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Abstract

Reweighting a distribution to minimize a distance
to a target distribution is a powerful and flexible
strategy for estimating a wide range of causal ef-
fects, but can be challenging in practice because
optimal weights typically depend on knowledge
of the underlying data generating process. In this
paper, we focus on design-based weights, which
do not incorporate outcome information; promi-
nent examples include prospective cohort studies,
survey weighting, and the weighting portion of aug-
mented weighting estimators. In such applications,
we explore the central role of representation learn-
ing in finding desirable weights in practice. Unlike
the common approach of assuming a well-specified
representation, we highlight the error due to the
choice of a representation and outline a general
framework for finding suitable representations that
minimize this error. Building on recent work that
combines balancing weights and neural networks,
we propose an end-to-end estimation procedure
that learns a flexible representation, while retain-
ing promising theoretical properties. We show that
this approach is competitive in a range of common
causal inference tasks.

1 INTRODUCTION

Estimating causal effects is a fundamental task in multi-
ple fields such as epidemiology [Westreich et al., 2017],
medicine [Rosenbaum, 2012], public policy [Eli Ben-
Michael and Jiang, 2024] or economics [Sekhon and Grieve,
2012]. Some challenges include removing the influence of
confounders [Pearl et al., 2016] or generalizing a treatment
effect estimated on a randomized control trial (RCT) to a
target observational population [Degtiar and Rose, 2023,
Colnet et al., 2024]. Weighting approaches, which target a

causal effect as an expectation under a reweighting of the
original distribution, can address many of these problems
[Ben-Michael et al., 2021, Colnet et al., 2024, Johansson
et al., 2022].

In this paper, we focus on finding so-called design-based
weights, which do not incorporate any outcome information,
either out of principle or out of necessity; as such, we can-
not apply existing approaches involving outcomes off the
shelf. Most prominently, design-based weights arise in the
classical literature on the design of observational studies,
which stresses the importance of separating the “design”
and “analysis” phases of a non-randomized study [Rubin,
2008], and therefore stresses the importance of estimating
weights without using the outcome. Such weights also arise
in prospective cohort studies [Song and Chung, 2010] and
in survey design [Lohr, 2021], in which researchers have not
yet collected outcomes, as well as in applications in which it
is useful to develop a single set of outcome-agnostic weights,
such as in analyses with multiple outcomes of interest [Ben-
Michael et al., 2024]. Finally, in doubly robust methods
that combine outcome and weighting models, such as in
Automatic Debiased Machine Learning (AutoDML) [Cher-
nozhukov et al., 2022b] or augmented balancing weights
[Ben-Michael et al., 2021], the weights are typically esti-
mated without using outcomes.

Such methods for finding design-based weights generally
rely on minimizing a probability distance between the
weighted distribution and a reference distribution. The opti-
mal distance, however, typically depends on the unknown
data generating process (DGP). This has led to a large liter-
ature on learning an adequate representation, a mapping of
the covariate space to another manifold, that retains impor-
tant properties of the DGP. Standard representations include
balancing scores [Rosenbaum and Rubin, 1983b], sufficient
dimension reduction [Luo and Zhu, 2020], and variable se-
lection [Brookhart et al., 2006]. The correctness of these
representations typically relies on unverifiable assumptions
and the analyst is left without guarantees on the bias of the
weighting estimator if they are not met, leading to poor per-
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formance in practice [Kang and Schafer, 2007]. More recent
approaches learn a representation implicitly by, for exam-
ple, modelling weights directly as neural networks, however
they only provide guarantees on the bias for specific DGPs,
e.g. when the outcome model is piece-wise constant [Ozery-
Flato et al., 2018] or follows a neural network architecture
[Kallus, 2020a]. Despite these advances, there are not cur-
rently principled procedures to directly assess and control
the quality of a representation and its impact of the bias
on the weighted estimator for any possible data generating
process.

This constitutes our two main contributions. (1) We quan-
tify the information lost by using a weighted estimator
based on a representation, rather on the original covari-
ates, through a “confounding bias” and a “balancing score
error”, and give guarantees on the resulting bias of the esti-
mator for any (posited class of the) outcome model. (2) We
develop a method inspired by DeepMatch [Kallus, 2020a]
and RieszNet [Chernozhukov et al., 2022a] that learns such
representations from data. Unlike the original RieszNet ap-
plication, however, we do not incorporate outcome infor-
mation. We show promising performance of this approach
on benchmark datasets in treatment effect estimation. This
learnt representation can serve as the input of any weighting
method, making it a generic pre-processing method.

2 BACKGROUND

2.1 SETUP AND NOTATION

Let P (X, Ỹ ) be a source distribution on covariates X
and some pseudo-outcomes Ỹ , and Q be a target distri-
bution on covariates. For any distribution R and random
variable Z, denote RZ the law R(Z). We assume that we
have access to (not necessarily disjoint) i.i.d. samples P
from P and Q from Q. Let ER[Z] be the expectation of
a random variable Z under the distribution R. We call a
weight function wrt P or weights wrt P any measur-
able PX -a.s. non-negative function w(x) of covariates such
that EP [w(X)] = 1. Any weight function w wrt P in-
duces a distribution Pw such that dPw

X

dPX
(x) = w(x) and

Pw(Ỹ |X) = P (Ỹ |X), where we say that P is reweighted
by w(X), with EPw [f(X)] = EP [w(X)f(X)] for any
function f . Let EP [Ỹ |X = x] be a function of inter-
est, which we call the outcome model. We are interested
in the target estimand EQ[EP [Ỹ |X]]. In general, we do
not have access to either the outcome model or the tar-
get estimand. That said, for any weight function w(x) wrt
P , τ̂w := 1

|P|
∑

i∈P w(Xi)Ỹi is an unbiased estimator of

EPw [EP [Ỹ |X]] as soon as EP [w(X)Ỹ ] is well-defined. All
of this motivates our problem statement.

Problem 2.1. Find a weight function w(X) wrt P such that

EPw

[
EP [Ỹ |X = x]

]
= EQ

[
EP [Ỹ |X = x]

]
This generalizes many weighting problems in causal in-
ference. Generally, let A denote the treatment variable,
and Y denote the outcome. We assume that the values
of A belong to a finite space A. For a ∈ A, we de-
note Y (a) the potential outcome wrt a, which is the re-
alized outcome if the subject were to receive treatment
a. In the context of transportability, we also introduce a
binary indicator S for membership in a RCT population,
thus A ⊥⊥ X|S = 1 and (Y (1), Y (0)) ⊥⊥ A|S = 1. Let
P data(X,Y, S,A, (Y (a))a∈A) be the true data distribution.
In the absence of subscript, we assume that the expectation
operator is that wrt P data, that is E := EP data . Then, Prob-
lem 2.1 can be applied to the following weighting problems
(details in Appendix A):

• Average Treatment Effect on the Treated (ATT). The
pseudo-outcome is Y ; the source and target distribu-
tions are P data(X,Y |A = 0) and P data(X|A = 1),
respectively; the outcome model is E[Y (0)|X = x];
the estimand is E[Y (0)|A = 1].

• Average Treatment Effect (ATE). Let a ∈ A be fixed.
The pseudo-outcome is Y ; the source and target distri-
butions are P data(X,Y |A = a) and P data(X), respec-
tively; the outcome model is E[Y |A = a,X = x]; the
estimand is E[Y (a)].

• Transportability. The pseudo-outcome is

Ỹ :=
AY

P data(A = 1|S = 1)
− (1−A)Y
P data(A = 0|S = 1)

;

the source distribution is the joint covariate and pseudo-
outcome distribution in the RCT P data(X, Ỹ |S = 1) ;
the target distribution is the covariate distribution in the
target population P data(X|S = 0); the outcome model
is the conditional average treatment effect (CATE)
E[Y (1) − Y (0)|X = x] ; the estimand is the ATE
on the target population, E[Y (1)− Y (0)|S = 0].

One solution to these problems has the following form:

Definition 2.2. We call true weights between P and Q the
Radon-Nikodym derivative dQX

dPX
, which is a weight function

wrt P .

These weights are also known as inverse probability weights
or the Riesz representer [Hirshberg and Wager, 2021, Cher-
nozhukov et al., 2022b]. They are uniquely defined [Ben-
Michael et al., 2021] by, for any measurable function f ,

EP

[
dQX

dPX
(X)f(X)

]
= EQ[f(X)].



In particular, this holds for f(x) = EP [Ỹ |x], which solves
Problem 2.1. In practice, the true weights dQX

dPX
are unknown;

we turn to estimating them and more generally obtaining
solution weights in the next section.

Finally, to ensure that true weights are well-defined, we
make the following assumption, which is equivalent to over-
lap in ATE estimation [Bruns-Smith et al., 2023] and sup-
port inclusion [Colnet et al., 2024] in transportability.

Assumption 2.3. QX is absolutely continuous wrt PX .

As we discuss in the introduction, we are in the setting
where outcomes Yi and pseudo-outcomes Ỹi for i ∈ P are
not observed and cannot be used when trying to find weights
solving Problem 2.1, and are only available for estimating
the final estimate τ̂w after weights have been found.

2.2 COMMON METHODS IN WEIGHTING

In ATT/ATE estimation and transportability, true weights
are proportional to the inverse of one of the propensity
scores p(A = a|X = x) [Ben-Michael et al., 2021] or
P (S = 1|X = x) [Cole and Stuart, 2010]. Thus, an in-
verse probability weighting estimator ŵ of dQX

dPX
is obtained

by fitting a model for the indicated propensity score and
inverting it, leading to potentially outsize errors due to
misspecification [Zubizarreta, 2015]. An alternative used
in the automatic debiased machine learning (AutoDML)
literature is to minimize the mean squared error between
dQX

dPX
and ŵ, which can actually be estimated without ex-

actly knowing the true weights dQX

dPX
[Chernozhukov et al.,

2022b,a, Newey and Newey, 2023]. Another family of meth-
ods [Hainmueller, 2012, Fong et al., 2018] relies on impos-
ing that weights w verify balance in some moments r, i.e.
EPw [r(X)] = EQ[r(X)]. Then one minimizes some disper-
sion measure of weights under these constraints. However,
balancing r(X) does not guarantee balancing the unknown
EP [Y |X] and the solution might not be feasible if r has too
many moments [Wainstein, 2022]. Similar methods enforce
such balance approximately through a generalized method
of moments [Imai and Ratkovic, 2014, Fong et al., 2018].

Finally, another family of methods [Ben-Michael et al.,
2021] aims at finding weights w minimizing |BiasP,Q(w)|
where we refer to

BiasP,Q(w) = EPw [EP [Y |X]]− EQ[EP [Y |X]]

as the “bias” of weights w, measuring how short they fall
of solving Problem 2.1 and which is also equal to the bias
of the estimator τ̂w wrt the target estimand. It is usually
assumed that EP [Ỹ |x] belongs to a class of functionsM
which leads to the bound

|BiasP,Q(w)| ≤ IPMM(Pw
X , QX)

:= sup
m̄∈M

|EPw [m̄(X)]− EQ[m̄(X)]|

where the RHS is an integral probability metric (IPM) [Sripe-
rumbudur et al., 2012] on the classM and generally cor-
responds to a known probability discrepancy; for example
the Wasserstein distance when M is the set of Lipschitz
functions or the maximal mean discrepancy (MMD) wrt
kernel k whenM is the RKHS of k. Thus, adding a term
to control the variance of the weighting estimator [Kallus,
2020b, Ben-Michael et al., 2021], we obtain a solution w by
solving

min
w

IPMM(Pw
X , QX)2 + σ2 · ||w(X)||2L2(P ) (1)

for a chosen σ > 0 that controls a bias-variance trade-off
[Bruns-Smith and Feller, 2022]. A key challenge is that
as we do not know the outcome model EP [Ỹ |x], we do
not know the model classM, thus an adequate probability
discrepancy to minimize. In practice, one resorts to trying
a specific discrepancy, thus making an implicit assumption
on the function space M which can then be inadequate
wrt the outcome model EP [Ỹ |x] at stake. Recognizing this,
directions in the literature include finding a data-driven
tailored function classM [Kallus, 2020a, Wainstein, 2022]
or finding guarantees when the function class is misspecified
[Bruns-Smith and Feller, 2022].

2.3 CHOOSING A DISTANCE VIA A
REPRESENTATION

Many methods minimize a probability discrepancy mea-
sure or more generally find weights that only depend on
covariates x via a vector-valued function ϕ(x) known as a
representation [Kallus, 2020a, Xue et al., 2023]. Indeed,
assuming any function classM implicitly assumes that any
function linearly depends on a representation ϕ(x), e.g. the
first-order moment x for linear functions, the kernel fea-
ture spaces k(., x) for the RKHS of kernel k [Hazlett, 2020,
Kallus, 2020a], and more generally (m(x))m∈M for any
classM (note that such a representation is not unique). In
turn, every representation defines a function class. Thus,
choosing a function classM means implicitly choosing a
representation ϕ(x) and assuming that the true outcome
model EP [Ỹ |x] linearly depends on it.

Further, it is also common practice to explicitly define a
representation ϕ(x) (on which the outcome model need not
depend linearly) and apply a weighting method using it.
Notable examples include propensity scores and balancing
scores [Rosenbaum and Rubin, 1983b], prognostic scores
[Hansen, 2008] or variable selection [Brookhart et al., 2006,
Colnet et al., 2024]. One motivation to do so is that a low-
dimensional representation can mitigate undesirable effects
of high dimensions in causal inference [Ning et al., 2020,
D’Amour et al., 2021] or probability distances [Dudley,
1969, Ramdas et al., 2015] and improve efficiency by select-
ing essential covariate information wrt the DGP.

The question then becomes how to obtain suitable repre-



sentations ϕ(x). It is well-known that weighting on the true
outcome model, the propensity score or a representation
predicting either [Rosenbaum and Rubin, 1983b, Hansen,
2008] is a sensible choice as these representations preserve
unconfoundedness. However, we do not have access to these
true models or representations predicting them. Methods
based on sufficient dimension reduction attempt to find a
linear representation under the constraint that it predicts
either model [Cook, 2009, Luo and Zhu, 2020], while others
extract representations from a learnt model for the outcome,
the treatment or the RCT indicator [Rosenbaum and Rubin,
1983a, Hansen, 2008, Cole and Stuart, 2010]. However, to
the best of our knowledge, there are no guarantees on the
bias when any posited model is misspecified or more gener-
ally when any underlying assumption is violated, while they
are critical as one cannot verify such assumptions. In partic-
ular, classification-based learning of propensity scores does
not optimize for covariate balance but for prediction of the
treatment or the RCT indicator, while (near-)deterministic
prediction of either will violate (strict [D’Amour et al.,
2021]) overlap, leading to poor matching or weighting per-
formance in practice [Alam et al., 2019, King and Nielsen,
2019]. In addition, many such methods learn the representa-
tion using outcomes, which is done before weighting, thus is
not permitted in an actual design-based setting. More recent
works learn implicit representations by positing a rich para-
metric classM [Ozery-Flato et al., 2018, Kallus, 2020a], as
a result bias can be controlled but only for outcome models
belonging to this class.

Thus, one might wonder whether guarantees on the bias can
be provided when using any representation ϕ and any class
M, without using outcome information and without relying
on rigid well-specification assumptions. This is the main
contribution of our paper, which we develop next.

3 THEORY AND METHOD

3.1 QUANTIFYING THE INFORMATION LOSS

Choosing a representation ϕ(X) introduces many trade-offs.
At one extreme, oracle representations, such as balancing
scores or prognostic scores, perfectly preserve unconfound-
edness; that is, unconfoundedness given ϕ(X) implies un-
confoundedness given X . These are largely unknown, how-
ever. At the other extreme, degenerate representations, such
as a constant ϕ(X), will destroy all the information in the
original X . We now characterize representations that mini-
mize the information lost relative to X .

Indeed, we first make technical assumptions ensuring that
all expectations are well-defined. For any distribution R,
random variable Z and integer p ≥ 1, let

||Z||Lp(R) := (ER[|Z|p])
1
p ,

and note Z ∈ LP (R) iff ||Z||LP (R) < ∞. Notably, for a

measurable function f of values of Z,

||f ||Lp(RZ) = (ER[|f(Z)|p])
1
p = ||f(Z)||Lp(R)

We then make the following assumptions.

Assumption 3.1. dQX

dPX
(X) ∈ L2(P )

Assumption 3.2. Ỹ ∈ L2(P )

Then, under Assumptions 2.3, 3.1, 3.2 by noting that for any
weightsw wrt P that are inL2(PX), and for any measurable
mapping ϕ(x) of covariates, the bias can be decomposed as

BiasP,Q(w) = EPw

[
EP [Ỹ |X]

]
− EQ

[
EP [Ỹ |X]

]
= EPw

[
EP [Ỹ |ϕ(X)]

]
− EQ

[
EP [Ỹ |ϕ(X)]

]
︸ ︷︷ ︸

Bias wrt the representation

+ EPw

[
EP [Ỹ |X]− EP [Ỹ |ϕ(X)]

]
︸ ︷︷ ︸

Chosen weights bias

+ EQ

[
EP [Ỹ |ϕ(X)]− EP [Ỹ |X]

]
︸ ︷︷ ︸

Confounding bias

. (2)

We now explain each term in the RHS. First, if the weights
w(X) are a function of the representation ϕ(X), the bias wrt
the representation would be the bias if we replaced X with
ϕ(X) in the equality of Problem 2.1. This interpretation
still holds for general weights w(X) as from the tower
property applied to EPw [E[Ỹ |ϕ(X)]], they can be replaced
with EP [w(X)|ϕ(X)], which is a L2(PX) weight function
wrt P and is a function of ϕ(X), in the term. As in Section
2.2, we can directly bound the bias wrt the representation
via an IPM of the form

IPMG(P
w
ϕ(X), Qϕ(X)),

where for example, for a classM such that EP [Ỹ |x] ∈M,
the class G can contain

ϕ(M, P ) := {z 7→ EP [m(X)|ϕ(X) = z], m ∈M}.
(3)

Second, the chosen weights bias measures how much “cho-
sen” weights w(x) do not depend on ϕ(x). It turns out that
this quantity is zero for weights ŵ(x) that solve the canon-
ical minimization in Equation 1 with the aforementioned
IPM; as we show next, these weights only depend on ϕ(x).

Proposition 3.3. Let ϕ(x) be a measurable mapping with
values in a space Φ.

1. Under Assumptions 2.3, 3.1, if G is a class of
L2(Pϕ(X)) functions on Φ, σ > 0, there is a unique
solution ŵ(x) to the problem

min
w weight
function
wrt P

IPMG(P
w
ϕ(X), Qϕ(X))

2 + σ2 · ||w(X)||2L2(P )



and it is a function of ϕ(x) PX -almost surely, i.e.
there exists w̄ : Φ → R such that ŵ(x) =
w̄(ϕ(x)) ∀x PX−a.s. ; and ŵ(X) ∈ L2(P ).

2. Under Assumption 3.2, for any L2(PX) weight func-
tion w(x) wrt P that is a function of ϕ(x) PX -a.s., the
chosen weights bias is zero.

Finally, the confounding bias is the most important term of
this decomposition, as it characterizes the information lost
in ϕ(X) relative to X — and thus can be seen as the bias of
ϕ, rather than the bias wrt ϕ that is applied to weights.

When the target is E[Y (a)], this quantity is the difference
between E [E[Y | A = a, ϕ(X)]] and E [E[Y | A = a,X]],
measuring how much ϕ(X) preserves unconfoundedness
[D’Amour and Franks, 2021, Melnychuk et al., 2024]. More
generally, for solution weights ŵ of Equation 1 with an IPM
depending on ϕ(X), it is exactly the difference between the
biases of ŵ wrt original covariates X and their representa-
tion ϕ(X), as shown by Equation 2. Thus, if ŵ has a small
(resp. zero) bias wrt ϕ, then it will also have a small (resp.
zero) bias overall.

To the best of our knowledge, this is the first extension of
the confounding bias for the E[Y (a)] target estimand to
more general weighting problems in causal inference. It has
a similar formulae as the excess target information loss in
Johansson et al. [2019] measuring the loss of information in-
duced by a representation in domain adaptation. We further
provide a characterisation for it that will prove useful.

Proposition 3.4. Under Assumption 2.3, for any measur-
able ϕ(x), Qϕ(X) is absolutely continuous wrt Pϕ(X), with

dQϕ(X)

dPϕ(X)
(ϕ(X)) = EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

]
P -a.s.

and under the additional Assumptions 3.1 and 3.2, the con-
founding bias is equal to both

EP

[(
EP [Ỹ |ϕ(X)]− EP [Ỹ |X]

)
×
(

dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

)]
(4)

and

−EP

[
EP [Ỹ |X]

(
dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

)]
(5)

When the confounding bias is zero, ϕ is known as a de-
confounding score [D’Amour and Franks, 2021], and the
overall bias is simply equal to the bias wrt ϕ. In particular,
from Equation 4, the confounding bias will be zero in two
special cases :

• When EP [Ỹ |X] = EP [Ỹ |ϕ(X)] P−a.s., that is

EP [Ỹ |X] = EP

[
EP [Ỹ |X]

∣∣∣ϕ(X)
]
P -a.s.

from the tower property. This is equivalent to EP [Ỹ |x]
being a function of ϕ(x) PX -a.s., i.e. ϕ(X) a prognos-
tic score [Hansen, 2008].

• When dQX

dPX
(X) =

dQϕ(X)

dPϕ(X)
(ϕ(X)) P -a.s., that is

dQX

dPX
(X) = EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

]
P -a.s.

from Proposition 3.4. This is equivalent to dQX

dPX
(x)

being a function of ϕ(x) PX -a.s., i.e. ϕ(X) a balancing
score [Rosenbaum and Rubin, 1983b].

We make a more rigorous connection between the confound-
ing bias and canonical scores from the literature as well as
notions from transportability in Appendix B

Further, the confounding bias and its role in the decompo-
sition of Equation 2 allow us to extend the idea of a decon-
founding score to hold approximately, rather than exactly.
Indeed, if the confounding bias of ϕ is not zero but remains
small, then we can expect that a small bias wrt ϕ obtained by
solving the problem of Proposition3.3 will still yield a small
overall bias. This gives us more flexibility than relying on
well-specified models, where any guarantee on the bias is
lost in case of misspecification. In contrast, the confounding
bias directly quantifies the misspecification itself.

Thus, one might wonder whether we can minimize directly
said misspecification to find an approximate deconfounding
score ϕ. However Equation 4 involves ground-truth models
we do not have access to like EP [Ỹ |x], dQX

dPX
(x) as well

as their projections on ϕ(x). Further, we do not observe
any outcomes at this stage, precluding any estimation of
EP [Ỹ |x]. To address all of this, note that a direct application
of the Cauchy-Schwarz inequality to Equation 5 yields

|Confounding bias| ≤ ||EP [Ỹ |X]||L2(P ) · BSEP,Q(ϕ)
(6)

where we further have ||EP [Ỹ |X]||L2(P ) ≤ ||Ỹ ||L2(P )

from Jensen’s inequality, and we call

BSEP,Q(ϕ) :=

∣∣∣∣∣∣∣∣dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

∣∣∣∣∣∣∣∣
L2(P )

(7)

the balancing score error (BSE). This name is justified as
from Proposition 3.4, this quantity is equal to∣∣∣∣∣∣∣∣dQX

dPX
(X)− EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

] ∣∣∣∣∣∣∣∣
L2(P )

,

that is the root mean-squared error between dQX

dPX
(X) and

its projection on ϕ(X), i.e. its best predictor from ϕ(X)
in L2(P ). In other words, it measures the extent to which
dQX

dPX
(x) is not a function of ϕ(x) PX -a.s., and therefore

the extent to which ϕ(x) is not a balancing score. Impor-
tantly, it does not depend on the pseudo-outcome Ỹ , only



on the marginal PX . Note that the confounding bias can
be zero and the balancing score error positive, even poten-
tially arbitrary, for many representations ϕ(x) that contain
information on the outcome model EP [Ỹ |x]. Concrete ex-
amples include prognostic scores from Hansen [2008], or
the deconfounding scores in the example of Section 5 in
D’Amour and Franks [2021]. Our setup excludes such rep-
resentations as it assumes that we do not observe outcomes
at this stage. Alternatively, if one had access to outcomes,
then similarly as for the balancing score error, we can bound
the confounding bias with a “prognostic score error”.

On the other hand, note that the balancing score error allows
us to control the resulting bias with only mild assumptions
on the outcome model. We formalize this next.

Proposition 3.5. Under Assumptions 2.3, 3.1, 3.2, for any
set M of L2(PX) functions such that EP [Ỹ |x] ∈ M,
for any measurable representation ϕ, and for any L2(PX)
weights w wrt P depending on ϕ(x) PX -a.s., defining
ϕ(M, P ) as in Equation 3,

|BiasP,Q(w)| ≤ IPMϕ(M,P )(P
w
ϕ(X), Qϕ(X))

+ ||Ỹ ||L2(P ) · BSEP,Q(ϕ).

We note that the bound of Proposition 3.5 is “sharp” in
the sense that when we replace the IPM and the BSE by
the (unknown) terms they bound, namely the bias wrt the
representation and the confounding bias, the inequality be-
comes an equality. It further suggests a two-step approach
to minimize the overall bias on the LHS. First, learn a repre-
sentation ϕ that minimizes the BSE, i.e. the second term of
the RHS, plug this learnt representation ϕ into an IPM and
find weights minimizing it, or in other words minimizing the
first term of the RHS. To learn the representation, the BSE
could be used in addition or in replacement of the traditional
likelihood to learn propensity score models. Importantly,
we can bypass propensity score estimation algother and
posit more general representations, including multivariate
functions. We turn to this in the next sections.

3.2 OPERATIONALIZING AND MINIMIZING
INFORMATION LOSS

While we have avoided the need to specify an outcome
model EP [Ỹ |x], a key bottleneck remains for the balanc-
ing score error: we do not have access to the true weights
dQX

dPX
(X) or their projection dQϕ(X)

dPϕ(X)
(ϕ(X)). One possible

workaround is to first remove the projection by using the
definition of a conditional expectation: for any function g
on the image space of ϕ,

BSEP,Q(ϕ) ≤
∣∣∣∣∣∣∣∣dQX

dPX
(X)− g(ϕ(X))

∣∣∣∣∣∣∣∣
L2(P )

. (8)

In particular, for ϵ > 0, if there exists any function g on
the image space of ϕ such that the RHS of Equation 8 is
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Figure 1: Neural Network to Learn a Representation ϕ.

below ϵ/||Ỹ ||L2(P ), then ϕ has an absolute confounding bias
at most ϵ. This gives us more flexibility than working with
the true projection of dQX

dPX
, and motivates finding an g and

ϕ minimizing the RHS.

This approach, however, is insufficient since we still do not
have access to dQX

dPX
. A key result from the covariate shift

literature [Kanamori et al., 2009], notably exploited in the
AutoDML literature [Chernozhukov et al., 2022a,b], helps
us remove dQX

dPX
from the minimization entirely : for any

distributions P,Q verifying Assumption 2.3, and for any
function v,

∣∣∣∣ dQX

dPX
(X) − v(X)

∣∣∣∣2
L2(P )

is equal to LP,Q(v)

up to an additive constant wrt v, where we refer to

LP,Q(v) := EP [v(X)2]− 2 · EQ[v(X)]

as the AutoDML loss. In particular, LP,Q(v) can be esti-
mated in finite samples for any known v, as

LP,Q(v) =
1

|P|
∑
i∈P

v(Xi)
2 − 2

|Q|
∑
i∈Q

v(Xi)

This motivates an approach to learn a representation ϕ. We
posit a parameterized representation ϕ(x; θϕ) with values in
a space Φ, and a scalar parameterized function g(.; θg) on Φ.
Then we minimize LP,Q(g(ϕ(.; θϕ); θg)) wrt θϕ, θg . Due to
the compositionality of neural networks, we parameterize g
and ϕ jointly in a neural network which is plugged into the
AutoDML loss, similarly to the Riesz representer compo-
nent of RieszNet [Chernozhukov et al., 2022a], and where a
pre-specified, potentially low-dimensional hidden layer is
later used as the representation ϕ [Clivio et al., 2022]. This
is illustrated in Figure 1. Unlike RieszNet, we do not use
any outcome information and we do not use the final Riesz
representer head as the solution weight function, but instead
plug the representation into a probability distance to obtain
such a solution, as we will see shortly. We later show that
this yields lower biases in our experiments.



3.3 EXTENSION TO SIMULTANEOUS
WEIGHTINGS

In ATE estimation, one aims at estimating all µ(a) :=
E[Y (a)] for all a ∈ A simultaneously. This can be done
[Martinet, 2020] by finding a function f(a) minimizing

E[(µ(A)− f(A))2]

over functions f defined by

f(a) = E[wa(X)E[Y |X,A = a] | A = a]

where wa(X) is a weight function wrt P data
X|A=a. This is

equivalent to minimizing

E[Bias2P data(.|A),P data(.)(wA)],

which is a special case of minimizing the joint squared
bias

Bias2PΛ,QΛ,pΛ
(wΛ) := EpΛ(α)[Bias2Pα,Qα(wα)]

where α belongs to a set Λ endowed with a probability distri-
bution pΛ(α), hΛ := (hα)α∈Λ for any h, and Pα, Qα, wα

are a source distribution, a target distribution, a weight func-
tion indexed by α ∈ Λ, respectively. The following corollary
extends previous results on the balancing score error to the
setting of simultaneous weighting problems.

Corollary 3.6. Let Λ be a set endowed with a distribution
pΛ(α), PΛ, QΛ be mappings from Λ to a distribution such
that for any α ∈ Λ, Pα, Qα satisfy Assumptions 2.3, 3.1,
3.2. Then for anyMΛ such that ∀α ∈ Λ, EPα [Ỹ |x] ∈Mα

whereMα is a set of L2(PX) functions, for any mapping
ϕΛ from Λ to measurable representations, for any wΛ such
that each wα(x) is an L2(P

α
X) weight function wrt Pα

depending on ϕα(x),

1

2
· Bias2PΛ,QΛ(wΛ)

≤ EpΛ(α)

[
IPM2

ϕα(Mα,Pα)(P
α,wα

ϕα(X), Q
α
ϕα(X))

]
+

(
sup
α∈Λ
||Ỹ ||2L2(Pα)

)
· BSE2

PΛ,QΛ,pΛ
(ϕΛ).

where we call

BSE2
PΛ,QΛ,pΛ

(ϕΛ) := EpΛ(α)[BSE2
Pα,Qα(ϕα)]

the joint squared balancing score error.

We also note that this framework is identical to Problem
2.1 when Λ is of cardinality 1. Finally, we can extend the
previous section to simultaneous weights, where we now
find an indexed representation ϕΛ that minimizes the joint
squared balancing score error. We do so by first positing a
parameterized representation ϕ(x, α; θϕ) belonging to some

space Φ and a scalar parameterized function g(φ, α; θg) on
the Φ× Λ space, and then minimizing

Lg,ϕ,pΛ

PΛ,QΛ(θ) = EpΛ(α)

[
LPα,Qα(g(ϕ(., α; θϕ), α; θg))

]
wrt θϕ, θg , where Pα,Qα are samples from Pα, Qα.

If desired, we can separate the problem of minimizing the
joint squared bias into independent weighting problems,
minimizing each individual bias separately, especially when
Λ is finite and with few elements. However, we can also
share parameters or dependencies between individual prob-
lems, e.g. use the same representation for all problems, i.e.
ϕα := ϕ for some ϕ for all α ∈ Λ, or share parameters
θϕ, θg between problems α ∈ Λ, notably when there are
few samples for every Pα or Qα as in ATE estimation with
high-cardinal A.

For completeness, we now give examples of Λ,PΛ,QΛ.
In ATE estimation, we have access to samples
{(xi, ai, yi)}i=1,··· ,n of P data(X,A, Y ). Then, Λ = A
and for each α = a ∈ A, Pa = {(xi, yi)}i:ai=a,
Qa = Q0 := {xi}i=1,··· ,n. In ATT estimation, where
A is binary, then Λ = {0}, P0 = {(xi, yi)}i:ai=0,
Q0 = {xi}i:ai=1. In transportability, Λ = {0},
we have access to samples {(xi, ai, yi)}i=1,··· ,n of
the RCT distribution P data(X,A, Y |S = 1), sam-
ples {(xi)}i=n+1,··· ,n+m of some observational data
P (X|S = 0), and π = P data(A = 1|S = 1), so
Λ = {0}, P0 = {(xi, ỹi = aiyi

π − (1−ai)yi

1−π )}i=1,··· ,n,
Q0 = {xi}i=n+1,··· ,n+m.

3.4 WEIGHTING AND ALGORITHM

Learning a representation by minimizing a bound of the
BSE helped us minimize the second term of the RHS of
Proposition 3.5. We now turn to minimizing the first term,
that is finding weights. In finite samples, we aim to find
discrete weights wi = w(Xi) for i ∈ P , with constraints
∀i ∈ P, wi ≥ 0 and 1

|P|
∑

i∈P wi = 1.

In line with Proposition 3.3, we would ideally obtain ŵ by
solving Equation 1 with IPMϕ(M,P)(Pw

ϕ(X),Qϕ(X)) where
Pw is the empirical distribution over P with probabilities
wi/|P|. However, asM is unknown, IPMϕ(M,P ) will remain
unknown. Proposition 9 of Clivio et al. [2022] suggests
that ifM is the set of L-Lipschitz constants and ϕ(x) is a
neural network with invertible and bi-Lipschitz activation
functions, then ϕ(M, P ) is contained in the class of L′-
Lipschitz functions for some L′ that depends on the weights
and bi-Lipschitz constant of ϕ and might be significantly
larger than L.

For computational simplicity, we work with a canonical
IPM and choose the maximal mean discrepancy wrt some
kernel k [Gretton et al., 2012], following common practice
in the literature [Kallus, 2020b, Huling and Mak, 2024].



Input : Distribution pΛ(α) over α ∈ Λ, model
g(ϕ(., α; θϕ), α; θg), for each α: samples Pα,Qα,
kernel kα, hyperparameter σα ≥ 0.

Initialize θ := (θϕ, θg);
while θ not converged do

Move θ in direction −∇θLg,ϕ,p
PΛ,QΛ(θ);

end
for α ∈ Λ do

ϕα(x)← ϕ(x, α, θϕ);
k̃α(x, x′)← kα(ϕα(x), ϕα(x′));
ŵα ← kernel optimal matching with simplex
weights, kernel k̃α and regularization
hyperparameter (σα)2 ;

end
Result: ŵΛ

Algorithm 1: Representation Learning and Weighting.

More generally, minimizing such an MMD under the above
weight constraints is referred to as kernel optimal matching
(KOM) with simplex weights [Kallus, 2020b] in causal infer-
ence, where we change the setting from treated and control
distributions to source and control distributions, or empiri-
cal kernel mean matching (KMM) [Huang et al., 2006] in
covariate shift, where we add L2 regularization. This mini-
mization amounts to solving a quadratic program (QP) with
linear constraints, which can be done using any off-the-shelf
QP solver. The σ2 hyperparameter for regularization can be
selected either with a fixed value (e.g. 0 as in Huling and
Mak [2024]) or from a principled procedure [Kallus, 2020b].
In the case of simultaneous weightings, this procedure can
be repeated for each problem indexed α = 1, · · · , ℓ. Our
exact implementation of kernel optimal/mean matching for
this purpose is given in Appendix E

We summarize all the previous steps in Algorithm 1. Each
component ŵα of its result ŵΛ is then plugged in an estima-
tor τ̂αŵα of EPα

ŵα
[EPα [Ỹ |X]] as

τ̂αŵα =
1

|Pα|
∑
i∈Pα

ŵα
i Ỹi.

This estimator could be analyzed theoretically (e.g. for con-
sistency, error rates, ...) by inspecting, for each α ∈ Λ, two
separate terms : (i) the confounding bias of the learnt repre-
sentation ϕα, and (ii) the difference between the estimator
and the representation-wise estimand EQα [EPα [Ỹ |ϕ̂α(X)]].
As the representation is learnt using the same loss as Equa-
tion 2.6 of Chernozhukov et al. [2024] and the confounding
bias of the learnt representation is bounded by its balancing
score error, itself bounded by the Riesz representer error in
Theorem 2.1 of Chernozhukov et al. [2024], we can resort
to their results. Then, the difference between estimator and
representation-wise estimand can be analyzed using previ-

ous work on analysis of KOM or KMM, such as Kallus
[2020b] or Yu and Szepesvári [2012].

4 RELATED WORK

Generalization bounds. An adjacent line of work to ours
is generalization bounds in domain adaptation, where one
aims to bound the risk of a model on a target domain us-
ing the risk on a source domain. Typically, this involves a
representation and the bound includes an IPM analogous to
ours [Ben-David et al., 2006, Zhao et al., 2018a,b, Li et al.,
2023]. In extensions of such bounds to causal inference,
where a counterfactual risk is bounded using a factual risk
and an IPM as before but the representation is usually as-
sumed to be invertible [Shalit et al., 2017, Bellot et al., 2022,
Johansson et al., 2022, Kazemi and Ester, 2024], precluding
the study of misspecified or confounded representations.
Thus, usually no term quantifying the “misspecification” of
the representation is added. Notable exceptions are Johans-
son et al. [2019] in domain generalization and Curth et al.
[2021] in causal inference which include an information loss
without actively trying to minimize it. The information loss
from Johansson et al. [2019] can be shown to be identical
to our confounding bias with the outcome replaced by the
loss function. A balancing score error analogous to ours will
bound this information loss if the loss function is bounded
above by a constant and our AutoDML loss-based approach
can be used too.

Confounding bias, balancing score error D’Amour and
Franks [2021] also define a confounding bias and their
Proposition 2 can be shown to be a special case of our Propo-
sition 3.4 for ATE estimation, which they only compute in
a restricted case with Gaussian covariates and generalized
linear models for outcome and propensity models. Melny-
chuk et al. [2024] define a conditional confounding bias and
estimate bounds of it for a fixed representation instead of
learning it using their bounds, which does not seem trivial
as their estimation relies on two different neural network fit-
ting steps after fitting the representation. Clivio et al. [2022]
provide an alternative error on how much the representation
is not a balancing score but they mention that it is difficult to
compute and do not use it to learn the representation, which
relies on assuming a propensity score model. Further, note
that approaches to sensitivity analysis generally derive or
bound the confounding bias induced by not including un-
observed confounders in the adjustment set [Imbens, 2003,
Tan, 2006, Hartman and Huang, 2024], although this is done
by making about assumptions on the relationship between
unobserved confounders and other variables in the data gen-
erating process ; in contrast, aforementionned methods and
our work pertain to a setting without such unobserved con-
founders.

Learning representations for treatment effects. For
weighting, besides points developed in Section 2.3, Deep-



Match [Kallus, 2020a] requires a grid search involving mul-
tiple neural network trainings (50 in the experiments) and
other models [Averitt et al., 2020, Kitazawa, 2022] take an
f -divergence as the discrepancy measure but do not provide
bounds on the bias, which is likely inherent to the non-
intersection of IPMs and f -divergences [Sriperumbudur
et al., 2012]. Other methods learn representations using out-
come regression, alone or with weights [Shalit et al., 2017,
Johansson et al., 2022, Chernozhukov et al., 2022a].

Outcome-based weights and representations Some meth-
ods use outcomes to derive (i) the outcome function class
M e.g. as a confidence interval around a regressed outcome
model as in Wainstein [2022]; (ii) the representation ϕ as
in the canonical prognostic scores [Hansen, 2008] or more
recent and more general deconfounding scores [D’Amour
and Franks, 2021]; or (iii) the weights more generally, e.g.
by directly estimating the density ratio between the source
and target distributions of the outcome [Taufiq et al., 2023].
Finally, many standard outcome modeling approaches, such
as (kernel ridge) regression are implicitly weighting estima-
tors so one could use such approaches to derive weights;
see, for example, Bruns-Smith et al. [2023].

5 NUMERICAL RESULTS

We now evaluate our method and alternatives on the IHDP
[Hill, 2011] and News datasets [Johansson et al., 2016] for
ATE estimation and a Traumatic Brain Injury (TBI) dataset
[Colnet et al., 2024] for transportability.

For weighting, we focus on KOM for two kernels, 1) the
energy distance kernel k(x, x′) = −||x− x′||2; KOM with
this kernel is known as energy balancing [Huling and Mak,
2024] ; 2) the linear kernel k(x, x′) = xTx′. We evaluate
these two methods with original covariates (“Energy” and
“Linear”), a representation learned according to our approach
(“Ours + Energy” and “Ours + Linear”), one through the
canonical Principal Component Analysis (PCA, Hotelling
[1933]) approach (“PCA + Energy” and “PCA + Linear”),
the propensity score model vector ((p̂(a|x))a∈A for ATE
estimation, (p̂(s|x))s=0,1 for transportability) learnt with
a gradient boosting classifier (“PS + Energy” and “PS +
Linear”), representations from a layer of a neural network
model of such propensity score models as in neural score
matching (NSM, Clivio et al. [2022]) (“NSM + Energy”
and “NSM + Linear”). We also check IPW with the same
propensity scores (“IPW”), entropy balancing with first-
order moments (“Entropy”), the weights head of the neural
network used to train our representation(“NN Head”), and
uniform weights (“Unweighted”). Weights from “IPW” and
“NN Head” were normalized to prevent outsize errors, while
those from other methods were already normalized by de-
sign.

On energy balancing or linear kernel methods, we take

σα = 0.01. KOM was performed using the osqp library
in Python [Stellato et al., 2020], in line with the imple-
mentation of energy balancing in the weightit package
[Greifer, 2024]. All representations are 10-dimensional, and
we always use a common representation for all treatment
arms. The neural network first has a 200-unit layer, a 10-unit
layer corresponding to the representation, a second 200-unit
layer, and finally the scalar head. Neural network imple-
mentation was performed in PyTorch [Paszke et al., 2019].
Adam [Kingma and Ba, 2015] was used to optimize the
loss with a learning rate of 0.01 and early stopping with a
patience of 3 epochs, and all other hyperparameters at their
default PyTorch values. We average results over 50 random
seeds for IHDP and News, 100 for TBI. We show standard
errors in parentheses.

Table 1: Joint Bias on the IHDP, News and TBI Datasets

Method IHDP News TBI

Ours + Energy
0.079

(0.011)
0.128

(0.014)
5.00

(0.37)

NSM + Energy
0.167

(0.040)
0.070

(0.013)
5.40

(0.53)

PS + Energy
0.096

(0.012)
0.381

(0.026)
7.79

(0.53)

PCA + Energy
0.080

(0.014)
0.314

(0.020)
10.65
(0.82)

Energy
0.078

(0.014)
0.397

(0.027)
10.69
(0.83)

Ours + Linear
0.087

(0.009)
0.122

(0.013)
18.50
(1.61)

NSM + Linear
0.183

(0.043)
0.113

(0.018)
19.20
(1.71)

PS + Linear
0.105

(0.017)
0.499

(0.036)
13.22
(1.15)

PCA + Linear
0.077

(0.013)
0.321

(0.023)
63.86
(2.29)

Linear
0.076

(0.011)
0.168

(0.011)
22.71
(1.75)

Entropy
0.087

(0.013)
0.221

(0.020)
7.63

(0.60)

IPW
0.114

(0.024)
0.280

(0.018)
2.28

(0.18)

NN Head
0.181

(0.031)
0.746

(0.121)
59.71
(2.52)

Unweighted
0.195
(0.050

0.611
(0.053)

7.67
(0.15)

As a metric, we consider the joint bias (JB), which is the
square-root of the joint squared bias where the target esti-



mand is replaced by the average (known) outcome model
over the empirical target distribution,√√√√∑

α∈Λ

pΛ(α)

(∑
i∈Pα wα

i Ỹi

|Pα|
−
∑

i∈Qα EPα [Ỹ |xi]
|Qα|

)2

.

Results are shown in Table 1. For either energy or linear
KOM, our representation typically outperforms all other
representations; exceptions are NSM on News for both ker-
nels, the propensity score on TBI with the linear kernel,
original covariates for both kernels and PCA for the linear
kernel on IHDP. It further outperforms baselines not relying
on KOM on IHDP and News for both kernels and on TBI
for the energy balancing kernel, except entropy balancing
for the linear kernel on IHDP and IPW on News. We note
that the linear kernel yields generally degraded performance
on TBI compared to the energy balancing kernel, but not
other datasets. On IHDP, each KOM method performs bet-
ter using original covariates than using a representation,
which suggests that dimensionality reduction in any form
is not necessarily beneficial on such a dataset where 16 out
of 25 covariates are binary. Notably, on all datasets, using
our representation with any KOM outperforms the Riesz
representer head of the same neural network used to train
the representation. Further, on the 3477-dimensional News
dataset, energy balancing was significantly sped up when
using a lower-dimensional representation instead of original
covariates.

On TBI, high biases are due to a wide range of pseudo-
outcomes (e.g. from−8.37 to 174.18, with a target estimand
at 56.89 on seed 5), and the highest biases to weights with
most of their mass on a single point with an pseudo-outcome
far away from the target estimand (e.g. 97% of the mass on
an pseudo-outcome of 145.40 for NN Head, compared to
at most 5% on an pseudo-outcome of 117.97 for entropy
balancing, still on seed 5).

6 LIMITATIONS AND CONCLUSION

We have shown the importance of the confounding bias and
the balancing score error (BSE) in learning representations
for weighting, and have outlined a method to minimize the
BSE. Experimental results suggest that representations ob-
tained from the method might help improve performance
for common optimization-based weighting approaches. The
method could notably be applied to multimodal data in-
volving tabular, text and image covariates [Klaassen et al.,
2024].

One concern could be that the functions g, ϕ are generally
not uniquely identifiable by minimizing the AutoDML loss.
Without restrictions, many different (g, ϕ) tuples will in-
deed share the same value of the AutoDML loss, e.g. any
(gh, ϕh) = (g ◦ h, h−1(ϕ)) where h is invertible. However,
restricting g and ϕ to be components of a neural network

with a given architecture will exclude many possible invert-
ible h’s. Some h’s will remain though, such as h(z) = λ⊙z
where ⊙ is the Hadamard product and λi ̸= 0 ∀i, which
means that the returned ϕ might have arbitrary amplitude
or smoothness. A workaround could be in adding some reg-
ularization of ϕ in the AutoDML loss, eg through weight
decay. We do not perform weight decay and still obtain com-
petitive performance in later experiments, which suggests
that Adam optimization might choose an appropriate ϕ in
practice.

Directions for future work to address limitations of our cur-
rent approach include: (1) check whether such quantification
of the representation’s quality can also be done for aug-
mented estimators, (2) evaluate the currently unknown gaps
between the confounding bias and the BSE, and between
the BSE and the AutoDML objective ; the latter provides a
worst-case error but can be overly conservative ; (3) char-
acterize the function class of the projection of the outcome
model on the representation, depending on the class of the
original outcome model or that of the representation, instead
of assuming a canonical RKHS as we do now ; (4) develop
a more thorough theoretical analysis of the estimator than
the strategy presented in this paper.
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A DETAILS ON PROBLEMS IN CAUSAL INFERENCE

Under the assumptions of no interference and consistency, A = a implies Y = Y (a), which can written as
Y =

∑
a∈A 1{A=a}Y (a) or, more compactly, Y = Y (A). Further, under unconfoundedness and overlap we have that

E[Y (a)|X] = E[Y |A = a,X], helping identify causal effects of interest which we detail below.

In ATT estimation [Ben-Michael et al., 2021], we are interested in the effect of a binary treatment on the population
receiving it, that is E[Y (1) − Y (0)|A = 1]. Thanks to consistency and no interference, E[Y (1)|A = 1] is accessible as
the average of outcomes on the treated distribution, so the challenging part is estimating E[Y (0)|A = 1]. The weighting
approach is then to reweight the control distribution, on which Y (0) = Y , that is to find a function w(x) such that

E[Y (0)|A = 1] = E[w(X)Y |A = 0] ≈ 1

{i : Ai = 0}
∑

i:Ai=0

w(Xi)Yi.

In average potential outcome estimation [Huling and Mak, 2024], for a fixed a ∈ A, we are interested in the marginal
effect of the potential outcome wrt a, that is E[Y (a)]. The weighting approach is then to reweight the distribution of the
population for which A = a, implying Y (a) = Y , i.e. find a function wa(x) such that

E[Y (a)] = E[wa(X)Y |A = a] ≈ 1

{i : Ai = a}
∑

i:Ai=a

wa(Xi)Yi.

We note that the closely related goal of ATE estimation, that is when A is binary and we want E[Y (1)− Y (0)], can be
solved by average potential outcome estimation for both a = 1 and a = 0 separately. With some abuse of notation, we use
the two names of average potential outcome estimation and ATE estimation interchangeably.

In generalizability and transportability [Colnet et al., 2024, Degtiar and Rose, 2023], A is binary again and we have
an other binary variable S such that S = 1 denotes membership in the RCT population, that is A ⊥⊥ X|S = 1 and
(Y (1), Y (0)) ⊥⊥ A|S = 1. We are interested in E[Y (1) − Y (0)] for generalizability and E[Y (1) − Y (0)|S = 0] for
transportability. What motivates weighting here is that we do not have access toA, Y when S = 0. Under the transportability
assumption, the conditional average treatment effect is identical between RCT and non-RCT populations, i.e. for any x,
CATE(x) := E[Y (1)− Y (0)|x] is equal to both E[Y (1)− Y (0)|x, S = 1] and E[Y (1)− Y (0)|x, S = 0]. In addition, the
CATE is identified on the RCT population as CATE(x) = E

[
AY

P (A=1|S=1) −
(1−A)Y

P (A=0|S=1)

∣∣∣X = x, S = 1
]
. Then, defining

π = P (A = 1|S = 1), the weighting approach is to reweight the distribution of the RCT population, i.e. find weights w
such that

E[Y (1)− Y (0)] = E[w(X) · CATE(X)|S = 1] ≈ 1

|{i : Si = 1}|
∑

i:Si=1

w(Xi)

(
AiYi
π
− (1−Ai)Y

1− π

)
in generalizability or such that

E[Y (1)− Y (0)|S = 0] = E[w(X) · CATE(X)|S = 1] ≈ 1

|{i : Si = 1}|
∑

i:Si=1

w(Xi)

(
AiYi
π
− (1−Ai)Y

1− π

)
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in transportability. Due to the similarity of both frameworks, without loss of generality, we focus on transportability as in
Colnet et al. [2024] and Egami and Hartman [2021] which study variable selection in this setting.

Note that the framework of Problem 2.1 generally does not allow for CATE estimation, as the CATE is a function and the
target EQ[EP [Ỹ |X]] is a scalar. Alternatively, one can perform simultaneous weightings as in Section 3.3, where for every
problem we fix a covariate value x0 and a treatment value a and take the target estimand to be the E[Y |A = a,X = x0].
We can take the pseudo-outcome to be Y , the source distribution to be P data(X,Y |A = a) and the target distribution to be
P data(X|X = x0). However, this choice of target distribution would be a spike at X = x0, potentially violating Assumption
2.3 in many widely-applicable situations, e.g. if the source distribution of covariates has a density wrt the Borel measure. As
in Ben-Michael et al. [2021], such a problem with spikes could be mitigated with smoothing. If Assumption 2.3 does hold,
e.g. if the source distribution of covariates is discrete and has a non-zero mass at x0, then it could actually be possible to
perform weighting, although we are not aware of such an approach in the previous literature.

B GENERALIZATION OF FORMER “SCORE” NOTIONS

More rigorously, the confounding bias is zero in three important cases:

1. EP [Ỹ |x] is a function of ϕ(x) PX−a.s., where we call ϕ(x) a “generalized prognostic score” ;

2. dQ
dP (x) is a function of ϕ(x) PX−a.s., where we call ϕ(x) a “generalized balancing score” ;

3. The confounding bias is zero without ϕ necessarily being a generalized prognostic or balancing score, where we call
ϕ(x) a “generalized deconfounding score”.

The following result connects these notions to previous literature.

Proposition B.1. In ATT/ATE estimation, a) balancing scores [Rosenbaum and Rubin, 1983b] are equivalent to generalized
balancing scores . In ATE estimation, b) deconfounding scores [D’Amour and Franks, 2021] are equivalent to generalized
deconfounding scores, c) prognostic scores [Hansen, 2008] are generalized prognostic scores, and the converse is true if

∀a ∈ A, Y (a) ⊥⊥ X | E[Y |X,A = a].

In transportability [Egami and Hartman, 2021], assuming that the transportability assumption holds for X, d) heterogeneity
sets are generalized prognostic scores, e) sampling sets are generalized balancing scores, f) separating sets are generalized
deconfounding scores.

Thus, these “generalized” scores extend existing notions of prognostic, balancing and deconfounding scores from the
literature to the more general framework from Problem 2.1 and connect them to the confounding bias, refining our
understanding of why these scores are well-suited for weighting. They also connect notions used for variable selection in
transportability to the score notions from weighting for the ATT or the ATE.

We might say that the generalized notions clearly outline the “proper” definitions of their original counterparts, in a sense
that they are either equivalent to them, or weaker than them while preserving properties required for deconfounding, as
illustrated by generalized prognostic scores. Hence, for the remainder of the paper, we omit the “generalized” adjective from
all notions of scores.

C REPRESENTATION SELECTION

To select between two representations ϕ1 and ϕ2, one can choose the representation with the lowest BSE. This is equivalent
to compare ming1 LP,Q(g1(ϕ1(.)) and ming2 LP,Q(g2(ϕ2(.)), where each minimization is taken over all functions. These
are inaccessible, but we can instead perform each minimization under a rich parameterized class of functions. Particularly,
this would help select between two fitted propensity score models and we expect that the one with the best prediction
performance might not necessarily be selected.

Further, we note that the AutoDML loss makes us lose the ability of evaluating how approximately deconfounding is one
representation, instead of comparing different representations. Flexible density ratio estimators [Arbour et al., 2021] could
be plugged into the balancing score error, especially as both the true weights and their expectation conditional on the
representation are density ratios from Assumption 1 and Proposition 3.4.



D DETAILS ON EXPERIMENTS

Code Our code is available at https://github.com/oscarclivio/representations_weighting.

Origin of datasets We extracted IHDP [Hill, 2011] from the GitHub repository for Dragonnet [Shi et al., 2019]
at https://github.com/claudiashi57/dragonnet/tree/master/dat/ihdp/csv, News [Johansson
et al., 2016] from https://www.fredjo.com/files/NEWS_csv.zip and TBI [Colnet et al., 2024] from
https://github.com/BenedicteColnet/IPSW-categorical. In addition, TBI is covered by a MIT license,
and the original data source for News [Newman, 2008] by a CC BY 4.0 license.

Infrastructure We ran experiments on a laptop with a GeForce GTX 1070 GPU with Max-Q Design and 12 CPU core.
We used our own Python implementation for datasets (after downloading the data), weighting methods and representation
learning techniques, including propensity score modelling and neural network fitting.

Choice of hyperparameters We tried different sets of hyperparameters for neural networks, and first chose a set such
that our approach had good performance (outperformed by at most one other method) on two different datasets each in a
separate task under the energy balancing. Several sets verified this property, however performance of individual methods and
individual hyperparameters was generally unequal among datasets. For ATE estimation, our method had the same ranking as
in the paper for many hyperparameters on News, but was outperformed by standard kernel balancing on IHDP [Hill, 2011,
Shalit et al., 2017] and ACIC 2016 [Dorie et al., 2019]. For ATT estimation, at the time of writing, we did not find such
“good” hyperparameters on News and ACIC2016, but did so on IHDP and Jobs [LaLonde, 1986, Johansson et al., 2016].
This generally shows that different hyperparameters should be tested, especially for neural network-based methods. Defining
a principled way (that does not use ground-truth target estimands) to select them for weighting has to be addressed in future
work.

Misspecified outcome classes We note that in our experiments, the outcome classM is often not correctly specified.
Indeed, note that in our datasets

• The control outcome model in IHDP in its setting B [Hill, 2011], as used to generate the data [Shi et al., 2019], linearly
depends on an exponential eβ.x function for some β.

• The outcome models for News linearly depend on the vector of topic probabilities z(x) in Johansson et al. [2016], where
we note that weights in this linear relationship are further positive. Noting k the number of topics, we then have for
any x, zi(x) ≥ 1

k for at least one i, and noting w0 the minimal weight we obtain that ∀a = 0, 1, E[Y |x,A = a] ≥ w0

k ,
thus either treated or control outcome model is bounded away from 0.

• The outcome model for TBI is quadratic in x [Colnet et al., 2024].

Thus, outcome functions on IHDP, News and TBI are clearly not linear functions, thus misspecified for linear kernel optimal
matching. For energy balancing, none of the outcome functions above is square-integrable (here without a probability
measure; IHDP and TBI due to their functional forms, News due to being bounded away from 0), thus none of them is
Sobolev of any order. As the covariate space for IHDP and News has an odd dimensionality, these functions are misspecified
outcome functions for the class corresponding to the energy distance according to page 12 of Mak and Joseph [2018]. This
is less clear for the outcome model of the TBI dataset which has even dimensionality ; we conjecture that this outcome
model is misspecified too, as its outcome model is not Sobolev of any order and Sobolev spaces up to a certain order are
invoked as canonical members of the outcome class corresponding in Huling and Mak [2024].

E DETAILS ON OUR IMPLEMENTATION OF KERNEL OPTIMAL OR MEAN
MATCHING

When applied to the representation ϕ composed through a kernel k, the square of the MMD is:

MMD2
k(Pw,Q) =

1

|P|2
∑
i,j∈P

wiwjk(ϕ(xi), ϕ(xj))

− 2

|P||Q|
∑

i∈P,j∈P
wik(ϕ(xi), ϕ(xj))

https://github.com/oscarclivio/representations_weighting
https://github.com/claudiashi57/dragonnet/tree/master/dat/ihdp/csv
https://www.fredjo.com/files/NEWS_csv.zip
https://github.com/BenedicteColnet/IPSW-categorical


+
1

|Q|2
∑
i,j∈Q

k(ϕ(xi), ϕ(xj)).

Thus, its minimization with regularization is a quadratic problem (QP)

min
w

1

2
wTSw + vTw subject to l ≤ Aw ≤ u (9)

that can be solved with any off-the-shelf solver solver(S, v, l, A, u) (e.g. Stellato et al. [2020]). Noting IP the identity
matrix over P , we have

S = Sk,ϕ,σ
P,Q := (2/|P|2 · k(ϕ(xi), ϕ(xj)) + 2σ2 · IP)i,j∈P ,

v := vk,ϕP,Q = (−2/|P||Q| ·
∑
j∈Q

k(ϕ(xi), ϕ(xj)))i∈P ,

A := AP =

(
IP

1 · · · 1

)
, l := lP = (0, · · · , 0︸ ︷︷ ︸

|P| times

, |P|)T ,

u = uP = (+∞, · · · ,+∞︸ ︷︷ ︸
|P| times

, |P|)T

For the joint squared bias with a finite Λ = {1, · · · , ℓ}, we sum all objectives from Proposition 3.3 over each α = 1, · · · , ℓ
with Pα,Qα, ϕα, σα and with kernel kα, giving

S = SkΛ,ϕΛ,σΛ

PΛ,QΛ := diag
(
(Sk,ϕi,σi

Pi,Qi )i=1,··· ,ℓ

)
(10)

v = vk
Λ,ϕΛ

PΛ,QΛ :=


vk

1,ϕ1

P1,Q1

...
vk

ℓ,ϕℓ

Pℓ,Qℓ

 , ψ = ψPΛ :=

 ψP1

...
ψPℓ

 ,

for ψ ∈ A, l, u. This step is agnostic to how σα is selected, either with a fixed value (e.g. 0 as in Huling and Mak [2024]) or
from a principled procedure [Kallus, 2020b].pointwise

F PROOF OF RESULTS

F.1 PROOF OF PROPOSITION 3.3

F.1.1 Item 1

First, note that we can restrict our attention to weight functions w in L2(PX), that is such that w(X) ∈ L2(P ), as the
objective will be∞ for weights functions not in L2(PX). For any L2(PX) weight function and function g ∈ G, we have∣∣∣EPw

X
[g ◦ ϕ]− EQX

[g ◦ ϕ]
∣∣∣ = ∣∣∣EPw [(g ◦ ϕ)(X)]− EQ[(g ◦ ϕ)(X)]

∣∣∣
=
∣∣∣EPw [g(ϕ(X))]− EQ[g(ϕ(X))]

∣∣∣
=
∣∣∣EPw

ϕ(X)
[g]− EQϕ(X)

[g]
∣∣∣.

where all integrals are well-defined, as g(ϕ(X)) ∈ L2(P ) by assumption in the Proposition and dQX

dPX
(X) ∈ L2(P ) from

Assumptions 2.3 3.1. Taking the supremum over g ∈ G, we have

IPMM(Pw
X , QX) = IPMG(P

w
ϕ(X), Qϕ(X))

whereM = {x→ (g ◦ ϕ)(x), g ∈ G}. Note thatM⊆ L2(PX), and that all of this also justifies the claim that the bias wrt
ϕ is bounded by IPMG(P

w
ϕ(X), Qϕ(X)). Thus, we are solving

min
w∈A

J(w)



where

A := {w ∈ L2(PX) | w ≥ 0 PX -a.s.,EP [w(X)] = 1}
J(w) := IM(w)2 + σ2 · S(w)

IM(w) := IPMM(Pw
X , QX)

S(w) := EP [w(X)2]

where functions in L2(PX) are identified PX -a.s.. We note that infw∈AJ(w) is finite, as dQX

dPX
∈ A from Assumption 3.1

and J( dQX

dPX
) = σ2 · EP

[(
dQX

dPX
(X)

)2]
<∞.

We prove the first item of the Proposition in three parts :

1. There is at most one solution.

2. There is at least one solution.

3. Any solution is a function of ϕ(x) PX -a.s.

Note that (i) only the third part uses the fact that functions in M are functions of ϕ(x) PX -a.s., (ii) under stronger
assumptions on the class G, the result also follows directly from Theorem 4.1 of Bruns-Smith and Feller [2022], while the
following analysis presents more relaxed assumptions over G.

Part 1 : There is at most one solution A is clearly a convex subset of L2(PX), and J is strictly convex. Indeed, for any
t ∈ [0, 1], w1, w2 ∈ A, m ∈M, letting wt = tw1 + (1− t)w2

|EPwt [m(X)]− EQ[m(X)]|
= |t (EPw1 [m(X)]− EQ[m(X)]) + (1− t) (EPw2 [m(X)]− EQ[m(X)])|
≤ t |EPw1 [m(X)]− EQ[m(X)]) + (1− t) |EPw2 [m(X)]− EQ[m(X)]| from the triangle inequality
≤ tIM(w1) + (1− t)IM(w2) taking the supremum wrt m on each term on the RHS

so taking the supremum wrt m on the LHS, IM(wt) ≤ tIM(w1) + (1 − t)IM(w2) ; thus IM is convex. As u 7→ u2 is
convex non-decreasing, I2M is convex. Also, for any t ∈ [0, 1], w1, w2 ∈ A, m ∈M, again letting wt = tw1 + (1− t)w2,

tS(w1) + (1− t)S(w2)− S(wt)

= tEP [w1(X)2] + (1− t)EP [w2(X)2]− EP [(tw1(X) + (1− t)w2(X))2]

= tEP [w1(X)2] + (1− t)EP [w2(X)2]− t2EP [w1(X)2]− (1− t)2EP [w2(X)2]− 2t(1− t)EP [w1(X)w2(X)]

= t(1− t)EP [(w1(X)− w2(X))2]

which is non-negative, and zero iff t = 0, t = 1 or w1 = w2 PX−a.s.. Thus, S is strictly convex. Thus, the sum of I2M and
σ2 · S, that is J , is strictly convex.

As A is a convex subset of L2(PX) and J is strictly convex, there is at most one minimizer of J in A.

Part 2 : There is at least one solution. From e.g. Theorem 2 of https://www.math.umd.edu/~yanir/742/
742-5-6.pdf, the existence of a minimizer of J in A is guaranteed if A is weakly closed and J is coercive and
sequentially weakly lower semi-continuous.

First, we show that A is weakly closed. Let wn ∈ AN weakly converging to some w∗ ∈ L2(PX), that is such that

∀h ∈ L2(PX), EP [wn(X)h(X)] −−−−→
n→∞

EP [w∗(X)h(X)].

Then taking h = 1, we have 1 = EP [wn(X)] −−−−→
n→∞

EP [w∗(X)], thus EP [w∗(X)] = 1.

Further, for k ∈ N∗, let Bk := {w∗(X) ≤ 1
k}. Then, with h := 1Bk

, as wn ≥ 0 PX−a.s. for each n ∈ N

0 ≤ EP [1Bk
(X)wn(X)] −−−−→

n→∞
EP [w∗(X)h(X)] ≤ −P (Bk)

k

https://www.math.umd.edu/~yanir/742/742-5-6.pdf
https://www.math.umd.edu/~yanir/742/742-5-6.pdf


which leads to 0 ≤ EP [w∗(X)h(X)] ≤ −P (Bk)
k , which is not contradictory only if P (Bk) = 0. Then, as {w∗(X) < 0} =

{∪k∈N∗Bk},

P (w∗(X) < 0) = P (∪k∈N∗Bk)

≤
∑
k∈N∗

P (Bk)

= 0

Thus, w∗ ≥ 0 PX -a.s.. As a result, w∗ ∈ A, so A is weakly closed. We note that J is coercive, as S is clearly coercive
and IM is non-negative. What is left to prove in this part is then that J is sequentially weakly lower semi-continuous. Let
wn ∈ L2(PX)N weakly converging to some w∗ ∈ L2(PX). We want to show that

lim inf
n→∞

J(wn) ≥ J(w∗).

Indeed,

lim inf
n→∞

IM(wn)
2 = lim inf

n→∞
sup
m∈M

|EP [wn(X)m(X)]− EQ[m(X)]|

≥ sup
m∈M

lim inf
n→∞

|EP [wn(X)m(X)]− EQ[m(X)]|2︸ ︷︷ ︸
−−−−→
n→∞

|EP [w∗(X)m(X)]−EQ[m(X)]|2

as m ∈L2(PX)

= sup
m∈M

|EP [w∗(X)m(X)]− EQ[m(X)]|2

= IM(w∗)
2

and by convexity of u 7→ u2,

∀x, wn(x)
2 ≥ w∗(x)

2 + 2w∗(x) (wn(x)− w∗(x))

so

lim inf
n→∞

S(wn) = lim inf
n→∞

EP [wn(X)2]

≥ lim inf
n→∞

EP [w∗(X)2] + 2
(
EP [wn(X)w∗(X)]− EP [w∗(X)2]︸ ︷︷ ︸

−−−−→
n→∞

0

)
= EP [w∗(X)2]

= S(w∗)

and

lim inf
n→∞

IM(wn)
2 + σ2S(wn) ≥ lim inf

n→∞
IM(wn) + lim inf

n→∞
σ2S(wn)

≥ IM(w∗)
2 + σ2S(w∗) from the above.

All of this shows that J is sequentially weakly lower semi-continuous, concluding this part of the proof.

Part 3 : Any solution is a function of ϕ(x). For any w ∈ L2(PX), let w̄(z) = EP [w(X)|ϕ(X) = z]. If w ∈ A, then
w̄(ϕ(.)) ∈ A. Indeed, the conditional expectation of any L2(P ) random variable is also L2(P ), so w̄(ϕ(.)) ∈ L2(PX).
Further, the conditional expectation of any almost surely non-negative random variable is also almost surely non-negative,
so w̄(ϕ(.)) ≥ 0 PX -a.s.. Finally, the tower property shows that

EP [w̄(ϕ(X))] = EP [EP [w(X)|ϕ(X)]] = EP [w(X)] = 1.

Thus, w̄(ϕ(.)) ∈ A. It actually turns out that J(w̄(ϕ(.))) ≤ J(w), with equality iff w = w̄(ϕ(.)). This concludes the proof,
as a minimizer of J in A has to be a function of ϕ(x), as otherwise we can construct a weight function in A that realises a
strictly lower objective, which is contradictory.



First,

∀g ∈ G, EP [w(X)g(ϕ(X))] = EP [EP [w(X)g(ϕ(X))|ϕ(X)]] from the tower property
= EP [EP [w(X)|ϕ(X)]g(ϕ(X))]

= EP [w̄(ϕ(X))g(ϕ(X))]

so IM(w̄(ϕ(.))) = IM(w). Further,

S(w)− S(w̄(ϕ(.))) = EP [w(X)2]− EP [EP [w(X)|ϕ(X)]2]

= EP [EP [w(X)2|ϕ(X)]]− EP [EP [w(X)|ϕ(X)]2] from the tower property

= EP

[
EP [w(X)2|ϕ(X)]]− EP [w(X)|ϕ(X)]2

]
= EP [Var(w(X)|ϕ(X))]

= EP [EP [(w(X)− w̄(ϕ(X)))2|ϕ(X)]]

= EP [(w(X)− w̄(ϕ(X)))2] from the tower property.

Taken all together, J(w) ≥ J(w̄(ϕ(.))) with equality iff EP [(w(X)− w̄(ϕ(X)))2] = 0, that is w = w̄(ϕ(.)) PX -a.s.. This
concludes the proof.

F.1.2 Item 2

Let w be an L2(PX) weight function such that w = w̄(ϕ(.)) PX -a.s. for some w̄. Then,

Chosen weights bias of w = EPw

[
EP [Ỹ |X]− EP [Ỹ |ϕ(X)]

]
= EP

[
w(X)EP [Ỹ |X]− w(X)EP [Ỹ |ϕ(X)]

]
= EP

[
w̄(ϕ(X))EP [Ỹ |X]− w̄(ϕ(X))EP [Ỹ |ϕ(X)]

]
= EP

[
w̄(ϕ(X))EP [Ỹ |X]

]
− EP

[
w̄(ϕ(X))EP [Ỹ |ϕ(X)]

]
= EP

[
w̄(ϕ(X))EP [Ỹ |X]

]
− EP

[
w̄(ϕ(X))EP [Ỹ |ϕ(X)]

]
= EP

[
EP [w̄(ϕ(X))Ỹ |X]

]
− EP

[
EP [w̄(ϕ(X))Ỹ |ϕ(X)]

]
= EP [w̄(ϕ(X))Ỹ ]− EP [w̄(ϕ(X))Ỹ ] from the tower property
= 0

F.2 PROOF OF PROPOSITION 3.4

Let ΣZ denote the σ-algebra of the space of values taken by random variable Z.

Let B ∈ Σϕ(X) such that Pϕ(X)(B) = 0. Then 0 = Pϕ(X)(B) = PX(ϕ−1(B)) where ϕ−1(B) ∈ ΣX as ϕ is measurable.
By Assumption 2.3, QX(ϕ−1(B)) = 0. Then 0 = QX(ϕ−1(B)) = Qϕ(X)(B). Thus, Qϕ(X) is absolutely continuous wrt
Pϕ(X).

Notably, from the Radon-Nikodym theorem, dQϕ(X)

dPϕ(X)
exists. Then for any B ∈ Σϕ(X),

EP

[
dQϕ(X)

dPϕ(X)
(ϕ(X)) · 1B(ϕ(X))

]
= EQ[1B(ϕ(X))]

= EP

[
dQX

dPX
(X) · 1B(ϕ(X))

]
by taking the Radon-Nikodym derivative wrt X

= EP

[
EP

[
dQX

dPX
(X) · 1B(ϕ(X))

∣∣∣∣ϕ(X)

]]
from the tower property



= EP

[
EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

]
· 1B(ϕ(X))

]

where all integrals are well-defined as the Radon-Nikodym derivative is measurable and L1(PX), and its conditional
expectation is also L1(Pϕ(X)) as any conditional expectation of any L1(P ) random variable is also L1(P ).

Thus we have shown that ∀B ∈ Σϕ(X),
∫
h · 1BdPϕ(X) = 0 where h(z) = dQϕ(X)

dPϕ(X)
(z)− EP

[
dQX

dPX
(X)

∣∣∣ϕ(X) = z
]
. We

now show that h = 0, which concludes the proof for the first part of the Proposition. Note that h is measurable as any
Radon-Nikodym derivative is measurable, and any conditional expectation is measurable. Notably, as R+ and R− are in the
Borel σ-algebra, B+ = h−1(R+) and B− = h−1(R−) are in Σϕ(X). Thus,

0 =

∫
Z
h · 1B+

dPϕ(X) =

∫
Z
h+dPϕ(X)

0 =

∫
Z
h · 1B−dPϕ(X) = −

∫
Z
h−dPϕ(X)

which implies that h+ = 0 and h− = 0, both Pϕ(X)-a.s., as these two functions are non-negative. Thus, h = 0 Pϕ(X)-a.s.,
which concludes the first part of proof.

Now we further assume Assumptions 3.1 and 3.2. Then, we note that the confounding bias is equal to
−EP

[
dQX

dPX
(X)

(
EP [Ỹ |X]− EP [Ỹ |ϕ(X)]

)]
. As dQX

dPX
is now a L2(PX) weight function wrt P , and using that dQϕ(X)

dPϕ(X)
=

EP

[
dQX

dPX
(X)

∣∣∣ϕ(X) = .
]
Pϕ(X)-a.s., identical computations as in the proof of item 2 in Proposition 3.3 show that

dQϕ(X)

dPϕ(X)
(ϕ(.)) is also a L2(PX) weight function wrt P , while being a function of ϕ(x). Applying Proposition 3.3, item 2, to

dQϕ(X)

dPϕ(X)
(ϕ(.)) leads to EP

[
dQϕ(X)

dPϕ(X)
(ϕ(X))

(
EP [Ỹ |X]− EP [Ỹ |ϕ(X)]

)]
= 0. Summing this to the confounding bias leads

to

Confounding bias = −EP

[(
dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

)
·
(
EP [Ỹ |X]− EP [Ỹ |ϕ(X)]

)]
.

Finally,

EP

[(
dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

)
EP [Ỹ |ϕ(X)

]
= EP

[(
dQX

dPX
(X)− EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

])
EP [Ỹ |ϕ(X)

]
from the first part of the Proposition

= EP

[
dQX

dPX
(X)EP [Ỹ |ϕ(X)]

]
− EP

[
EP

[
dQX

dPX
(X)

∣∣∣∣ϕ(X)

]
EP [Ỹ |ϕ(X)]

]
= EP

[
dQX

dPX
(X)EP [Ỹ |ϕ(X)]

]
− EP

[
EP

[
dQX

dPX
(X)EP [Ỹ |ϕ(X)]

∣∣∣∣ϕ(X)

]]
= EP

[
dQX

dPX
(X)EP [Ỹ |ϕ(X)]

]
− EP

[
dQX

dPX
(X)EP [Ỹ |ϕ(X)]

]
from the tower property

= 0

Thus,

Confounding bias = −EP

[(
dQX

dPX
(X)−

dQϕ(X)

dPϕ(X)
(ϕ(X))

)
· EP [Ỹ |X]

]
.

F.3 PROOF OF COROLLARY 3.5

Note that from the tower property,

EP [Ỹ |ϕ(X)] = EP [EP [Ỹ |X,ϕ(X)]|ϕ(X)] = EP [EP [Ỹ |X] | ϕ(X)] (11)



From Proposition 3.3, for any w depending on ϕ PX -a.s., the zero chosen weights bias is zero. Thus,

|BiasP,Q(w)| ≤
∣∣∣EPw [E[Ỹ |ϕ(X)]]− EQ[E[Ỹ |ϕ(X)]]

∣∣∣+ |Confounding bias|

where EP [Ỹ |x] ∈M so from Equation 11, EP [Ỹ |ϕ(x)] ∈ ϕ(M, P )

≤ IPMϕ(M,P )(P
w
ϕ(X), Qϕ(X)) + |Confounding bias| by definition of an IPM

≤ IPMϕ(M,P )(P
w
ϕ(X), Qϕ(X)) + ||Ỹ ||L2(P ) · BSEP,Q(ϕ) from Equation 7

F.4 PROOF OF COROLLARY 3.6

From Corollary 3.5, for any α ∈ Λ,

Bias2Pα,Qα(wα)

≤
(

IPMϕα(Mα,Pα)(P
α,wα

ϕα(X), Q
α
ϕα(X)) + ||Ỹ ||L2(Pα) · BSEPα,Qα(ϕα)

)2
.

Noting that ∀a, b, (a+ b)2 ≤ 2(a2 + b2) and taking the expectation wrt pΛ(α) gives

1

2
· Bias2PΛ,QΛ(wΛ) ≤ EpΛ(α)

[
IPM2

ϕα(Mα,Pα)(P
α,wα

ϕα(X), Q
α
ϕα(X))

]
+ EpΛ(α)

[
||Ỹ ||2L2(Pα) · BSE2

Pα,Qα(ϕα)
]

Taking ||Ỹ ||2L2(Pα) ≤ supα∈Λ ||Ỹ ||2L2(Pα) in the expectation with the BSE’s leads to the result.

F.5 PROOF OF PROPOSITION B.1

First, let’s note two useful properties :

• For any distribution R and random variable Z,

∀x, ER[ER[Z|X] | ϕ(X) = ϕ(x)] = ER[Z|ϕ(X) = ϕ(x)]. (12)

• For any distributions R and function f ,(
∃g, ∀x RX -a.s., f(x) = g(ϕ(x))

)
⇔ ∀x RX -a.s., f(x) = ER[f(X) | ϕ(X) = ϕ(x)]. (13)

Proof of a), ATT case : Let e(x) := P data(A = 1|X = x)

ϕ is a balancing score

⇔ ∃g, e(x) = g(ϕ(x)) ∀x P data
X -a.s. from [Rosenbaum and Rubin, 1983b]

⇔ ∃g, e(x) = g(ϕ(x)) ∀x P data
X|A=0-a.s. from the overlap assumption

⇔ ∃g,
dP data

X|A=1

dP data
X|A=0

(x) = g(ϕ(x)) ∀x P data
X|A=0-a.s. as

dP data
X|A=1

dP data
X|A=0

(x) is a bijective function of e(x) from Bayes’ rule

⇔ ϕ(x) is a generalized balancing score.

Proof of a), ATE case : we fix a ∈ A and work with the following definition [Imbens, 2000] of a balancing score for non-
binary treatments : 1{A=a} ⊥⊥ X|ϕ(X). Indeed, as the problem is arm-specific, the definitions of generalized deconfounding,
balancing and prognostic scores are arm-specific a priori. An extension to an alternative definition A ⊥⊥ X|ϕ(X) is
straightforward by replacing a fixed a ∈ A with ∀a ∈ A at the start of each of the following statements involving a. Then,

ϕ is a balancing score

1While the original statement in Rosenbaum and Rubin [1983b] is not P data
X -a.s., we note that it can be relaxed to P data

X -a.s. as it
pertains to the adjustment formula that involves an expectation wrt P data

X



⇔ P data(a|x) = P data(a|ϕ(x)) ∀x P data
X -a.s.

⇔ P data(a|x) = E[P data(a|X)|ϕ(X) = ϕ(x)] ∀x P data
X -a.s. using 12 with Z = 1{A=a}

⇔ ∃ga, P data(a|x) = ga(ϕ(x)) ∀x P data
X -a.s. from 13

⇔ ∃ga,
dP data

X

dP data
X|A=a

(x) = ga(ϕ(x)) ∀x P data
X -a.s.

where
dP data

X

dP data
X|A=a

(x) is the true weights and is a bijective function of P data(a|x) from Bayes’ rule

⇔ ∃ga,
dP data

X

dP data
X|A=a

(x) = ga(ϕ(x)) ∀x P data
X|A=a-a.s. from the overlap assumption

⇔ ϕ(x) is a generalized balancing score.

Proof of b) : we slightly change the definition of deconfounding scores [D’Amour and Franks, 2021] to ∀a ∈
A, E[E[Y |ϕ(X), A = a]] = E[Y (a)], where the representation ϕ is now shared across treatment arms, in the spirit
of D’Amour and Franks (2021)[D’Amour and Franks, 2021].To this aim, it is sufficient to show that, in Problem 2.1
applied to estimation of E[Y (a)], the confounding bias is equal to E[E[Y |ϕ(X), A = a]] − E[Y (a)]. From the original
definition of the confounding bias, this simplifies further to E[Y (a)] = E[E[Y |X,A = a]]. This follows from the canonical
unconfoundedness, overlap and SUTVA assumptions.

Proof of c) : again, a ∈ A is fixed. Assume ϕ(x) is a prognostic score for Y (a), that is Y (a) ⊥⊥ X|ϕ(X). Then,

∀x P data
X|A=a-a.s.,E[Y |x,A = a] := E[Y (a)|x]

= E[Y (a)|x, ϕ(x)]
= E[Y (a)|ϕ(x)] by application of the definition of a prognostic score,

so E[Y |x,A = a] is a function of ϕ(x) P data
X -a.s., thus it is so P data

X|A=a-a.s. from the overlap assumption, making the latter a
generalized prognostic score.

Now assume that E[Y |x,A = a] itself is a prognostic score, that is Y (a) ⊥⊥ X | E[Y |X,A = a]. Then, pdata(Y (a)|x) =
pdata(Y (a)|E[Y |x,A = a]) ∀x P data

X -a.s., where P data
X -a.s. can be replaced with P data

X|A=a-a.s. thanks to the overlap as-
sumption. Let ϕ(X) be a generalized prognostic score. Then, there exists a function ga such that E[Y |x,A = a] =
ga(ϕ(x)) ∀x P data

X|A=a-a.s.. In particular, as pdata(Y (a)|x) is already a function of E[Y |x,A = a] P data
X|A=a-a.s., it is also

a function of ϕ(x) P data
X|A=a-a.s.. So there exists a function ha such that pdata(Y (a)|x) = ha(ϕ(x)) ∀x P data

X|A=a-a.s.. In
particular, by application of 13, pdata(Y (a)|x) = E[pdata(Y (a)|X)|ϕ(X) = ϕ(x)] ∀x P data

X|A=a-a.s. and by application of
12 to Z = 1{Y (a)=.}, pdata(Y (a)|x) = pdata(Y (a)|ϕ(x)) ∀x P data

X|A=a-a.s., which can be replaced with P data
X -a.s. from the

overlap assumption. Thus, ϕ(x) is a prognostic score.

Proof of d) : let XI be covariates selected according to indices I and X−I be their complement. We also use this notation
for e) and f).

If xI is a heterogeneity set, i.e. Y (1)− Y (0) ⊥⊥ (S,X−I)|XI then

∀x P data
X -a.s.,EP [Ỹ |x] = CATE(x) (under the transportability assumption)

= E[Y (1)− Y (0)|x]
= E[Y (1)− Y (0)|x−I , xI ]

= E[Y (1)− Y (0)|xI ] by definition of a heterogeneity set

where P data
X -a.s. is equivalent to P data

X|S=1-a.s. under the support inclusion (i.e. overlap) assumption, so EP [Ỹ |x] is a function
of xI P data

X|S=1-a.s., making the latter a generalized prognostic score.

Proof of e) : If xI is a sampling set, that is Y (1), Y (0), S ⊥⊥ X−I |XI , then

∀xP data
X -a.s.,

dP data
X|S=0

dP data
X|S=1

(x) =
pdata(x|S = 0)

pdata(x|S = 1)



=
P data(S = 1)

P data(S = 0)

pdata(S = 0|x)
pdata(S = 1|x)

from Bayes’ rule

=
P data(S = 1)

P data(S = 0)

pdata(S = 0|xI , x−I)

pdata(S = 1|xI , x−I)

=
P data(S = 1)

P data(S = 0)

pdata(S = 0|xI)
pdata(S = 1|xI)

as xI is a sampling set

=
pdata(xI |S = 0)

pdata(xI |S = 1)

=
dP data

XI |S=0

dP data
XI |S=1

(xI)

thus
dP data

X|S=0

dP data
X|S=1

(x) depends on xI ∀x P data
X -a.s., which is equivalent to P data

X|S=1-a.s. under the support inclusion (i.e. overlap)

assumption, and the last two lines illustrate the fact that, in this case, the density ratio wrt X is equal to that wrt the
representation a.s. under the source distribution.

Proof of f) : If xI is a separating set, that is Y (1)− Y (0) ⊥⊥ S|XI ,

P data-a.s., EP [Ỹ |XI , S = 0] = EP [EP [Ỹ |X]|XI ]

= EP [CATE(X)|XI ]

= E[CATE(X)|XI , S = 1]

= E[E[Y (1)− Y (0)|X,S = 1]|XI , S = 1] under the transportability assumption
= E[E[Y (1)− Y (0)|X,XI , S = 1]|XI , S = 1]

= E[Y (1)− Y (0)|XI , S = 1] under the tower property
= E[Y (1)− Y (0)|XI , S = 0] by definition of a separating set.

where P data-a.s. implies P data(.|S = 0)− a.s., thus

Confounding bias of xI

= EQ

[
EP [Ỹ |XI ]− EP [Ỹ |X]

]
= E

[
E[Y (1)− Y (0)|XI , S = 0]− EP [Ỹ |X]

∣∣∣S = 0
]

from the above

= E
[
E[Y (1)− Y (0)|XI , S = 0]− CATE(X)

∣∣∣S = 0
]

= E
[
E[Y (1)− Y (0)|XI , S = 0]− E[Y (1)− Y (0)|X,S = 0]

∣∣∣S = 0
]

from the transportability assumption

= E
[
E[Y (1)− Y (0)|XI , S = 0]

∣∣∣S = 0
]
− E

[
E[Y (1)− Y (0)|X,S = 0]

∣∣∣S = 0
]

= E[Y (1)− Y (0)|S = 0]− E[Y (1)− Y (0)|S = 0] under the tower property
= 0,

so xI is a generalized deconfounding score.
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