonce & Koonce, 2021) and (Scabini & Bruno, 2023) for these two classifiers. Additionally, we
also incorporate: (i) the embedded classifier of ASCENSION, denoted ASCENSIONEmbCl.; (ii) a
combination of ASCENSION’s embedded classifier with the state-of-the-art classifiers denoted by
ASCENSIONc-EmbCl. with c ∈ {ResNet, FCN} in our experiments. The augmentation is defined as
the difference between the maximum baseline accuracy (i.e., without augmentation), either VAE’s
classifier or standalone classifier c, and the maximum accuracy achieved by ASCENSIONEmbCl. or
classifier c, given by the formula:

AccASCENSIONc-EmbCl.
= max(AccASCENSIONEmbCl.

,Accc) −max(AccBaselinec
,AccVAE) (6)

Benchmarked DA methods: ASCENSION is compared with several state-of-the-art methods,
including one traditional DA method (FAA) and three generative methods (TTS-GAN, LA,
MODALS). More details on these methods can be found in Appendix A. FAA was selected due to its
comparable performance with other traditional DA methods (incl., RA and DAA), while MODALS
was chosen for its architectural similarity to ASCENSION. TTS-GAN and LA were included as the
most recent generative DA methods with publicly available code (cf., Figure 7). However, bench-
marking MODALS on the UCR datasets is not feasible since its code, released in 2020, is no longer
functional, and the authors informed us they do not plan to repair it. Therefore, we propose to
benchmark ASCENSION by evaluating it on the same dataset originally used by Cheung & Yeung
(2020) for assessing MODALS.

3.2 EXPERIMENTAL RESULTS

3.2.1 PERFORMANCE EVALUATION

Accuracy: Appendix B.1 gathers pre- and post-augmentation classification results for the bench-
marked techniques, selected classifiers, and UCR datasets. For clarity purposes, Table 1 groups
the results in three categories: (i) Augmented: refers to the datasets where the performance post-
augmentation is better than pre-augmentation; (ii) Unchanged: refers to the datasets with no sig-
nificant improvement or degradation (±10−4%) of performance post-augmentation, (iii) Worsened:
refers to the datasets where the augmentation of the train set degrades performance. Under each
category we report the number of datasets and mean accuracy post-augmentation for the different
configurations (classifiers, DA methods).

Several findings can be drawn from Table 1. First, while FAA shows a mean improvement of 5.12%
(ResNet) and 5.68% (FCN), it does not generalize well, as it only improves accuracy on 18/102
datasets (ResNet) and 24/102 (FCN). In contrast, ASCENSIONResNet-Emb improves accuracy on 68
datasets (ResNet) and 64/102 (FCN), with mean accuracy gains of 3.97 and 2.08%, respectively.
The slightly lower mean improvement for ASCENSION and ASCENSIONc-Emb compared to FAA
is due to the larger number of datasets successfully augmented, including those with smaller, yet pos-
itive, improvements, as detailed in Appendix B.1 . ASCENSION and ASCENSIONc-Emb augment
more than twice as many datasets as the benchmark methods (FAA, LA, TTS-GAN), highlighting
the superior generalization ability of ASCENSION and supporting [H1]. Finally, when compared
to MODALS on the HAR dataset (Table 2), ASCENSION further enhances performance. While
MODALS improves the baseline classification (without augmentation) by 3.23%, ASCENSION
increases this improvement by +4.78%, further advancing accuracy beyond the baseline.

Trilemma performance: Table 3 presents an analysis of how the benchmarked methods perform
across each aspect of the generative learning trilemma. ASCENSION stands out with impressive
results, particularly in sample quality, which rivals that of a GAN-based approach, while showing
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Table 1: Results of our empirical benchmark study on the 102 UCR datasets. The table summarizes
the number of datasets with improvements (Augmented), no change (Unchanged), and deterioration
(Worsened) in accuracy for each method. The mean accuracy change (Acc) is provided for each
category. An upward arrow (↑) indicates that higher values are preferable, while a downward arrow
(↓) signifies that lower values are advantageous. Bold values denote the best performance, and
underlined values indicate the second best. ASCENSION achieves the highest number of improved
datasets and the fewest cases of worsened performance, demonstrating its effectiveness in enhancing
classification accuracy across the datasets.

DA method Augmented Unchanged Worsened ↑Total
↑Nbdatasets ↑Acc Nbdatasets Acc ↓Nbdatasets ↑Acc Nbdatasets ↑Acc

R
es

N
et

FAA 18 5.12% 13 0% 71 -8.54% 102 -4.59%

LA 14 1.03% 11 0% 77 -5.54% 102 -4.04%

TTS-GAN 24 3.07% 9 0% 69 -7.08% 102 -4.17%

ASCENSION 52 3.01% 14 0% 36 -1.55% 102 0.99%

ASCENSIONResNet-Emb 68 3.97% 15 0% 19 -1.06% 102 2.45%

FC
N

FAA 23 5.68% 10 0% 69 -8.44% 102 -4.44%

LA 20 3.69% 14 0% 68 -3.58% 103 -1.54%

TS-GAN 24 1.54% 15 0% 57 -9.24% 102 -5.07%

ASCENSION 60 2.72% 17 0% 26 -1.66% 104 -1.16%

ASCENSIONFCN-Emb. 64 2.08% 14 0% 25 -1.68% 103 -0.89%

ASCENSIONEmb. 51 1.93% 22 0% 29 -1.72% 102 0.48%

Table 2: Acc. comparison on HAR dataset used by (Cheung & Yeung, 2020) to assess MODALS

Method Accuracy (%)

ASCENSIONResNet-Emb 93.42
MODALS 91.87
No Augmentation 88.64

a notable improvement in sample diversity (largely due to the expansion of Gaussian mixtures).
Additionally, these strong performances are achieved without increasing computational cost, as AS-
CENSION’s sampling speed matches that of TTS-GAN and is more than three times faster than
FAA. For more detailed results, refer to Appendix B.2, where it is shown that ASCENSION consis-
tently delivers stable outcomes across all UCR datasets, in terms of both quality and diversity, with
a clear trend of outperforming TTS-GAN and FAA.

Table 3: Comparison of Metrics for Different Methods - Mean metrics over a subset of 11 datasets
from UCR archive, one from each domain to ensure representativity despite computational costs.
The metrics are defined in Appendix E.1

Metric ASCENSION TTS-GAN FAA
mean median mean median mean median

Quality 1.01 1.00 0.99 0.99 0.99 1.00

Diversity 1.690 × 10
10

1538.55 1.43 × 10
7 1188.68 6.20 × 10

8
57.18

Fast sampling (Speed) 0.2 0.2 0.9

3.2.2 HYPERPARAMETERS SENSITIVITY ANALYSIS

A key feature of ASCENSION is its controllable progressive expansion mechanism for exploring
the latent space. Adjusting the scaling factor parameter α (which influences how distributions are
flattened, see section 2.1) and determining the number of iterations are essential for optimizing the
method’s effectiveness. These two parameters must be carefully balanced to maintain sufficient
separation between distributions while allowing for adequate exploration. Both excessive and in-
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ASCENSIONEmb. ASCENSIONFCN-Emb. ASCENSIONResNet-Emb.

Figure 4: Analysis of accuracy augmentation as a function of the parameter α and the number of
augmentation steps for the Ham dataset. The results suggest that clearly defining optimal values for
α and the maximum number of iterations is challenging. However, it is evident that α should remain
above 1, and a minimum threshold of approximately 3 iterations is deemed acceptable. A compre-
hensive grid search may be warranted to identify the optimal parameter values. More examples can
be found in appendix C.

sufficient overlap between distributions can negatively affect the accuracy and overall performance
of the generated outputs (see Appendix F for visualizations of how the exploration evolves over
iterations for several UCR datasets). However, one could argue that if newly generated data are dis-
carded when the density of another class exceeds that of the current labeled class, the significance
of α diminishes, as a safeguard is already in place.

Analysis methodology: We conducted a study that varied α (from 1 to 5) and the number of itera-
tions (from 1 to 9) to assess their impact on accuracy improvement and determine whether conver-
gence occurs.

Results: Figure 4 presents the results for ASCENSIONEmbCl., ASCENSIONResNet-EmbCl., and
ASCENSIONFCN-EmbCl. using the Ham dataset from the UCR archive (additional examples can be
found in Appendix C). The augmentation process remains relatively stable even with high α values,
supporting our hypothesis that the distribution borders reduce the sensitivity of α in this method.
Appendix C offers similar analyses across various UCR datasets, showing that increasing α can en-
hance boundary exploration but may reduce performance if α is too large. Based on our experiments,
selecting α in the range [1, 3] provides a good balance.

3.2.3 ANALYSIS OF CONDITIONS ENHANCING ASCENSION’S OPERATIONAL EFFICIENCY

Section 3.2 has empirically evidenced that, for the majority of applications (datasets), ASCEN-
SION outperforms traditional and generative state-of-the-art methods. However, there remains a
significant portion of datasets (approximately 30% to 50%) where ASCENSION does not improve
classification performance and in some cases, even worsens it (refer to the results in the Unchanged
and Worsened columns in Table 1). Reader can refer to Appendix B.1 to have a complete overview
of which datasets remain unchanged or are degraded. Therefore, we propose conducting an analysis
to identify the types of data – based on their features – that benefit the most from augmentation and
those that require minimal augmentation.

Feature extraction: We use the CATCH22 time series feature set introduced by Lubba et al. (2019)
to characterize the datasets (comprising 22 features in total), adding the ratio of train/test split and
the distribution discrepancy ratio between train and test (cf., Appendix E.2). A description of these
24 features (F1-F24) is provided in Appendix D.

Analysis methodology: By averaging the features of the time series in each dataset, we identify the
datasets that are most and least amenable to benefit from augmentation. Subsequently, we analyze
the impact of augmentation on the classification performance of these datasets to determine the
most influential features. To measure feature importance, we employ a random forest model with
a high number of estimators with low depth to the mean of F1-F24 to predict augmentation for the
benchmarked DA methods.

Results: Figure 5 shows that F2 is among the most critical features in the time series dataset, influ-
encing all DA methods (either enhancing or diminishing classification performance). Additionally,
we observe that each method is strongly tied to specific features: FAA to F10 (which gauges the
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Figure 5: Feature importance derived from a random forest model applied to the 24 features (F1-
F24, cf. Appendix D.). F10 (to what extent a pattern is repetitive in a time series), F20 (part or
fraction of fluctuations that occur over longer periods of time), F23 (ratio of train and test data in the
dataset), F24 (discrepancy in distance between the train and test set distributions, see Appendix E.2).
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Figure 6: Cumulative sum of classification performance improvements as a function of dataset dis-
crepancies between train and test sets (see Appendix E.2). Datasets are ordered according to their
discrepancy values.

degree of periodic patterns within the dataset), LA to F20 (which reflects fluctuations over extended
periods), and ASCENSION to F23 and F24 (respectvely representing the train/test ratio of data and
discrepancy in distance between the training and testing set distributions, cf. Appendix E.2). This
last finding aligns with our expectation that ASCENSION takes special care of exploring the la-
tent space more thoroughly, thus being closely linked to the distributional differences between the
training and test datasets.

To further analyze how the classification performance for the benchmarked DA methods evolves
along with the increase in discrepancy in distance between the training and testing sets, we plot in
Figure 6 the cumulative sum of classification performance improvements (%) as a function of F24
(see Appendix E.2 (the 102 UCR datasets on the x-axis have been ordered from the smallest to
the highest discrepancy). It can be observed that, while other DA methods tend to result in lower
performance as the discrepancy ratio increases, ASCENSION maintains positive performance, and
even shows a slight increase. This validates our hypothesis [H2], which assumed that existing (state-
of-the-art) DA methods are unable to tackle datasets facing discrepancy situations, but also [H3] that
assumed that empowering DA methods with the ability to explore previously uncharted regions in
the train/test space can lead to enhanced classification performance.
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4 CONCLUSION

A key challenge in time series data augmentation is addressing the generative learning trilemma
(see Figure 1). Generative DA methods, such as GAN, diffusion models and VAEs vary in their
ability to address this trilemma while maintaining high classification performance. In this paper,
we introduce a novel method called ASCENSION, which builds on the strengths of VAEs in terms
of diversity and fast sampling, while enabling controlled and quantifiable exploration of uncharted
regions in the latent space. ASCENSION uses the probabilistic nature of the VAE’s latent space to
model classes as GMMs, and through the manipulation of these mixtures, allows for precise adjust-
ments to class probability densities and boundaries. Clustering constraints are applied to maintain
intra-class compactness and maximize inter-class separation. Overall, ASCENSION addresses the
challenges of high-dimensional sequential data by enhancing the representativeness of the training
set and expanding decision boundaries in a controlled manner. This is particularly useful when there
is a significant discrepancy in distance between the distributions of training and testing sets.

Our empirical study on 102 UCR benchmark datasets shows that ASCENSION outperforms state-
of-the-art DA techniques. It is evaluated on multiple metrics, including (i) classification accuracy,
(ii) diversity, (iii) sample quality, and (iv) fast sampling speed, excelling in all areas compared to
benchmarked DA methods. Furthermore, an in-depth analysis identifies the types of time series data
that benefit most from augmentation with each DA method. This study highlights ASCENSION’s
advantage in handling datasets with high discrepancies between training and testing distributions.

Future research could explore extending ASCENSION to other types of sequential data, such as
natural language or spatio-temporal datasets, but also non-sequential data such as images, due to
its highly flexible architecture. We could also explore new clustering and sampling strategies to
enhance generalization across different domains, along with expansion mechanisms (e.g., beyond a
single α factor).

5 REPRODUCIBILITY

The UCR time series archive can be found at https://www.cs.ucr.edu/˜7Eeamonn/
time_series_data_2018/. We detailed exact implementation details and provide code to pro-
duce our results on an anonymous github page at https://github.com/ASCENSION-PAPER
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A RELATED WORK

Iglesias et al. (2023b) and Iwana & Uchida (2021) divide DA for time series into two categories:
Traditional vs. Generative DA methods. Figure 7 offers an overview of the evolution of these meth-
ods, emphasizing their ability to address and manage the generative learning trilemma (diversity,
high-quality samples, fast sampling) and whether their associated codes are publicly available.

Traditional DA methods, such as window slicing, jittering, and scaling (Iglesias et al., 2023a), are
primarily adapted from computer vision and rely on transformation strategies like cropping, rotation,
scaling, drifting, and so forth. However, the complex nature of time series data often renders these
methods sub-optimal, as they can disrupt the semantic integrity of the original data. For instance,
while a slightly flipped image of a cat remains recognizable, reversing the time axis of an electro-
cardiogram sequence can render it meaningless. In response to these challenges, more advanced DA
techniques were developed to automate the sequence of transformations to be performed. A first
method, named AutoAugment (AA) Cubuk et al. (2019), uses reinforcement learning to explore
transformation pipelines/policies. A second method named Fast AutoAugment (FAA) (Lim et al.,
2019) uses density matching for a faster search strategy, eliminating the need for back-propagation.
Subsequent methods such as RandAugment (Cubuk et al., 2020), Deep AutoAugment (Zheng
et al., 2022), and Trivial Augment (Müller & Hutter, 2021) were introduced to further simplify
and refine the augmentation search strategy. RandAugment streamlines the augmentation process
by removing the exhaustive search phase, instead applying a fixed number of random transforma-
tions with adjustable magnitudes. Deep AutoAugment incorporates a deep reinforcement learning
model that dynamically combines transformation policies based on the specific characteristics of the
dataset. Trivial Augment introduces an even simpler approach by applying a minimal set of random
transformations, emphasizing ease of use and computational efficiency. Despite all these advance-
ments, all these methods rely on predefined transformations, which is suboptimal for preserving
intra-class consistency and the semantic characteristics of the original time series data, thereby lim-
iting the effectiveness of data augmentation.

Generative DA models such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2020), diffusion models (Yang et al., 2023a), and VAEs (Kingma & Welling, 2013) represent power-
ful techniques capable of learning a probabilistic representation of data distributions. These models
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Figure 7: Overview of the evolution of state-of-the-art data augmentation methods for time series (traditional
vs. generative), highlighting their capacity to address and control the generative learning trilemma: (1) Di-
versity, (2) High-quality samples, and (3) Fast sampling (Xiao et al.). The symbols #, G#, and  indicate the
degree to which each method addresses and manages these dimensions of the trilemma (ranging from no con-
sideration to full consideration). **MODALS: Although code was made available (4 years ago), it is currently
non-functional; we have contacted the authors of MODALS Cheung & Yeung (2020) for the source code, but
they informed us that it is no longer operational and cannot be repaired without substantial re-coding.

can generate time series data that retain the temporal dependencies, semantic consistency, and class-
specific characteristics of the original datasets Fu et al. (2020). For example, using a representation
layer, as introduced by (Liu et al., 2022), provides an abstraction that is crucial when dealing with
time series data. TimeGAN (Zhang et al., 2022) has been specifically designed for time series,
which has shown significant improvements in generating high-quality synthetic sequences and aug-
menting low-quality datasets. Likewise, TS-GAN (Yang et al., 2023b) develop a LSTM-based GAN
architecture with an sequential-squeeze-and-excitation to better capture time-dependence between
the current and past moments in each dimensions. TS-GAN is particulary proposed to generate
augmented sensor-based health data to improve Deep Learning (DL) classification models and eval-
uated on 3 health time series datasets. TTS-GAN (Li et al., 2022) adapt the traditional GAN ar-
chitecture using a transfomer-encoder architecture that can deal with long range dependencies in
time sequences. It shows strong performance in generating realistic data across three datasets: a
simulated dataset, a human acuity recognition dataset, and an ECG dataset. However, GANs train-
ing process is very unstable and is very senstive to hyperparameters. It also suffers from issue as
mode collapse that can limit the variety of generated samples and can possibly generate unrealistic
data (Lei et al., 2019). LatentAugment (Tronchin et al., 2023) learns a low-level representation
of initial data, noising around learned points and then decoding them to produce newly generated
and semantically close data. More recently, (Seon et al., 2024) proposed LISGAN, a GAN-based
architecture to augment time series data in the context of class imbalance by adjusting the loss with
mutual information term and using a spectral normalization. LISGAN generates high quality syn-
thetic data and significantly increases classification performance with industrial internet of things
datasets. Diffusion models, a more recent class of generative models, have garnered significant
attention for their capability to model complex data distributions. Unlike GANs, which rely on ad-
versarial training, diffusion models generate data by progressively refining noise toward the target
data distribution. This denoising approach has yielded remarkable results in high-fidelity image
generation, as seen with models like DALL·E 2, Imagen, and Flux. Recently, starting in 2023, sev-
eral diffusion model-based DA methods for time series have emerged, including ASE-DDPM Liu
et al. (2024) for addressing imbalanced time series classification, DiffRUL Wang et al. (2024) for
enhancing remaining useful life predictions, D3A-TS Solis-Martin et al. (2023) aimed at improving
synthetic sample quality through meta-attribute conditioning, and Time-DDPM, which integrates
a diffusion denoising probabilistic model with CNN-LSTM networks to enhance sample quality.
While diffusion models provide stable outputs, they face challenges with long-range predictions, er-
ror accumulation, and slow inference (Feng et al., 2024), which can limit their practical applications.
VAEs offer several advantages over GANs and diffusion models. Their probabilistic nature allows
for explicit control over the diversity and quality of generated samples through manipulation of the
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Table 4: UCR dataset types along with the selected representative datasets

Type Representative dataset Description

Device ACSF1 Measurements of alternating current signals for predictive maintenance
ECG ECG200 Electrocardiogram (ECG) readings used to detect heart abnormalities
EOG EOGVerticalSignal Electrooculography (EOG) signals capturing eye movement patterns
Image BeetleFly Shape-based image classification of beetle and fly outlines
Motion Worms Motion sensor data capturing worm movements for classification
Sensor Car Sensor readings collected from a car, used for detecting driving conditions
Simulated UMD Simulated control processes data
Spectro Ham Spectroscopy data to identify types of ham based on chemical properties
Spectrum SemgHandMovementCh2 Electromyography (EMG) data of hand movements, recorded across channels

latent space, as evidenced in (Cheung & Yeung, 2020). This helps preserve the intra-class consis-
tency and semantic characteristics of the original data. Additionally, VAEs are less prone to collapse
compared to GANs and are less computationally expensive than both GANs and diffusion models
(Thanh-Tung & Tran, 2020). To ou knowledge, the first VAE-based DA model, named MODALS,
was introduced in (Cheung & Yeung, 2020) and represents the closest architectural approach to AS-
CENSION. It was the first study to investigate the expansion of class boundaries during synthetic
data generation, although it does not offer a method for controlling this expansion. Recently, Dang
et al. (2024) introduced VAE-LSTM, which is used to augment an inertial sensor dataset due to
limited data availability, with the goal of enhancing classification performance. However, this ap-
proach does not explore the expansion of class representations in the latent space, as proposed in
ASCENSION.

To our knowledge, none of the aforementioned methods have explored a controllable progressive
expansion strategy, which is anticipated – and demonstrated in section 3.2 – to enhance classifi-
cation performance and produce higher quality samples. While MODALS has examined an ex-
pansion strategy, it lacks control. Results shown in Table 2 indicate that ASCENSION outperforms
MODALS when evaluated on the same dataset originally used in Cheung & Yeung (2020), achieving
an accuracy of 93.24% compared to 91.87% for MODALS1.

B ENLARGED EXPERIMENTAL RESULT ANALYSIS

B.1 ENLARGED CLASSIFICATION PERFORMANCE

This section offers a more comprehensive analysis of the results. The 102 datasets from the UCR
time series classification repository are grouped into 9 distinct categories (domains/applications), as
summarized in Table 4.

A detailed breakdown of our experimental results is presented in Table 5. These results are the
ones obtained with ResNet2, and are aggregated per dataset category (e.g., Device, ECG200, etc.,
see Table 4). ASCENSION achieves the highest number of improved datasets across nearly all
categories (7 out of 8 dataset types). For further details, including accuracy differences before and
after augmentation for each dataset and method, refer to Table 6.

1Although MODALS code was made available in 2020, it is currently non-functional. We have contacted
the authors of MODALS Cheung & Yeung (2020) for the source code, they informed us that it is no longer
operational and cannot be repaired without substantial re-coding.

2ResNet was chosen for this analysis due to its superior average performance (see Table ??). For more
comprehensive results, including those for FCN, visit: https://github.com/ASCENSION-PAPER
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Table 5: Mean Improvement per Dataset Type

Type FAA LA TTS-GAN ASCENSIONResNet-Emb

↑Nbaugmented ↑Acc ↑Nbaugmented ↑Acc ↑Nbaugmented ↑Acc ↑Nbaugmented ↑Acc

Device 1/8 1.06% 2/8 0.01% 3/8 1.51% 5/8 2.15%
ECG 0/6 0.0% 2/6 5.20% 4/6 5.63% 5/6 1.80%
EOG 2/2 6.21% 0/2 0.0% 0/2 0.0% 1/2 3.86%
Image 13/32 5.41% 5/32 6.31% 7/32 3.71% 21/32 6.73%
Motion 1/14 1.29% 2/14 2.14% 0/14 0.0% 8/14 2.71%
Sensor 2/20 1.03% 6/20 4.70% 5/16 2.63% 12/20 2.02%
Simulated 2/8 12.6% 1/8 5.33% 3/8 1.11% 5/8 1.24%
Spectro 2/8 3.02% 2/8 5.36% 2/8 2.26% 3/8 1.58%

B.2 ENLARGED GENERATIVE LEARNING TRILEMMA PERFORMANCE

Tables 7 and 8 provide a detailed breakdown of our experimental results regarding the diversity
and quality dimensions of the generative learning trilemma (refer to Table 3 for results on the fast
sampling dimension).

ASCENSION consistently demonstrates the highest diversity across all dataset types. While this
outcome was expected in comparison to TTS-GAN, it was less certain against FAA, as time series
transformations can yield highly diverse semantic results in terms of distance from the original data.
This diversity stems from expanding the class distribution, enabling our synthetic samples to be
drawn from outside the training data distribution in a way that better approximates the real data
distribution. This approach helps the generated samples get closer to the unseen testing data, which
is treated as the real data, rather than merely reproducing the training data. As evidenced in Table 8,
this improved diversity also enhances the quality of the samples, resulting in more realistic synthetic
data across all datasets.
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Table 6: Difference in accuracy between post- and pre-augmentation with TTS-GAN, FAA, LA and
ASCENSIONResNet-Emb. Best improvement in bold.

Dataset TTS-GAN FAA LA ASCENSIONResNet-Emb

ACSF1 −2.0% −14.0% 2.0% 4.16%
Adiac −2.3% 13.04% −2.3% 0.77%
ArrowHead −1.71% −17.14% −5.71% 2.29%
BME 0.67% −9.33% 5.33% 0.01%
Beef 0.0% −10.0% 3.33% 0.0%
BeetleFly −5.0% 5.0% 10.0% 5.0%
BirdChicken 20.0% 25.0% 10.0% 10.0%
CBF 1.0% 14.67% −3.0% −0.55%
Car −5.0% −35.0% 6.67% 3.33%
ChlorineConcentration 0.96% −0.78% −0.81% 0.94%
CinCECGTorso −18.99% −24.64% −7.32% −2.68%
Coffee 3.57% 0.0% 0.0% 0.0%
Computers 0.0% −1.6% 0.4% −5.2%
Crop −0.68% −2.17% −1.09% 0.01%
DistalPhalanxOutlineAgeGroup −2.16% 1.44% −4.32% −0.72%
DistalPhalanxOutlineCorrect −2.17% −2.9% −2.9% 0.36%
DistalPhalanxTW 2.16% 2.88% 0.72% 1.44%
ECG200 6.0% −2.0% −2.0% 3.0%
ECG5000 −0.27% −0.56% −0.67% −0.18%
ECGFiveDays 3.83% −2.67% 8.25% 1.74%
EOGHorizontalSignal −32.32% 7.46% −5.52% −1.38%
EOGVerticalSignal −19.61% 4.97% −2.21% 3.87%
Earthquakes −1.44% 0.0% 1.44% 0.1%
ElectricDevices −1.96% −8.82% −1.63% 0.19%
EthanolLevel 0.0% 4.2% −3.6% 2.31%
FaceAll −5.27% −9.88% −11.78% −1.25%
FaceFour −9.09% −10.23% −7.95% 4.06%
FacesUCR −0.1% −8.0% −5.07% −1.76%
Fish 1.71% −10.86% −12.57% −5.35%
FordA −0.08% −2.27% 0.15% 0.23%
FordB 0.0% −0.62% 0.49% 0.25%
FreezerRegularTrain 0.0% −10.46% −3.12% 0.35%
FreezerSmallTrain 0.0% 1.93% 8.35% 2.88%
GunPoint 0.0% −1.33% −2.0% 0.0%
GunPointAgeSpan 0.0% −2.22% −2.85% 1.58%
GunPointMaleVersusFemale 0.0% −0.32% 0.0% 0.0%
GunPointOldVersusYoung −0.32% 0.0% 0.0% 0.0%
Ham 0.95% −3.81% −5.71% 1.9%
HandOutlines 0.0% 2.16% −0.81% 0.54%
Haptics −2.92% −19.48% 0.0% 3.9%
Herring 0.0% −6.25% 0.0% 3.12%
HouseTwenty −36.13% −2.52% 0.0% 0.84%
InlineSkate −15.64% −6.18% −6.0% −1.64%
InsectEPGRegularTrain 0.0% 0.0% 0.0% 0.0%
InsectEPGSmallTrain 0.0% 16.87% 0.0% 0.0%
InsectWingbeatSound −4.6% −2.17% −5.51% 1.16%
ItalyPowerDemand −0.97% −0.29% −1.55% 0.1%
LargeKitchenAppliances 0.27% −1.33% −5.6% −3.2%
Lightning2 −8.2% −11.48% −1.64% 6.56%
Lightning7 9.59% −30.14% −4.11% 4.4%
Mallat −11.64% −23.97% −1.54% 0.34%
Meat −3.33% −58.33% −5.0% 0.0%
MedicalImages −0.13% −11.84% −1.84% 1.45%
MiddlePhalanxOutlineAgeGroup 0.0% 5.84% −0.65% 1.3%
MiddlePhalanxOutlineCorrect 0.34% 3.44% −1.03% −0.69%
MiddlePhalanxTW −1.95% 1.95% −0.65% 1.3%
MixedShapesRegularTrain −7.88% 3.46% −2.23% −0.68%
MixedShapesSmallTrain −18.56% −5.32% −4.62% −1.15%
MoteStrain −1.28% −5.11% −0.16% 1.6%
NonInvasiveFetalECGThorax1 −2.85% −12.72% −2.6% 0.92%
NonInvasiveFetalECGThorax2 8.04% −26.51% −6.36% 0.56%
OSULeaf −4.13% −27.69% −10.33% 0.41%
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Dataset TTS-GAN FAA LA ASCENSIONResNet-Emb

OliveOil 0.0% −43.33% −3.33% 0.2%
PhalangesOutlinesCorrect 0.23% 3.61% 1.4% −0.23%
PigArtPressure −71.63% 0.0% −24.04% 6.73%
PowerCons 0.0% 3.89% −1.67% 0.0%
ProximalPhalanxOutlineAgeGroup −0.98% 0.0% 0.0% 1.95%
ProximalPhalanxOutlineCorrect 1.03% −0.34% −0.34% 2.06%
ProximalPhalanxTW −0.49% 1.46% −1.95% 0.49%
RefrigerationDevices 0.27% −0.53% −0.8% 1.6%
Rock −24.0% −24.0% −6.0% −8.0%
ScreenType −0.27% −4.27% −1.07% −1.07%
SemgHandGenderCh2 −9.67% 2.33% 0.33% 1.17%
SemgHandMovementCh2 −16.0% 11.33% 2.22% 2.44%
SemgHandSubjectCh2 −19.33% 6.22% 2.0% 2.43%
ShapeletSim 1.67% 10.56% 0.0% 0.56%
ShapesAll −12.0% −5.17% −8.33% −0.33%
SmallKitchenAppliances 4.0% 1.07% −1.33% 4.2%
SmoothSubspace 0.0% −3.33% −2.0% 0.0%
SonyAIBORobotSurface1 2.16% −5.99% 2.66% 1.5%
SonyAIBORobotSurface2 −1.99% −4.09% −1.26% −1.24%
StarLightCurves 0.22% −0.34% −1.07% 1.27%
Strawberry −0.27% −2.43% −1.35% 0.54%
SwedishLeaf 0.48% 1.12% −6.4% 0.33%
Symbols −7.74% −1.01% 3.12% 2.23%
SyntheticControl .0% −1.33% −0.33% 1.0%
ToeSegmentation1 −1.75% −0.44% −6.58% 3.07%
ToeSegmentation2 −1.54% −6.92% 2.31% 1.54%
Trace 0.0% 0.0% −2.0% 0.0%
TwoLeadECG 4.65% 0.0% 3.78% 2.81%
TwoPatterns −2.2% −0.98% −1.6% −1.63%
UMD −2.78% 0.0% −2.78% 4.29%
UWaveGestureLibraryAll −7.68% −3.8% −3.49% −0.87%
UWaveGestureLibraryX −3.6% −1.48% −2.18% 0.87%
UWaveGestureLibraryY −1.12% −6.0% −2.07% 0.34%
UWaveGestureLibraryZ −2.54% −0.5% −1.68% −0.2%
Wafer −0.15% 0.15% −0.21% −0.15%
Wine −9.26% 1.85% 7.41% −1.85%
WordSynonyms −6.58% −6.74% 0.0% 0.63%
Worms −9.09% −2.6% −2.6% 9.09%
WormsTwoClass −2.6% 1.3% 2.6% 1.3%
Yoga −7.97% −5.13% −0.9% 0.1%

C ENLARGED HYPERPARAMETERS SENSITIVITY ANALYSIS

Figures 8 to 17 show 3D plots of classifier performance as a function of α and the number of iter-
ations for ASCENSIONEmbCl, FCN, and ResNet, across representative datasets from each category
of the UCR archive. The name of each category and their representative datasets are detailed in
Table 4.

α parameter: As discussed in section 3.2.2, performance improvement relation to α seems diffi-
cult to generalize while remaining relatively stable. Increasing α can lead to better boundary explo-
ration, as shown in Figures 12 and 11 but can also make the performance drop for too high values of
α. While pinpointing the exact α values and iterations for optimal results across all datasets is not
trivial, the general trend suggests selecting α ∈ [1, 3] to expand class boundaries without venturing
into areas that risk class overlap, which could negatively impact classification accuracy.

Number of iterations: In Figures 11-13, and 15, we observe that a higher number of iterations
can have either a positive or negative impact on performance, whereas in Figure 8, the number of
iterations does not play a significant role in performance improvement. This ambivalent behavior
is closely related to the class distribution within the dataset. As the number of iterations increases,
classes in the latent space may become closer due to the increase in the α parameter at each iteration,
which leads to the expansion of covariances αΣk (cf., section 2.2). Therefore, we recommend
carefully adjusting the number of iterations in relation to the chosen α parameter.
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Table 7: Synthetic sample diversity for ASCENSION, TTS-GAN, and FAA; results being aggre-
gated based on the UCR benchmark dataset categories (cf., Table 4)

Dataset ASCENSION TTSGAN FAA

Worms 28982.94 3710.44 845.62
UMD 174.16 319.86 52.14
ECG200 186.58 69.09 57.18
SemgHandMovementCh2 4.35 × 10

8
4.35 × 10

7
4.49 × 10

7

ACSF1 82826.34 24652.55 7040.46
Car 79.75 122.37 33.57
BeetleFly 2911.51 2057.51 -
Adiac 63.47 15.33 0.87
Ham 1538.55 92.29 613.41

Table 8: Synthetic sample quality for ASCENSION, TTS-GAN, and FAA; results being aggregated
based on the UCR benchmark dataset categories (cf., Table 4).

Dataset ASCENSION
Dtrain Dtest Ratio

Worms 1325.33 1294.99 0.98
UMD 62.09 59.67 0.96
ECG200 75.83 76.28 1.01
SemgHandMovementCh2 39987.03 40152.58 1.00
ACSF1 1082.69 1061.81 0.98
Car 74.99 75.14 1.00
BeetleFly 401.44 424.44 1.06
Adiac 28.89 29.22 1.01
Ham 301.30 302.32 1.00

Dataset TTS-GAN
Dtrain Dtest Ratio

Worms 728.67 716.71 0.98
UMD 51.13 50.46 0.99
ECG200 32.78 33.38 1.02
SemgHandMovementCh2 18009.14 17619.67 0.98
ACSF1 818.11 819.17 1.00
Car 130.32 131.80 1.01
BeetleFly 385.27 395.06 1.03
Adiac 39.26 39.35 1.00
Ham 125.93 131.80 1.05

Dataset FAA
Dtrain Dtest Ratio

Worms 957.46 965.85 1.01
UMD 70.34 68.61 0.98
ECG200 76.44 76.60 1.00
SemgHandMovementCh2 17456.18 17200.74 0.99
ACSF1 1061.23 1063.90 1.00
Car 665.28 665.07 1.00
BeetleFly 418.88 415.42 0.99
Adiac 184.91 185.01 1.00
Ham 323.65 320.79 0.99
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ASCENSIONEmb. ASCENSIONFCN-Emb. ASCENSIONResNet-Emb.

Figure 8: ECG: Classifier performance against α and iteration number for ECG200 dataset.

Figure 9: EOG: Classifier performance against α and iteration number for EOGVerticalSignal.

Figure 10: Hemodynamics: Classifier performance against α and iterations for PigArtPressure.

Figure 11: Image: Classifier performance against α and iteration number for BeetleFly dataset.
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Figure 12: Motion: Classifier performance against α and iteration number for Worms dataset.

Figure 13: Sensor: Classifier performance against α and iteration number for Car dataset.

Figure 14: Simulated: Classifier performance against α and iteration number for UMD dataset.

Figure 15: Spectro: Classifier performance against α and iteration number for Ham dataset.
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ASCENSIONEmb. ASCENSIONFCN-Emb. ASCENSIONResNet-Emb.

Figure 16: Spectrum: Classifier performance against α and iteration number for SemgHandMove-
mentCh2 dataset.

Figure 17: Device: Classifier performance against α and iteration number for ACSF1 dataset.

D TIME SERIES FEATURES

In this section, we describe the 22 time series features (Catch22) presented in (Lubba et al., 2019),
and the two additional features (denoted by F23 and F24 below) considered in this study.

F1: DN HistogramMode 5 Top z-score range based on the highest count from a 5-bin histogram,
representing the most frequent distribution range in the dataset.

F2: DN HistogramMode 10 Similar to DN5, but this considers the top z-score range based on a
10-bin histogram, providing a finer resolution.

F3: CO f1ecac Represents the first 1/e crossing of the autocorrelation function, indicating how
quickly the autocorrelation of a time series decays.

F4: CO FirstMin ac Identifies the first minimum of the autocorrelation function, which helps
analyze the periodicity of the time series.

F5: CO HistogramAMI even 2 5 Automutual information for m = 2 and τ = 5, capturing the
dependency between data points across time.

F6: CO trev 1 num This statistic measures time-reversibility, focusing on the differences be-
tween successive points in the time series raised to the third power.

F7: MD hrv classic pnn40 Proportion of successive differences in time series values that ex-
ceed 0.04 of the standard deviation, indicating rapid fluctuations.

F8: SB BinaryStats mean longstretch1 The longest period where values stay consecu-
tively above the mean, representing persistent trends in the data.

F9: SB TransitionMatrix 3ac sumdiagcov Trace of the covariance of the transition ma-
trix between symbols in a 3-letter alphabet, used to assess transitions in symbolized data.

F10: PD PeriodicityWang th0 01 A periodicity measure, indicating how regularly patterns
repeat within the time series.

F11: CO Embed2 Dist tau d expfit meandiff Exponential fit to the differences in dis-
tances between successive points in a 2-dimensional embedding space, revealing structural
relationships.
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F12: IN AutoMutualInfoStats 40 gaussian fmmi First minimum of the automutual in-
formation function, which gives insight into the periodicity and structure of the time series.

F13: FC LocalSimple mean1 tauresrat Measures the change in correlation length after
iteratively differencing the time series, providing insights into the stationarity of the data.

F14: DN OutlierInclude p 001 mdrmd Measures the time intervals between successive ex-
treme events occurring above the mean, indicating patterns of high values.

F15: DN OutlierInclude n 001 mdrmd Similar to DNOp but for extreme events occurring
below the mean, highlighting the time intervals between low-value outliers.

F16: SP Summaries welch rect area 5 1 This computes the total power in the lowest fifth
of the frequencies from a Fourier power spectrum, reflecting long-term trends.

F17: SB BinaryStats diff longstretch0 The longest period of successive decreases in
the time series, capturing prolonged declining trends.

F18: SB MotifThree quantile hh Shannon entropy of successive symbol pairs in a 3-letter
quantile symbolization, quantifying the complexity of transitions between motifs.

F19: SC FluctAnal 2 rsrangefit 50 1 logi prop r1 Proportion of slower timescale
fluctuations that scale with rescaled range fits, indicating long-term memory in the data.

F20: SC FluctAnal 2 dfa 50 1 2 logi prop r1 Proportion of slower timescale fluctua-
tions that scale with detrended fluctuation analysis (DFA) under 50

F21: SP Summaries welch rect centroid The centroid of the Fourier power spectrum,
which offers a measure of the central frequency or the dominant pattern in the time se-
ries.

F22: FC LocalSimple mean3 stderr Calculates the mean error from a rolling 3-sample
mean forecast, capturing the volatility of short-term predictions.

F23: Train Test Ratio The ratio of training data to test data in the dataset.
F24: Discrepancy in Distance To estimate the discrepancy in distance between the training

and testing set distributions, as defined in Appendix E.2

E PERFORMANCE METRIC FORMALIZATION

E.1 TRILEMMA METRICS

Synthetic sample quality: To quantify the quality of the generated samples, we compute the mean
intra-class distance across all classes using Dynamic Time Warping (DTW) Senin (2008) as the
distance metric. Let Zk = zk,1, zk,2, . . . , zk,nk

represent the true data belonging to class k and
Xgen,k = xk,1, xk,2, . . . , xk,nk

represent the set of generated samples belonging to class k, and
qk(Xk) the quality of synthetic sample set X on class k:

qlk(Xk) =
1
nk

nk

∑
i=1

nl

∑
j=1

DTW(xk,i, zk,j) (7)

We then express the quality Qmethod of a method on a dataset DS with l class as :

QLmethod(DS) = 1

l

l

∑
k=1

qk(Xk) (8)

Diversity: Let DS be a dataset with l classes, Zk = zk,1, zk,2, . . . , zk,nk
represent the true data be-

longing to class k, Xgen,k = xk,1, xk,2, . . . , xk,nk
represent the set of generated samples belonging

to class k, we can define the diversity Divmethod(DS) as such :

Divmethod(DS) = 1

l

l

∑
k=1

Var({DTW(xk, µk), xk ∈ Xk}) (9)

where µk is the mean of the true samples in class k.

Fast sampling: GPU/hours is used.
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E.2 DISCREPANCY IN DISTANCE BETWEEN TRAINING AND TEST SETS

E.2.1 FORMALIZATION

To estimate the discrepancy in distance between the training and test sets, we compute the
mean intra-class distance across all classes using DTW as the distance metric. Let Xk =

xk,1, xk,2, . . . , xk,nk
represent the set of generated samples belonging to class k, and dk be the

mean intra-class distance for class k, defined as:

dk =
1
nk

nk

∑
i=1

DTW(xk,i, µk) (10)

where µk is the mean of the samples in class k (computed using DTW barycenter averaging, where
applicable). The overall dispersion D of the dataset is then defined as the mean intra-class variance
across all K classes:

D =
1

K

K

∑
k=1

dk (11)

To estimate the discrepancy between the training and test datasets, we compute the ratio between
the dispersion of the test set Dtest and the diversity of the train set Dtrain. This ratio V is defined as:

V =
Dtest

Dtrain
(12)

The discrepancies ratio V ≈ 1 indicates similar diversity between the train and test sets, while
deviations from 1 suggest more diversity in the training set (V < 1) or in the test set (V > 1).

A dataset where the ratio V > 1 is considered to be more challenging for usual generative techniques,
as the train set does not accurately represent the test set in these cases.
As such the datasets at the far right in

E.2.2 EXPERIMENTAL RESULTS

The discrepancy ratio of the 102 UCR datasets have been plotted in an ascending order in . Le
us consider three datasets with extreme ratios: (i) Discrepancy toward test: Dataset Car (1.51);
(ii) No discrepancy: Dataset ECGFiveDays (1.01); (iii) Discrepancy toward train: Dataset
EOGVerticalSignal (0.77). Referring to the performance results in Table 6, we observe that
ASCENSION consistently improves the classification performance, while TTS, FAA, and LA each
reduce the classifier performance at least once.
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Figure 18: Distribution discrepancy ratio: Overview of the difference in discrepancy between
training and testing sets of the 102 UCR datasets; discrepancy ratio computed using (12)

.

Detailed results of the discrepancies across datasets are available in Table 9
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Table 9: Discrepancy Metrics Across Datasets

Dataset Ratio DispersionTEST DispersionTRAIN

HandOutlines 0.46 1.50 × 10
2

1.39 × 10
2

GesturePebbleZ2 0.66 3.09 × 10
1

3.02 × 10
1

ShakeGestureWiimoteZ 0.71 5.36 × 10
2

6.04 × 10
2

GestureMidAirD1 0.75 4.18 × 10
2

4.30 × 10
2

MiddlePhalanxOutlineCorrect 0.77 1.01 × 10
6

1.02 × 10
6

EOGVerticalSignal 0.77 6.38 × 10
3

5.62 × 10
3

Chinatown 0.84 1.71 × 10
3

2.05 × 10
3

PLAID 0.85 3.50 × 10
2

3.38 × 10
2

ProximalPhalanxOutlineCorrect 0.87 1.34 × 10
1

1.48 × 10
1

EthanolLevel 0.87 3.18 × 10
1

2.10 × 10
1

Wine 0.87 3.34 × 10
4

3.33 × 10
4

Trace 0.88 4.46 × 10
3

4.41 × 10
3

ScreenType 0.88 2.18 × 10
2

2.46 × 10
2

Worms 0.89 1.13 × 10
2

1.00 × 10
2

BeetleFly 0.89 5.79 × 10
1

5.30 × 10
1

GesturePebbleZ1 0.90 4.34 × 10
0

3.98 × 10
0

OliveOil 0.91 5.64 × 10
0

5.94 × 10
0

Strawberry 0.91 1.59 × 10
2

1.56 × 10
2

WormsTwoClass 0.93 4.09 × 10
1

4.26 × 10
1

Lightning7 0.94 3.32 × 10
1

3.80 × 10
1

Meat 0.94 2.80 × 10
3

1.35 × 10
3

Plane 0.94 9.58 × 10
1

1.01 × 10
2

Beef 0.94 6.40 × 10
1

6.78 × 10
1

ProximalPhalanxOutlineAgeGroup 0.94 4.70 × 10
2

7.09 × 10
2

ShapesAll 0.94 4.40 × 10
1

3.95 × 10
1

ProximalPhalanxTW 0.94 1.39 × 10
4

1.36 × 10
4

MiddlePhalanxTW 0.94 4.74 × 10
0

5.02 × 10
0

SemgHandSubjectCh2 0.95 5.14 × 10
1

5.28 × 10
1

ItalyPowerDemand 0.95 2.75 × 10
0

2.92 × 10
0

PhalangesOutlinesCorrect 0.95 2.02 × 10
1

2.00 × 10
1

DistalPhalanxOutlineCorrect 0.96 5.31 × 10
0

6.94 × 10
0

MoteStrain 0.96 3.27 × 10
1

2.60 × 10
1

CricketY 0.96 3.90 × 10
2

3.94 × 10
2

AllGestureWiimoteY 0.96 1.57 × 10
1

1.63 × 10
1

SwedishLeaf 0.96 4.69 × 10
2

4.37 × 10
2

ACSF1 0.96 1.01 × 10
3

1.04 × 10
3

FaceAll 0.97 3.58 × 10
1

3.67 × 10
1

SemgHandGenderCh2 0.97 1.47 × 10
2

1.53 × 10
2

DodgerLoopDay 0.97 6.13 × 10
2

6.62 × 10
2

NonInvasiveFetalECGThorax2 0.97 2.52 × 10
0

2.42 × 10
0

Computers 0.97 1.94 × 10
2

1.98 × 10
2

MelbournePedestrian 0.97 7.90 × 10
1

7.41 × 10
1

AllGestureWiimoteX 0.97 1.63 × 10
2

1.64 × 10
2

UMD 0.97 1.89 × 10
1

1.89 × 10
1

ToeSegmentation2 0.97 2.03 × 10
2

1.72 × 10
2

MixedShapesRegularTrain 0.98 4.20 × 10
2

4.76 × 10
2

OSULeaf 0.98 8.85 × 10
3

6.43 × 10
3

NonInvasiveFetalECGThorax1 0.98 1.31 × 10
2

1.33 × 10
2

FordB 0.98 2.81 × 10
0

2.80 × 10
0

SmallKitchenAppliances 0.99 2.49 × 10
1

2.61 × 10
1
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Dataset Ratio DispersionTEST DispersionTRAIN

FordA 0.99 3.73 × 10
3

3.83 × 10
3

CricketZ 0.99 2.55 × 10
1

2.52 × 10
1

HouseTwenty 0.99 2.44 × 10
0

2.79 × 10
0

SemgHandMovementCh2 1.00 1.23 × 10
4

1.24 × 10
4

CricketX 1.00 6.78 × 10
1

6.10 × 10
1

Earthquakes 1.00 1.31 × 10
2

1.24 × 10
2

TwoLeadECG 1.00 2.28 × 10
1

2.32 × 10
1

SonyAIBORobotSurface1 1.00 8.36 × 10
0

8.36 × 10
0

MedicalImages 1.00 7.57 × 10
1

8.10 × 10
1

TwoPatterns 1.00 5.83 × 10
2

3.90 × 10
2

Crop 1.00 1.28 × 10
4

1.35 × 10
4

Fish 1.00 1.13 × 10
3

9.94 × 10
2

GunPointAgeSpan 1.00 5.50 × 10
0

4.90 × 10
0

FreezerRegularTrain 1.01 2.47 × 10
3

3.27 × 10
3

Herring 1.01 1.02 × 10
1

1.07 × 10
1

GestureMidAirD2 1.01 6.39 × 10
0

6.13 × 10
0

ECGFiveDays 1.01 5.42 × 10
1

4.85 × 10
1

LargeKitchenAppliances 1.01 3.68 × 10
1

3.08 × 10
1

GunPointMaleVersusFemale 1.02 3.69 × 10
1

5.17 × 10
1

GunPointOldVersusYoung 1.02 5.70 × 10
2

6.35 × 10
2

Lightning2 1.02 5.96 × 10
1

1.31 × 10
2

Yoga 1.02 3.02 × 10
4

2.97 × 10
4

AllGestureWiimoteZ 1.02 1.06 × 10
1

9.93 × 10
0

PowerCons 1.02 2.07 × 10
4

1.63 × 10
4

SyntheticControl 1.02 2.29 × 10
2

1.92 × 10
2

UWaveGestureLibraryX 1.02 6.81 × 10
1

6.67 × 10
1

GunPoint 1.04 3.83 × 10
2

3.91 × 10
2

UWaveGestureLibraryAll 1.04 5.73 × 10
1

5.46 × 10
1

FaceFour 1.04 5.44 × 10
1

5.14 × 10
1

DistalPhalanxTW 1.04 2.07 × 10
1

2.07 × 10
1

SmoothSubspace 1.04 4.86 × 10
1

3.19 × 10
1

UWaveGestureLibraryY 1.05 2.00 × 10
1

1.73 × 10
1

FiftyWords 1.05 3.80 × 10
0

4.03 × 10
0

StarLightCurves 1.05 5.40 × 10
4

4.59 × 10
4

ChlorineConcentration 1.05 9.02 × 10
1

9.00 × 10
1

RefrigerationDevices 1.05 4.23 × 10
1

4.01 × 10
1

UWaveGestureLibraryZ 1.06 8.64 × 10
0

9.18 × 10
0

InsectWingbeatSound 1.06 7.54 × 10
2

7.85 × 10
2

Coffee 1.07 8.05 × 10
0

8.45 × 10
0

Ham 1.07 4.23 × 10
2

3.75 × 10
2

InlineSkate 1.07 8.25 × 10
0

6.80 × 10
0

Haptics 1.08 3.27 × 10
1

2.98 × 10
1

Adiac 1.09 2.81 × 10
1

2.25 × 10
1

CBF 1.09 6.69 × 10
4

8.63 × 10
4

InsectEPGSmallTrain 1.10 1.63 × 10
2

1.64 × 10
2

ElectricDevices 1.10 1.02 × 10
2

9.84 × 10
1

DodgerLoopGame 1.10 6.43 × 10
2

6.10 × 10
2

WordSynonyms 1.11 4.32 × 10
3

5.08 × 10
3

FreezerSmallTrain 1.11 2.29 × 10
2

2.35 × 10
2

Mallat 1.11 2.40 × 10
1

2.32 × 10
1
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Dataset Ratio DispersionTEST DispersionTRAIN

FacesUCR 1.12 1.20 × 10
3

1.08 × 10
3

MiddlePhalanxOutlineAgeGroup 1.12 2.70 × 10
1

2.24 × 10
1

Wafer 1.12 2.24 × 10
2

2.30 × 10
2

ShapeletSim 1.14 1.41 × 10
4

1.46 × 10
4

ArrowHead 1.16 1.71 × 10
0

1.88 × 10
0

EOGHorizontalSignal 1.18 3.01 × 10
1

2.65 × 10
1

ToeSegmentation1 1.18 2.19 × 10
2

2.16 × 10
2

SonyAIBORobotSurface2 1.18 2.80 × 10
1

2.36 × 10
1

MixedShapesSmallTrain 1.19 1.59 × 10
2

1.55 × 10
2

ECG5000 1.19 4.17 × 10
1

4.77 × 10
1

ECG200 1.21 1.28 × 10
2

1.25 × 10
2

DistalPhalanxOutlineAgeGroup 1.21 6.78 × 10
1

6.71 × 10
1

CinCECGTorso 1.24 1.41 × 10
1

1.40 × 10
1

PickupGestureWiimoteZ 1.25 5.23 × 10
0

5.98 × 10
0

InsectEPGRegularTrain 1.26 1.88 × 10
1

1.94 × 10
1

Rock 1.27 1.16 × 10
2

1.11 × 10
2

BirdChicken 1.30 5.28 × 10
1

5.47 × 10
1

PigArtPressure 1.38 1.03 × 10
2

9.85 × 10
1

Phoneme 1.50 5.18 × 10
1

4.70 × 10
1

Car 1.51 3.94 × 10
2

3.95 × 10
2

PigCVP 1.52 6.68 × 10
1

6.54 × 10
1

Symbols 1.53 1.23 × 10
1

3.72 × 10
0

PigAirwayPressure 2.07 7.11 × 10
2

5.72 × 10
2

DiatomSizeReduction 3.30 1.52 × 10
3

1.00 × 10
3

F EVOLUTION OF LATENT SPACE THROUGH LEARNING PHASE

A progressive visualization of the latent space offers valuable insights into the evolving distribution
modeling and exploration process. Initially, the latent space representations exhibit fine clustering,
but as we iterate in the augmentation loop, the latent space distributions become denser, enhanc-
ing the exploration part of these distributions. However, in the later stages of augmentation, the
exploration process becomes increasingly challenging as the inter-class distances appear to shrink
due to prior augmentation steps. It is important to note that these visualizations provide only a
limited view of the actual distributions, as they are restricted to three dimensions (from an original
50-dimensional space).
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Table 10: Latent Space Evolution. Visualization of the latent space for the 3 first dimensions (out of
50)

Step ACSF1 BeetleFly Car ECG200

Original

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5
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Step EOGVerticalSignal Ham PigArtPressure SemgHandMov.Ch2

Original

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5
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1534
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1538
1539
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Step UMD Worms

Original

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5
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