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Abstract

Dynamic regret minimization offers a principled
way for non-stationary online learning, where
the algorithm’s performance is evaluated against
changing comparators. Prevailing methods of-
ten employ a two-layer online ensemble, con-
sisting of a group of base learners with differ-
ent configurations and a meta learner that com-
bines their outputs. Given the evident computa-
tional overhead associated with two-layer algo-
rithms, this paper investigates how to attain op-
timal dynamic regret without deploying a model
ensemble. To this end, we introduce the notion of
underlying dynamic regret, a specific form of the
general dynamic regret that can encompass many
applications of interest. We show that almost
optimal dynamic regret can be obtained using a
single-layer model alone. This is achieved by an
adaptive restart equipped with wavelet detection,
wherein a novel streaming wavelet operator is in-
troduced to online update the wavelet coefficients
via a carefully designed binary indexed tree. We
apply our method to the online label shift adapta-
tion problem, leading to new algorithms with op-
timal dynamic regret and significantly improved
computation/storage efficiency compared to prior
arts. Extensive experiments validate our proposal.

1. Introduction
Non-stationary online learning is an emerging field that
has received much attention in recent years, with appeals
both in theory and practice (Besbes et al., 2015; Zhang
et al., 2018; Baby & Wang, 2019; Cutkosky, 2020; Zhao
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et al., 2020; Wu et al., 2021; Zhang et al., 2023a; Zhao
et al., 2024). A standard formulation is the online convex
optimization framework (Hazan, 2016), in which the online
learning process is deemed as a T -round iterative game
between a learner and the environment. At iteration t ∈
{1, . . . , T}, the learner selects a decision θt from a convex
set Θ ⊆ Rd, and the environment simultaneously selects an
online function ft : Θ → R. Subsequently, the learner will
suffer a loss ft(θt) and observe certain gradient information
as the feedback. Recent developments have demonstrated
a principled way for non-stationary online learning based
on dynamic regret minimization — aiming to optimize the
cumulative regret against changing comparators,

Regd
T ({ft,ut}Tt=1) ≜

T∑

t=1

ft(θt)−
T∑

t=1

ft(ut). (1)

The comparators u1, . . . ,uT ∈ Θ can be arbitrarily chosen
to model the unknown changes of non-stationary environ-
ments, so a desired dynamic regret upper bound should hold
for all feasible comparators universally. Therefore, this mea-
sure is usually referred to as universal dynamic regret, and
there have been rich theoretical developments (Zhang et al.,
2018; Cutkosky, 2020; Zhao et al., 2020; Baby & Wang,
2021; Zhao et al., 2024) as well as applications to online
distribution shift adaptation (Bai et al., 2022; Zhang et al.,
2023a; Baby et al., 2023; Qian et al., 2023; Wu et al., 2024).

To handle the fundamental uncertainty due to the unknown
environmental non-stationarity (e.g., manifested as the vari-
ation quantity PT =

∑T
t=2∥ut − ut−1∥2), prevailing meth-

ods often employ a two-layer online ensemble to opti-
mize (1), which maintains diverse multiple base learners
and uses a meta learner to combine them to track the best
one on the fly. While achieving optimal dynamic regret,
the computational overhead associated with this ensemble
structure is evident, and it remains unclear how to attain
optimal dynamic regret without deploying an ensemble.

In this paper, we discover that while it is hard to use a single-
layer model to trace all kinds of possible comparators, many
real-world problems exhibit specific structures that contain
certain information about comparators. We propose a new
performance measure named underlying dynamic regret,
where the learner can observe an unbiased empirical es-
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timation of the underlying comparator at each round. The
formulation is presented in Eq. (4) of Section 2. This mea-
sure is a special form of general dynamic regret, but we
demonstrate that it already encompasses many applications
of interests, including online label shift (Wu et al., 2021).

For optimizing underlying dynamic regret, we demonstrate
that deploying a single-layer model alone can provably
achieve almost optimal dynamic regret.1 This is accom-
plished through an adaptive restart scheme that resets the
learning model when detected environmental changes ex-
ceed a certain threshold. The key lies in specifying suitable
restarting criteria. We employ a wavelet-based detection
inspired by the line of works in (online) trend filtering (Baby
& Wang, 2019; 2020). By decomposing the observed em-
pirical comparators using a series of orthogonal wavelet
bases, we capture high-frequency, short-duration noises and
low-frequency, long-duration trends. This trend information
provides an estimation of the intensity of environmental
changes, prompting our method to restart the model when-
ever the norm of wavelet coefficients exceeds a threshold.
Therefore, it becomes crucial to calculate this norm online,
i.e., the restart criteria. To this end, we propose a novel
streaming wavelet operator, which organizes the coeffi-
cients using a binary indexed tree by lazily updating only
a subset and removing outdated ones. This operator not
only achieves an exponential speed-up in computational and
storage complexities compared to previous methods, but
also demonstrates favorable parallelism, making it suitable
for practical deployments on GPU facilities. Furthermore,
our detection module and streaming wavelet operator are
flexible enough to capture higher-order smoothness in on-
line data, enabling them to handle complex non-stationarity
patterns beyond simple linear gradual changes.

We apply our proposed method to adapt to online label shift,
in which label distribution Dt(y) changes over time while
class-conditional distribution Dt(x | y) remains unchanged.
We demonstrate that by using certain unbiased risk esti-
mators, OLS can be framed as a problem of underlying
dynamic regret minimization. This leads to new algorithms,
exhibiting significant advantages in terms of the computa-
tion and storage efficiency compared to prior arts based on
ensemble structures (Bai et al., 2022; Baby et al., 2023), and
importantly, maintaining the same optimal dynamic regret
guarantees. Extensive experiments validate our proposals.

Related Work. We here discuss several most relevant works
and include more discussions in Appendix B. First, using
wavelets for non-stationarity detection was explored in on-
line trend filtering. Baby & Wang (2019) focus on the

1Concretely, our result achieves minimax optimality for exp-
concave and strongly convex functions. Despite exhibiting subop-
timality for convex functions, it is the best-known rate for single-
layer models (with technical challenge discussed in Remark 5).

first-order smoothness of online data and develop an ef-
ficient Haar wavelet-based detection along with an incre-
mental update mechanism. Subsequently, Baby & Wang
(2020) extend the result to scenarios involving higher-order
smoothness. However, their method requires storing the
entire sequence and recalculating all wavelet coefficients
for each new element, making it less suitable for online up-
dates. We have addressed the challenge by proposing a novel
streaming wavelet operator. Additionally, previous research
focuses on online trend filtering, primarily one-dimensional
estimation with squared loss, and our framework is suitable
for the general online convex optimization setting. Our ap-
proach also introduces other technical improvements, such
as removing recentering/padding operations for wavelets,
with discussions presented in Appendix B.2.

Organization. Section 2 introduces the performance mea-
sure. Section 3 presents our general wavelet-based frame-
work. Section 4 provides the applications to online label
shift. Section 5 reports experiments. We conclude in Sec-
tion 6. Due to page limits, we defer more empirical stud-
ies in Appendix A and related works in Appendix B. Ap-
pendix C contains related background for wavelet analysis
and others. All the proofs are in Appendix D.

2. Performance Measure
Before introducing our proposed “underlying dynamic re-
gret” measure, we start with two special variants of universal
dynamic regret. Although these can be optimally optimized
using single-layer algorithms, they are not ideally suited for
the non-stationary online learning scenario.

The first one is the classical static regret (Hazan, 2016),

RegT ({ft,θ}Tt=1) ≜
T∑

t=1

ft(θt)−min
θ∈Θ

T∑

t=1

ft(θ), (2)

which compares the online learner’s performance against
the best fixed decision in hindsight. The second variant is
the worst-case dynamic regret (Zhao & Zhang, 2021),

Regd
T ({ft,θ⋆t }Tt=1) ≜

T∑

t=1

ft(θt)−
T∑

t=1

ft(θ
⋆
t ), (3)

where θ⋆t ∈ arg minθ∈Θ ft(θ) is a minimizer of the on-
line function. Static regret minimization has been well-
explored in the field of online learning and can be ef-
fectively optimized by, for example, the mirror descent
framework (Nemirovskij & Yudin, 1983). For minimiz-
ing worst-case dynamic regret, prior art (Zhao & Zhang,
2021) demonstrates that a simple greedy strategy to se-
lect the last online function’s minimizer as the current
decision can achieve an optimal rate of O(P ⋆T ), where
P ⋆T = max{θ⋆

t }T
t=1

∑T
t=2∥θ⋆t−1 − θ⋆t ∥2 is the path length.
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However, both static regret and worst-case dynamic regret
are often not favorable in changing environments. Consider
online supervised learning with ft(θ) = ℓ(θ, zt), where
ℓ : Θ×Z → R is the loss function and zt = (xt, yt) ∈ Z
is a data sampled from distribution Dt. Optimizing static
regret apparently fails to adapt to the changing distributions.
On the other hand, optimizing worst-case dynamic regret
can result in severe overfitting to sample randomness: ft
merely provides an empirical approximation of the expected
function Ft(θ) = Ezt∼Dt

[ℓ(θ, zt)], while the expected one
is our true optimization objective. Instead, optimizing uni-
versal dynamic regret (1) is more reasonable as it supports
comparison to arbitrary comparator sequence, hence includ-
ing the one with θ†t ∈ arg minθ∈Θ Ft(θ), the best feasible
solution tailored to the underlying distribution. Nevertheless,
this optimization relies on a two-layer ensemble, leading to
an evident computational overhead.

This work introduces a special form of universal dynamic
regret, named as underlying dynamic regret, defined as

Regd
T ({ft,

◦
ut}Tt=1) ≜

T∑

t=1

ft(θt)−
T∑

t=1

ft(
◦
ut), (4)

where ◦
ut ∈ Θ is the ground-truth comparator characterizing

the underlying distribution at round t. Besides, the learner
can access an unbiased empirical estimation ũt after making
the prediction, formally defined in the observation model.

Assumption 1 (observation model). At iteration t ∈
{1, . . . , T}, the learner observes ũt satisfying E[ũt] =

◦
ut,

with a bounded variance of σ2,i.e.,V[ũt]= 1
d∥ũt−

◦
ut∥22≤σ2.

The observation model is sufficiently general to encompass
many learning problems. A prominent example is the online
label shift (OLS) problem (Wu et al., 2021; Bai et al., 2022),
where the optimizer of the expected function is used as the
comparator to avoid overfitting. In OLS, the comparator
◦
ut (ground-truth label distribution) is empirically acces-
sible via the unbiased estimator ũt (empirical estimator),
thus satisfying Assumption 1. More detailed elaboration is
deferred to Section 4.2. Besides the OLS problem, the ob-
servation model is also applicable to online non-parametric
regression (Baby & Wang, 2019) and online density ratio
estimation (Zhang et al., 2023a) with the least square.

We note that the underlying dynamic regret problem shares
similarities with the non-stationary stochastic optimization
problem (Besbes et al., 2015) and the problem of dynamic
regret minimization for Stochastically Extended Adversarial
(SEA) model (Chen et al., 2023), where a stochastic loss
function f̃t satisfying E[f̃t(x)] = ft(x), for all x ∈ X is
observed by the learner. All of these studies serve as interpo-
lation between the worst-case and universal dynamic regret
minimization problems by considering stochastic feedback.
The main difference between our model and previous ones

is that we consider a stochastic comparator instead of a
stochastic function. By focusing on the specific structure
of the stochastic comparator, we achieve a tight dynamic
regret bound with a single-layer algorithm, while previous
methods typically require a two-layer ensemble structure to
handle non-stationary environments.

Non-stationarity Measure. A desired dynamic regret
bound should scale with a certain non-stationarity measure.
We introduce the k-th order path length defined as

P kT ≜ T k∥Dk+1 ◦
u[1,T ]∥1, for k ≥ 0, (5)

to quantify the fluctuation of comparators, where ◦
u[1,T ] =

[
◦
u1, . . . ,

◦
uT ]

⊤ ∈ RT×d is the matrix consisting of under-
lying comparators. Moreover,Dk ∈ R(T−k)×T is the k-th
order discrete difference matrix (Tibshirani, 2014), obtained
recursively by applyingDi = D̃1 ·Di−1 ∀i ≥ 2 with D̃1

being the (T − i) × (T − i + 1) truncation of D1. For
the first order case,D1 = subdiag(1, . . . , 1)− Id, where
Id is the identity matrix and subdiag(·, . . . , ·) is the sub-
diagonal located above the main diagonal. Consequently,
when k = 0, we have P 0

T =
∑T
t=2 ∥

◦
ut−1 − ◦

ut∥1, which re-
covers the commonly used path length (Zhang et al., 2018).
Remark 1 (higher-order smoothness). The higher the order
k in (5), the smoother the comparators will be. For instance,
in the case of a linearly varying comparator sequence, we
observe that P 1

T = 0 while P 0
T = O(T ). Hence, higher-

order path length offers a more precise measure of non-
stationarity, particularly when the underlying environments
undergo changes that are beyond merely linear shifts. ¶
Remark 2 (naïve solution). Given the observations of
{ũt}Tt=1, one might consider deploying OGD with step
size η∝

√
P∼
T /T , where P∼

T =
∑T
t=2∥ũt − ũt−1∥1. How-

ever, this will additionally introduce an O(Tσ) cumula-
tive error due to the sample randomness, only yielding
an O(

√
T (1 + P 0

T ) + Tσ) dynamic regret in terms of P 0
T ,

hence vacuous due to the linear dependence in T . ¶

3. Wavelet-based Framework
This section presents our general detection-restart frame-
work based on the wavelet analysis for non-stationary online
learning. We first introduce the detection module and then
describe our designed streaming wavelet operator, followed
by the dynamic regret analysis.

3.1. Detection Module Based on Wavelets

We propose a detection-restart based method, which restarts
the learning model whenever the detected non-stationarity
exceeds a certain threshold. Inspired by previous work in
(online) trend filtering (Donoho & Johnstone, 1998; Tib-
shirani, 2014; Baby & Wang, 2019; 2020), our detection
module is built upon wavelets. Below, we present details.
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Algorithm 1: Detection Module by Wavelets
Input: Restart threshold γ; online algorithm A.
Initialize: coefficient matrix α̃ = 0, time s = 1;
for t = 1, . . . , T do

Update coefficient matrix α̃[s,t] as Sec 3.2;
if ∥δγ(α̃[s,t])∥F > γ then

Restart the online algorithm A;
Reset coefficient matrix α̃ = 0, set s = t+ 1;

Output the prediction θt using A;
Suffer loss ft(θt), observe ũt, and update A;

end

Considering an interval [s, t] ⊆ [T ], wavelet analysis de-
composes the input signals (in our case, the empirically
observed comparators {ũτ}tτ=s) into their time and fre-
quency components. This process yields a series of wavelet
coefficients constituting the coefficient matrix α̃[s,t] =

[α̃s, . . . , α̃s+|I|−1]
⊤ ∈ R|I|×d, where |I| = 2⌈log2(t−s)⌉

is the length of coefficients. In this study, we adopt a
classic wavelet construction, Cohen-Daubechies-Jawerth-
Vial (CDJV) wavelets (Cohen et al., 1993a;b), to construct
wavelet coefficients, which admits desirable properties such
as orthogonality, vanishing moments, and compact support.
Assuming all input signals are available offline, we can cal-
culate wavelet coefficients in a standard way through matrix
multiplication according to the textbook (Daubechies, 1992,
Chapter 3), with an O(|I|) computational complexity. How-
ever, in an online scenario, such calculations would incur an
update cost polynomial in T at each round. For instance, it
can be the case that the entire horizon is divided into O(

√
T )

periods, with each having a length of |I| = O(
√
T ). In Sec-

tion 3.2, we propose a streaming wavelet operator to update
coefficients in an online manner.

Based on the coefficient matrix α̃[s,t], we can separate
the following two parts from the empirical comparators:
(i) high-frequency and short-duration noises, and (ii) low-
frequency, long-duration trends. By filtering out the noisy
components, we thus approximately track the underlying
comparators { ◦

uτ}tτ=s and estimate the intensity of envi-
ronmental changes. Technically, this can be realized by
calculating the Frobenius norm ∥δγ(α̃[s,t])∥F as the criteria,
where δγ : Rm×n → Rm×n is the soft-threshold opera-
tor (Donoho & Johnstone, 1998) defined as [δγ(A)]i,j =
sign(Ai,j) · max{|Ai,j | − γ, 0}. Whenever the F-norm
∥δγ(α̃[s,t])∥F exceeds a predefined threshold γ > 0, the
learner restarts the online algorithm A. Furthermore, we
note that the wavelets analysis can also accommodate the
k-th order path length by employing the (k + 1)-th order
construction of CDJV wavelets. Due to page limits, we
defer the details of wavelets to Appendix C.2.

Algorithm 1 summarizes procedures of the detection mod-
ule, which divides the time horizon into multiple piecewise-

Algorithm 2: Streaming Wavelet Operator
Initialize: Wavelet coefficients α̃ = 0;
for t = 1, . . . , |I| do

Update the binary indexed tree;
UPDATEα(t) = ∅, DROPα(t) = ∅;
for j = 0, . . . , ⌈log2 |I|⌉ do

add ⌊t/2j⌋ into UPDATEα(t);
add ⌊t/2j⌋ − 1 into DROPα(t).

end
Update α̃i ∈ UPDATEα(t), delete α̃i ∈ DROPα(t).

end

stationary intervals, enabling online algorithm to be per-
formed within stationary environments by restarting. Pro-
vided that the update cost of wavelet coefficients is moderate
(which we will ensure in Section 3.2), this detection-restart
based method can be highly efficient due to its single-layer
structure. In contrast, previous ensemble-based methods typ-
ically maintain O(log T ) base learners (Zhang et al., 2018;
Zhao et al., 2020; Cutkosky, 2020), which substantially
increases the computational complexity.

3.2. Streaming Wavelet Operator

In this part, we describe our designed procedure of effi-
ciently calculating the wavelet coefficient matrix α̃[s,t] =

[α̃s, . . . , α̃s+|I|−1]
⊤ ∈ R|I|×d for a given interval [s, t] ⊆

[T ], where |I| = 2⌈log2(t−s)⌉ is the length of coefficients.

As shown in Figure 1(a), traditional methods calculate
wavelet coefficients through the matrix multiplication
α̃[s,t] = W⊤

I · pad{ũ[s,t]}, where WI ∈ R|I|×|I| is the
CDJV wavelet transformation matrix (the precise definition
can be found in Appendix C.2.1), and |I| = 2⌈log2(t−s)⌉ is
the size of the wavelet transformation matrix, which is an
integer of power of 2. The padding operator pad{·} com-
pletes the sequence as a longer length of |I| and lets the extra
padded elements be zero. Therefore, this calculation of co-
efficients requires storing all elements in the interval to cal-
culate the coefficients, leading to an O(|I|) computational
and storage complexities. Note that this brings an update
cost linear in T since in the worst case, |I| = O(poly(T )).
Even worse, this method needs to recalculate all coefficients
each round upon encountering a new element, making it
unsuitable for the online scenario.

To this end, we propose a streaming wavelet operator. We
observe that wavelets decompose a sequence of signals via
imposing a convolution operation on the inputs based on
a set of orthogonal wavelet functions. Therefore, the ar-
rival of a new element affects only a portion of coefficients.
Consequently, we employ a binary indexed tree to organize
coefficients. We first give a high-level intuition here: the
binary indexed tree is employed to determine which part of
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W ∈ R4×4

(a)

. . .

pad{ũ[s,t]}
ũ[s,t+1]

ũt+1

restart point

ũ[s,t]

α̃[s,t]

observed 
comparator

wavelet 
coefficient

W ∈ R4×4

0

(a) traditional matrix computation
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. . .

(b)

: UPDATEα(t)

: DROPα(t)
ũt+1

α̃1

α̃2 α̃3

α̃4 α̃5 α̃6 α̃7

restart point

Computation Storage

Matrix Multiplication O(T ) O(T )

Streaming Operator O(log T ) O(log T )

: binary indexed tree

(b) streaming wavelet operator

Figure 1: Comparison of our streaming wavelet operator (b) with traditional wavelet computation (a). When encountering a new element,
we lazily update only a portion of coefficients UPDATEα(t) and drop outdated coefficients DROPα(t) using a binary index tree structure,
thus reducing computational and storage complexities of updating wavelet coefficients from O(T ) to O(log T ) at each round.

the coefficients is to be updated and which part is to be re-
moved, based on their indexes in the tree. This tree structure
allows for a selective, or “lazy update”, where only specific
portions of the coefficients are updated in each iteration. As
illustrated in Figure 1(b), when the new element arrives, it
only affects the wavelet coefficients α̃1, α̃3, and α̃7.

Consider a simple case with k = 1 and d = 1, where k is or-
der of path length and d is dimension. The bitwise right shift
operator is denoted as ≫. At round t, only coefficients
UPDATEα(t) are affected by the incoming element ũt:

UPDATEα(t)=
{
α̃i |1{i=(t≫j)},∃j∈

[
⌊log2 t⌋

]}
. (6)

The formula indicates that the i-th coefficient is affected
only when 1{i= (t ≫ j)} holds true. Consequently, we
can arrange the coefficients using a binary indexed tree
and only update coefficients in the set UPDATEα(t) when
encountering a new element ũt. This update ensures that,
at each iteration, at most O(log t) coefficients are updated.
Additionally, for a d-dimensional signal, the complexity of
updating each wavelet coefficient in UPDATEα(t) is O(kd).

As described in Algorithm 1, the restart criterion is based
on F-norm of wavelet coefficients, essentially the squared
summation of elements within the matrix. As such, the
F-norm of a sequence can be incrementally updated by
combining the norm of the newly arrived element with the
existing norm, and we only need to maintain the most recent
⌊log2 t⌋ wavelet coefficients. Therefore, we remove the old
coefficients and record their F-norm each time a wavelet co-
efficient becomes outdated. Formally, let DROPα(t) denote
the set of outdated coefficients that no longer affected by
new incoming elements at the round t,

DROPα(t)=
{
α̃i |1{(i≫j)&1=1},∃j∈

[
⌊log2 t⌋

]}
, (7)

where & denotes the bitwise AND operator. As a result,
we maintain at most ⌈log2 T ⌉ wavelet coefficients, reducing
the computational and storage complexities from O(dT ) of
previous matrix multiplication to O(d log T ) per round. For
the more sophisticated cases of k-th order CDJV wavelets,

we can apply the same idea and use binary indexed tree
to maintain at most O(dk log T ) wavelet coefficients. The
streaming wavelet operator is illustrated in Figure 1(b).

In summary, the streaming wavelet operator can be con-
structed by leveraging wavelet transform properties and data
structures for online updates. This operator reduces the com-
putational and storage complexities from the O(T ) incurred
by previous matrix computations to O(log T ) per round.
Moreover, our operator demonstrates notable parallelism,
making it suitable for practical online learning deployment
on GPU facilities, as discussed in Appendix C.2.2.

Remark 3. We note that Baby & Wang (2019) introduce an
efficient Haar wavelet update mechanism to handle the first-
order smoothness, but extending it to higher-order cases
remains challenging. Notably, even in the special case of
first-order smoothness, our method also exhibits significant
advantages in efficiency, mainly by eliminating their costly
recentering and padding operations: we formally state that
recentering is not necessary for streaming wavelet operator
as it does not influence the computed coefficients, as detailed
in Lemma 6 of Appendix D; besides, our operator performs
an “implicit padding” strategy to omit yet-to-arrive elements
in the online sequence by leveraging convolution operations,
which implicitly complete the sequence as a longer length,
thereby improving the efficiency. ¶

3.3. Theoretical Analysis for General Framework

In this part, we provide an analysis of regret as well as com-
putational and storage complexity. Suppose M − 1 change
points are identified by Algorithm 1, the entire time hori-
zon can be thus decomposed into M intervals denoted by
{I1, . . . , IM} with Ii = [si, ei] for i ∈ [M ]. Then we have
Regd

T ({ft,
◦
ut}Tt=1) =

∑M
i=1 Regd

Ii
({ft, ◦

ut}eit=si). There-
fore, it suffices to control the regret within each interval
Regd

Ii
({ft, ◦

ut}eit=si) and the total number of intervals M .

Let |Ii| = ei − si be the length of the i-th interval,
P kIi

≜ |Ii|k∥Dk+1 ◦
u[si,ei]∥1 be the k-th order path length

within the interval, and CkIi
=
∑
t∈Ii

∥β⊤
Ii
ϕt− ◦

ut∥1 be the
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k-th order comparator gap that measures the higher-order
smoothness of the comparators, with a formal definition
in Appendix D.1. The comparator gap CkIi

quantifies the
smoothness of the underlying comparators, thereby reflect-
ing the intensity of environmental change within the interval.
A smaller CkIi

indicates a smoother comparator sequence
◦
ut within the interval Ii. The following theorem guarantees
that the number of intervals is bounded, and environmental
shift within each interval is small.

Theorem 1 (Guarantee for Detection-Restart Framework).
Under Assumption 1, setting the threshold γ = 4σ ensures
that our detection-restart framework divides the entire time

horizon into a maximum of M ≤ Õ(T
1

2k+3 (P kT )
2

2k+3 ) inter-
vals with probability at least 1− 2/T . Furthermore, within
each interval Ii, CkIi

≤ Õ(|Ii|
k+2
2k+3 (P kIi

)
1

2k+3 ), where Õ(·)
omits the logarithmic factors in T .

Furthermore, the online algorithm A is supposed to enjoy
a favorable dynamic regret within the interval Ii for all
i ∈ [M ], as formally described below.

Requirement 1. An online algorithm A running over inter-
val Ii = [si, ei] ⊆ [T ] is required to satisfy

ei∑

t=si

ft(θt)−
ei∑

t=si

ft(
◦
ut) ≤ O

(√
|Ii|+ CkIi

)
. (8)

Consequently, Requirement 1 essentially requires the online
algorithm A to achieve a good dynamic regret guarantee in
a relatively smoothed interval I. Various online algorithms,
such as online gradient descent (Zinkevich, 2003) and online
Newton step (Hazan et al., 2007), meet Requirement 1,
which we will validate later. Combining Theorem 1 and
Requirement 1, we obtain the following regret guarantee.

Theorem 2 (Overall Dynamic Regret). With probability
at least 1− 2/T , using the detection-restart framework de-
scribed in Algorithm 1 with an online algorithm A satisfying
Requirement 1 guarantees that

Regd
T ({ft,

◦
ut}Tt=1) ≤ Õ

(
max

{
T

k+2
2k+3 (P kT )

1
2k+3 ,

√
T
})

.

Furthermore, for the exp-concave and the strongly convex
functions, Requirement 1 can be further enhanced to∑ei
t=si

(ft(θt)−ft( ◦
ut)) ≤ Õ(1+

∑
t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥21),
thereby achieving an Õ(T 1/2k+3(P kT )

2/2k+3) dynamic regret,
proved to be minimax optimal (Baby & Wang, 2020; 2023).

Remark 4 (optimality and higher-order smoothness). For
general convex functions, our result in Theorem 2 is subopti-
mal. For example, the optimal rate for 0-th order path length
should be O(T 1/2(P 0

T )
1/2), but we attain O(T 2/3(P 0

T )
1/3).

Despite this, we remind that the optimal rate is only achieved
by ensemble-based methods (Zhang et al., 2018; Cutkosky,
2020), and our result is the best-known rate for the single-
layer model. Note that previous best result is O(

√
T · P 0

T )

achieved by OGD with step size η = 1/
√
T , and our

method can simultaneously enjoy this rate as proved in
Appendix D.3. Remark 5 will illustrate the difficulty of
achieving optimal dynamic regret for convex functions. Fur-
thermore, it is worth noting that our result is the first to
attain dynamic regret with higher-order path length for con-
vex functions, which is new to literature. ¶

Remark 5 (achieving optimality for convex functions).
While our result for convex functions is suboptimal, attain-
ing an optimal rate of O(

√
T · P 0

T ) (simply focusing on the
k = 0 scenario) presents significant challenges. Technically,
this problem is as difficult as addressing a major unresolved
issue in non-stationary online learning: whether dynamic re-
gret minimization can be reduced to strongly adaptive regret
minimization, as highlighted in (Zhang, 2020, Section 5).
Furthermore, we emphasize that even though the rate for
this general OCO scenario may be suboptimal, applying it
to our primary application, online label shift, can still yield
optimal guarantees owing to the distinct structure of the
OLS problem as shown in Section 4.2. ¶

Theorem 3 (Efficiency of Wavelets Update). The proposed
streaming wavelet operator exhibits a computational com-
plexity of O(kd log T ) per round, with a storage complexity
at O(kd log T ). Here, k denotes the order of path length,
and d represents the dimension of the online data sequence.

Our streaming wavelet operator significantly improves effi-
ciency compared with previous model ensemble methods.
For clarity, we define several key terms: the computational
complexity of updating a single model (Cmodel), obtain-
ing an unbiased estimator (Cesti), and wavelet detection
(Cdetect). Typically, previous model ensemble-based meth-
ods incur a computational complexity of Cmodel × log T
due to the requirement of maintaining O(log T ) base learn-
ers. In contrast, our wavelet-based detection method main-
tains only one model, along with a multi-resolution detec-
tion/exploration with O(log T ) wavelet coefficients. Conse-
quently, our wavelet-based detection method is much more
efficient with a complexity of Cmodel + Cesti + Cdetect,
particularly when using complicated base models, such as
overparametrized models in practice where Cmodel can be
very large. Additionally, as proved in Theorem 3, Cdetect

is only O(kd log T ), and Cesti is often also very small, typi-
cally Õ(d), as we will demonstrate with a concrete example
of the OLS problem in Section 4. A summary table of ef-
ficiency improvements is provided in Appendix C.4, and
empirical results in Section 5 further demonstrate the supe-
rior efficiency of our method.

4. Applications: Online Distribution Shift
In this section, we apply our detection framework to a spe-
cific application: OLS, and obtain novel efficient algorithms.
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4.1. Problem Setup

Let X ⊆ Rd be the feature space and Y = {1, . . . ,K} de-
note the label space for the multi-class classification. There
are two stages in the online label shift problem:

(i) In the offline initialization stage, the learner can ac-
cess a number of offline labeled data S0 = {(xi, yi)}N0

i=1

i.i.d. drawn from initial distribution D0(x, y), where xi ∈ X
and yi ∈ Y . The offline dataset is supposed to be sufficient
(|S0| → ∞) to initialize a good model h0 : X → Y .

(ii) In the online adaptation stage, the learner needs to adapt
her model ĥt for an unlabeled data stream with changing
distributions. Specifically, in round t ∈ [T ], the learner
receives a limited amount of unlabeled data St = {xn}Nt

n=1,
sampled i.i.d. from the distribution Dt(x). The goal is to
minimize expected risk on Dt against the optimal classifier
at each round, defined as

Regd
T ({Rt, h⋆t }Tt=1) ≜

T∑

t=1

Rt(ĥt)−
T∑

t=1

Rt(h
⋆
t ), (9)

where Rt(h) ≜ E(x,y)∼Dt
[ℓ(h(x), y)] is the expected risk,

ℓ : ∆K × Y → R is the loss function, h : X → ∆K is the
predictive function. The optimal model of each round is
denoted by h⋆t , i.e., h⋆t ∈ arg minh∈HRt(h). In OLS, label
distribution Dt(y) changes over time, and class-conditional
distribution Dt(x | y) remains unchanged.

Reduction to Underlying Dynamic Regret Minimization.
Our reduction involves constructing an unbiased distribution
estimator. For OLS, we can upper bound Eq. (9) by the
cumulative error of class prior

∑T
t=1∥µ̂t−µt∥2, where µ̂t is

our predicted class prior and µt=Dt(y) is the ground-truth
one. However, the underlying class prior µt is unknown. To
this end, Black Box Shift Estimation (BBSE) (Lipton et al.,
2018) method is used to obtain an unbiased estimation µ̃t
with bounded variance, therefore satisfying Assumption 1,
i.e., only ũt = µ̃t and ft(µ) = ∥µ− µ̃t∥2 are observed,
while ◦

ut=µt and Ft(µ)=∥µ−µt∥2 are expected ones.

4.2. Adapting to Online Label Shift

This part applies our detection-restart framework for OLS.

1 Label Shift Estimation. We begin with getting an un-
biased estimation of the true class prior µyt =Dt(y=j) to
satisfy Assumption 1. To this end, we employ BBSE (Lip-
ton et al., 2018) method to construct an estimator via offline
data S0 and unlabeled data St. Specifically, we first use
the initial offline model h0 to predict over unlabeled data
St and get predicted labels ŷt; and then we estimate label
distribution as µ̃yt = C−1

0 µ̃ŷt , where µ̃ŷt ∈ ∆K with
[µ̃ŷt ]j = 1/|St|

∑
x∈St

[h0(x)]j is estimated class prior of
the prediction h0(x), and C0 ∈ RK×K is the confusion
matrix with [C0]i,j ≜ Ex∼D0(x|y=j)

[
[h0(x)]i

]
being the

classification rate that h0 predicts samples from class i as j.

2 Verifying Assumption 1 for OLS. BBSE ensures that the
estimation µ̃yt = C−1

0 µ̃ŷt satisfies E[µ̃yt ] = µyt , where
µyt ≜ C−1

0 µŷt = Dt(y) is the ground-truth label distribu-
tion. Furthermore, given that the minimum singular value
σmin(C0) = Ω(1) is bounded away from zero. As a result,
µ̃yt serves as an unbiased estimator for µyt with bounded
variance of 1/σ2

min(C0), which satisfies Assumption 1. Af-
terwards, we use µt as shorthand for µyt , and µ̃t for µ̃yt .

3 Wavelet Detection for OLS. The wavelet coefficients are
calculated upon µ̃[s,t] using our streaming wavelet operator
as described in Section 3.2, where µ̃[s,t] is the class prior
estimated by BBSE within any interval [s, t]. The wavelet
detection framework restarts the classifier when the F-norm
of the wavelet coefficients exceeds the variance of BBSE’s
estimation, i.e., setting γ = 4/σ2

min(C0) in Algorithm 1.

3 Combined with Online Algorithms. In the following,
we introduce two ways to combine detection-restart frame-
work with previous online algorithms to adapt to OLS, i.e.,
combined with (i) reweighting-update and (ii) OGD-update.

(i) Combined with Reweighting-Update. Same as (Baby
et al., 2023), we employ the predicted class prior to reweight
the initial offline classifier to get the prediction. Note that

Dt(y | x) =
Dt(y)
Dt(x)

D0(x)

D0(y)
D0(y | x) ∝

Dt(y)
D0(y)

D0(y | x).

So we can use reweighting to get ht : X → ∆K as

[ht(x)]j =
1

Z(x)

[µ̂t]j
D0(y = j)

[h0(x)]j , ∀j ∈ [K], (10)

where Z(x) =
∑K
j=1

[µ̂t]j
D0(y=j)

[h0(x)]j is the normalization
factor. Then, we predict the class prior µ̂t by Online Newton
Step (ONS) (Hazan et al., 2007). More details of OLS
are deferred to Appendix C.3.1. Combining our detection
framework with reweighting updates, we can obtain a new
algorithm, Wav-R, which enjoys the following guarantee.
Theorem 4. The reweighting-based update (10) satisfies
Requirement 1, and using wavelet-based detection-restart
framework (Algorithm 1) with this update as A ensures

E
[
Regd

T ({Rt, h⋆t }Tt=1)
]
≤Õ

(
max{T k+2

2k+3 (P kT )
1

2k+3 ,
√
T}
)
.

whereP kT =T
k∥Dk+1µ[1,T ]∥1 is the k-th order path length.

When k = 0, Theorem 4 implies an O(T
2
3 (P 0

T )
1
3 ) rate,

which is optimal for online label shift (Bai et al., 2022;
Baby et al., 2023). Crucially, the new algorithm necessi-
tates the maintenance of only a single classifier, leading to a
significant improvement in both computational and storage
complexities compared to ensemble-based methods. Be-
sides, we also achieve dynamic regret for OLS under cases
of higher-order smoothness, which is new to the literature.
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(ii) Combined with OGD-Update. Apart from the
reweighting, we can also combine our detection module with
OGD update to handle the OLS problem. Following (Bai
et al., 2022), we establish an unbiased risk estimator R̂t for
the expected risk Rt with unlabeled data St and offline data
S0 by the risk rewriting technique. We specify the prediction
in the form ht(x) = h(wt,x) where h : W ×X → ∆K is
the predictive function, and w is the model parameter. The
loss function ℓ : ∆K × Y → R satisfies that ℓ(h(w,x), y)
is convex in w. In the rest, we use Rt(w) to represent the
expected risk of the classifier h(w, ·) on the distribution Dt.
Then, we have the following decomposition for Rt:

Rt(w) =

K∑

j=1

[µt]j ·Rjt (w) =

K∑

j=1

[µt]j ·Rj0(w),

where Rj0 is the initial risk function for the j-th class. So
the risk estimator becomes R̂t(w) =

∑K
j=1[µ̃t]j ·R

j
0(w),

where µ̃t is the class prior estimated by BBSE. After that,
we update the classifier by OGD

wt+1=ΠW [wt − ηt∇R̂t(wt)],with ηt=1/
√
t−s. (11)

Combining our detection-restart framework (with the order
k = 0) with OGD update, we obtain Wav-O, which ensures:
Theorem 5. The OGD-based update update (11) satisfies
Requirement 1, and using wavelet-based detection-restart
framework (Algorithm 1) with this update as A ensures

E
[
Regd

T ({Rt, h⋆t }Tt=1)
]
≤ Õ

(
max{T 2

3 (P 0
T )

1
3 ,
√
T}
)
,

where P 0
T =

∑T
t=2 ∥µt − µt−1∥1 is the path length.

Theorem 5 recovers the same optimal dynamic regret guar-
antee as in (Bai et al., 2022) and (Baby et al., 2023) ignoring
the dimension factor. Crucially, our method utilizes a single
classifier, offering a significant reduction in computational
complexity compared to previous research (Bai et al., 2022).
Specifically, the computational complexity decreases from
O(N0d log T ) to O(N0d+ log T ) each round. In addition,
the number of costly projections is reduced from O(log T )
times to O(1). This is because the previous study (Bai et al.,
2022) requires the computation of the gradient ∇R̂t(·) and
the projection onto the feasible domain for O(log T ) base
learners, while our algorithm maintains just one.
Remark 6 (broader applications). Our wavelet-based
detection-restart framework is very general and can be use-
ful for broader online distribution shift adaptation problems,
such as online label shift with new classes (Qian et al., 2023)
and online covariate shift (Zhang et al., 2023a). More results
will be included in the extended version.

5. Experiments
To further validate the effectiveness and efficiency of our
proposal, we conduct experiments to evaluate over synthetic,

Table 1: Avg error (%) of different algorithms in the general OCO
scenarios. The best are emphasized in bold.

Linear Square Sine

FIX 7.87±0.03 7.98±0.04 7.34±0.03
OGD 5.35±0.02 6.10±0.03 6.37±0.01

Reweight 6.08±0.01 6.45±0.02 6.87±0.02
FTFWH 5.27±0.02 6.52±0.01 6.36±0.02
ATLAS 5.44±0.02 5.65±0.03 5.75±0.01
Effi-Dyn 5.30±0.02 5.83±0.01 5.88±0.02
FLH-FTL 5.28±0.03 5.64±0.02 5.85±0.01

Wav-O
k = 0 5.30±0.01 5.67±0.03 6.21±0.02
k = 1 5.25±0.01 5.61±0.02 6.39±0.03
k = 2 5.47±0.03 5.58±0.03 5.92±0.02

Wav-R
k = 0 5.46±0.02 5.55±0.02 5.97±0.03
k = 1 5.37±0.01 5.61±0.02 6.01±0.01
k = 2 5.49±0.02 5.52±0.04 5.75±0.02

benchmark, and real-world datasets across two scenarios: (i)
general OCO scenario, and (ii) OLS problem. We compare
with baselines and previous state-of-the-art methods.

(i) Evaluation on General OCO Scenario. For the OCO
scenario, we generate a changing comparator sequence
{ ◦
ut}Tt=1, which represents the optimal decision for the un-

derlying distribution at each round. However, the learner
can only observe the empirical estimation {ũt}Tt=1. We sim-
ulate three types of comparator sequences for the synthetic
OCO data, including Linear Shift, Square Shift,
and Sine Shift sequence. As shown in Table 1, our
detection-restart framework achieves remarkable perfor-
mances compared with previous state-of-the-art algorithms.

(ii) Evaluation on Online Label Shift. Table 2 presents
the empirical results of various algorithms on the benchmark
datasets. Here we consider two types of label distribution
changes: the Linear Shift and the Square Shift.
Our algorithms Wav-O and Wav-R outperform the baseline
algorithms OGD and Reweight, respectively. This supe-
rior performance can be mainly attributed to our detection
framework’s ability to adaptively restart the classifier upon
detecting environmental changes based on wavelets. Conse-
quently, this enables the online algorithm to operate within
stationary environments, leading to an enhancement in per-
formance especially under higher-order label distribution
shifts. Furthermore, our algorithms are highly competitive
with previous online-ensemble-based methods FTFWH

We also conduct validations on real-world applications. The
results on the locomotion dataset (Gjoreski et al., 2018) of
OLS are presented in Figure 2(a). Combining our detection-
restart framework with OGD and reweighting yields two
new algorithms, Wav-O and Wav-R. It can be seen that they
exhibit improvements over baselines OGD and Reweight.
The prior arts for the OLS problem are ATLAS and FLH-
FTL with ensemble structures, yet our algorithms are highly

8
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Table 2: Average error (%) of different algorithms on five benchmark datasets of online label shift scenario, where Wav-O represents
using our wavelet-based detection-restart framework with OGD, and Wav-R represents using our framework with reweighting. We take
the order of wavelets as k = 1 for the Linear Shift and k = 2 for the Square Shift. We report the mean and standard deviation
over five runs. The best algorithms are emphasized in bold. “◦” indicates the algorithm is significantly inferior to our algorithms by paired
t-test at a 5% significance level. The online sample size is set as Nt = 10.

Linear Shift Square Shift

FIX OGD Reweight FTFWH ATLAS Wav-O Wav-R FIX OGD Reweight FTFWH ATLAS Wav-O Wav-R

CIFAR10 ◦20.89 15.92 ◦18.25 ◦ 17.32 15.75 15.52 15.68 ◦20.79 ◦16.31 ◦17.38 ◦16.70 ◦15.21 14.72 15.55
±0.13 ±0.13 ±0.45 ±0.15 ±0.12 ±0.15 ±0.14 ±0.04 ±0.13 ±0.15 ±0.14 ±0.08 ±0.11 ±0.13

CINIC10 ◦34.56 ◦27.31 ◦32.42 ◦ 28.55 ◦26.44 26.11 28.21 ◦34.01 ◦28.96 ◦28.62 ◦28.01 ◦27.01 26.12 26.65
±0.24 ±0.21 ±2.55 ±0.12 ±0.21 ±0.13 ±0.11 ±0.12 ±0.10 ±0.13 ±0.05 ±0.11 ±0.05 ±0.13

EuroSAT ◦15.42 9.13 ◦12.34 ◦ 11.35 07.21 07.15 07.25 ◦14.19 07.33 ◦08.88 ◦10.19 06.99 07.43 07.82
±0.12 ±0.15 ±3.17 ±0.12 ±0.13 ±0.12 ±0.12 ±0.15 ±0.11 ±0.09 ±0.12 ±0.09 ±0.05 ±0.03

Fashion ◦11.35 7.98 8.15 07.84 08.39 08.34 08.37 ◦11.94 ◦08.46 ◦08.67 ◦08.28 ◦08.13 07.88 07.32
±0.05 ±0.06 ±0.05 ±0.08 ±0.09 ±0.13 ±0.08 ±0.13 ±0.07 ±0.11 ±0.13 ±0.12 ±0.07 ±0.07

MNIST ◦01.72 1.13 ◦01.32 ◦ 01.25 1.07 1.09 1.13 ◦01.83 ◦01.17 ◦01.36 ◦01.17 01.05 01.12 01.03
±0.03 ±0.03 ±0.04 ±0.03 ±0.05 ±0.02 ±0.03 ±0.08 ±0.07 ±0.08 ±0.07 ±0.02 ±0.04 ±0.03
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Figure 2: (a) Comparison of overall performance on the real-world online label shift application with locomotion dataset (Gjoreski et al.,
2018). We take the order k = 0 for our Wav-O and Wav-R. (b) Comparison of accuracy and efficiency (with mean and standard deviation
over five runs). The closer to the top-right corner, the better the algorithm. (c) Comparison of the storage usage.

competitive even with a single layer. Compared to the previ-
ous state-of-the-art two-layer algorithm Effi-Dyn, we also
achieve a better efficiency with one model alone.

Importantly, our algorithms exhibit significant superiority
over the previous online-ensemble method, i.e., ATLAS,
in both running time and storage usage, as shown in Fig-
ures 2(b) and 2(c). Specifically, our algorithms can process
nearly five times more items per second while consuming
approximately half the storage compared to ATLAS. Com-
pared to the previous state-of-the-art two-layer algorithm
Effi-Dyn which reduces the number of gradient queries and
projections per round from O(log T ) to 1, we also achieve
a better computational and storage cost with only a single-
layer structure. This validates that our detection-restart
framework is more efficient than ensemble-based methods.

6. Conclusion
In this paper, we introduced the underlying dynamic regret
as the performance measure for non-stationary online learn-
ing. While being a particular form of the general dynamic
regret notion, it is sufficient to encompass many real-world
applications. To optimize this measure, we devised a novel

method based on the adaptive restart strategy, equipped
with an efficient wavelet-based detection to handle non-
stationarity. This non-ensemble method provably achieves
an almost optimal dynamic regret and demonstrates flexi-
bility in handling higher-order smoothness in online data.
As the main application, we applied the general framework
to the problem of online label shift, leading to several new
algorithms with optimal dynamic regret guarantees. They
showed significant efficiency in computational and storage
complexities compared to previous arts achieved by ensem-
ble structures. Experiments further support our findings.

It is worth noting that both our wavelet-based detection
method and previous model ensemble-based methods con-
tain a computational complexity of O(log T ). But our
method is more efficient in many cases, as it only maintains
multiple wavelet coefficients instead of multiple model pa-
rameters. Indeed, to handle the non-stationarity, our method
can be considered as an ensemble of multiple wavelet bases.
This raises a question about the necessity of an additional
computational overhead of O(log T ) compared to station-
ary algorithms, when handling non-stationary online envi-
ronments with inherent uncertainty. Such a “lower-bound”
argument would be an interesting future work to examine.
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A. Additional Experiments
In this section, we present empirical results for the OCO scenario, and online label shift scenario, respectively.

A.1. Evaluation on General Online Convex Optimization Scenario

This subsection evaluates our algorithms in the online convex optimization scenario, with a particular emphasis on the
effectiveness of our detection framework and its flexibility in accommodating the higher-order path length. We begin with
an introduction of the experiment setup, followed by the contenders and the performance comparison in the OCO scenario.

Experiment Setup. For the OCO scenario, we generate a changing comparator sequence { ◦
ut}Tt=1, which represents

the optimal decision for the underlying distribution at each round. However, the learner can only observe the empirical
estimation {ũt}Tt=1. We simulate three types of comparator sequences for the synthetic OCO data, including the Linear
Shift sequence, representing a gradual change in the underlying comparator following a linear pattern; the Square
Shift sequence, where comparators fluctuate according to a quadratic pattern; and the Sine Shift sequence, where
the underlying comparator periodically changes following a sinusoidal pattern. The data dimension is set as 12, and we
repeat all experiments for five times and evaluate the contenders by the average over T = 10, 000 rounds.

Contenders. We evaluate our algorithms against the following competitors.

• FIX predicts with the fixed initial classifier without any online updates.
• OGD (Zinkevich, 2003) is the online gradient descent (11) with the step size ηt = 1/

√
t through the entire time horizon

without restarting.
• Reweight Wu et al. (2021) is the reweighting update mechanism, which reweights the initial classifier following (10)

through the entire time horizon without restarting.
• FTFWH (Wu et al., 2021) is short for Follow The Fixed Window History, which averages across previously estimated

priors within a sliding window. In all experiments, we set the sliding window length as 100.
• ATLAS (Bai et al., 2022) is an online ensemble method, which maintains O(log T ) base learners, each performing online

gradient descent with different step sizes and then uses the Hedge algorithm (Freund & Schapire, 1997) as the meta
learner to combine the outputs.

• Effi-Dyn (Zhao et al., 2022) is the state-of-the-art two-layer ensemble algorithm that constructs a surrogate loss and
domain, significantly reducing the number of projections and gradient queries from O(log T ) to only 1 per round. By
integrating it with the OGD update mechanism, it becomes an effective version of ATLAS.

• FLH-FTL (Baby et al., 2023) initially transforms the adaptation problem into an online regression problem. Subsequently,
it utilizes an ensemble-based approach that reweights the initial classifier to adapt to new environmental shifts.

Performance Analysis. As demonstrated in Table 1, we evaluate the performance of our algorithms (Wav-O and Wav-R)
against other algorithms in the OCO setting with varying underlying comparator sequences { ◦

ut}Tt=1. It should be noticed that
our algorithms with k = 1 yield the best performance for the Linear Shift sequence, where k represents the order of
the wavelet detection. Likewise, for the Square Shift sequence, our detection-restart framework with k = 2 has the best
performance, which highlights that our detection-restart framework is flexible enough to capture the higher-order smoothness
in online data. Particularly, under the higher-order environmental changes, our detection-restart framework achieves a more
significant performance gain compared to the competitors. These results further demonstrate our detection-restart framework
can accommodate the higher-order path length of the underlying comparator sequence.

A.2. Implementation Details

For the OCO scenario and the benchmark datasets in the OLS scenario, we simulate three types of environmental change
patterns to encompass various non-stationary environments. For each case, the current distribution at round t is a mixture
of two different constant distributions, i.e., µ,µ′ ∈ ∆K with a time-varying coefficient αt, i.e., µt = (1− αt)µ+ αtµ

′,
where µt denotes the current distribution at round t and αt controls the non-stationarity and patterns. Specifically,

• Linear Shift: the parameter αt = t
T , which represents the gradual environmental change following a linear pattern.

• Square Shift: αt switches between 1 and 0 following a quadratic pattern αt =
√
t/T .

• Sine Shift: αt = sin iπ
L periodically changes following a sinusoidal pattern, where i = t mod L and L signifies a

given periodic length. By default, we set L = Θ(
√
T ) in the experiments.
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Table 3: Average error (%) of different algorithms on the real-world online label shift application: locomotion dataset (Gjoreski
et al., 2018), where Wav-O represents using our wavelet-based detection-restart framework with OGD, and Wav-R represents using our
framework with reweighting. We report the mean and standard deviation over five runs.

FIX OGD Reweight FTFWH ATLAS Effi-Dyn FLH-FTL LAME
Wav-O Wav-R

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

Locomotion
33.32 28.64 29.72 29.14 24.64 25.45 24.83 24.92 24.03 24.12 23.99 25.35 25.41 25.36

±1.05 ± 1.67 ± 1.57 ± 1.12 ± 1.55 ± 2.35 ± 1.45 ± 1.23 ± 1.71 ± 1.54 ± 1.65 ± 2.23 ± 2.35 ± 2.23

We repeat all experiments five times to evaluate average error and standard deviations. Learning rates of algorithms are set
according to theoretical guidelines. All experiments are executed on a computer with 2 CPUs, each having 32 cores.

A.3. Evaluation on Online Label Shift

In this part, we provide the details of the experiments in OLS. We compare the same seven contenders outlined in
Appendix A.1, adding an additional contender: LAME (Boudiaf et al., 2022), which is a test-time adaptation (TTA) approach.

Datasets. We use various datasets to evaluate our algorithms in the context of the online label shift scenario, including five
benchmark datasets and a real-world application: SHL dataset (Gjoreski et al., 2018) which aims to detect the locomotion of
an object. The benchmark datasets are outlined as follows.

• CIFAR10 (Krizhevsky et al., 2009): A classification dataset comprises 60, 000 color images distributed across ten classes:
airplane, automobile, ship, truck, bird, cat, deer, dog, frog, and horse.

• CINIC10 (Darlow et al., 2018): A tiny version of ImageNet (Deng et al., 2009) dataset, it contains images from both
CIFAR10 and ImageNet and shares the same ten classes as CIFAR10.

• EuroSAT (Helber et al., 2018): A land cover classification dataset, EuroSAT includes 27, 000 satellite images from over
30 different European countries. The images span ten different categories: industrial, residential, annual crop, permanent
crop, river, sea and lake, herbaceous vegetation, highway, pasture, and forest.

• Fashion (Xiao et al., 2017): A dataset includes 70, 000 grayscale fashion images divided among ten different classes:
T-shirt, trouser, shirt and sneaker, pullover, dress, coat, sandal, bag, and ankle boot.

• MNIST (LeCun et al., 1998): A widely-used image dataset of handwritten digits, consisting of 70, 000 grayscale images
of handwritten digits across ten different classes.

For the above five benchmark datasets, we utilize a finetuned ResNet34 (He et al., 2016) to extract image features. The
images used to train the ResNet34 do not overlap with either the offline or online datasets. Besides, we also compare
different algorithms on a real-world locomotion dataset:

• Locomotion (Gjoreski et al., 2018): A dataset that aims to distinguish the human locomotion in real-life. It comprises
multi-modal sensor data (e.g., acceleration, gyroscope, magnetometer, orientation, gravity, pressure, altitude, and
temperature) from a body-worn camera and four smartphones, carried simultaneously at typical body locations, along
with corresponding human motion data and timestamps. We sample 30, 000 offline and 77, 000 online data samples
from an 11-day period, which cover six classes: still, walking, running, bike, car, and bus. During the online update, the
samples arrive in real chronological order, according to the timestamp. It is important to note that in this dataset, the
distribution of human motion types changes over time, leading to the label shift occurring in the data stream.

Table 4: Average error (%) with different online sample
size Nt. We take Nt = 5, 10 and 20 respectively.

CIFAR 10 Nt = 5 Nt = 10 Nt = 20

Wav-O 14.79 ± 0.15 14.72 ± 0.11 14.69 ± 0.10
Wav-R 15.54 ± 0.18 15.55 ± 0.13 15.32 ± 0.11

Sensitivity to Online Sample Size. We also analyze the sensi-
tivity of our algorithm to the online sample size Nt. Specifically,
we modify the online sample size to various values (i.e., 5, 10,
and 20) for the benchmark dataset CIFAR10 under the Square
Shift. This aims to evaluate how our method will perform under
conditions where the empirical observation ũt is less accurately
estimated due to a reduced sample size, therefore increasing the
variance and potentially violating Assumption 1. The results are listed as Table 4, showing that our algorithms do not exhibit
a significant performance drop across different sample sizes. These results further indicate that our algorithms are flexible
enough and can accommodate various scenarios, even if some assumptions are not satisfied.

Sensitivity Analysis of the order k. As detailed in Section 3.3, our wavelet detection-based method is flexible enough to
capture higher-order smoothness in online data, i.e., it can accommodate complex non-stationary patterns beyond simple
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linear gradual changes. To examine the sensitivity of the order parameter, we conduct experiments with different orders of
wavelet detection for our algorithms. Specifically, we employ k = 0, k = 1, and k = 2 orders of wavelet detection and
evaluate their performance using the real-world locomotion dataset. As exhibited in Table 3, the overall performance among
different orders does not exhibit substantial variance, suggesting that our algorithms are not particularly sensitive to the
order parameter k. Therefore, the choice of order k is not sensitive and will not significantly impact the final results.

A.4. Wavelet Speedup
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Figure 3: Efficiency comparison of the
streaming wavelet operator with traditional
matrix multiplication and the PyWT package.

We also conduct modular analysis to evaluate the efficiency of our streaming
wavelet operator. As demonstrated in Figure 3, the streaming wavelet operator
is more efficient than the traditional matrix computation, processing more items
per second in a data stream. This is because the operator only lazily updates
a portion of wavelet coefficients using a binary index tree, while the traditional
matrix computation needs to recompute all the wavelet coefficients at each
round. When compared with the PyWT,2 an open-source Python wavelet
transformation package, our operator again demonstrates superior efficiency
due to its lazy update property and parallelism. Therefore, the streaming
wavelet operator is more suitable for the online learning scenario, where the
online update is necessary.

B. Related Work
This section introduces related works to our paper, including the non-stationary online learning in Appendix B.1, the online
trend filtering in Appendix B.2, and the online distribution shift in Appendix B.3.

B.1. Dynamic Regret Minimization

In this part, we briefly review the related works in dynamic regret minimization for online convex optimization. For a
more comprehensive treatment, one may refer the latest work in (Zhao et al., 2024, Section 2.2) and (Zhang et al., 2023a,
Appendix B). The classical performance measure for the OCO problem is the static regret. However, this measure may be
overly optimistic and is not suitable in changing environments, where the optimal decision changes over time. To address
this limitation, the paradigm of non-stationary online learning has been developed, which has seen significant progress over
the years (Zinkevich, 2003; Besbes et al., 2015; Yang et al., 2016; Zhao & Zhang, 2021).

Worst-case Dynamic Regret. The worst-case dynamic regret (Jadbabaie et al., 2015; Yang et al., 2016; Zhang et al., 2020)
aims to minimize the cumulative difference between the decision θt and the minimizer θ⋆t , defined in (3) and restated below

Regd
T ({ft,θ⋆t }Tt=1) =

T∑

t=1

ft(θt)−
T∑

t=1

ft(θ
⋆
t ),

where θ⋆t ∈ arg minθ∈Θ ft(θ) is the function minimizer at each round. However, as mentioned in Section 2, minimizing
the worst-case dynamic regret can lead to severe overfitting to the sample randomness.

Universal Dynamic Regret. A more appropriate performance measure is the universal dynamic regret (Zinkevich, 2003),
in the sense that it gives a universal guarantee that holds against arbitrary comparator sequence. Universal dynamic regret
compares θt with an arbitrary time-varying comparator sequence {ut}Tt=1, formally defined in (1) and restated below

Regd
T ({ft,ut}Tt=1) =

T∑

t=1

ft(θt)−
T∑

t=1

ft(ut).

This measure can recover the aforementioned worst-case dynamic regret (3) with comparators ut = θ⋆t ∈ arg minθ∈Θ ft(θ).
In contrast to the worst-case dynamic regret, optimizing the universal dynamic regret is more reasonable, as it supports
comparison to any feasible comparator sequence, hence including the one with θ†t ∈ arg minθ∈Θ Ft(θ), the best feasible
solution tailored to the underlying distribution.

2https://pypi.org/project/PyWavelets/
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However, it is usually challenging to optimize the universal dynamic regret. The fundamental difficulty arises from the
unknown level of environmental non-stationarity, which is manifested as the uncertainty of arbitrary comparators in the
regret measure (1). To this end, recent works typically employ a two-layer online ensemble framework (Zhao et al., 2024) to
optimize the measure, which maintains diverse multiple base learners and uses a meta learner to combine them to track
the best one on the fly. For instance, Zhang et al. (2018) achieved the optimal dynamic regret of the convex function
utilizing the following ensemble structure: the algorithm maintains O(log T ) base learners, each performing online gradient
descent with varying step sizes; and then use the Hedge algorithm as the meta-learner, combining the outputs of the base
learners. Cutkosky (2020) and Zhang et al. (2022) employed a sequential ensemble for non-stationary online learning, in
which a series of base learners were sequentially ensembled, and their outputs were added up to obtain the final prediction.
Subsequent works are devoted to achieving improved guarantees when the online functions are equipped with better
properties such as smoothness (Zhao et al., 2020; 2024) and strong convexity or exponential concavity (Baby & Wang,
2021; 2023). Notably, albeit achieving favorable regret guarantees, the ensemble structure brings an evident computational
overhead, especially when T is large. There are efforts devoted to improving the efficiency of model ensemble algorithms by
reducing the per-round required number of gradient calculations or projections onto the feasible domain (Zhao et al., 2022).
However, it remains unclear how to attain an optimal dynamic regret without an ensemble over multiple base learners.

Underlying Dynamic Regret. We investigate a special form of universal dynamic regret, defined in (4) and restated below:

Regd
T ({ft,

◦
ut}Tt=1) =

T∑

t=1

ft(θt)−
T∑

t=1

ft(
◦
ut),

where ◦
ut ∈ Θ is the ground-truth comparator characterizing the underlying distribution at round t. We refer to this measure

as underlying dynamic regret. Crucially, the ground-truth comparator is unknown to the learner, but she can access an
empirical estimation ũt with unbiasedness (E[ũt] =

◦
ut) and bounded variance (V[ũt] ≤ σ2) after making the prediction,

as formulated in Assumption 1. In many applications of interest, we can construct an appropriate empirical estimation
ũt at each iteration to satisfy this assumption. We take OLS as a concrete example as verified in Section 4.2. Besides,
Assumption 1 posits that the variance σ2 is both bounded and known to the learner. Indeed, a bounded domain can ensure
this, i.e., we have V[ũt] = 1

d∥ũt −
◦
ut∥22 ≤ Γ2/d where Γ ≜ supθ,θ′∈Θ∥θ − θ′∥2 denotes the diameter of feasible domain.

Note that the underlying dynamic regret is positioned between the universal and worst-case dynamic regret. For example,
in online supervised learning, the worst-case dynamic regret tracks the sequence {θ⋆t }Tt=1, the universal dynamic regret
covers all possible sequences {ut}Tt=1, while our proposed underlying dynamic regret only competes with the sequence
{θ†t}Tt=1, where θ†t ∈ arg minθ∈Θ Ft(θ) is the best feasible solution tailored to the underlying distribution. By taking
expectation, we can easily achieve the dynamic regret guarantee on the expected function Ft: E[Regd

T ({ft,θ†t}Tt=1)] =

Regd
T ({Ft,θ†t}Tt=1) ≜

∑T
t=1 Ft(θt)−

∑T
t=1 Ft(θ

†
t ) if θt is independent of ft.

In our current framework, wavelet detection and model updating are conducted after making predictions, indicating that
we do not utilize the current observed ũt for the current model θt. It is noteworthy that for the detection, incorporating
the latest data sample into the wavelet coefficients, which may contain noise due to sample randomness, could potentially
compromise the unbiased nature of the detection process, thereby diminishing its effectiveness. Regarding model updating,
we remark that by employing advanced improper online learning algorithms such as the Vovk-Azoury-Warmuth (VAW)
forecaster (Azoury & Warmuth, 2001; Jézéquel et al., 2020), it might be possible to further improve the empirical behavior
and theoretical guarantee (mainly for the constant dependency) for exponential concave functions and squared loss functions.

B.2. Online Trend Filtering

Another line of work considers the online trend filtering problem (Baby & Wang, 2019; 2020; Baby et al., 2021), which
extends the classical offline trend filtering problem (Donoho & Johnstone, 1998; Tibshirani, 2014) to an online version.
Specifically, in online trend filtering, the environment selects a sequence of underlying ground truth samples ◦

y1, . . . ,
◦
yT ∈ R,

while the learner only observes a noisy data sample ỹt ∈ R at each round t, where ỹt =
◦
yt + Z with Z denoting sub-

Gaussian noise with a variance of σ2. The learner then denoises the observation to obtain her prediction. The goal is to
minimize the cumulative squared loss

∑T
t=1∥ŷt −

◦
yt∥22, where ŷt represents the learner’s prediction for the t-th round. To

this end, Baby & Wang (2019; 2020) explore methods based on wavelets to tackle this problem. The techniques of this
paper take great inspiration from online trend filtering, particularly the contributions of Baby & Wang (2019; 2020). In the
following, we discuss these line of work in detail, and highlight the key contribution of our work.
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Computational Consideration. Baby & Wang (2019) implement the Haar Wavelet detection to achieve first-order
smoothness. This methodology enabled them to streamline computations, given that the incremental updates are relatively
straightforward for the Haar Wavelet. However, their method remains challenging to extend to handle higher-order
smoothness. Zhang et al. (2023b) leverage the local property for the Haar wavelet for an efficient update, but their method
does not consider the challenging higher-order cases. Baby & Wang (2020) introduce a method capable of managing
higher-order smoothness. Although achieving optimal results for the online trend filtering problem, the method proposed
by Baby & Wang (2020) encounters efficiency challenges: in their method, wavelets are updated in a mini-batch style due to
the use of traditional wavelet implementations that require storing all elements of a sequence and recomputing all wavelet
coefficients upon encountering new elements, which is unsuitable for the online update.

To address this, we carefully design a binary indexed tree to organize the k-th order CDJV wavelet coefficients and a
lazy update mechanism, which we term as the streaming wavelet operator, as detailed in Section 3.2. The key technical
contribution is the removal of the recentering operation and the novel organization of the wavelet coefficients by employing
the binary index tree structure, which also performs an “implicit padding” to implicitly complete the sequence as a longer
length of 2n, where n is an integer, thus enabling the efficiently online update of high-order CDJV wavelets in a streaming
fashion. Below, we first show that the recentering can be removed for the offline wavelet calculation, and then demonstrate
that the implicit padding is effective for the detection module considered in this paper.

• Removing recentering in convolution. The recentering operation can be removed in the online operation, as the effect of
the un-recentralization of the sequence can be canceled in the convolution operation with CDJV wavelets used in our
streaming wavelet operator, that is, sliding the wavelet basis over the data sequence and compute the matrix multiplication
at each position. Our Lemma 6 formally states that recenterlization will not affect the calculated wavelet coefficients.

• Implicit padding. Our proposed streaming wavelet operator essentially performs an “implicit padding” when encountering
a sequence whose length is not a power of 2. Specifically, it omits yet-to-arrive elements in the online sequence by
employing the convolution operation. This can be seen as an “implicit padding” to complete the sequence as a longer
length of 2n and let the coefficients of the extra padded element be zero. In Appendix 5 of Baby & Wang (2020), the
authors elucidate the limitations of padding, suggesting that it can inflate the path length (aka, the “TV distance” in their
work) of a sequence. However, in our work, we adopt an alternative perspective based on the wavelet coefficient analysis.
Specifically, we first demonstrate that the F-norm of wavelet coefficients of the recentralized and padded sequence is
identical to the F-norm of the unpadded original sequence. Furthermore, as we discussed before, the recentering can be
removed. The statement is formally shown in Lemma 5. Consequently, Lemma 5 bridges the gap between the wavelet
coefficients and the path length, and our implicit padding approach remains effective in this context, only leading to
a minor gap of Õ(

√
|I|). Still, we emphasize the key insight here is we utilize a binary tree structure to organize the

wavelet coefficients, which enables us to perform the implicit padding.

Notably, even in the special case of first-order smoothness (Baby & Wang, 2019), our method also exhibits significant
advantages in efficiency, mainly by eliminating their costly recentering and padding operations. Appendix D.4 theoretically
illustrates how our streaming wavelet operator can leverage the binary tree structure to efficiently update the wavelet
coefficients and enjoys a computational and storage complexity at O(log T ).

Loss Function. Prior trend filtering works (Baby & Wang, 2019; 2020) mainly focus on squared-loss regression cases
where only 1-dimensional variables and squared loss is considered, while we build a wavelet detection-restart framework
for the general OCO setting in Section 3.3. Although previous works of Baby & Wang (2019; 2020) can be extended to
higher-dimension cases, its application in real-world scenarios, such as online distribution shift adaptation, for designing a
detection module might be unsatisfactory. Specifically, Baby & Wang (2020) needs to run d parallel instances to handle a
d-dimensional problem. This makes determining the restarting point for the downstream online algorithm very difficult,
mainly because of inconsistencies in coefficients’ norms across different dimensions. For example, at time t, the norms
of coefficients might exceed the threshold in certain dimensions but not in others, making it hard to determine the overall
restarting point for the entire algorithm. In contrast, we develop a general wavelet-based detection framework applicable to
the broader online convex optimization cases. This requires a refined analysis of the wavelet detection compared to (Baby &
Wang, 2019; 2020), including the introduction of the k-th order comparator gap as detailed in Section 3.3.

B.3. Online Distribution Shift Adaptation

The problem of distribution shift has received considerable attention in the offline setting (Saerens et al., 2002; Zhang
et al., 2013; du Plessis & Sugiyama, 2014; Nguyen et al., 2015; Lipton et al., 2018; Garg et al., 2020), where testing and
training data come from two distinct distributions. Recently, the more challenging setup of online distribution shift where

17



Efficient Non-stationary Online Learning by Wavelets with Applications to Online Distribution Shift Adaptation

distribution shifts as time evolves has attracted increasing attentions. Wu et al. (2021) make the first such attempt for the
online label shift (OLS) problem where the label distribution changes over time, in which they constructed an unbiased
risk estimator with the unlabeled data for model assessment and employed online gradient descent for model updating and
achieve a static regret. However, in non-stationary environments, a fixed comparator can hardly perform well all the time,
making the guarantee less attractive for OLS problems. To this end, the prior work of Bai et al. (2022) first introduces
the dynamic regret measure for the OLS problem, then they propose an algorithm based on online ensemble structure and
achieve a dynamic regret of O(T 2/3P

1/3
T ), where PT is the path length of the label distribution shift. Specifically, they

employ a total of O(log T ) base learners, each running with a different step size, and employ a meta-learner to combine the
outputs of base learners to handle environment drifts.

Many other distribution shift problems have also been studied in the online setting. For example, Qian et al. (2023)
investigate the online label shift problem with the existence of new classes, and Zhang et al. (2023a) initialize the study of
the online continuous covariate shift problem. Besides, online domain adaptation methods (Jain & Learned-Miller, 2011;
Chen et al., 2020) aim to adapt the offline model to align with online target domains, where distribution is different from the
offline one, and online unsupervised domain adaptation approaches (Moon et al., 2020) have been proposed to adapt the
offline model to target domains without labeled data.

Additionally, test-time adaptation (TTA) methods have been developed to adjust model outputs for online test domains in
the absence of labeled test distribution data. These methods typically depend on the semantic content of visual or language
data (Sun et al., 2020), or specific structures like batch normalization layers (Lim et al., 2020). Moreover, these methods are
too general for the test data shift problems to capture the special structure of our investigated online label shift problem.
We present an empirical comparison with a state-of-the-art TTA method, LAME (Boudiaf et al., 2022), which adapts the
output of the model by employing a Laplacian regularization as a corrective term, as shown in Appendix A.3. Finally, while
TTA methods are effective in refining model outputs, our primary focus is on model updating, and incorporating these TTA
methods as plug-in modules alongside our algorithms can further enhance the overall performance.

C. Background: Smoothness, Wavelet Analysis, and Online Distribution Shift
This section introduces the preliminary knowledge for our work. We first present the higher-order smoothness in Ap-
pendix C.1, then introduce the wavelets in Appendix C.2, and finally online distribution shift adaptation in Appendix C.3,
including two ways to adapt to the online label shift problem.

C.1. Higher-order Smoothness

In this work, we adopt the higher-order path length (Tibshirani, 2014) as the non-stationarity measure, which is defined
in (5) and we restate it below:

P kT ≜ T k∥Dk+1 ◦
u[1,T ]∥1, for k ≥ 0,

where ◦
u[1,T ] = [

◦
u1, . . . ,

◦
uT ]

⊤ ∈ RT×d is the matrix consisting of underlying comparators, and Dk ∈ R(T−k)×T is the
k-th order discrete difference matrix (Tibshirani, 2014). For clarity, the first order matrixD1 ∈ R(T−1)×T is

D1 =




−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
0 0 0 . . . −1 1


 ∈ R(T−1)×T . (12)

By recursively applying Di = D̃1Di−1 ∀i ≥ 2 with D̃1 being the (T − i) × (T − i + 1) truncation of D1, we can
obtain k-th order difference matrixDk. When k = 0, we get P 0

T = ∥D1 ◦
u[1,T ]∥1 =

∑T
t=2 ∥

◦
ut − ◦

ut−1∥1, which recovers
commonly used path length (Zinkevich, 2003).

The higher-order path length (5) has drawn increased interest recently (Tibshirani, 2014; Baby & Wang, 2023). The
advantage of higher-order path length over first-order path length stems from the enhanced flexibility of regularizing the
comparator sequence, thereby accommodating a broader range of scenarios. The higher the order of the definition, the
smoother the comparators will be. For instance, if the comparator sequence varies linearly, then its P 1

T will be zero, while its
P 0
T = O(T ) is much larger. Therefore, higher-order path length can provide a more accurate measure of non-stationarity in

scenarios where the underlying distributions of environments exhibit higher-order smoothness.
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C.2. Wavelet Analysis

Wavelet is a powerful mathematical tool for signal processing (Daubechies, 1992), and it works by decomposing a
signal using a series of orthogonal basis functions, representing a signal in terms of its time and frequency components
simultaneously. In this section, we first give an introduction to wavelets, especially the construction of CDJV wavelets.
Then, we demonstrate the superiority of wavelets.

C.2.1. CDJV WAVELETS

Introduction of Wavelets. A wavelet function, or simply a “wavelet”, exhibits two essential properties: oscillation and
short duration. These attributes highlight the wavelet’s localization, allowing for the local representation of a signal in terms
of its time and frequency components simultaneously. The concept of wavelets originated in 1910, when Haar (Haar, 1909)
first introduced a piecewise constant wavelet function:

ψ(t) =





1, if 0 ⩽ t < 1/2;

−1, if 1/2 ⩽ t < 1;

0, otherwise.
(13)

Through dilations and translations of this wavelet function ψ, a set of orthonormal bases are generated, presented as
{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}

(j,n)∈Z2

,

where j is a positive number that defines the scale (level) of the wavelet basis, and n is a positive number that represents the
shift of the wavelet basis. Given a set of wavelet bases ψj,n, the wavelet transformation means projecting the signal f onto
the wavelet bases. In other words, the wavelet transformation of any signal f can be obtained by its wavelet inner-product
coefficients as follows:

α = ⟨f, ψj,n⟩ =
∫ +∞

−∞
f(t) · ψj,n(t) dt, (14)

which means that wavelet transformation can be seen as a convolution of the signal and wavelet bases.

For the discrete cases, the situation is similar to the continuous case as presented in (14). By discretely sampling the wavelet
bases, one can use a wavelet transformation matrix to obtain wavelet coefficients. We offer an illustrative example to
demonstrate the construction of the Haar wavelet transformation matrix W ∈ RT×T . This requires sampling basis functions
ψj,n at points {i/T}, for i ∈ [T ], and scaling them by T−1/2. For simplicity, we illustrate this process using T = 4. The
discrete Haar transformation matrix is:

W =




1/2 1/2 1/2 1/2
1/2 1/2 −1/2 −1/2

1/
√
2 −1/

√
2 0 0

0 0 1/
√
2 −1/

√
2


 , (15)

and one can obtain the Haar wavelet coefficients by matrix multiplication α =W⊤ · f (Daubechies, 1992; Mallat, 1999),
where f ∈ RT is the signal, α ∈ RT is the Haar wavelet coefficients that we obtain.

We now provide the formal definition of wavelets (Daubechies, 1992). A wavelet is a function ψ in L2(R) such that the
functions {ψj,n(t) = 2j/2ψ(2jt − n)} form a set of orthonormal bases for (j, n) ∈ Z2. The wavelet transformation of
a signal f derived by this wavelet function ψ corresponds to the wavelet inner-product coefficients, as illustrated in (14).
Therefore, the wavelet transformation represents a convolution of the signal and wavelet bases. Derived by different
constructions of wavelets, we can obtain various kinds of wavelet functions that can be employed in numerous scenarios.
Commonly used wavelet functions include the Haar wavelet (Haar, 1909), Daubechies wavelet (Daubechies, 1992), Coiflet
wavelet (Beylkin et al., 1991), and Symmlet wavelet (Daubechies, 1988) are illustrated in Figure 4.

Then, we introduce the ‘order’ of wavelets. We call that a wavelet function ψ(·) has order r if it has r vanishing moments.
We give the definition of the vanishing moment of wavelets following Donoho & Johnstone (1998) and Johnstone (2017).

Definition 1 (vanishing moment). A wavelet function ψ(x) is said to have r vanishing moments if
∫ 1

0
xiψ(x)dx = 0, for

any i = 0, . . . , r − 1, which means the wavelet function ψ is orthogonal to all polynomials of degree at most r − 1.
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Figure 4: A graphical representation of different types of wavelets. (a) Haar wavelet (Haar, 1909), (b) Daubechies wavelet (Daubechies,
1992), (c) Coiflet wavelet (Beylkin et al., 1991), and (d) Symmlet wavelet (Daubechies, 1988).

Construction of CDJV Wavelets. In this study, we adopt a classic wavelet construction, Cohen-Daubechies-Jawerth-
Vial (CDJV) wavelets (Cohen et al., 1993a;b), to construct wavelet functions, which enjoys desirable properties such as
orthogonality, vanishing moments, and compact support. We summarize the CDJV construction (Johnstone, 2017; Donoho
& Johnstone, 1998) as below, and more detailed descriptions can be found in Cohen et al. (1993a;b) and Johnstone (2017).

The CDJV wavelet functions contain three components: the interior part ψint, the left boundary part ψL, and the right
boundary part ψR. One can obtain the CDJV wavelet coefficients using these three components of wavelet functions.
Specifically, the signal is divided into three segments: the left edge, the right edge, and the interior. The left edge is used in
conjunction with ψL, the right edge with ψR, and the interior part with ψint, respectively. The overall wavelet coefficients
result from the concatenation of the coefficients derived from these three parts.

The construction of CDJV wavelets begins with the Daubechies wavelet function (Daubechies, 1992) ψ with r vanishing
moments and minimal support [−r + 1, r] (the support of a wavelet function is a subset of the domain containing all
the points where the function value is non-zero). For j such that 2j ≥ 2r and for n = r, . . . , 2j − r − 1, the interior
wavelet functions ψint

j,n = ψj,n have support entirely contained in [0, 1] and so are left unchanged. At the boundaries, for
n = 0, . . . , r − 1, construct orthonormal functions ψLn with support [0, r + n] and ψRn with support [−r − n, 0], and set

ψint
j,n(t) = 2j/2ψLn

(
2jt
)
, ψint

j,2j−n−1(t) = 2j/2ψRn
(
2j(t− 1)

)
, (16)

where the functions ψLn , ψ
R
n and ψint

n are finite linear combinations of scaled and translated versions of the original
Daubechies wavelet function ψ, thereby retaining the same smoothness as ψ. As a result, the CDJV construction can provide
a wavelet function of a given vanishing moment of r. We summarize the advantages of the CDJV construction as follows:
Proposition 2. The CDJV construction with r vanishing moments satisfies

1. Let l = ⌈log 2r⌉. Then Vl contains polynomials of degree ≤ r − 1, where Vl is the space spanned by the wavelet
functions {ψl,n, n = 1, . . . , r − 1}.

2. All wavelet bases ψint
j,n, ψL

j,n, and ψR
j,n have r vanishing moments.

To further clarify the CDJV wavelets, we present a special case of CDJV construction with 1 vanishing moment, which is
the Haar wavelets, formally defined as (13). The transformation matrix for the first-order CDJV wavelet aligns with the
Haar wavelet matrix, as depicted in (15), and we can get the corresponding CDJV wavelet coefficients using the matrix
multiplication α =W⊤ · f , where f ∈ RT is the signal, α ∈ RT is the Haar wavelet coefficients that we obtain. For the
more complicated k-th order CDJV wavelet, we can get the set of wavelet bases recursively by applying (16) based on a
k-th order Daubechies wavelet function, and the corresponding wavelet transformation matrix can be obtained by sampling
the basis functions ψj,n at i/T , for i ∈ [T ].

Difference between Haar and CDJV wavelets. It is important to recognize that the Haar wavelet, known for its simplicity,
represents a special case within the broader category of CDJV wavelets. The primary difference between Haar and CDJV
wavelets lies in their basis functions: Haar wavelet bases are piece-wise constant functions with a maximum length of 2,
whereas CDJV wavelets feature higher-order bases extending to a length of k. Consequently, the simplicity of Haar wavelets
has facilitated the development of efficient computation and online updating techniques, as documented in (Baby & Wang,
2019) and (Zhang et al., 2023b). In contrast, the more intricate structure of CDJV wavelets presents significant challenges in
achieving efficient computation. The efficient Haar wavelets update mechanism can not be directly extended for the CDJV
wavelets. To this end, a binary tree is employed in our work to address this issue.
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C.2.2. SUPERIORITY OF WAVELETS

In this section, we illustrate the superiority of the wavelets.

Multi-resolution Ability. The effectiveness of the wavelet detection in the non-stationary online learning scenario
lies in its multi-resolution ability (Cohen et al., 1993b; Donoho & Johnstone, 1998; Johnstone, 2017), which allows for
capturing both high-frequency, short-duration noises and low-frequency, long-duration trends in a signal. This allows for
a more accurate and detailed representation of complex, non-stationary signals compared to traditional Fourier analysis.
Besides, while previous STFT or FFT might be a simpler and faster method, its detection power and statistical properties
are not yet clear, making it less suitable for deriving the dynamic regret problem. Therefore, the wavelets can capture both
high-frequency, short-duration noises and low-frequency, long-duration trends in a signal. By decomposing the observed
empirical comparator sequence {ũt} using wavelets, we can denoise the sequence by filtering out the noisy components and
thereby monitor the intensity of the ground truth environmental changes of { ◦

ut}Tt=1.

Parallelism. The proposed streaming wavelet operator, as described in Section 3.2, exhibits exceptional parallelism,
enabling concurrent updates at each round. Specifically, for a signal of length T , parallel updates can be performed across
all d log(T ) layers organized by the binary indexed tree and each dimension within the d-dimensional space. As a result,
this offers advantageous properties for implementing streaming wavelet operators, especially in long time-duration and
high-dimensional signals, making it suitable for practical online learning applications deployed on GPU facilities. Empirical
evidence can be found in Appendix A.4.

C.3. Online Label Shift

Online label shift is a new problem setup drawing much attention in recent years (Wu et al., 2021; Bai et al., 2022; Baby et al.,
2023). We first give a motivation example from Wu et al. (2021): consider a medical diagnosis model classifying whether a
patient suffers from flu or hay fever (unlabeled data). Although the two diseases share similar symptoms throughout the year
(same class-conditional distribution), one is far more prevalent than the other (different label distributions), depending on
the season and whether an outbreak occurs. In this section, we describe the omitted details of applying our wavelet-based
detection-restart framework to handle the online label shift problem. We first introduce the following lemma to show that
the estimated label distribution by BBSE is unbiased towards the ground-truth label distribution.

Lemma 1. The BBSE’s estimation µ̃t = C−1
0 µ̃ŷt is unbiased towards the ground truth label prior µ̃t if the initial data is

sufficient such that we can obtain C0.

Proof. We rewrite the BBSE’s estimation as µ̃t = C−1
0 µ̃ŷt = C−1

0
1

|St|
∑

x∈St
h0(x). Taking expectations of both sides,

ESt∼Dt
[µ̃t] = ESt∼Dt

[
C−1

0

(
1

|St|
∑

x∈St

h0(x)

)]
= ESt∼Dt

[
C−1

0 Ex∼Dt
[h0(x)]

]
= C−1

0 µŷt = µt,

which finishes the proof.

C.3.1. REWEIGHTING-BASED UPDATE

The OGD update procedure described in (11) needs to store all the initial data to obtain Rj0(·),∀j ∈ {1, . . . ,K}, which may
cause computational and storage burdens. To this end, another classifier update approach involves updating the classification
model by reweighting the training data using the predicted class prior distribution µ̂t (Wu et al., 2021), which only needs
to store the initial label prior D0 and the initial predictor h0 to get the classifier ht : X → Y . As stated in (10), we can
reweight the initial classifier h0 to get the current classifier ht, which is restated as below:

[ht(x)]j =
1

Z(x)

[µ̂t]j
D0(y = j)

[h0(x)]j , ∀j ∈ [K],

with Z(x) =
∑K
j=1

[µ̂t]j
D0(j)

[h0(x)]j being the normalization factor. Similarly, the comparator (Bayesian optimal classifier)
h⋆t can be constructed by reweighting initial classifier h0:

[h⋆t (x)]j =
1

Z(x)

[µt]j
D0(y = j)

[h0(x)]j , ∀j ∈ [K]. (17)
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We make the following assumption: for the class prior µt and the initial classifier h0, we have that [µt]j ≥ β for all
j ∈ {1, . . . ,K}, and [h0(x)]j ≥ α for all x ∈ X and j ∈ {1, . . . ,K}. In other words, the initial dataset should have a
certain number of data for each class to avoid excessive class imbalance and unseen new class, which is a commonly used
assumption in previous works (Wu et al., 2021; Bai et al., 2022). Given such an assumption, the loss function can have a
bounded gradient, which is stated as follows.

Lemma 2 (Bounded Gradient, Lemma 11 & Lemma 12 of Baby et al. (2023)). For commonly used loss functions such as
Logistic loss and 0-1 loss, the gradient norm of the loss function is bounded by L, where L is a constant related to α and β,
where [h0(x)]j ≥ α, and [µt]j ≥ β for all x ∈ X , t ∈ [T ], and j ∈ {1, . . . ,K}.

In light of Lemma 2, the objective can be reformulated as selecting the reweighting vector µ̂t ∈ ∆K that minimizes:

Regd
T ({Rt, h⋆t }et=s) =

T∑

t=1

Rt(ht)−
T∑

t=1

Rt(h
⋆
t ) ≤ L

T∑

t=1

∥µ̂t − µt∥2. (18)

Therefore, for the reweighting updates, our algorithm focuses on estimating the class prior µ̂t ∈ ∆K at each time step to
construct the classifier ht.

However, optimizing the L2-norm of the difference between the estimated and actual label prior directly is not optimal,
given that the label prior is a probability distribution, and the L2-norm does not effectively measure probability distributions.
Additionally, the presence of out-of-distribution data can significantly distort the estimated label prior from the actual one,
causing a large L2-norm difference, which is undesirable. Besides, employing the previously discussed BBSE method,
we can obtain an estimated class prior µ̃t at each time step. However, the BBSE estimator µ̃t may exhibit noise and high
variance due to label shifts and the limited number of samples in St for Dt, resulting in a lack of dynamic regret guarantees.
As a result, inspired by the method proposed by Garg et al. (2020), we adopt Kullback-Leibler (KL) divergence to align the
predicted label prior µ̂t and the ground truth label prior µt, defined as KL(µ̂t∥µt) =

∑K
j=1[µ̂t]j log

[µ̂t]j
[µt]j

+ [µt]j − [µ̂t]j .

Lemma 3. Let µ̂t ∈ ∆K be the predicted label prior, and the classifier ht is updated by reweighting (10), then for any
interval I = [s, e] ⊆ [T ] we have Regd

I({Rt, h⋆t }et=s) ≤ O
(√

|I| ·∑e
t=sKL(µ̂t∥µt)

)
.

Lemma 3 illustrates that minimizing the KL-Divergence between the predicted and ground-truth label prior serves as an
upper bound for the expected risk. In the following, we consider how to minimize the KL-Divergence between the predicted
µ̂t and ground-truth label prior µt. The proof of Lemma 3 can be found in Appendix D.7.

Online Newton Step with Dummy Feature. Through Lemma 3, we have correlated the expected risk minimization
problem to the KL-Divergence matching problem between the predicted label prior µ̂t and the ground truth label prior
µt. Given that the KL-divergence is an exp-concave function, we use Online Newton Step (ONS) algorithm (Hazan et al.,
2007) to estimate the µ̂t. This algorithm attains a logarithmic static regret when applied to exp-concave loss functions.
Specifically, given an interval I = [s, e] ⊆ [T ] starting at time s, for each t ∈ I, ONS updates by

µ̂t+1 = ΠAt

∆K

[
µ̂t −

1

ε
A−1
t ∇L̃t(µ̂t)

]
, (19)

where the matrix At = λI+
∑t
τ=s∇L̃s(µ̂s)∇L̃s(µ̂s)⊤. Same as the standard ONS algorithm, we set the hyperparameters

in ONS as ε = 1
2α and λ = 1

ε2 . In above, the projection function is defined as ΠAt

∆K
[µ1] = arg minµ∈∆K

∥µ− µ1∥At
and

∆K is the parameter space (simplex) of the class prior. Note that the learner cannot receive the ground-truth loss function
Lt, but only observes an empirical estimation L̃t, which is formally defined as

L̃t(µ) =

K∑

j=1

(∂(ψKL[µ]j)[µ]j − ψKL([µ̃]j))−
K∑

j=1

∂ψKL([µ]j)[µt]j =

K∑

j=1

[µ]j −
K∑

j=1

[µ̃]j log([µ]j),

where µ̃t is class prior estimated by BBSE. It is easy to verify that the empirical loss L̃t is unbiased to the ground-truth Lt.

To handle the higher-order path length, we construct a k-th order dummy feature ϕt at each round, which is defined in (21).
We combine this dummy feature with a linear predictor wt, and let the input of ONS algorithm be µ̂t = w⊤

t ϕt.
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Table 5: Summary of applying the wavelet-based detection-restart framework to handle online label shift. Combining our framework with
previous existing online updates, i.e., OGD and Reweighting update, yields two new algorithms and immediately achieve the optimal
dynamic regret guarantee for the OLS problem.

Risk Function Wavelet Detection Online Algorithm A Dynamic Regret

Wav-R (10) Lipschitz (k + 1)-th order wavelets Reweighting (Baby et al., 2023) Õ
(
max{T k+2

2k+3 (P kT )
1

2k+3 ,
√
T}
)

Wav-O (11) Convex 1-st order wavelets OGD Update (Bai et al., 2022) Õ
(
max{T 2

3 (P 0
T )

1
3 ,
√
T}
)

We further assume the [µ̂t]j = [w⊤
t ϕt]j > α, ∀j ∈ [K]. Combining our detection framework with the reweighting-based

update, we can obtain the following dynamic regret bound as shown in Theorem 4. When k = 0, Theorem 4 implies an
O(T

2
3 (P 0

T )
1
3 ) rate, which is optimal for online label shift (Bai et al., 2022; Baby et al., 2023). Crucially, the new algorithm

necessitates the maintenance of only a single classifier, leading to a significant improvement in both the computational
and storage complexities compared to ensemble-based methods. Specifically, the required number of projections onto the
feasible domain decreases from O(log T ) times to just 1 time at each round, due to online ensemble methods typically
require projecting a group of O(log T ) models at each round, while we only maintain one model. Moreover, storage
complexity is reduced from O(d2k2 log T ) to O(d2k2 + dk log T ), as we maintain a set of wavelet coefficients instead of a
group of base learners and therefore become much lightweight.

C.3.2. OGD-BASED UPDATE

In this part, we establish the risk estimator as R̂t(w) =
∑K
j=1[µ̃t]j ·R

j
0(w), where µ̃t is the class prior estimated by BBSE.

We introduce the following lemma to show that the predicted risk R̂t is unbiased with respect to the expected risk Rt.
Lemma 4 (Lemma 1 of Bai et al. (2022)). The estimator R̂t(w) is unbiased to Rt(w) = E(x,y)∼Dt

[ℓ(h(w,x), y)], i.e.,
ESt∼Dt

[R̂t(w)] = Rt(w), for any w ∈ W independent of St.

We summarize the results of combining our wavelet-based detection-restart framework with previous existing online
algorithms to handle OLS, as shown in Table 5.

We further note that our wavelet-based detection-restart framework holds potential for addressing the online generalized
label shift (Wu et al., 2024), where the conditional distribution remains invariant given a feature extractor ϕ : Rd → Rd′ ,
i.e., Dt(ϕ(x) | y) = Dt−1(ϕ(x) | y), but Dt(y) varies over time. In this case, we can first extract the features and then apply
our wavelet detection framework to detect the change of the class prior, which restarts the classifier when the environmental
changes are detected. We leave the detailed analysis of this problem to future work.

C.4. Summary of the Improvement on Efficiency

In this part, we highlight and summarize our efficiency improvement, supported by both empirical and theoretical evidence.

Empirical evidence. Our experiments show our method’s substantial efficiency improvement in various scenarios.
Specifically, in our primary application (online label shift), Figures 2(b) & 2(c) illustrate that our detection-based approaches
(Wav-O & Wav-R) achieve comparable or even slightly better performance to traditional ensemble-based methods (ATLAS &
FLH-FTL) with nearly 300% running time speedup and 50% reduction in memory usage.

Theoretical analysis. Let us define several key terms: computational complexity of updating a single model (Cmodel),
obtaining an unbiased estimator (Cesti), and wavelet detecting (Cdetect). We list a running complexity comparison in
Table 6. While exhibiting a comparable computational complexity for the simple case (linear model with convex losses), our
detection-based framework demonstrates remarkable improvements in more complicated and realistic scenarios. These
include (i) exp-concave case, and (ii) general convex case used in online label shift.

As illustrated in Table 6, our wavelet detection algorithm speeds up significantly in many cases. This is achieved by
maintaining a set of wavelet coefficients instead of a group of base models: we only need to update the model once, thus
becoming more computationally efficient. Typically, those ensemble-based methods incur a computational complexity of
Cmodel × log T due to the requirement of maintaining O(log T ) base learners. In contrast, our wavelet-based detection
method maintains only one model, along with a multi-resolution detection/exploration using O(log T ) wavelet coefficients.
Consequently, our wavelet-based detection method is much more efficient, particularly when using complicated base models,
such as overparametrized models in practice, where Cmodel can be very large.
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Table 6: Computational complexities of our wavelet detection framework with model ensemble methods under different scenarios.

Wav. Detect Framework Ensemble Empirical Speedup Remark

General Case Cmodel×1
Cmodel×O(log T ) / /+ Cesti + Cdetect

Linear model, convex loss d+ d+ d log T O(d log T ) / ensemble can only handle
= O(d log T ) first-order path length

(i) Exp-concave d2 + d+ d log T O(d2 log T )
≈200%, see Figure 2(b) /

= O(d2 + d log T ) Wav-R vs. FLH-FTL

(ii) Online Label Shift d+ d+K log T O(d log T )
≈300%, see Figure 2(b)

K is # classes in OLS, K ≪ d
= O(d+K log T ) Wav-O vs. ATLAS

We note that both our method and previous ensemble-based methods contain a computational complexity having O(log T )
dependency. But our method is more efficient in many cases, as it only maintains multiple wavelet coefficients instead of
multiple model parameters, which can be more lightweight in many scenarios. Actually, this raises an interesting question
about the necessity of an additional computational overhead of O(log T ) compared to the stationary algorithms, when
handling non-stationary online environments with inherent uncertainty.

D. Proofs
This section provides the proofs of Section 3 and Section 4.

D.1. General Regret Analysis Recipe

In this part, we present a general analysis framework for our detection-restart framework. Suppose that there are M − 1
change points detected by Algorithm 1. The entire time horizon can be thus decomposed into M intervals denoted
by {I1, . . . , IM} with Ii = [si, ei] for i ∈ [M ], and then we have Regd

T ({ft,
◦
ut}Tt=1) =

∑M
i=1 Regd

Ii
({ft, ◦

ut}eit=si).
Therefore, it suffices to control the regret within each interval Regd

Ii
and the total number of intervals M .

Here we present a general recipe to bound Regd
Ii
({ft, ◦

ut}eit=si) with respect to the k-th order path length. Previous
work (Baby & Wang, 2023) constructed a dummy feature to address the special case of the second-order path length. In the
general k-th order case, we need more effort. We decompose

Regd
Ii
({ft, ◦

ut}eit=si) =
ei∑

t=si

ft(θt)−
ei∑

t=si

ft(β
⊤
Ii
ϕt)

︸ ︷︷ ︸
static regret w.r.t. linear predictor

+

ei∑

t=si

ft(β
⊤
Ii
ϕt)−

ei∑

t=si

ft(
◦
ut)

︸ ︷︷ ︸
variation of comparator

, (20)

where the first term characterizes the regret of θt with respect to a linearized comparator β⊤
Ii
ϕt, and the second term

characterizes variations of the comparator sequence. In (20), βIi ∈ R(k+1)×d is the best static linear predictor within the
interval Ii, and ϕt ∈ Rk+1 is the k-th order dummy feature within the interval Ii = [si, ei] defined as follows:

ϕt =
[
1, (t− si + k + 1), (t− si + k + 1)2, . . . , (t− si + k + 1)

k
]⊤

, (21)

where si is the starting point of the interval Ii. Let Φ ≜ [ϕsi , . . . ,ϕei ]
⊤ ∈ R|Ii|×(k+1) be the matrix of dummy

features, and ◦
u[si,ei] = [

◦
usi , . . . ,

◦
uei ]

⊤ ∈ R|Ii|×d, the best linear predictor βIi is obtained by least-square regression:
βIi

= arg minβ∈R(k+1)×d

∑
t∈Ii

∥β⊤ϕt − ◦
ut∥22 = (Φ⊤Φ)−1Φ⊤ ◦

u[si,ei].

The intuition of constructing dummy features (21) is that the j-th element of ϕt captures the j-th order difference between
the optimal static comparator β⊤

Ii
ϕt and the ground truth comparator ◦

ut. Therefore, by using a linear predictor βIi

combined with ϕt, the second term of (20) characterizes higher-order changes of ◦
ut. Consider a simple case when k = 0,

then ϕt = 1 and β⊤
Ii
ϕt = 1/|Ii| ·

∑ei
t=si

◦
ut is the average of the comparators within interval Ii and remains unchanged

within Ii. We then formally define the comparator gap CkIi
as (22) and restated as below.

CkIi
≜
∑

t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥1, (22)
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which measures the higher-order smoothness of the comparator sequence. The smaller the comparator gap CkIi
is, the

smoother the comparator sequence will be. Consequently, Requirement 1 suggests that the online algorithm should perform
well under stationary environments. Importantly, CkIi

establishes a connection between the wavelet coefficients and the path
length of the comparator sequence, as further illustrated in Theorem 1.

D.2. Proof of Theorem 1

Proof. The proof of Theorem 1 contains two parts: controlling the number of intervals M , and controlling the comparator
gap CkIi

within each interval Ii.

Step 1. Bound the total number of Intervals M . We first prove that the total number of the intervals is bounded by

M ≤ Õ(T
1

2k+3 (P kT )
2

2k+3 ). We first present the following lemma corresponding to the wavelet coefficients:

Lemma 5. Let ūt denote the centralized comparator sequence, i.e., ūt =
◦
ut − β⊤

I ϕt and ū[s,e] = [ūs, . . . , ūe]
⊤ within

interval I = [s, e] ⊆ [T ], then for the CDJV wavelet transformation matrix WI ∈ R|I|×|I|, the F-norm of wavelet
coefficients ᾱ[s,e] satisfies

∥ᾱ[s,e]∥F ≤ O(
√

|I| · P kI ),

where ᾱ[s,e] is the wavelet coefficients of the sequence ū[s,e] calculated by transformation matrix W , βI and ϕt are defined
in (21), and P kI = |I|k∥Dk+1 ◦

u[s,e]∥1 is the k-th order path length in I.

Proof of Lemma 5. The intuition is that due to the orthogonality of the wavelet transformation matrix WI , the wavelets
allow for a connection between the F-norm (Frobenius norm) of the wavelet coefficient matrix and the path length of the
original sequence. To proof Lemma 5, we carefully analyze the F-norm of the wavelet coefficients ᾱ[s,e] as follows:

∥∥α[s,e]

∥∥
F
=
∥∥W⊤

I · pad{u[s,e]}
∥∥
F
=
∥∥∥W⊤

I · pad{u[s,e]}
∥∥∥
F

= ∥pad{u[s,e]} ∥F =∥
[
ū[s,e],−β⊤

I ϕe+1,−β⊤
I ϕe+2, . . . ,−β⊤

I ϕL
]
∥F

⩽
∥∥ū[s,e]

∥∥
F
+ ∥[β⊤

I ϕe+1,β
⊤
I ϕe+2, . . . ,β

⊤
I ϕL]∥F

⩽
∥∥ū[s,e]

∥∥
F
+
√
|2I| · |2I|k ·D · d ⩽ O

(√
|I| · (P kI + 1)

)
,

where L = 2⌈|e−s|⌉ is the length of the padded sequence, D is the diameter of ut, d is the dimension, βI and dummy
feature ϕt are defined in Lemma 5. pad{u[s,e]} is the shifted padded sequence, i.e., minusing pad{u[s,e]} by the centering
value of original sequence u[s,e]. The first equality is due to the orthogonality of the wavelet transformation matrix W ,
the second is due to the recentering operation can be removed (Lemma 6), and the last inequality is due to the definition
P kI = |I|k∥Dk+1 ◦

u[s,e]∥1 and the statement in Lemma 19 of Baby & Wang (2020). The boundness of βI is shown in
Lemma 12, and ∥ϕt∥ ≤ |L|k due to the definition of the dummy feature (20). Thus, we finish the proof of Lemma 5.

We remark that Lemma 5 demonstrates that the “implicit padding” mechanism in our streaming wavelet operator does not
affect the detection ability of our method, and it bridges the gap between the wavelet coefficients and the path length. We
now introduce the following lemma concerning our proposed streaming wavelet operator:

Lemma 6. Let ᾱ[s,e] be the wavelet coefficients of the sequence ū[s,e] = [ūs, . . . , ūe]
⊤, where ūt =

◦
ut − β⊤

I ϕt. Also, let
α[s,e] denote the coefficients of ◦

u[s,e] = [
◦
us, . . . ,

◦
ue]

⊤ obtained by streaming wavelet operator, then, ∥α[s,e]∥F = ∥ᾱ[s,e]∥F.

Proof of Lemma 6. The only difference between α[s,e] and ᾱ[s,e] lies in: α[s,e] is calculated from the sequence ◦
u[s,e], while

ᾱ[s,e] is calculated from the centralized ū[s,e]. Recall the calculation of the streaming wavelet operator: the coefficients are
calculated by a convolution of the elements in a signal with wavelet bases. Specifically, we adopt the (k + 1)-th order bases
constructed by CDJV wavelets which have a vanishing moment of k, as defined in Definition 1. Therefore,

α[s,e] = ψ ⊛
◦
u[s,e]; ᾱ[s,e] = ψ ⊛ ū[s,e],

where ⊛ represents the convolution operator, and ψ ∈ R|I|×d is a CDJV wavelet basis, in which [ψ]i = ψ(i) (where ψ is
the wavelet function defined in Appendix C.2.1). As discussed in Appendix C.2, the wavelet transformation, represented by
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matrix multiplication using matrix W as in Section 3.2, is equivalent to the convolution operation with a wavelet basis ψ.
Therefore, for the wavelet basis ψ and a single wavelet coefficient αt, we have

αt =
∑

i∈|ψ|
[ψ]i · ◦

ut+|ψ|−i =
∑

i∈|ψ|
[ψ]i · ◦

ut+|ψ|−i −
k∑

j=0

∑

i∈|ψ|
[ψ]i · [βI ]j · (t+ |ψ| − i− s+ k + 1)j

=
∑

i∈|ψ|
[ψ]i ·

( ◦
ut+|ψ|−i −

k∑

j=0

[βI ]j · (t+ |ψ| − i− s+ k + 1)j
)

=
∑

i∈|ψ|
[ψ]i ·

( ◦
ut+|ψ|−i − [β⊤

I ϕt]t+|ψ|−i
)
=
∑

i∈|ψ|
[ψ]i · ūt+|ψ|−i = ᾱt,

where |ψ| is the length of the wavelet basis ψ. The second equality is due to Definition 1 in the discrete case that the
(k + 1)-th order CDJV wavelet has a vanishing moment of k. Thus, the second term multiplied by ψ will equal to zero.
Consequently, by summing up all the coefficients to compute the F-norm, we get ∥α[s,e]∥F = ∥ᾱ[s,e]∥F. Note that this
proof holds for any length of the sequence. Therefore, we finish the proof of Lemma 6.

By the above Lemma 5 and Lemma 6, we can bridge the gap between the norm of wavelet coefficients and the k-th order path
length. However, the learner cannot obtain α[s,e] as it cannot have access to ◦

u[s,e], but only the α̃[s,e] which is calculated on
the empirical sequence ũ[s,e] = [ũs, . . . , ũe]

⊤. Therefore, we need to bound the difference between α[s,e] and α̃[s,e]:

Lemma 7 (Lemma 3 of Baby & Wang (2019)). For all I = [s, e] ⊆ [T ], letα[s,e] denote wavelet coefficients of the sequence
◦
u[s,e] = [

◦
us, . . . ,

◦
ue]

⊤, and α̃[s,e] be its empirical version calculated on the empirical sequence ũ[s,e] = [ũs, . . . , ũe]
⊤,

setting the threshold γ = 4σ in Algorithm 1, then with probability at least 1− 2/T 3,

∥δγ(α̃[s,e])∥F ≤ ∥α[s,e]∥F + Õ(1),

where δγ : Rm×n → Rm×n is the soft-thresholding operator (Donoho & Johnstone, 1998; Johnstone, 2017) defined as
[δγ(A)]i,j = sign(Ai,j) ·max{|Ai,j | − γ, 0}.

Now we are ready to prove that M ≤ O(T
1

2k+3 (P kT )
2

2k+3 ). By the restart rule in Algorithm 1,

4σ ≤ ∥δγ(α̃[s,e])∥F ≲ ∥α[s,e]∥F ≲
√

|I| · P kI = |I|k+1/2 · ∥Dk+1 ◦
u[s,e]∥1,

where the ≲ ignores the constant of order k and logarithmic factors log T . The first inequality is due to the restart rule in
Algorithm 1 as we set γ = 4σ, the second inequality is due to Lemma 7, and the third inequality is due to Lemma 5 and
Lemma 6. By summing all intervals {I1, . . . , IM} and employing a union bound, with probability at least 1− 2/T ,

M∑

i=1

4σ

|Ii|k+1/2
≤

M∑

i=1

∥Dk+1 ◦
u[si,ei]∥1 = ∥Dk+1 ◦

u[1,T ]∥1.

Besides, by applying Jensen’s inequality for the convex function f(x) = 1/xk+1/2 where x > 0,

4σM
2k+3

2 T
−2k−1

2 ≤
M∑

i=1

4σ

|Ii|k+1/2
≲ ∥Dk+1 ◦

u[1,T ]∥1.

Rearranging the term, we can get that

M ≲ 4T
2k+1
2k+3 ∥Dk+1 ◦

u[1,T ]∥
2

2k+3

1 = 4T
1

2k+3 ∥T kDk+1 ◦
u[1,T ]∥

2
2k+3

1 = O(T
1

2k+3 (P kT )
2

2k+3 ),

which finishes the proof of the upper bound of M .
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Step 2. Bound the comparator gapCkIi
. We first recall the definition of the comparator gap: CkIi

=
∑
t∈Ii

∥β⊤
Ii
ϕt− ◦

ut∥1,
where βIi

∈ R(k+1)×d is the best static linear predictor within the interval Ii, and ϕt ∈ Rk+1 is the k-th order dummy
feature within interval Ii = [si, ei] as defined in (21). Let Φ ≜ [ϕsi , . . . ,ϕei ]

⊤ ∈ R|Ii|×(k+1) be the matrix of dummy
features, and ◦

u[si,ei] = [
◦
usi , . . . ,

◦
uei ]

⊤ ∈ R|Ii|×d, the best linear predictor βIi is obtained by least square regression:
βIi

= arg minβ∈R(k+1)×d

∑
t∈Ii

∥β⊤ϕt − ◦
ut∥22 = (Φ⊤Φ)−1Φ⊤ ◦

u[si,ei]. Applying Cauchy-Schwarz inequality, we have

∑

t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥1 ≤
√

|Ii| ·
∑

t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥22.

Next, we control the term
∑
t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥22. By the orthogonality of CDJV wavelet transformation matrix W , we have
∑

t∈Ii

∥β⊤
Ii
ϕt − ◦

ut∥22 = ∥β⊤
Ii
Φ[si,ei] −

◦
u[si,ei]∥2F = ∥W

(
β⊤
Ii
Φ[si,ei] −

◦
u[si,ei]

)
∥2F

=
∥∥ᾱ[si,ei]

∥∥2
F
=
∥∥α[si,ei]

∥∥2
F
≤ 2
∥∥δγ(α̃[si,ei])

∥∥2
F
+ 2
∥∥δγ(α̃[si,ei])−α[si,ei]

∥∥2
F
≤ 8σ2+ 2

∥∥δγ(α̃[si,ei])−α[si,ei]

∥∥2
F
, (23)

where the first equality is due to the orthogonality of the CDJV wavelet bases, the second equality follows the definition
of the wavelet transformation, and the fourth equality arises from Lemma 6. The first inequality is a consequence of
(a+b)2 ≤ 2a2+2b2, and the last inequality is due to the restart rule in Algorithm 1. We further introduce the following lemma,
which is a modified version of Theorem 4 in Baby & Wang (2019), in order to bound the term ∥δγ(α̃[si,ei])−α[si,ei]∥2F:

Lemma 8 (Theorem 4 of Baby & Wang (2019)). Consider an offline trend filtering problem ỹ =
◦
y + Z (Donoho &

Johnstone, 1998; Tibshirani, 2014), where ◦
y ∈ R|Ii| is the underlying ground truth sequence, Z is a sub-Gaussian noise

with variance σ2, and ỹ ∈ R|Ii| is the noise observation. Using Algorithm 1 and setting the threshold γ = 4σ, with
probability at least 1− 2/T 3, the estimated wavelet coefficients α̃ satisfies

∥∥δγ(α̃[si,ei])−α[si,ei]

∥∥2
F
≤ 80 · d

(
1 + log T

)
min
ŷ

max
◦
y

E
[
∥ŷ − ◦

y∥22
]
.

Lemma 8 presents an intriguing insight: the gap between the estimated empirical wavelet coefficients α̃[si,ei] and the
ground truth wavelet coefficients α[si,ei] can be cast into the minimax rate of an offline trend filtering problem (Donoho &
Johnstone, 1998; Tibshirani, 2014). Specifically, in offline trend filtering, an adversary selects a total of |Ii| underlying
ground truth samples ◦

ys, . . . ,
◦
ye ∈ R, while the learner only observes noisy data samples ỹs, . . . , ỹe ∈ R, each represented

as ỹt =
◦
yt + Z, with Z denoting sub-Gaussian noise with the variance of σ2. The learner then denoises ỹ to obtain her

prediction ŷ ∈ R|Ii|. The learner’s goal is to minimize the cumulative squared loss
∑
t∈Ii

∥ŷt − ◦
yt∥22, where ŷt represents

the learner’s prediction for the t-th data sample. We now introduce the following lemma to elucidate the minimax rate of the
offline trend filtering problem.

Lemma 9 (Theorem 1 of Donoho & Johnstone (1998)). Consider an offline trend filtering problem ỹ =
◦
y + Z, where

◦
y ∈ R|Ii| is the underlying sequence whose path length is at most P kIi

, Z is a sub-Gaussian noise with variance σ2, and
ỹ ∈ R|Ii| is the noise observation. The minimax rate for the offline trend filtering problem is

min
ŷ

max
◦
y

E
[
∥ŷ − ◦

y∥22
]
= Õ

(
|Ii|

1
2k+3 (P kIi

)
2

2k+3σ
2k+4
2k+3

)
.

We use Lemma 9 as a black box. Therefore, with probability at least 1− 2/T , we have

CkIi
≤
√
|Ii| ·

(
8σ2 + 2

∥∥δγ(α̃[si,ei])−α[si,ei]

∥∥2
F

)

≲

√
|Ii| ·

(
d
(
1 + log T

)
min
ŷ

max
◦
y

E
[∥∥ŷ − ◦

y
∥∥2
2

]
+ 8σ2

)
≤ Õ

√
|Ii| ·

(
|Ii|

1
2k+3 (P kIi

)
2

2k+3

)

= Õ
√
|Ii| ·

(
|Ii|

1
2k+3 (|Ii|k∥Dk+1 ◦

u[si,ei]∥1)
2

2k+3

)
= Õ

(
|Ii|

k+2
2k+3 (P kIi

)
1

2k+3

)
, (24)

where the ≲ ignores the constant of order k and logarithmic factors log T . The second inequality is due to Lemma 8, and
the third inequality is due to Lemma 9, which finishes the proof of Theorem 1.
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D.3. Proof of Theorem 2

Proof. We first decompose the dynamic regret as follows:

Regd
T ({ft,

◦
ut}Tt=1) =

M∑

i=1

(∑

t∈Ii

ft(θt)−
∑

t∈Ii

ft(
◦
ut)

)
≲

M∑

i=1

(√
|Ii|+ CkIi

)
≲

M∑

i=1

(√
|Ii|+ |Ii|

k+2
2k+3 (P kIi

)
1

2k+3

)
,

where the first inequality is due to the online algorithm A satisfying Requirement 1, the second inequality is due to
Theorem 1. Besides, with probability at least 1− 2/T ,

M∑

i=1

(√
|Ii|+ |Ii|

k+2
2k+3 (P kIi

)
1

2k+3

)
≤

√
M

(
M∑

i=1

(√
|Ii|
)2
)1/2

+

(
M∑

i=1

|Ii|
) k+2

2k+3
(

M∑

i=1

PIi

) 1
2k+3

=
√
TM + T

k+2
2k+3 (P kT )

1
2k+3 ≤ max

(√
T · T 1

2k+3 (P kT )
2

2k+3 ,
√
T

)
= max

{
T

k+2
2k+3 (P kT )

1
2k+3 ,

√
T
}

where the first inequality is due to the Hölder inequality, and the second inequality is due to Theorem 1, which finishes the
proof of Theorem 2.

Optimality for Exp-concave and Strongly-convex Functions. For exp-concave and strongly convex functions, we can
modify Requirement 1 to achieve the minimax optimal dynamic regret guarantee, which is illustrated in Requirement 2.

Requirement 2. Suppose an online algorithm A is running over interval Ii = [si, ei] ⊆ [T ], it is required to satisfy

Regd
Ii
({ft, ◦

ut}eit=si) =
ei∑

t=si

ft(θt)−
ei∑

t=si

ft(
◦
ut) = O

(
1 +

∑

t∈Ii

∥ ◦
ut − β⊤

Ii
ϕt∥21

)
.

We remark that Requirement 2 is easy to satisfy. For instance, when ft is the squared loss, an online average algorithm
suffices to meet this requirement. When ft is an exponential concave function, an Online Newton Step (Hazan et al., 2007)
algorithm can satisfy this requirement, as demonstrated in (27). Combining Theorem 1 and Requirement 2, we can obtain
the following dynamic regret guarantee.

Theorem 6 (Overall Dynamic Regret for Exp-concave and Strongly Convex Functions). With probability at least 1− 2/T ,
using the detection-restart framework in Algorithm 1 with an online algorithm A satisfying Requirement 2 guarantees that

Regd
T ({ft,

◦
ut}Tt=1) = Õ

(
max

{
T

1
2k+3 (P kT )

2
2k+3 ,

√
T
})

.

Proof of Theorem 6. We first decompose the dynamic regret as follows:

Regd
T ({ft,

◦
ut}Tt=1) =

M∑

i=1

(∑

t∈Ii

ft(θt)−
∑

t∈Ii

ft(
◦
ut)

)
≲

M∑

i=1

(
1 +

∑

t∈Ii

∥ ◦
ut − β⊤

Ii
ϕt∥21

)
,

where the first inequality is due to the online algorithm A satisfying Requirement 2. For the second term
∑
t∈Ii

∥ ◦
ut −

β⊤
Ii
ϕt∥21. Following the proof of Theorem 1, we have

∑

t∈Ii

∥ ◦
ut − β⊤

Ii
ϕt∥21 ≲ 8σ2 + 2

∥∥δγ(α̃[si,ei])−α[si,ei]

∥∥2
F
≲ |Ii|

1
2k+3 (|Ii|k∥Dk+1 ◦

u[si,ei]∥1)
2

2k+3 = |Ii|
1

2k+3 (P kIi
)

2
2k+3 ,

where the first inequality is due to (23), and the second inequality is due to (24). Therefore, with probability at least 1−2/T ,

Regd
T ({ft,

◦
ut}Tt=1) ≤

M∑

i=1

(
1 + |Ii|

1
2k+3 (P kIi

)
2

2k+3

)
≤M + T

1
2k+3 (P kT )

2
2k+3 ≤ Õ

(
max

{
T

1
2k+3 (P kT )

2
2k+3 ,

√
T
})

,

where the second inequality is due to the Hölder inequality, and the third inequality is due to Theorem 1. Such a regret
rate has been proved to be optimal for exponential concave and strongly convex functions (Baby & Wang, 2020; 2023).
Therefore, we finish the proof of Theorem 6.
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Achieving Best Result of the Single-layer Model. We further prove that our method can simultaneously enjoy the
previous best result of the single-layer model, i.e., O(

√
T · P 0

T ).

Proof of Achieving Best Result of the Single-layer Model. Considering we employ an OGD algorithm with ηt = 1/
√
t− si

within interval Ii = [si, ei] as the online algorithm A in Algorithm 1, then we have
ei∑

t=si

ft(θt)−
ei∑

t=si

ft(
◦
ut) ≤

ei∑

t=si

1

2ηt

(
∥ ◦
ut − θt∥22 − ∥ ◦

ut − θt+1∥22
)
+

ei∑

t=si

ηt ∥∇ft(θt)∥22

≤
ei∑

t=si+1

1

2ηt

(
∥ ◦
ut − θt∥22 − ∥ ◦

ut−1 − θt∥22
)
+ 4D2 +

ei∑

t=si

ηtG
2

≤
ei∑

t=si+1

1

2ηt

(
∥ ◦
ut − ◦

ut−1∥2∥ ◦
ut − θt + ◦

ut−1 − θt∥2
)
+ Γ2 +

ei∑

t=si

ηtG
2

≤ Γ

2

ei∑

t=si+1

1

2ηt
∥ ◦
ut − ◦

ut−1∥2 +
Γ2

ηt
+G2

ei∑

t=si

ηt

≤ Γ
√
d

2
(P 0

Ii
)
√
|Ii|+ Γ2

√
|Ii|+G2

√
|Ii| = O

(√
|Ii|(P 0

Ii
+ 1)

)
,

where Γ ≜ supθ,θ′∈Θ∥θ − θ′∥2 is the diameter of the decision space Θ, and G is the upper bound of the gradient of the
loss function ft. Summing across all the intervals, by setting the threshold γ = 4T 1/3σ, we have that M ≤ Õ((P 0

T )
2/3)

according to Theorem 1. Therefore, we have

Regd
T ({ft,

◦
ut}Tt=1) ≲

M∑

i=1

√
|Ii| · P 0

Ii
+

M∑

i=1

√
|Ii| ≤

√√√√
M∑

i=1

|Ii| ·
M∑

i=1

(P 0
Ii
)2 +

M∑

i=1

√
|Ii|

≤

√√√√
M∑

i=1

|Ii| ·
(

M∑

i=1

P 0
Ii

)2

+
√
T ·M ≤

√
T
(
P 0
T + 1

)
,

where the third inequality is due to
∑n
i=1 x

2 ≤ (
∑n
i=1 x)

2, which finishes the proof.

D.4. Proof of Theorem 3

Proof. Note that the CDJV wavelets comprise three components: (i) the left edge, (ii) the right edge, and (iii) the interior.

• The computation of wavelet coefficients for the left and right edges of CDJV wavelets involves matrix multiplication.
Given that these edges encompass a transformation matrix of size O(kd), both computational and storage complexities
are O(kd) per round.

• For the interior part, CDJV wavelets computation is essentially a convolution operation, see Eq. (14) for details. The
wavelet coefficients are derived from convolving the input sequence with orthogonal wavelet bases. Therefore, the
arrival of a new element impacts only a subset of coefficients (UPDATEα(t)). Besides, we only need to maintain the
F-norm information for the detection module, allowing for the deletion of outdated coefficients (DROPα(t)). Our wavelet
operator utilizes a binary indexed tree to organize the coefficients. As outlined in Eq. (6) and (7), the coefficients requiring
updates are in the set UPDATEα(t), and those needing deletion are in DROPα(t), each with a size of O(log T ) per round.
Additionally, updating a single coefficient incurs a computational and storage complexity of O(kd).

• Due to the benign property of CDJV wavelets, Lemma 6 formally states that the recenterlization will affect the calculated
wavelet coefficients in our streaming wavelet operator, therefore we can remove the costly recentering operation which is
necessary in previous methods. Besides, for the sequence that is not at a length of 2k, our operator performs an “implicit
padding” strategy to omit yet-to-arrive elements in the online sequence, which implicitly completes the sequence as a
longer length. We adopt a perspective based on the wavelet coefficient analysis to show that how this “implicit padding”
will not affect the norm of the wavelet coefficients, as elaborated in our Lemma 5.

Consequently, the overall computational and storage complexity of our streaming wavelet operator is O(kd log T ) each
round. Here, k denotes the order of path length, and d represents the data dimension of the online sequence.
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D.5. Proof of Theorem 4

Proof. As outlined in Appendix C.3.1, we have reduced the regret of the expected risk Rt to the Kullback-Leibler (KL)
divergence between the estimated label prior µ̂t and the underlying label prior µt, as illustrated in Lemma 3. Given that the
KL-divergence is an exp-concave function, we further apply ONS (Hazan et al., 2007) to generate the estimated label prior
µ̂t at each round t, where µ̂t = w⊤

t ϕt. In this part, we prove Theorem 4 by bounding the KL-divergence in Lemma 3, i.e.,

e∑

t=s

KL(µ̂t∥µt) =
e∑

t=s




K∑

j=1

[µ̂t]j log
[µ̂t]j
[µt]j

+ [µt]j − [µ̂t]j




=

e∑

t=s

(
LψKL
t (µ̂t)− LψKL

t (µt)
)
=

e∑

t=s

(
LψKL
t (w⊤

t ϕt)− LψKL
t (µt)

)
,

where the third equality is due to that, we use an ONS algorithm with dummy features as described in Appendix C.3.1,
where we combine the dummy feature with a linear predictor wt, and let the input of ONS algorithm be µ̂t = w⊤

t ϕt.
ψKL(x) = x log x− x is the divergence function, and LψKL

t is the loss function induced by Bregman divergence as defined
in (28). We first prove the following lemma to show that the reweighting-based update satisfies Requirement 1.

Lemma 10. For any interval I = [s, e] ⊆ [T ], the reweighting-update (19) and (10) running on the interval I ensures

E

[∑

t∈I
Rt(ht)−

∑

t∈I
Rt(h

⋆
t )

]
= O(

√
|I|+ CkI),

where h⋆t = arg minh∈HRt(h) is the Bayesian optimal classifier defined in (17), and CkI =
∑
t∈I∥β⊤

I ϕt −
◦
ut∥1 is the

k-order comparator gap defined in (22).

Proof of Lemma 10. Following (20), we decompose the regret of KL-divergence matching as follows:

LψKL
t (w⊤

t ϕt)− LψKL
t (µt) = LψKL

t (w⊤
t ϕt)− LψKL

t (β⊤
I ϕt)︸ ︷︷ ︸

term (a)

+LψKL
t (β⊤

I ϕt)− LψKL
t (µt)︸ ︷︷ ︸

term (b)

. (25)

Then, we turn to analyze term (a) and term (b), respectively. In the rest of the proof, we use Lt as shorthand for LψKL
t . We

first decompose the term (a) as follows:

E
[
Lt(w

⊤
t ϕt)− Lt(β

⊤
I ϕt)

]
≤ E

[
⟨∇Lt(w⊤

t ϕt)−∇L̃t(w⊤
t ϕt),w

⊤
t ϕt − β⊤

I ϕt⟩
]

︸ ︷︷ ︸
term (a1)

+E
[
⟨∇L̃t(w⊤

t ϕt),w
⊤
t ϕt − β⊤

I ϕt⟩ −
1

β
(∇Lt(w⊤

t ϕt − β⊤
I ϕt))

]

︸ ︷︷ ︸
term (a2)

,

where β is the lower bound of the label prior as defined in Lemma 2, and L̃t : ∆K → R is the estimated KL-divergence
using µ̃t obtained by BBSE. Specifically,

L̃t(µ) =

K∑

j=1

(∂(ψKL[µ]j)[µ]j − ψKL([µ̃]j))−
K∑

j=1

∂ψKL([µ]j)[µt]j =

K∑

j=1

[µ]j −
K∑

j=1

[µ̃]j log([µ]j).

Thus, L̃t is an unbiased estimation of the ground truth Lt. For term (a1), we have that

term (a1) = E1:e

[
⟨∇Lt(w⊤

t ϕt)−∇L̃t(w⊤
t ϕt),w

⊤
t ϕt − β⊤

I ϕt⟩
]

= E1:t−1

[
⟨∇Lt(w⊤

t ϕt)− Et
[
∇L̃t(w⊤

t ϕt)
∣∣∣ 1 : t− 1

]
,w⊤

t ϕt − β⊤
I ϕt⟩

]
= 0,
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where the last equality is due to the unbiasedness of the risk estimator L̃t such that ∇Lt(w⊤
t ϕt) = Et[∇L̃t(w⊤

t ϕt)|1 : t−1].
Thus, it is sufficient to analyze term (a2) to provide an upper bound for term (a). For the term (a2), we have

term (a2) = E
[
⟨∇L̃t(w⊤

t ϕt),w
⊤
t ϕt − β⊤

I ϕt⟩ −
1

β
(∇L̃t(w⊤

t ϕt − β⊤
I ϕt))

]
, (26)

where we use the unbiasedness of the L̃t. The above term in (26) can be upper-bounded by the standard ONS analysis. We
introduce the following lemma concerning the ONS algorithm:

Lemma 11 (Theorem 2 of Luo et al. (2016)). Given that Lt is an exp-concave loss function, then the ONS algorithm enjoys
the following regret bound for any comparator w ∈ W ,

e∑

i=s

Lt(w
⊤
t ϕt)−

e∑

i=s

Lt(β
⊤
I ϕt) ≤

λ

2
∥βI∥22 +

d

2ε
log

(
1 +

ε|I|G2

dλ

)
,

where the λ and ε are the parameters of the ONS algorithm defined in (19).

It is easy to verify that Lt(w⊤ϕt) is an exp-concave function w.r.t. w. To control the norm ∥βI∥22, we have

Lemma 12 (Corollary 40 of Baby & Wang (2020)). Let βI denote the best static linear predictor, which is obtained by
least square regression: βI = arg minβ∈R(k+1)×d

∑
t∈I∥β⊤ϕt− ◦

ut∥22, where ϕt is the dummy feature defined in (21) and
∀t ∈ [T ], the 1-norm of ◦

ut has an upper bound, then we have ∥βI∥22 = O(1).

Combining Lemma 12 with Lemma 11, we can therefore control the summation of term (a) as
e∑

t=s

Lt(w
⊤
t ϕt)−

e∑

t=s

Lt(β
⊤
I ϕt) ≤ Õ

(
d log

(
1 +

|I|
d

))
.

For the term (b), notice that for the KL-divergence, ∇2Lt(w
⊤ϕ) = ∇2Lt(µ) =

∑K
j=1[µt]j/[µ]

2
j ≤ K/β2, which implies

it is a K/β2-smooth function. By the smoothness of the loss function Lt, we decompose term (b) as follows:
e∑

t=s

Lt(β
⊤
I ϕt)−

e∑

t=s

Lt(µt) ≤
e∑

t=s

⟨∇Lt(µt),β⊤
I ϕt − µt⟩+

e∑

t=s

K

2β2
∥β⊤

I ϕt − µt∥22

≤
e∑

t=s

⟨∇Lt(µt),β⊤
I ϕt − µt⟩+

e∑

t=s

K3/2

2β2
∥β⊤

I ϕt − µt∥21.

Due to the ground-truth label prior µt is minimizer of Lt, the first term equals zero. Thus, summation of term (b) satisfies∑e
t=s Lt(β

⊤
I ϕt)−

∑e
t=sLt(µt)≤Õ

(∑e
t=s∥β⊤

I ϕt−µt∥21
)
. Combining term (a) and term (b) in Eq. (25), we have

e∑

t=s

Lt(w
⊤
t ϕt)−

e∑

t=s

Lt(µt) ≤ Õ
(
1 +

e∑

t=s

∥β⊤
I ϕt − µt∥21

)
. (27)

Following Proposition 3, we obtain

E
[
Regd

I({Rt, h⋆t }et=s)
]
≤

e∑

t=s

L
√

∥µ̂t − µt∥22 ≤ O
(

e∑

t=s

√
KL(µ̂t∥µt)

)
≤ O

(
e∑

t=s

√
(term (a))t + ∥β⊤

I ϕt − µt∥21

)

≤ O
(

e∑

t=s

(√
(term (a))t + ∥β⊤

I ϕt − µt∥1
))

≤ O
(
√
|I|(term (a))t +

e∑

t=s

∥β⊤
I ϕt − µt∥1

)
= Õ(

√
|I|+ CkI),

where the first inequality is due to Lemma 2, the second inequality is due to Proposition 3, (term (a))t represents
Lt(w

⊤
t ϕt)− Lt(β

⊤
I ϕt) at time t in the decomposition (25). Thus, we finish the proof of Lemma 10.

Lemma 10 indicates that the reweighting updates (10) satisfy Requirement 1. Combining Lemma 10 and Theorem 2, we
have the following guarantee for reweighting update:

E
[
Regd

T ({Rt, h⋆t }Tt=1)
]
≤ Õ

(
max{T k+2

2k+3 (P kT )
1

2k+3 ,
√
T}
)
,

which finishes the proof of Theorem 4.
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D.6. Proof of Theorem 5

Proof. We first introduce the following interval regret for the OGD updates.

Lemma 13. For any interval I = [s, e] ⊆ [T ], setting the step size as ηt = 1/
√
t− s, the OGD updates (11) running on

the interval I ensures

E

[∑

t∈I
Rt(wt)−

∑

t∈I
Rt(w

⋆
t )

]
≤ O

(√
|I|+ C0

I
)
,

where w⋆
t = arg minw∈W Rt(w) is the minimizer of the expected risk function, C0

I =
∑e
i=s∥µ⋆I − µi∥1 is the first-order

comparator gap defined in (22), in which µ⋆I = 1
|I|
∑s
i=e µi is the static label prior within interval I.

Proof of Lemma 13. Lemma 13 indicates that the OGD updates (11) satisfy Requirement 1. The proof is similar to (Bai
et al., 2022, Theorem 1). We can decompose the regret bound into two parts by introducing a reference comparator w⋆

I
that is static within the interval I following the decomposition (20), taken as the single best decision over the interval, i.e.,
w⋆

I = arg minw∈W
∑
t∈I Rt(w). We have

E1:e

[
e∑

t=s

Rt(wt)

]
−

e∑

t=s

Rt(w
⋆
t ) = E1:e

[∑

t∈I
Rt(wt)

]
−
∑

t∈I
Rt(w

⋆
I)

︸ ︷︷ ︸
term (a)

+
∑

t∈I
Rt(w

⋆
I)−

∑

t∈I
Rt(w

⋆
t )

︸ ︷︷ ︸
term (b)

,

where E1:e[·] denotes the expectation taken over the random draw of dataset {St}et=1. Then, we turn to analyze term (a)
and term (b), respectively. We first show that term (a) can be decomposed as

term (a) ≤ E1:e

[
e∑

t=s

⟨∇Rt(wt)−∇R̂t(wt),wt −w⋆
I⟩
]

︸ ︷︷ ︸
term (a1)

+E1:e

[
e∑

t=s

⟨∇R̂t(wt),wt −w⋆
I⟩
]

︸ ︷︷ ︸
term (a2)

,

which is due to the convexity of the risk function Rt(·). For term (a1), we have

term (a1) =

e∑

t=s

E1:t−1

[
⟨∇Rt(wt)− Et

[
∇R̂t(wt)

∣∣∣ 1 : t− 1
]
,wt −w⋆

I⟩
]
= 0,

where the last equality is due to the unbiasedness of the risk estimator R̂t such that ∇Rt(wt) = Et[∇R̂t(wt) | 1 : t− 1].
Thus, it is sufficient to analyze term (a2) to provide an upper bound for term (a). For the term (a2), we use the
standard OGD analysis with a static comparator w⋆

I (Hazan, 2016), and can achieve the static regret within the interval I:
term (a2) = O(

√
e− s) = O(

√
I). For the term (b), we decompose it as follows:

term (b) =
∑

t∈I

(
1

|I|
e∑

i=s

Rt(w
⋆
I)−Rt(w

⋆
t )

)
≤
∑

t∈I

(
1

|I|
e∑

i=s

Rt(w
⋆
i )−Rt(w

⋆
t )

)

=
∑

t∈I

(
1

|I|
e∑

i=s

Rt(w
⋆
i )−

1

|I|
e∑

i=s

Ri(w
⋆
i ) +

1

|I|
e∑

i=s

Ri(w
⋆
i )−Rt(w

⋆
t )

)

≤
∑

t∈I

(
1

|I|
e∑

i=s

Rt(w
⋆
i )−

1

|I|
e∑

i=s

Ri(w
⋆
i ) +

1

|I|
e∑

i=s

Ri(w
⋆
t )−Rt(w

⋆
t )

)
≤ 2

∑

t∈I
sup
w∈W

∣∣∣∣∣Rt(w)− 1

|I|
e∑

i=s

Ri(w)

∣∣∣∣∣ .

In the above, the first inequality is due to the optimality of w⋆
I over the interval I. The second inequality holds since

w⋆
i ∈ arg minw∈W Ri(w). According to the label shift condition, we can further upper bound the variation of the loss

function by the variation of the class prior

sup
w∈W

∣∣∣∣∣Rt(w)− 1

|I|
e∑

i=s

Ri(w)

∣∣∣∣∣= sup
w∈W

∣∣∣∣∣
K∑

k=1

(
[µt]k−

1

|I|
e∑

i=s

[µi]k

)
Rk0(w)

∣∣∣∣∣≤B
K∑

k=1

∣∣∣∣∣[µt]k−
1

|I|
e∑

i=s

[µi]k

∣∣∣∣∣= B∥µt−µ⋆I∥1 ,
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in which µ⋆I = 1
|I|
∑s
i=e µi is the static label prior in interval I. By summing up term (b), we have

∑

t∈I
Rt(wt)−

∑

t∈I
Rt(w

⋆
t ) =

√
|I|+

e∑

t=s

B ∥µt − µ⋆I∥1 =
√
|I|+B · C0

I ,

which finishes the proof of Lemma 13.

Lemma 13 illustrates that OGD updates (11) satisfy Requirement 1. Therefore, we have

E[Regd
T ({Rt, h⋆t }Tt=1)] ≤

M∑

i=1

(√
|Ii|+ C0

I
)
= O

(
M∑

i=1

(√
|Ii|+ |Ii|2/3(P 0

Ii
)1/3

))
≤ O

(
max

{
T 2/3(P 0

T )
1/3,

√
T
})

,

where the second inequality is by taking the k = 0 in Theorem 2, which finishes the proof. This result achieves the optimal
dynamic regret ignoring the dimension factor, which is the same as the previous result (Bai et al., 2022) but only requires
maintaining a single classifier.

D.7. Proof of Lemma 3

Proof. To prove Lemma 3, we first introduce a general Bregman divergence label margin matching framework, then
instantiate it as the KL-divergence matching problem.

Bregman Divergence Label Margin Matching. Bregman divergence label margin matching (Sugiyama et al., 2012)
is a general framework for density ratio estimation that unifies various models developed in one-step distribution shift.
Specifically, let ψ : dom ψ → R be a differentiable and strictly convex function; the Bregman divergence measures distance
(discrepancy) between two points Dψ(a, b) ≜ ψ(a)− ψ(b)−∇ψ(b)(a− b), where ∇ψ is the derivative of ψ.

Then, we measure the discrepancy between true label margin µt and any label margin estimator µ̂t by the total Bregman
divergence over K classes, that is, TDψ(µt, µ̂t) =

∑K
j=1 Dψ ([µt]j , [µ̂t]j). A direct calculation shows TDψ(µt, µ̂t) =

Lψt (µ̂t)− Lψt (µt), where the loss function is defined as

Lψt (µ) =

K∑

j=1

(∇ψ([µ]j)[µ]j − ψ([µ]j))−
∑

k∼Dt(y)

∇ψ([µ]j) =
K∑

j=1

(∇ψ([µ]j)[µ]j − ψ([µ]j))−
K∑

j=1

∇ψ([µ]j)[µt]j , (28)

where µt is the true label margin at round t. Suppose that ψ is µ-strongly convex, then we have the following proposition.

Proposition 3 (Theorem 1 of Zhang et al. (2023a)). Let ψ be a µ-strongly convex function, for any label margin estimator
sequence {µ̂t}Tt=1, the cumulative estimation error is bounded by

s∑

t=s

∥µ̂t − µt∥2 ≤

√√√√2|I|
µ

(
e∑

t=s

Lψt (µ̂t)−
e∑

t=s

Lψt (µt)

)
. (29)

Instantiation: KL-Divergence Matching Model. When the online loss function Lψt is non-convex, it is generally
intractable to conduct the online optimization, no matter whether to minimize the standard regret or the strengthened
dynamic regret. Fortunately, the attained loss functions are convex or enjoy even stronger curvature when we choose suitable
hypothesis space and divergence functions. To this end, we instantiate the reduction of Proposition 3 via the KL-Divergence
matching model (Garg et al., 2020). When the divergence function is chosen as ψKL(x) = x log x− x, in this case we have
LψKL
t (µ) =

∑K
j=1[µ]j −

∑K
j=1[log(µ)]j [µt]j , and therefore, we have KL(µ∥µt) = LψKL

t (µ) − LψKL
t (µt). It is easy to

verify that ∇2ψKL(x) = 1/x, and ∇3ψKL(x) = −1/x2. Therefore, ψKL is a 1/β-strongly convex function given that the
inputs have a lower bound β. Thus, by Proposition 3,

Regd
I({Rt, h⋆t }et=s) ≤

√√√√2β|I| ·
( e∑

t=s

LψKL
t (µ̂t)−

e∑

t=s

LψKL
t (µt)

)
= O



√√√√|I| ·

e∑

t=s

KL(µ̂t∥µt)


 ,

which finishes the proof of Lemma 3.
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