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ABSTRACT

Machine unlearning supports the "right to be forgotten" by removing the influence
of designated classes without requiring full retraining. We introduce geometry-
aware classifier heads that enforce intra-class alignment and inter-class orthogo-
nality, embedding features as a union of one-dimensional orthogonal subspaces.
Coupled with state-of-the-art unlearning methods and an error-maximizing noise
scheme for data-independent updates, this structure enables selective suppression
of the forgotten class while preserving classification accuracies for retained classes.
To assess genuine forgetting rather than mere misclassification, we propose a
spectral-angle test that certifies the removal of the forgotten subspace and comple-
ments standard metrics — unlearning/retention accuracy (UA/RA), their test-set
counterparts (TUA/TRA), and a membership-inference measure (MIA). We further
study loss-head pairings by contrasting cross-entropy (CE) and mean-squared error
(MSE) under two operating regimes — Quick and Optimum — reflecting different
compute budgets. On CIFAR-10 in a leave-one-class-out protocol (100 trials), the
framework achieves near-perfect unlearning (UA < 0.9%) with high retention (RA
~ 95-96%) and consistent generalization to held-out data (low TUA, high TRA),
often matching retraining baselines while reducing computational cost. These
results show that enforcing subspace structure and choosing an appropriate loss
yields robust and selective forgetting with strong retention and privacy.

1 INTRODUCTION

Machine unlearning, the process of removing the influence of specified data from a trained model,
has gained increasing importance in light of privacy regulations such as General Data Protection
Regulation (GDPR) (Hoofnagle et al.,[2019) and California Consumer Privacy Act (CCPA) (State of
Californial 2018), which grant individuals the “right to be forgotten.” Assuming access to a sufficient
retain dataset, unlearning strategies are conditioned on the availability of forget data. If the forget
set is accessible, the process can closely approximate retraining on only the retained set through
gradient updates or reweighting. In practice, however, privacy rules and storage limitations often
prevent access to the forget set or even to the complete retained set, motivating stricter regimes such
as zero-shot or zero-glance unlearning, which rely solely on model parameters and possibly a small
subset of retained data (Chundawat et al.| [2023)).

Most existing unlearning methods (Izzo et al.,|2021; |Foster et al., 2024} |Golatkar et al., 2020; |Perifanis
et al.| 2024} [Fan et al. 2023} Warnecke et al., [2021) follow a data-centric paradigm by applying
gradient updates or reweighting, while only a few studies explore structural modifications to improve
unlearning capabilities (Bourtoule et al.l [2021). Moreover, almost all vision-based approaches
employ cross-entropy (CE) loss, a common objective function in classification that penalizes incorrect
predictions by comparing the predicted probability distribution with the true distribution. Studies
have shown that squared error loss, also known as mean squared error (MSE) or squared error (SE),
which measures the average of the squared differences between predicted and actual values, can be
equally or more effective for classification (Golik et al., 2013} Hui & Belkin| [2020; Tyagi et al., [2024)).
Both CE and MSE converge to the true posterior under sufficient model capacity (Golik et al., 2013);
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Figure 1: Overview of the proposed class unlearning framework with cosine (COS) and ortho-cosine
(ORC) classifier heads under MSE loss. The left and right panels illustrate prototype representations
before and after unlearning, respectively, where classes are modeled as unions of one-dimensional
subspaces. Unlearning methods are grouped by their reliance on training data: (i) forget-data based
approaches shift the target class to increase prediction loss on the forgotten set, (ii) retain-data
based fine-tuning pushes retained classes away from the forgotten subspace, and (iii) noise-based
strategies use synthetic inputs to overwrite the forgotten subspace. Results (right) demonstrate that
our proposed classifier heads, combined with suitable loss functions, enable effective unlearning even
in zero-glass settings where the forgotten data are inaccessible.

CE penalizes misclassification sharply, while MSE is bounded and often more robust to noise (Tyagi
et al.| 2024)). Yet, the role of MSE in unlearning remains largely underexplored.

In this work, we address class unlearning by investigating whether embedding training samples such
that each class occupies a distinct one-dimensional subspace enhances forgetting. This union-of-
subspaces representation offers two advantages: (i) selective suppression of the forgotten subspace
with minimal interference to retained classes, and (ii) an interpretable characterization via the
dominant singular vector of each class, enabling evaluation metrics that distinguish genuine forgetting
from incidental misclassification. Our approach builds on angular loss functions (Deng et al., 2019
Liu et al., 2017; [Wang et al.l |2018)), hyper-spherical energy minimization (Liu et al., [2018)), and
OOD detection frameworks using subspace modeling (Zaecemzadeh et al.,|2021). In addition, we
adapt the error-maximization targeted noise of Tarun et al.|(2023)) to the zero-glance setting, using a
universal noise to erase class traces rather than redirecting them into other classes. The overview of
the proposed frame work illustrated in Figure(T}

Our contributions are:

* We propose enforcing a union-of-one-dimensional subspaces structure on class features,
enabling precise suppression of forget classes during unlearning.

* We introduce the use of each class’s leading singular vector as a robust signature for identi-
fying and suppressing forgotten samples, providing a principled metric for true forgetting.

* We provide the first systematic comparison of CE and MSE losses across state-of-the-art
unlearning methods under various classification heads.

* We validate our approach on benchmark datasets under data-available and zero-glance
scenarios, demonstrating improved effectiveness, robustness, and efficiency.
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2 RELATED WORK

2.1 CLASS UNLEARNING IN CLASSIFICATION

Class unlearning removes the influence of all samples from one or more target classes while preserving
performance on the retained classes. Approaches differ in whether the forget set Drg is accessible.
Retraining-based methods (Golatkar et al.l [2020; Izzo et al., 2021} |[Warnecke et al., 2021} [Fan
et al., [2023) assume full availability of both forget and retain data, applying selective updates to
approximate retraining. Although effective, these methods incur high computational cost and require
full data access, which is often infeasible. Partition-based approaches such as SISA (Bourtoule et al.}
2021) restructure training to enable localized retraining when data is removed. In contrast, data-free
strategies (Chundawat et al., 2023} [Tarun et al., 2023) update model parameters without storing
the forget set, often using noise substitutes as replacements. However, most evaluations focus on
increased misclassification of forgotten classes, which does not necessarily imply genuine removal of
their representations. This gap motivates principled methods that disentangle forgotten information
from the feature space while preserving accuracy on retained data.

2.2  SUBSPACE-CONSTRAINED FEATURE REPRESENTATIONS

Our motivation for constraining feature spaces to structured manifolds stems from the desire to
enhance class separability, interpretability, and model robustness. For instance, approaches such
as SphereFace (Liu et al.,|2017) and ArcFace (Deng et al.,|2019) introduced angular constraints to
address the limitations of traditional embedding separability, aiming for compact intra-class and
distinct inter-class features. Minimum Hyperspherical Energy (MHE) regularization (Liu et al.|
2018)) was motivated by the desire to maximize geometric diversity, leading to uniformly distributed
neuron representations. More recently, Zaeemzadeh et al.[(2021)) modeled features as a union of one-
dimensional subspaces, where a dominant singular vector characterizes each class, enabling robust
out-of-distribution (OOD) detection. These studies demonstrate the benefits of explicit embedding
constraints and inspire our unlearning approach, where a union-of-subspaces formulation allows
targeted suppression of forget classes with minimal interference to retained ones.

2.3 LoSS FUNCTIONS: CROSS-ENTROPY VS. MEAN SQUARED ERROR

Finally, to implement these geometric constraints effectively within unlearning frameworks, it is
important to examine the underlying loss functions. Cross-entropy (CE), derived as the negative log-
likelihood of a multinomial model, remains the default for classification due to its strong penalization
of incorrect predictions (Bishop & Nasrabadi, 2006). However, recent studies show that mean squared
error (MSE) can match or surpass CE across NLP, speech, and vision tasks (Hui & Belkin, [2020;
Liu et al., 2022; [Tyagi et al., 2024). Unlike CE’s unbounded gradients, which can amplify label
noise and overfitting, MSE yields bounded gradients, reducing variance, enhancing stability, and
improving robustness in over-parameterized or imbalanced regimes. Although both share the same
theoretical optimum under sufficient capacity, empirical evidence highlights MSE’s advantages in
noise resistance and training stability (Golik et al.,|2013). This motivates our systematic comparison of
CE and MSE within state-of-the-art unlearning frameworks under both constrained and unconstrained
feature representations.

3 PROBLEM FORMULATION

3.1 CLASSIFIER HEADS

Let D = {(x®,y)}N | denote a training set of N image—label pairs, with x(*) € Rh*hxw and
y €Y =1{1,...,C}. A classifier ITg w(x) consists of a feature extractor f(x;@) : Rehxhxw
R9 and final linear classifier weights W = [wy,..., wc] € R4, The feature of sample i is
z() = f(x();0) and its normalized embedding v(¥) = z( /||z())|. For class c, the normalized
prototype is u. = w./||w.||.

We define four classifier heads, cosine (COS), ortho-cosine (ORC), softmax (SFX), and MSE-logit
(MSL), that differ in geometric constraints and loss objectives. We derive COS classifier head logit
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E&” as the absolute value of the cosine similarity logit
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The COS classifier head enforces direction-invariant decisions that depend only on feature alignment
with the class prototypes. This, in turn, encourages the formation of compact, axial clusters for
each class. The ORC variant extends COS by additionally enforcing orthogonality among classifier
weights, WT W = I by freezing prototypes with an orthonormal W, so each class occupies a
distinct one-dimensional subspace orthogonal to other subspaces.
Let t() e {0, 1}C denote the one-hot target for sample ¢, which c-th component is tgi). Given that,
the COS and ORC difference lies in the model’s prototype layer structure, we can jointly define the
COS and ORC objective function under CE and MSE losses as

N C
1 ) .
Lcos-ce = Lorc-cE = — 4 > 0 l0g £, 2
i=1 c=1
c
Lcos-MSE = LORC-MSE = Z c Z (t& — ¢ 3)

By applying a softmax activation function to the logits to produce class probabilities pl(f), we define
the SFX classifier head as the conventional softmax-based classifier. This head trains the model using

CE and MSE loss functions
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Finally, the MSL is trained with MSE directly on the raw inner-product logits, ¢/ gi) = wjz(i), c=
1,...,C, without softmax normalization, defined as below:

LysL—MSE = Z Z (10 — (6

The MSL-MSE differs from SEX—MSE, as it supervises probability distributions and often yields
smoother optimization by avoiding the effects of softmax normalization. Enforcing intra-class
alignment (features aligned with their prototypes) together with inter-class orthogonality (orthogonal
prototypes) yields compact and separable feature subspaces. Such structured embeddings allow
forgotten classes to be suppressed by attenuating their subspaces rather than misclassifying them into
retained categories (Zaecemzadeh et al.|[2021)). The detailed analysis of boundary losses for MSE and
CE on classifier heads is presented in Appendix [A]

3.2 MACHINE UNLEARNING IN THE CLASS-FORGETTING SETUP

We focus on the class forgetting problem, where the objective is to remove the influence of entire
classes or several classes from a pretrained model I1g v (x) while maintaining performance on the
remaining classes. Given the complete dataset D, the forget set Drg containing all samples of the
forget classes and the retained set Dy, the desired outcome is an unlearned model that approximates
training on the retrain dataset Drr = D \ Drg, without incurring the cost of full retraining. We
analyze this setup under two practical conditions. In the all-data available case, both Drg and Drt
are accessible, allowing direct removal of target forget classes. In contrast, the stricter zero-glance
privacy regime (Tarun et al., 2023) assumes that Drg is entirely inaccessible due to privacy or
deletion constraints, leaving only a limited subset of Drt for adaptation. Our proposed formulation
introduces geometric constraints on the classifier space to enable principled suppression of forgotten
classes, ensuring they are effectively erased from the model representation rather than misclassified
into retained categories.
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4 PROPOSED APPROACH

We present a unified class-forgetting framework that works in both all-data and zero-glance settings by
combining three components: (i) an error-maximizing noise mechanism used to remove forget-class
traces without access to the original samples; (ii) orthogonally constrained feature/classifier represen-
tations within which we adapt and extend state-of-the-art unlearning methods to evaluate performance
in the class-forgetting regime; and (iii) a spectral-angle test that exploits the union-of-subspaces
structure to verify genuine forgetting, offering an interpretable, geometry-aware complement to
standard unlearning metrics.

4.1 ERROR-MAXIMIZING NOISE

Building on|Tarun et al.|(2023), we employ a differentiable generator g4 that maps Gaussian noise
n ~ N(0,1I) to the initial synthetic input Xg)) = gg(n) € RBXchxhxw for g frozen trained classifier

Ty w- After initialization, Xff) = gd,(ch_l)) would update the synthetic noise at each step k. For
a target class f € Y, lett; € {0, 1}'3" denote the one-hot vector for f, where |)| is the number

of classes. Let Ty € {0, 1}Bx 1%l be the batchwise target obtained by repeating t . We update the
generator parameters ¢ to maximize classification error while regularizing on the input noise of the

previous step Xfffl) to prevent large noise generation:

min B[ = £(ITwlgs(Xy ™). )] + AIXGB A0, ™

where L is the same loss used during classifier training, and E is the expectation over the noise batch.
A is a scalar hyperparameter that controls the magnitude of the synthetic input. With MSE, we set
t¢ = 1¢ (an all-ones vector of dimension C), to maximize loss across all classes, yielding class-
agnostic noise tailored to the model’s geometry. In contrast, CE cannot directly enforce class-agnostic
characteristics; we therefore alternate between minimizing error with random non-forget one-hot
targets (95% of epochs) and maximizing error with forget one-hot target t ; for the remaining epochs.
This strategy approximates class-agnostic behavior while still exploiting CE’s discriminative structure.
For cosine-based classifiers, the generated noise can further be interpreted via feature—prototype
cosines, explicitly discouraging alignment with all prototypes. Optimization details are provided
in Section[B.11

4.2 CLASS FORGETTING WITH PROTOTYPE CONSTRAINTS

To assess unlearning within our framework, we adapt multiple leading methods for class forgetting.
Gradient Ascent (GA) (Thudi et al., 2022), which increases the loss of the model over Drg to
mimic the reverse training process of model weights. We employ fine-tuning on the retain set
(FTR) (Warnecke et al.l [2021), which updates the model’s weights using a portion of Drt. We
introduce FTR’s data-independent variant, FTN, which trains on error-maximizing noise to replace
Drg. Influence Unlearning (IU) (Izzo et al.l 2021) identifies dominant weights contributing to Drg
predictions via influence function [Koh & Liang| (2017 and removes their effect. In addition, we
employ sparsity-aware approaches (Jia et al., 2023) that impose an ¢; — norm penalty (||.]|1) to
promote weight pruning:

Igl‘l}{/l ]Ex(i)NDRT[ - E(HB,W(X(Z))7t(Z)):| +’Y”(93W)”13 Y > 0. (®)

Here, v is a constant regularization term that controls the pruning of unimportant weights in the
model. We extend sparsity-aware fine-tuning with D (LSPR) (Equation (8)) to its data-independent
counterpart (LSPN) to fine-tune with the generated noise instead of Drr. We also applied the saliency
unlearning approach, SalUn (Fan et al.l 2023)), which identifies salient parameters that influence the
prediction of the forget set via gradient-based masks. To support zero-glance privacy, we compute
saliency maps using Dgr instead of Dpg:

ms' = 0( [VowL(Mow(x ™) t™)| ~ >¢), ©)
' ’ x(1) €Dgrr
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where 0 is an element-wise indicator function which yields a value of O for the i-th element, gradient
is less than gradient threshold &, and one otherwise. Parameters are then selectively updated:

(eyw)unlearned = (1 - mS/) © ((B,W) + A(G,W)) + mS/ ®© (0,W)7 (10)

where ©® denotes the element-wise product. The modified loss combines noise-based forgetting with
retain fine-tuning:

Afg,i{)lv) E(x() 60y~ (X g,8¢) [ﬁ(ﬂe,w(x(i)),t(i))] + Ex) Dper [E(He,w(x(i)’t(i)))} . 34D

Finally, we adopt Unlearning by Selective Impair and Repair (UNSIR) (Tarun et al.l 2023) on our
framework. The impair step aggressively fine-tunes on noise and Drt with a high learning rate,
corrupting influence of forget-class data on model’s weights, followed by a repair step that stabilizes
performance by retraining only on Dyt at a lower rate.

4.3 SPECTRAL ANGLE-BASED FORGETTING TEST

We assess genuine class forgetting with a spectral-angle test inspired by OOD detection via unions of
one-dimensional subspaces (Zaeemzadeh et al.,2021). Each class c is represented by the leading

singular vector vgc) of its feature subspace. For a test feature z, we compute

T,
0.(z) —arccos<|z 4! |> ; (12)

]

and use O,y (2) = mi(rjl 0.(z) as the class assignment score. We select the threshold 6* via Receiver
ce

Operating Characteristic (ROC) analysis to balance rejection of forgotten samples against retention
accuracy. Therefore, if 0,,in(z) < 6%, z’s corresponding sample is assigned to class ¢; otherwise
it is labeled “I don’t know” (IDK). This test directly probes the geometry of the embedding space,
providing a measure of genuine forgetting against misclassification—a complement to standard
metrics—and an indicator of the memory removal capability of unlearning methods.

5 EXPERIMENTS

We study the impact of intra- and inter-class constraints together with the loss choice (CE vs. MSE)
on the performance of introduced unlearning methods. Experiments are performed on CIFAR-10
with C' = 10 classes. In each trial, one class is designated as the forget target and the remaining nine
are retained; this is repeated for all classes, with 10 random seeds per class (100 trials total). Results
are reported as mean = standard deviation across trials and benchmarked against retrained baselines.

5.1 DATASET AND MODEL TRAINING

We use CIFAR-10 (Krizhevsky et al.,[2009), which contains 50,000 training and 10,000 test RGB
images of size 32 x 32 across 10 balanced classes. In the class-forgetting setup, the forget set
Drg corresponds to all samples from one class, while the retained set Dy includes 1,000 samples
from the remaining classes. We study both all-data and zero-glance conditions, where Drg is
accessible or withheld, respectively. Standard CIFAR-10 preprocessing was applied, including
4-pixel reflective padding and per-channel normalization (mean [125.3, 123.0, 113.9]/255; standard
deviation [63.0, 62.1, 66.7]/255).

We trained ResNet-18 models with introduced classifier heads from scratch for 200 epochs with a
batch size of 64 on Stochastic Gradient Descent (SGD) with an initial learning rate of 0.1, momentum
of 0.9, Nesterov acceleration enabled, and weight decay of 5 x 10~—* under both CE and MSE losses.
The learning rate followed a StepLR schedule, decaying by a factor of 0.1 every 20 epochs.

5.2 BENCHMARKS AND EVALUATION METRICS

We evaluate unlearning across GA, FTR, FTN, LSPN, LSPR, modified SalUn, and UNSIR, under CE
and MSE losses, as well as COS, ORC, SFX, and MSL classifier heads against the retrained model
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trained only on Dgr. Training details and hyperparameter settings for each method are provided in
the Appendix [B.2]

Unlearning effectiveness is assessed using standard accuracy metrics. Unlearning Accuracy (UA)
measures residual accuracy on the forget set Drg, while Retained Accuracy (RA) evaluates fidelity
on the retained set Drr. Their test counterparts, TUA and TRA, are computed on unseen forget
and retain samples. Privacy guarantees are quantified using the Membership Inference Attack
(MIA) (Shokri et al.,|2017)), where a shadow model is trained to distinguish between member and

non-member samples based on attack features. The MIA score is defined as ‘DT :G‘ . Where TN is

the number of forget-set examples correctly identified as non—-members (true negatives) and |Dgg |
denotes the cardinality of the forget set. Higher MIA values indicate stronger privacy protection.

Finally, for analyzing our IDK detection performance, we report four detection-based metrics defined
as: FPR@TPRI0, the false positive rate at 90% recall, Threshold @TPR90, the corresponding decision
threshold reported in degrees, Detection Error @ TPR90, representing minimum misclassification
error at the decision threshold, and AUC, the area under the Receiver Operating Characteristic (ROC)
curve, summarizing overall separability of the IDK detection.

5.3 EXPERIMENT RESULTS

In this section, we present the results of unlearning under two experimental settings: Quick and
Optimum unlearning. We impose Quick unlearning by limiting each method to a maximum of three
training epochs, simulating fast but constrained updates. Moreover, we conduct Optimum unlearning
by extending training up to 20 epochs, allowing methods to reach their best achievable performance.
For each setting, hyperparameters are tuned to yield the strongest results under the respective setting
as described in Appendix

Table [T] summarizes the best-performing unlearning methods in Quick and Optimum setups, across
different classifier variants and loss functions. The results clearly indicate that COS, ORC, and
MSL achieve unlearning stability and balance, characterized by low UA and high RA, when an
appropriate loss function is chosen. In the Quick setup, GA with MSE loss on the COS head (GA-
COS-MSE) offers the best trade-off, followed by LSPR-ORC-MSE and LSPR-SFX-CE, respectively.
For MSL, UNSIR produces the best results, maintaining RA above 90%. In the Optimum setup,
MSE’s advantage is more apparent: GA on COS and MSL, and LSPR on ORC, all deliver near-zero
UA while preserving RA above 95%, closely matching the retrain baselines.

These findings highlight that MSE-based approaches with structured classifiers (COS, ORC, MSL)
consistently outperform CE-based ones, both in terms of stronger forgetting guarantees (lower UA)
and higher retention (RA and TRA) in the Optimum setting. Moreover, the stability of results under
Optimum settings indicates that prolonged fine-tuning epochs consolidate the gains from constrained
feature geometries. The strong performance of LSPR and GA across multiple heads underscores their
effectiveness as fast yet reliable unlearning strategies. By contrast, while UNSIR remains competitive
in Quick settings, its improvements are less consistent once extended training epochs are allowed. It
is worth mentioning that our proposed variant unlearning methods, FTN and LSPN, offer a possible
solution for unlearning under total data unavailability (no access to D) conditions; however, they
generally exhibit weak trade-offs. These methods often have high UA or poor RA, making them
less promising in practice. Therefore, we do not provide a detailed analysis of them in this paper. A
more comprehensive comparison of all methods, along with additional ablations, is presented in the
Appendix [C.1] where the full scope of results is discussed.

Now, to examine the models based on their ability to reject a forget sample under the IDK detection
notion, we identify the best-performing unlearning strategies under both Quick and Optimum setups
by prioritizing high AUC and low FPR values (Table[2). Under the Quick setup, LSPR-SFX-MSE
attains the strongest detection trade-off (AUC = 0.921, FPR = 0.214), followed by LSPR-COS-MSE
(0.876, 0.268). For ORC, the GA-CE variant emerges as the most effective (0.890, 0.219), while in
the MSL setting, the best achievable performance remains limited, with GA-MSE producing only
moderate results (0.680, 0.736). Moving to the Optimum setup, performance improves consistently
across models. GA-SFX-CE achieves the best overall trade-off (0.914, 0.255), with LSPR-COS-MSE
and GA-ORC-CE also showing strong results (0.912, 0.218 and 0.910, 0.214, respectively). MSL
again lags, with GA-MSE reaching only 0.863 AUC at 0.293 FPR.

Overall, these results indicate that GA and LSPR consistently yield the best detection trade-offs
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Table 1: Best-performing unlearning methods under Quick and Optimum setups (FTN and LSPN
excluded). For each model type (SFX, COS, ORC, MSL) and loss (CE, MSE), the method with the
best UA-RA trade-off is reported, alongside Test UA/RA (TUA/TRA), Membership Inference Attack
(MIA), and baseline retrain accuracies (Retrain TRA/TUA).

Method Model Loss UA () RA (D) TUA ({) TRA (1) MIA (1)  Retrain TRA (1) Retrain TUA (])
Quick
LSPR SFX CE 2.65+2.83 94.44+0.81 2.55+£2.89 89.3+1.03 1+0.0004 92.5+0.80 0+0
GA COS MSE 0.14+0.18 96.3+£1.26 0.15+0.17 90.6 = 1.55 1+ 0.0007 94.6 + 0.56 0+0
LSPR ORC MSE 0.12+0.25 94.3£1.89 0.08+0.23 88.94+1.95 1+0.0000 94.54+0.63 0+0
UNSIR MSL MSE 0.67+1.00 90.9+2.99 0.73£1.11 85.9£2.77 14 0.0002 94.5 + 0.56 0+0
Optimum
LSPR SFX CE 0.870 4 1.270 96.4 +0.37 0.79 £1.21 90.8 £0.74 1+0 92.5 £ 0.80 0+0
GA COS MSE 0.005 4+ 0.012 95.6 & 1.55 0.02 £ 0.04 90.2 4+ 1.98 1+0 94.6 £ 0.56 0£0
LSPR  ORC MSE 0.001 4+ 0.006 95.9 +1.26 0.00 £ 0.00 90.3 4+ 1.44 1+0 94.5 £ 0.63 0£0
GA MSL MSE 0.044 £+ 0.037 95.3 +1.30 0.04 £0.07 89.2 + 1.35 1+0 94.5 + 0.56 0+0

across different model types, particularly under the Optimum setup in terms of detecting forget set as
IDK samples during testing.

Table 2: Best IDK detection trade-offs under Quick and Optimum setups (FTN and LSPN excluded).
For each model (SFX, COS, ORC, MSL), we select the method-loss pair that maximizes AUC (tied
by the lowest FPR). The reported metrics are the area under the Receiver Operating Characteristic
(ROC) curve (AUC), the false positive rate at 90% recall (FPR@TPRO90), the corresponding decision
threshold reported in degrees (Thr@TPR90), minimum misclassification error at the decision thresh-
old (DetErr@TPR90).

Method Model Loss AUC (1) FPR@TPRY90 (/) Thr@TPRY90 DetErr@TPR90 (|)
Quick
LSPR SEX MSE 0.921 +0.00817 0.214 £0.0164 13.2+1.24  0.157 £ 0.00822
LSPR COS MSE 0.876 £+ 0.12000 0.268 £0.1380 28.3 £6.38  0.184 £ 0.06900
GA ORC CE 0.890 + 0.0212 0.219 £0.0678 10.1 £3.25  0.159 £ 0.03390
GA MSL MSE 0.680 £ 0.0597 0.736 +0.0869 9.41 +2.80  0.418 + 0.04340
Optimum
GA SFX CE 0.914 + 0.0107  0.255 £ 0.0361 26.5 4+ 0.981 0.178 + 0.0181
LSPR COS MSE 0.912 4+ 0.0378 0.218 £0.0555 40.7 £4.850  0.159 + 0.0278
GA ORC CE 0.910 + 0.0197 0.214 £ 0.0647 8.32 +2.680 0.157 £+ 0.0323
GA MSL MSE 0.863 £0.0180 0.293 + 0.0469 8.08 £0.476  0.197 4+ 0.0234

To represent a more detailed analysis of the effect of classifier heads and loss functions on IDN
detection, we represent the confusion matrix after unlearning class 9 in the Optimum setting for all
combinations of model-loss for GA method. In Figure[2] each row is the true class and each column
is the predicted class; the last column (IDK) labels samples as unseen via comparison with a threshold
£ chosen to achieve 90% TPR (Thr@TPR90). Focusing on retained classes, GA—ORC-CE shows
the cleanest diagonals (=~ 70%-92%) with relatively low IDK spillover (=~ 5%-34%), indicating
selective rejection focused on the unlearned class. GA-SFX-CE is close but weaker (diagonals
~ 66%-81%; IDK ~ 18%-32%), while GA-COS—CE has poor diagonals and heavy IDK, suggesting
weak separation. Under MSE, GA-ORC-MSE largely collapses to IDK for many retained classes
(IDK = 80%), whereas GA-SFX-MSE and GA-MSL-MSE keep much higher in-class accuracy
(diagonals ~ 59%-86%) with moderate IDK (~ 13%-40%). Overall, in the Optimum setting,
ORC+CE yields the most selective forgetting, while with MSE, the SFX/MSL heads are more robust,
and ORC-MSE tends to over-reject.

6 CONCLUSION

We introduced cosine (COS) and ortho-cosine (ORC) classifier heads that impose intra-class alignment
and inter-class orthogonality, embedding features on a union of one-dimensional subspaces. This
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Figure 2: Confusion matrices after unlearning class 9 under the Optimum setup for GA with different
heads and losses. Rows are true labels and columns are predicted labels (last column is IDK). Values
are row-normalized proportions.

geometry enables the selective suppression of the forgotten class while preserving decision boundaries
for retained classes, resulting in consistent gains in forget accuracy and retained accuracy across
data-rich and zero-glance scenarios when paired with diverse unlearning methods. To assess whether a
class is truly forgotten rather than merely misclassified, we proposed a geometry-aware spectral-angle
criterion that certifies removal of the forgotten subspace and complements standard metrics (UA/RA,
TUA/TRA) and privacy checks (MIA). Finally, our analysis of CE versus MSE across heads clarifies
when each pairing is preferable: CE drives aggressive class separation and is most effective with
ORC when selective forgetting is paramount, whereas MSE yields stable updates and, when applied
to COS, reduces rival attraction and collateral rejection, supporting robust unlearning with strong
retention.



Under review as a conference paper at ICLR 2026

REFERENCES

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE symposium
on security and privacy (SP), pp. 141-159. IEEE, 2021.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. IEEE Transactions on Information Forensics and Security, 18:2345-2354, 2023.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4690-4699, 2019.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI conference on artificial
intelligence, volume 38, pp. 12043—-12051, 2024.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9304-9312, 2020.

Pavel Golik, Patrick Doetsch, and Hermann Ney. Cross-entropy vs. squared error training: a
theoretical and experimental comparison. In Interspeech, volume 13, pp. 1756-1760, 2013.

Chris Jay Hoofnagle, Bart Van Der Sloot, and Frederik Zuiderveen Borgesius. The european union
general data protection regulation: what it is and what it means. Information & Communications
Technology Law, 28(1):65-98, 2019.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

Zachary 1zzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International conference on artificial intelligence and statistics,
pp- 2008-2016. PMLR, 2021.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning. Advances in Neural Information
Processing Systems, 36:51584-51605, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885-1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. In International Conference on Machine Learning, pp. 14153-14172. PMLR,
2022.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212-220, 2017.

Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning

towards minimum hyperspherical energy. Advances in neural information processing systems, 31,
2018.

10



Under review as a conference paper at ICLR 2026

Vasileios Perifanis, Efstathios Karypidis, Nikos Komodakis, and Pavlos Efraimidis. Sftc: Machine
unlearning via selective fine-tuning and targeted confusion. In Proceedings of the 2024 European
Interdisciplinary Cybersecurity Conference, pp. 29-36, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3—18.
IEEE, 2017.

State of California. California consumer privacy act of 2018. https://oag.ca.gov/privacy/
ccpa, 2018. California Civil Code Section 1798.100-1798.199.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, 35(9):13046—
13055, 2023.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
standing factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303-319. IEEE, 2022.

Kanishka Tyagi, Chinmay Rane, Ketaki Vaidya, Jeshwanth Challgundla, Soumitro Swapan Auddy,
and Michael Manry. Making sigmoid-mse great again: Output reset challenges softmax cross-
entropy in neural network classification. arXiv preprint arXiv:2411.11213, 2024.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5265-5274, 2018.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

Alireza Zaeemzadeh, Niccolo Bisagno, Zeno Sambugaro, Nicola Conci, Nazanin Rahnavard, and
Mubarak Shah. Out-of-distribution detection using union of 1-dimensional subspaces. In Proceed-
ings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 9452-9461,
2021.

11


https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa

Under review as a conference paper at ICLR 2026

APPENDIX

A  BOUNDARY-LOSS ANALYSIS FOR CE vS. MSE UNDER
COS/ORC/SFX/MSL HEADS

For sample 4, let z = £(x(;6), v() = 20 /||z0 ||, u. = w./||w.]|, and £ = u]v(®. Given
that the COS/ORC heads use the folded cosine score é&” = |££”| (direction-invariant alignment)
which ORC further enforces W T W = I on the model structure. For SFX, the (dot-product) logits
are (' = wlz(® and p) = softmax(ﬁgl)). The one-hot targets are defined as t(*) € {0,1}¢ with
) = 1[y) = ¢], where 1 is an element-wise indicator function which yields a value of 1 for the
i-th element correspond to class ¢ and zero otherwise.

AS mentioned, we pair each classifier head with the loss defined in its output space. The CE loss is
applied to probabilities (COS/ORC/SFX-CE) where COS/ORC logits are converted to probabilities
via a softmax and optimized with CE; SFX-CE is identical but uses the ¢’ Ez) logits. In addition, we
employed MSE loss on probabilities (SFX-MSE) and MSE on folded cosine logits e&” ( COS/ORC-

MSE) and dot-product logits ¢/ ff) (MSL-MSE). To better understand the effect of these combinations
on the unlearning process, we study their per-sample loss and derive their per-sample boundary-loss
ranges.

MSE on probabilities (SFX-MSE) Let y. := pg) be a probability vector with true class ¢, and

the rival probability r = (pgi)) j#c with r; > 0, the MSE loss can be expressed in a decomposed
form of an under-confidence term .S := 1 — y,. for the true class and an aggregate rival-mass term

Zj;écrj =5

Lusp(p;e) =& [ (1—ye)*+ D 07| = &[S+ I7113] -

e
Therefore, the range of Lysg for fixed y. is determined by the range of ||r||% under the simplex
constraint ( ||7]|2 € [037_21, S2]). The Lower bound is reached when the probability rival mass spread

is distributed evenly among all classes (r; = S/(C — 1)). By Cauchy-Schwarz we have,

@) < LElrl; = $* < (-1

i#c
)2 SQ
2 > (erl) — )
Hence
1 52 1, C 1, C
. > f— 2 = —(— 2 = —(—- — 2 .
Luss(id) > =(S*+ =) = alg—75%) = alg—0-v))

The Upper bound is reached when the probability rival mass spread is maximized in one rival class.
Since a rival probability, u — u? is convex, ||7||3 is maximized at an extreme point of the simplex:
take one rival = S, others = 0. Then ||r|3 = S, giving

L5282 = 2(1-y)

Lyse(y;c) < o

Q

1 C

1
60_1(1—%)2 < Luse(@ic) < =2(1-y0)% v €[0,1].

C

Thus y. € [0, 1], the global bound will be 0 < Lysg(p; ¢) < 2/C per example.
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CE on probabilities (SFX-CE). For the per-example CE loss
Lep(yic) = —logye,  ye € (0,1].

Since y. < 1, —logy. > 0, with equality under perfect confidence on the true class (y. = 1) the CE
lower bound will be 0. However, as y. | 0, — log y. — oo and no finite upper bound exists for CE.
Thus, the per-sample CE loss is

‘ Leg(p;c) = —logy. > 0, unbounded above as ¥, | 0.

CE can assign arbitrarily large penalties to hard errors; MSE on probabilities is bounded and caps
per-sample influence.

MSE on folded-cosine logits (COS-MSE / ORC-MSE). All per-example error bounds we derived
earlier depend on y.. What changes is the mapping from geometry to y.. Since 2;-1) € [0,1],
0<(le—1)2<1, and 0<(£;)2<1(j#c)

The Lower bound is 0 obtained at the ideal point le = 1, Zj# = (0. However, the upper bound would

require l.=0and /. i#c = 1Vj, which is geometrically unattainable unless the feature vector v aligns
with multiple classes. Therefore, the correct worst-case bound without any geometric assumptions is
&(1+(C—1)-1) = 1. The per-sample bound is

0 < L:MSE é C CZ < 1,

where the upper per-example bound is tighter than the probability-space MSE bound.

CE on folded—cosine logits (COS-CE / ORC-CE). The per-example CE loss with folded cosine
logit can be written as:

Log(p?;¢) = — 19 "HOg(Ze A ) =10g(1+zel’§-“—fi’>>.

k=1 j#c

We defined a (direction-invariant) margin against the closest rival class:

A® E(z — maxf(l €[-1,1].
j#c

aai(mf = pgi) — 1 < 0 unless

We can observe that, increasing the margin strictly decreases the loss as

) = 1, while 8583 = p) > 0 for each rival j # c. Equivalently,

j
£CE( ) log(l—l—Ze (09— g(v>))7

j#c

and each summand decreases as the gap Zﬁ” — f;i) widens. This will give us the margin bounds:

A (@). A
< Lc je) < 2 ,
log(1+e ) < Lee(p™;e) < log(l+4 (C—1)e )

which are strictly decreasing in A(). Because 57,(:) € 10, 1] implies A ¢ [—1, 1], plugging the

endpoints gives a global range under this logit box:

log(1+e™!) < Ler(pWie) < log(l+ (C—1)et) .
—_—

best separation (A(9)=1) worst separation (A (1) =—1)

The ORC head enforces W' W = I, which tends to enlarge A() by reducing rival alignments;
however, the per-sample CE form and the bounds above remain unchanged for ORC-CE.

13
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MSE on dot-logits (MSL-MSE). For the dot head with unbounded logits E;, no finite global upper
bound exists unless norms are controlled. Considering the MSE-MSL objective (MSL) as:

~ . 1 2 7\ 2 T
Lus(t'50) = [(e; 12+ g(@) } ¢ =w]zeR,
JjF#c

If the logits ¢/; are unconstrained (no bounds on ||w;|| and ||z|), then:

0 < Luse(l;e) < oo

with the minimum 0 achieved at ¢/, = 1 and E;. ~c = 0, with no finite upper bound.

Assume logits are bounded coordinate-wise:
|t5] < B forallje{l,...,C},

where |w;|| < R and ||z|| < H, giving B<R x H by Cauchy—Schwarz. Therefore, MSL-MSE is
optimized over the hyper-rectangle [~ B, B]. The lower bound is achieved as the rival terms are
nonnegative and minimized at £;_,, = 0, and the target error (£, — 1)* is minimized by:

1, B>1
gl* _ . él o 1 2 _ ) - 5
¢ arge;el[rilg,B]( e 1) {B, B<1,
hence we derive the lower bound as:
) 1 ) 0, B>1,
Lyse(@5c) > — (max{0,1— B})" = (1— B)?
C T7 B < ]..

On the other hand, the rival sum is maximized at |¢’_,.| = B, giving Zj¢c(£3)2 = (C —1)B? and

the target error term (¢/, — 1) is maximized at the endpoint farthest from 1, namely ¢/, = — B, giving

target error = (1 + B)?. Therefore, the upper bound is achieved as:

E,MSE(EI;C) < l (1 + B)2 + (C — 1)32}

_1+2B+CB?
5 =

C

We can show the MSL-MSE per-sample error under the box constraint as:

(max{0, 1 — B})?
C

1+2B+CB?

< Luse(;c) < e

The lower bound is 0 whenever the target logit can reach 1 (B > 1), and the upper bound grows
quadratically with the logit radius B and linearly with C'. Thus, MSL has bounded per-sample loss if
and only if logits are bounded (via norm control or explicit clipping); otherwise, the loss is unbounded
above.

B IMPLEMENTATION DETAILS

B.1 NOISE OPTIMIZATIONS

For each forget class f € J we independently initialize n, freeze IIg w. We optimize ¢ using the
Adam optimizer, with a decreasing learning rate (Ir) via the StepLR schedule, set to a step size of 5
and a decay factor of 0.1, initialized at [r = 0.01. The energy regularization weight is A=0.1. The
Algorithm [T will summarize the unlearning noise training with CE and MSE loss. Figure [3|represents
the average angles between v (normalized noise features z to forget class 0) and u of all classes,
including forget class, over noise training epochs.
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Figure 3: Training unlearning noise results with (left) CE loss and (right) MSE loss. The Z(i, j)
represents the angle between v;, the normalized feature vector of class 7, and u;, the normalized
prototype weight of class j. Top: regular prototype logit. Middle: cosine similarity logit with
trainable prototype layer. Bottom: cosine similarity logit with fixed orthonormal prototype layer.

B.2 BENCHMARK METHODS

For the Retrain method, training is conducted over 150 epochs using the SGD optimizer with a cosine-
scheduled learning rate initialized at 0.1. For all the benchmark methods, we do the learning-rate
search within [1075, 107!] and epoch search within [1, 20]. We used the SGD optimizer with a batch
size of 128 for all methods for fair comparison. For IU, we explore the parameter « associated with
the WoodFisher Hessian inverse approximation within the range [0.1, 20]. For ¢;-sparse, a search for
the parameter 7 is executed within [10~%,1072]. For SalUn, we are searching for sparsity ratios (.S)
in the [0.1, 0.9] range. The summary of the exact hyperparameter for reproducibility of the results is
presented in table Table 3] for Quick unlearning and in table Table [ for Optimum unlearning.

C COMPLEMENTARY EXPERIMENT RESULTS

C.1 EXTENSIVE UNLEARNING PERFORMANCE ANALYSIS

We evaluate four model constraints and two loss functions across eight baseline methods via
wide-ranging experiments in two settings: Quick unlearning and optimum unlearning. The Quick-
unlearning results in Table [5compare classification heads under CE loss, whereas Table [§ reports
the corresponding results under MSE loss. As shown in Table 5] ORC consistently outperforms
other classification heads in balancing forgetting effectiveness (low UA) and task retention (high
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Algorithm 1 Training Unlearning Noise

1: Input: Pretrained model II*, classes to forget C, batch size B = 128, epochs E = 10, steps per
epoch S = 35, learning rate @ = 0.01, number of classes C, input channels ch, Loss M SE or

A A

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

y < RANDINT([0, C—1], B) on device

Initialize noise. < Noise(B, ch,32,32) on device

CE
: Noise Training:
: Set model to evaluation mode and Loss to cross-entropy
: for each class ¢ € Cyopger do
Initialize optimizer opt +— Adam(noise., @)
for epoche = 1to E do
for step s =1to .S do
if Loss C'FE then
if s < 0.955 then
else
y<+c-1p
end if
else
y<1p
end if
logits < model(x)
Update ¢
end for
Update « with sched.step()
end for
noises|c] + noise,
end for
return noises

Compute loss: £ < —CE(logits,y) + 0.1 - mean(}_ z?)

Initialize scheduler sched < StepLR(opt, step_size =5, v =0.1)

Table 3: Quick unlearning — compact hyperparameter configurations under MSE and CE loss.

‘ ORC ‘ CoS ‘ SFX/MSL

Method | Unl.  Ir ~ a S |Unl Ir ~ a S |Un Ir v a S
MSE Loss

GA 1 0.005 1 Se4 2 Se4 - -
FTR 2 005 3 0.05 3 005
FIN 1 le-5 - 1 0.001 1 le-5 - -
LSPN 1 le-5 le-5 1 le-5 0.001 1 le-5 led -
LSPR 3 001 led - 3001 le4 - 3 Se5 001 -
U 1 - - 2 - 1 - - 2 - 1 - - 2 -
SALUN | 3 0.1 - 09| 3 0.005 - 02 3 005 - - 06

Imp. Rep. ITimp Ireep Imp. Rep. ITimp ITrep Imp. Rep. ITimp I7Trep
UNSIR 1 2 0.08 0.02 1 2 0.08 0.01 1 2 le-4 0.01

CE Loss

GA 3 le4 1 Se4 3 Se5 - -
FTR 3 0.05 2 0.05 2 0.1 - -
FTN 1 le-5 - 1 le-5 1 le-5 - -
LSPN 1 le-5 0.01 1 le-5 5e-6 1 le-4 001 -
LSPR 3 0.005 0.001 - 3 0.001 0.005 - 3 0.001 001 -
U 1 - - 1 - 1 0.1 1 - 1 - - 02 -
SALUN| 1 0.05 - 05| 3 0.005 - 07] 1 001 - - 05

Imp. Rep. ITimp ITrep Imp. Rep. ITimp ITrep Imp. Rep. ITimp I7Trep
UNSIR 1 2 0.08 0.01 1 2 0.01 0.005 1 2 005 0.02

RA). GA-ORC-CE achieves the best trade-off with a UA of only 0.28% while maintaining an RA of
95.3%.
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Table 4: Optimum unlearning — compact hyperparameter configurations under MSE and CE loss.

\ ORC | cos | SFX /MSL

Method | Unl.  Ir ~ a S |Unl Ir ~y a S |Un Ir ~ a S

MSE Loss
GA 1 0005 - - - 15 le4 - - - 18 5e-5 -
FTR 20 0.01 - - - 18 0.05 - - - 12 0.05 -
FTN 1 le-5 - - - 4 le5 - - - I le5 - -
LSPN 1 le-5 le-5 - - 1 le-5 0.001 - - 1 le5 led -
LSP 20 001 le5 - - 10 0.001 Se4 - - | 20 le-5 0.01 -
U 1 - - 2 - 1 - - 2 - 1 - - 2 -
SALUN | 8 0.1 - - 04| 12 0005 - - 09| 18 0.05 - - 08
Imp. Rep. ITimp Ireep Imp. Rep. I7imp I7rep Imp. Rep. I7imp I7rep
UNSIR 3 10 Se-4 0.01 1 10 0.08 0.01 1 2 le4 0.01
CE Loss
GA 20 le-5 - - - 1 5e4 - - - 3 5e-5
FTR 20 0.05 - - - 18 0.05 - - - | 20 0.05
FTN 1 le-5 - - - 1 le-5 - - - 1 le5 -
LSPN 1 le-5 0.01 - - 1 le-5 Se-6 - - 1 le4 0.01
LSP 8 Se-4 0.005 - - 12 001 led4 - - 15 Se-4 0.005 -
U 1 - - 1 - 1 0.1 - 1 - 1 - - 02 -
SALUN | 15 0.05 - - 05] 20 001 - - 04] 8 005 - - 05
Imp. Rep. ITimp Ireep Imp. Rep. I7imp I7rep Imp. Rep. I7imp I7rep
UNSIR 1 10 0.08 0.01 1 8 0.02 0.01 2 10 0.02 0.02

Table [6] results indicate that, using MSE loss, COS paired with GA or ORC paired with LSPR
maximize retention while maintaining a low forgetting error. Methods such as FTN-MSL-MSE and
LSPN-MSL-MSE achieve RA of 96.9% and 97.0%, respectively, but with extremely high UA of
28.4% in both cases, reflecting ineffective unlearning.

Under the longer training schedule of optimum unlearning (Tables [7]and 8], we observe retention
gains (RA, TRA) for both loss functions, accompanied by reduced residual memorization (UA, TUA),
in many cases. However, LSPR-COS-CE shows signs of over-forgetting (UA ~ 0%) at the cost of
markedly reduced RA 57.1% (+5.99), whereas LSPR-COS-MSE balances the trade-off better (RA
94.9%, UA 0.28%). SALUN exhibits high RA under both losses for COS but with large UA. Under
optimum unlearning, the best CE-loss configurations are GA—ORC, LSPR-SFX, and FTR-SFX,
achieving low UA and high RA. For MSE-loss, GA—COS and LSPR—ORC likewise rank among the
top performers, with low UA and high RA.

Tables [5 to [§] show that moving from Quick to optimum unlearning generally increases retention
(RA/TRA) for both losses. Under CE, ORC (and sometimes SFX) tends to raise RA but often
increases UA; therefore, when minimizing UA is paramount in CE, some ORC/SFX configurations
are better left at the Quick schedule. The gains are most consistent for COS-MSE; ORC-MSE
typically boosts RA with a mixed effect on UA, e.g., LSPR-ORC-MSE reaches near-zero UA with
RA > 95% under the optimum schedule. By methods, GA and LSPR frequently benefit from the
longer schedule and are often among the strongest performers.

Across the four tables, MIA is near ceiling in the Quick setting for most head—loss—method combina-
tions (= 0.98—1.00) and typically reaches ~ 1.00 with reduced variance under optimum unlearning
setting. The only consistent outlier is COS-CE in the Quick regime, which shows lower and unstable
MIA relative to ORC-CE and SFX-CE; the optimum schedule largely closes this gap. Under MSE,
all classification heads exhibit uniformly high MIA in both regimes, with optimum further tightening
variability.

Table E] shows that, after retraining, MSE yields the most stable outcomes: across models, retained
accuracy is = 94.5%, and the forget set is perfectly excluded (TUA = 0). Under CE, ORC (93.9+0.6)
and SFX (92.5 &£ 0.8) are comparable and also attain TUA = 0, whereas COS is lower and unstable
(TRA = 64.9 £+ 37.2, TUA = 0.01 £ 0.03). Thus, post-retraining differences are driven mainly by
the loss: MSE is slightly higher and markedly more stable than CE, while the head choice is largely
immaterial under MSE and under CE except for the COS case.
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Table 5: Quick unlearning performance results across methods and models, with CE.

Method Model Loss UA() RA(T) TUA()) TRA(1) MIA(T)
FTN COS CE 48.1 + 30.2 47.3 + 3.62 46.6 + 30 45.7£3.55  0.657 & 0.295
FTR COS CE 1.05 + 2.32 70.6+7.61  0.929+2.17 68.5+7.29  0.992 4+ 0.019
GA COS CE 0.0546 +0.078 76.3+3.83 0.029+0.0624 73 +3.54  0.996 + 0.00663
U COS CE 0.018+0.0534 39.4-+21 0.01340.0464 38.2+19.7  0.986 =+ 0.063

LSPN COos CE 48.2 £ 30.4 47.3 £ 3.62 46.7 £ 30.1 45.7 + 3.54 0.663 + 0.287

LSPR COoS CE 7.96 £12.8 84.2 £ 4.63 7.15+£11.2 80.6 £4.28 0.997 + 0.00916
SALUN COS CE 47.6 + 38 87.5 £ 7.39 43.3 £ 35 83.6 £ 7.01 0.691 &+ 0.346

UNSIR  COS CE 5.37+£5.24 77.4+£53 4.85 £4.74 73.9+5.1 0.981 £ 0.0284
FTN ORC CE 27.8 £24.9 27.2 £3.81 27.1+£24.3 26.5 £ 3.79 0.8 £0.141

FTR ORC CE 0.0698 £0.264 75.5+5.82 0.068 £0.244 73 £5.62 1£0

GA ORC CE 0.277 £0.771  95.3£1.53 0.193+0.493 89.1£1.73 0.999 &+ 0.00289
U ORC CE 0.0638 £0.122 46.6 £27.6 0.058 +0.0945 44.7 +25.9 0.929 + 0.256
LSPN ORC CE 28 £+ 25 27.4 4+ 3.83 27.4+24.4 26.8 & 3.81 0.796 + 0.139
LSPR ORC CE 0.0858 £0.246 88.2+3.25 0.082+0.262 84.2+3.18 1£0
SALUN ORC CE 1.71 £ 3.12 68.3 + 8.57 1.65 £ 3.02 66.4 £+ 8.3 0.989 + 0.0233
UNSIR ORC CE 0.607 +£0.694 89.2+£1.73 0.578 £0.672 84.7+1.81 14 0.000811
FTN SFX CE 20 + 28.7 18.2 + 3.47 19.7 £ 28.5 17.9 £ 3.42 0.786 + 0.178
FTR SFX CE 0+£0 76.3 £5.05 0+£0 73.4 £4.83 1£0

GA SFX CE 12.6 + 1.65 92 £ 2.78 12+ 2.1 85.4+2.67 0.882+ 0.0207
U SFX CE 11.6 +14.4 88.1 £12.8 11.4+13.5 81.9 £ 11 0.912 +0.112

LSPN SFX CE 20.2 £28.7 18.5 + 3.49 19.8 £28.5 18.1 +3.44 0.787 £ 0.178
LSPR SFX CE 2.65 £ 2.83 94.4 £ 0.805 2.55 £ 2.89 89.3 £1.03 14 0.000374
SALUN SFX CE 25.6 £23.9 98.8 £ 0.456 22.7+£19.6 92.2£0.938  0.923 £0.145
UNSIR  SFX CE 0.46 £ 0.967 89 +1.83 0.435 + 0.85 84 +1.87 0.999 + 0.00358

Table 6: Quick unlearning performance results across methods and models, with MSE.

Method Model Loss UA() RA(D) TUA(}) TRA(T) MIA(1)

FTN COos MSE 63 £ 7.15 97.9+1.2 57.44+8.26 91.9+1.64 0.669+ 0.0851
FTR COS MSE 1.33+£1.17 84.9+284 1.34+1.12 81.2+2.84 0.997 + 0.00416

GA COos MSE 0.141£0.18 96.34+1.26 0.15+0.173 90.6 &+ 1.55 1+ 0.000706

10 COS MSE 4.37+£8.82 93.5+t4.16 4.31 £8.83 87.8+3.34 0.987+£0.0314
LSPN Cos MSE 60.6+5.32 98.1+0.753 55.2+6.72 92.1+1.22 0.681 +0.085

LSPR COS MSE 0.904 £1.42 94.3 £ 2.57 1.01 +1.66 88.8 £2.6 1+0

SALUN COS MSE 50.4+£10.4 97.3+£1.23 46 + 8.74 91.2 +£1.64 0.752 £ 0.22
UNSIR  COS MSE 1.07£1.07 89.8+£1.79 1.05+1.1 85.8 £1.82 0.999 £ 0.00269
FIN ORC MSE 98.5+£0.88 73.3£15.6 96.1£1.98 66.5+£13.9 0.807+0.136
FTR ORC MSE 1.05+0.833 85.2+2.45 1.02 +£0.947 81.7 £2.48 0.998 £ 0.00191

GA ORC MSE 0+o0 81.6 £7.85 0£0 75.2 £ 7.42 1+0

U ORC MSE 2.23£2.89 91.9+4.87 1.96 +2.46 86.6 +4.14 0.998 + 0.00709
LSPN ORC MSE 78.4£4.79 96.2 £ 3.2 71.7+£6.91 90 £ 3.57 0.857 + 0.0782
LSPR ORC MSE 0.121 £0.25 94.3+1.89 0.076 £0.232 88.9+1.95 1+0
SALUN ORC MSE 15.6 £ 3.96 TTt4.4 15.6 +£3.99 74.3+4.26 0.883 £0.108

UNSIR  ORC MSE 0.857 £ 1.06 91 +1.79 0.897 £1.17 86.7+1.93 0.999 £+ 0.00137
FTN SFX MSE 28.4+£235 96.9£0.767 26.6+2.88 90.6+1.03 0.393 £0.0198

FTR SFX MSE 0+0 60.3 £9.23 0+0 59.2 £ 8.68 1+0
GA SFX MSE 3.96 £1.82 30.5+£5.09 4.05+2.11 30.3+4.99 0.404 £0.0273
U SFX MSE 39 £4.13 7.84 £2.04 39.1£4.51 7.854+2.04 0.765 + 0.312

LSPN SFX MSE 28.4 +£2.26 97 +£0.793 26.7£2.88 90.6£1.03 0.393 +0.0196
LSPR SFX MSE 10.3 £8.74 94.8 £2.2 9.49 £7.37 88.4+242 1+ 0.000369
SALUN SFX MSE 24 +4.15 35.7£9.98 23.9+4.14 35.5+£9.83 0.609 £+ 0.204
UNSIR  SFX MSE 0.67+1 90.94+2.99 0.727+1.11 85.9+£2.77 1 £ 0.000237
FTN MSL MSE 2844235 96.9+£0.767 26.6+2.88 90.6+1.03 0.393+£0.0198

FTR MSL  MSE 0+0 60.3 £9.23 0£0 59.2 £ 8.68 1+0
GA MSL MSE 3.96+1.82 30.5+5.09 4.05+2.11 30.3+4.99 0.404 £0.0273
U MSL  MSE 39 +£4.13 7.84 £2.04 39.1+£4.51 7.85+£2.04 0.765+0.312

LSPN MSL MSE 28.4+2.26 97 +£0.793 26.7£2.88 90.6 £1.03 0.393 + 0.0196
LSPR MSL MSE 10.3+8.74 94.8 £2.2 9.49£7.37 88.4+242 1 £ 0.000369
SALUN MSL  MSE 24 +4.15 35.7£9.98 23.9+4.14 35.5+£9.83 0.609 £+ 0.204
UNSIR MSL  MSE 0.67+1 90.9£299 0.727+1.11 85.9+2.77 1 £ 0.000237

C.2 IDK DETECTION

Tables [T0] to [T3] present IDK-detection performance across models and methods for (i) Quick—CE, (ii)
Quick—MSE, (iii) optimum—CE, and (iv) optimum-MSE, respectively.
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Table 7: Optimum unlearning performance results across methods and models, with CE.

Method Model Loss UA()) RA(T) TUA) TRA(T) MIA(T)
FTN COS CE 48.2 £ 30.1 47.2 £ 3.59 46.7 £ 29.8 45.7 £ 3.51 0.663 + 0.286
FTR Cos CE 0.131 £ 0.365 76.9 + 4.5 0.127 £0.338  73.9 £ 4.33 1+ 0.00179
GA COS CE 0.0546 £ 0.078 76.3 £3.83 0.029 + 0.0624 73 £ 3.54 0.996 + 0.00663
1U COosS CE 0.018 + 0.0534 39.4+21 0.013 £ 0.0464 38.2+19.7 0.986 + 0.063
LSPN COS CE 48 +30.2 47.3 £ 3.61 46.6 +29.9 45.7 £ 3.53 0.654 + 0.293
LSPR CosS CE 0.001 £ 0.00595  57.1 £5.99 0.001 £ 0.01 55.7+£5.8 1+0
SALUN COS CE 34.7£31.1 85.5 +6.23 32.1£29 81.8 £5.97 0.763 + 0.287
UNSIR  COS CE 2.44 £ 3.03 76.7£4.6 2.17£2.71 73.3 £4.32 0.994 + 0.013
FTN ORC CE 29.3 £25.3 28.6 £+ 4.59 28.7 £24.8 28.1 £ 4.56 0.786 + 0.158
FTR ORC CE 0.0014 £ 0.00513 85.8 £2.71 0+0 81.8+2.8 1+0

GA ORC CE 0.647 +£1.71 95.6 £ 1.35 0.443 £1.15 89.5 £1.61 0.998 £ 0.00663
10 ORC CE 0.0502 £ 0.0991  46.5 £27.7 0.047 £0.0731 44.6 £ 26 0.986 + 0.0448
LSPN ORC CE 29.4+£254 28.8 4.6 28.8 +24.9 28.2 +4.58 0.786 £ 0.141
LSPR ORC CE 1.41 +2.52 95.8 £ 0.493 1.3£2.51 90.6 £ 0.791 1+0
SALUN ORC CE 7.03 £8.11 81.6 +4.19 6.89 £+ 8.05 78.4+£3.97 0.971+0.0478
UNSIR  ORC CE 0.607 + 0.694 89.2+1.73 0.578+£0.672 84.7+1.81 1+ 0.000811
FTN SFX CE 18.9 £ 27.5 18.5 £ 3.2 18.6 + 27.2 18.1 £ 3.15 0.793 £ 0.162
FTR SFX CE 0.446 + 0.531 94.6 £0.732  0.44 + 0.557 90.3 £1.05 14 0.000148
GA SFX CE 12.6 £ 1.65 92 + 2.78 12+ 2.1 85.4 +2.67  0.882 + 0.0207
1U SFX CE 11.6 +14.4 88.1 £12.8 11.4+13.5 81.9+11 0.912 +0.112
LSPN SFX CE 22 £ 28.9 20.1 £ 3.59 21.5 £ 28.6 19.6 + 3.54 0.782 +0.179
LSPR SFX CE 0.865 + 1.27 96.4 £0.367 0.794£1.21  90.8 £0.738 1+0
SALUN SFX CE 1.64 + 3.95 83.3 £ 3.68 1.57+£3.7 79.7 £ 3.52 0.99 £ 0.0268
UNSIR  SFX CE 1.44+1.83 93.1 £ 1.47 1.43+1.72 86.8 £1.59 0.998 £ 0.00439

Table 8: Optimum unlearning performance results across methods and models, with MSE.

Method Model Loss UA()) RA(T) TUA(}) TRA(T) MIA(T)
FIN COS  MSE 60.5 & 6.1 98.1+£0.797 54.84+7.34 9214125 0.678 £ 0.089
FTR COS MSE 0.0301 +0.0567 85.34+2.19 0.0209+0.0723 81.44+2.23 142.1e— 05
GA COS  MSE 0.00527 £0.0119 95.6 £1.55 0.0198 £ 0.0401 90.24+1.98 144.12¢ — 05
U COS  MSE 4.87 +£9.25 93.3 + 4.23 4.83+£9.28 87.7+3.4  0.985 %+ 0.0329
LSPN COS MSE 60.3 & 6.04 98.1+0.828  54.74+7.27  92.1+1.28 0.679 + 0.0896
LSPR  COS MSE 0.28 +0.7 94.9+1.57 0.3274+0.832 89.6+ 1.75 140
SALUN COS MSE 50.6 & 12.7 97.2 & 3.01 45.7+£10.8  91.243.12 0.728 +£0.214
UNSIR COS  MSE 2.01 4 1.92 91.4 & 1.39 2.05+2 86.9 4 1.55 0.998 & 0.00415
FIN ORC  MSE 77.8 £4.85 96.2 & 3.15 71.24+7.03  90.1+£3.51 0.854+0.0785
FTR ORC MSE 2.21 4 3.41 95.1 & 1.87 23435 89.1 & 2.03 1+0

GA ORC  MSE 0+0 91.3 +7.21 0+0 85.2 + 7.23 140

U ORC MSE 2.25+£2.9 92 £ 4.77 24248 86.6 &= 4.06 0.998 & 0.00702
LSPN ORC MSE 78 + 4.58 96.3 + 3.01 71.44+6.8 90.1+3.38 0.855 % 0.0786
LSPR  ORC MSE 0.001 +0.00659  95.9 4+ 1.26 040 90.3 & 1.44 1+0
SALUN ORC MSE 15.1 + 3.08 78.4 + 4.42 15.1+3.4 75.14+4.34  0.895 + 0.0317
UNSIR ORC MSE 2.442.71 92.4 4 1.74 242+2.85  87.4+1.91 140.000117
FIN SFX  MSE 28 + 2.16 96.9+0.817  26.34+2.85  90.5+1.04 0.998 + 0.00208
FTR SFX  MSE 040 86.7 & 2.36 040 82.4 & 2.46 140

GA SFX MSE 0.044£0.0374  95.3+1.3 0.0386+£0.0721 89.241.35 140

U SFX  MSE 1.73 £1.17 91.8 & 3.76 1.57+1.08 8632282 1+9.3le—05
LSPN  SFX  MSE 28 4 2.43 96.9+0.793  26.243.05  90.5+1.03 0.998 + 0.00206
LSPR  SFX MSE 13.9 + 4.28 95.8 & 1.55 13.2+4.3 89.9 + 1.53 1+0
SALUN SFX  MSE 12.8 +2 86.3 4+ 2.6 12.7 +£2.29 82+£2.66  0.933 4 0.0153
UNSIR SFX MSE  0.161+0.366  92.8+1.73  0.184+0.407 87.2+1.89 1+0

FTR MSL  MSE 040 86.7 & 2.36 040 82.4 & 2.46 1+0

GA MSL MSE 0.0444+0.0374  95.3+1.3 0.0386+£0.0721 89.241.35 140

U MSL  MSE 1.73 £1.17 91.8 & 3.76 1.57+£1.08  86.3+2.82 1493le—05
LSPN MSL MSE 28 + 2.43 96.9+0.793  26.243.05  90.5+1.03 0.998 + 0.00206
LSPR  MSL MSE 13.9 +4.28 95.8 & 1.55 13.24+4.3 89.9 & 1.53 1+0
SALUN MSL  MSE 12.8 42 86.3 + 2.6 12.7 £2.29 824266  0.933 £ 0.0153
UNSIR MSL MSE  0.161+£0.366  92.8+1.73  0.184+0.407 87.2+1.89 140

IDK detection is loss-driven: MSE consistently delivers higher AUC and lower FPR@TPR90 and
DetErr@TPR90 than CE for all models and methods. Switching from Quick to optimum yields
modest, consistent gains mainly under MSE (higher AUC, lower FPR/DetErr); CE changes little
and optimization does not close its gap to MSE. COS and ORC benefit similarly from MSE, with
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Table 9: Retrain performance across models, grouped by loss functions.

Table 10: IDK detection performance under Quick unlearning across methods and models, with CE.

Loss Model Retrain TRA (1) Retrain TUA(])
COS 64.9 + 37.200 0.01 £+ 0.0316

CE ORC 93.9 £ 0.627 0+0
SFX 92.5 £+ 0.804 0+0
COS 94.6 £+ 0.561 0+0
ORC 94.5 £+ 0.634 0+0

MSE SFX 94.5 £+ 0.613 0+0
MSL 94.5 £+ 0.557 0+0

Method Model Loss AUC(T) FPR@TPR90()) Thr@TPR90 DetErr@TPR90(|)
FTR COS CE 0.625 + 0.136 0.687 £0.17  1.77 £ 0.698 0.393 + 0.085
GA COosS CE 0.769 £ 0.0449 0.523 +0.0807 2.35+£0.432 0.312 £ 0.0404
1U COS CE 0.479 £0.207  0.789 £ 0.207  3.05 £ 2.99 0.444 +0.104
LSPR CosS CE 0.783 £0.171  0.435 +0.267  9.25 £ 4.78 0.268 + 0.134
SALUN COS CE 0.728 £0.206 0.485+0.294 2.22+1.11 0.292 + 0.147
UNSIR  COS CE 0.818 + 0.0566 0.404 + 0.0944 3.22 + 2.66 0.252 £ 0.0472
FTR ORC CE 0.654 + 0.091 0.65+0.112  2.22+0.607 0.375 £ 0.0558
GA ORC CE 0.89 £0.0212 0.219 £0.0678 10.1 £3.25 0.159 £ 0.0339
U ORC CE 0.416 £ 0.167  0.869 + 0.124 2.44+1.81 0.485 £ 0.0619
LSPR ORC CE 0.773 £ 0.064 0.465+0.113 4.24£1.16 0.282 + 0.0565
SALUN ORC CE 0.619 +£0.115  0.685+0.123  4.04 £ 1.37 0.393 £ 0.0613
UNSIR  ORC CE 0.813 +0.0243 0.397 £ 0.0658 5.41 £ 1.96 0.248 £ 0.0328
FTR SFX CE 0.573 £ 0.107 0.74 £0.111 15.9 + 2.69 0.42 £ 0.0557
GA SFX CE 0.914 +0.0107 0.255 +0.0361 26.5£0.981 0.178 +0.0181
1U SFX CE 0.654 £0.189  0.651 +0.176 15.9 £+ 4.16 0.376 £ 0.088
LSPR SFX CE 0.694 + 0.0956  0.543 +0.136 18.1 +2.51 0.322 4+ 0.068
SALUN SFX CE  0.755+£0.0511 0.465 % 0.0847 18 £ 1.65 0.282 £ 0.0423
UNSIR  SFX CE 0.862 + 0.0117 0.341 +0.0253 25.7£1.13 0.221 £ 0.0127

Table 11: IDK detection performance under Quick unlearning

across methods and models, with MSE.

Method Model Loss AUC(T) FPR@TPR90()) Thr@TPR90 DetErr@TPR90(])
FTR COS MSE 0.824 +0.0224 0.402 £0.0471 10.7 +1.26 0.251 £ 0.0235
GA Cos MSE 0.822 +0.0314 0.392 £+ 0.0943 6.85+0.733  0.246 £ 0.0472
U COS MSE 0.794 +0.0862  0.513 £ 0.208 13.7+£5.75 0.306 + 0.104
LSPR COos MSE 0.876 £+ 0.12 0.268 +£0.138  28.3 £6.38 0.184 + 0.069
SALUN COS MSE 0.826 + 0.0604  0.436 £ 0.192 10.8 +3.45 0.268 + 0.096
UNSIR  COS MSE 0.837 £0.0572 0.345 £0.0753 10.9 £3.72 0.222 + 0.0376
FTR ORC MSE  0.82+0.0174 0.386 £0.0377 5.24 +0.576  0.243 £ 0.0188
GA ORC MSE 0.2 + 0.0858 0.961 + 0.0599 4.17 £ 0.486 0.531 + 0.03
U ORC MSE 0.734 +0.0754 0.604 £0.139  8.55 4+ 2.89 0.352 + 0.0696
LSPR ORC MSE 0.875+0.0296 0.218 £0.0323 21.3 +1.82 0.159 £ 0.0162
SALUN ORC MSE 0.774 +£0.0295 0.481 £0.0506 7.25+1.71 0.291 + 0.0253
UNSIR  ORC MSE 0.855+0.0139 0.305 £0.0258 5.71 +£1.51 0.203 £ 0.0129
FTR SFX MSE 0.806 +0.0124 0.424 +£0.0301 13.5+1.24 0.262 £ 0.0151
GA SFX MSE  0.912 4 0.0098 0.23 £+ 0.024 11.3+1.29 0.165 + 0.012
U SFX MSE 0.814 +0.0343 0.413 £0.0832 9.98 £ 1.29 0.257 £ 0.0416
LSPR SFX MSE 0.921 +£0.00817 0.214 +£0.0164 13.24+1.24 0.157 4 0.00822
SALUN SFX MSE 0.832 + 0.0196 0.4 £ 0.0322 15.1 £ 1.57 0.25 £ 0.0161
UNSIR  SFX MSE  0.845 +0.111 0.337 £ 0.132 12.3+5.9 0.219 + 0.0662
FTR MSL MSE 0.671+£0.059 0.644 + 0.089 14 £+ 2.65 0.372 £ 0.0445
GA MSL MSE 0.68+0.0597 0.736 £0.0869 9.41 £2.8 0.418 + 0.0434
1U MSL MSE 0.561 +0.0977 0.861 £ 0.0759 5.06 £ 2.64 0.48 4+ 0.038
LSPR MSL MSE 0.513 £0.0661 0.806 £0.0742 4.51 +0.658 0.453 £ 0.0371
SALUN MSL MSE 0.641 £0.0622 0.722£0.0822 11.4+2.38 0.411 £ 0.0411
UNSIR MSL MSE 0.667 +0.0763 0.738 £0.0714 9.21 +£9.3 0.419 + 0.0357

ORC sometimes gaining a small extra FPR drop in the optimum step. Within CE, SFX is usually
strongest, whereas with MSE the MSL variant typically matches or exceeds SFX after optimization.
In the Quick regime, SFX-MSE clearly outperforms MSL-MSE for most methods (notably GA, IU,
SALUN, UNSIR), whereas under Optimum they are largely comparable. Method-wise, UNSIR and
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Table 12: IDK detection performance under optimum unlearning across methods and models, with

CE.

Method Model Loss AUC() FPR@TPRY0(]) Thr@TPRY0 DetErr@TPRI0(/)
FTR COS CE  0.6850.0986 0.63+£0.159 1.45+0.444 0.365 %+ 0.0794
GA COS CE  0.769 £ 0.0449 0.523 & 0.0807 2.350.432  0.312 & 0.0404
U COS CE  0.47940.207 0.789 4 0.207 3.05+2.99  0.444 £ 0.104
LSPR  COS CE 0.57440.0956 0.77 £0.105  2.314£1.2  0.435 4 0.0524
SALUN COS CE  0.762+0.197 0.425+0.299 2.56+1.21 0.262 £ 0.15
UNSIR COS CE 0.806 & 0.0516 0.436 4 0.0993 2.91+1.3  0.268 £ 0.0497
FTR ORC CE 0.7234£0.0694 0.569+£0.119 1.8840.346 0.335 % 0.0593
GA ORC CE  0.91+0.0197 0.21440.0647 8.324+2.68  0.157 £ 0.0323
U ORC CE  0.415+0.167 0.869+£0.124 2.414+1.83  0.485 % 0.0619
LSPR ORC CE 0.864+0.0778 0.309+£0.15 836283  0.205+0.0748
SALUN ORC CE  0.73+£0.0909 0.566 +0.135 4.384+1.55  0.333 £ 0.0677
UNSIR ORC CE 0.808+0.0321 0.4224+0.0904 3.78=£1.55  0.261 = 0.0452
FTR SEX CE 0.738+£0.0554 0.474+£0.0917 17.2+£1.84  0.287 & 0.0458
GA SFX CE  0.914+0.0107 0.255+0.0361 26.5+0.981 0.178 +0.0181
U SEX CE  0.654+£0.189 0.6514+0.176 15.94+4.16  0.376 £ 0.088
LSPR SFX CE 0.765+0.0574 0.433+0.103 18.94+24  0.267+0.0516
SALUN SFX CE  0.628+0.11 0.674+0.137 16.14£2.76  0.387 £ 0.0683
UNSIR SFX CE 0.875+0.0124 0.304+0.0309 26.241.29  0.202 =+ 0.0154

Table 13: IDK detection performance under optimum unlearning across methods and models, with

MSE.
Method Model Loss AUC(T) FPR@TPRY0({) Thr@TPR90 DetErr@TPRI0(|)
FTR COos MSE 0.82£0.0169 0.391 £0.0336 7.47 +0.647 0.246 + 0.0168
GA COos MSE 0.81 £0.0372 0.384 +£0.0449 6.44 +£0.617  0.242 + 0.0224
U COoS MSE 0.807 £ 0.0813 0.475 4+ 0.186 14.5 £ 5.57 0.288 £ 0.093
LSPR COos MSE 0.912+0.0378 0.218 £0.0555 40.7 £4.85 0.159 + 0.0278
SALUN COS MSE 0.836 £ 0.0655 0.408 &+ 0.191 11.5 + 3.98 0.254 + 0.0953
UNSIR  COS MSE 0.861 £0.0226 0.314 £ 0.0408 8.69 £ 2.65 0.207 + 0.0204
FTR ORC MSE 0.815 £ 0.0647 0.247 £ 0.0757 16.2 £ 1.76 0.174 £ 0.0379
GA ORC MSE  0.528 + 0.141 0.687 +0.132 4.49£1.17 0.394 + 0.0662
U ORC MSE 0.735£0.0741 0.603 +0.138  8.56 £ 2.86 0.351 + 0.0688
LSPR ORC MSE 0.853 £0.0343 0.217£0.0384 15.5+1.2 0.158 + 0.0192
SALUN ORC MSE 0.775+0.0345 0.479£0.0613 5.84 £1.15 0.289 + 0.0307
UNSIR  ORC MSE 0.893 £0.0228 0.248 £0.0368 11.6 £2.12 0.174 +0.0184
FTR SFX MSE 0.813£0.0155 0.406 + 0.033 11.5+1.21 0.253 + 0.0165
GA SFX MSE 0.865 £ 0.0141 0.289 £ 0.0327 8.08 £0.473  0.195 + 0.0164
U SFX MSE 0.814 £0.0341 0.412+£0.0831 9.98 £1.32 0.256 + 0.0416
LSPR SFX MSE 0.839 +£0.0149 0.274 +£0.0216 14.4 £ 0.66 0.187 + 0.0108
SALUN SFX MSE 0.836 £0.0169 0.377£0.0322 12.4+£1.63 0.238 + 0.0161
UNSIR  SFX MSE 0.864 £0.0117 0.304 £0.0247 9.54 £ 1.06 0.202 + 0.0124
FTR MSL  MSE 0.813 £0.0155 0.406 £0.033 11.5+1.21 0.253 + 0.0165
GA MSL  MSE 0.863 £ 0.018 0.293 £ 0.0469 8.08 +0.476  0.197 + 0.0234
U MSL  MSE 0.814 £0.0341 0.412 £0.0831 9.98 +1.32 0.256 + 0.0416
LSPR MSL MSE 0.839+0.0149 0.274 +£0.0216 14.4 £ 0.66 0.187 £ 0.0108
SALUN MSL MSE 0.836 +0.0169 0.377 +£0.0322 12.4+1.63 0.238 + 0.0161
UNSIR MSL  MSE 0.715+ 0.0813 0.644 £ 0.102 776 £1.4 0.372 + 0.0511

LSPR are top-tier under MSE in both regimes. Thr@TPR90 reflects score scaling and should be
compared only within the same loss. Overall, optimum unlearning modestly improves robustness
relative to Quick unlearning, but the decisive factor is the loss: MSE outperforms CE in both accuracy
and stability. Also, comparing the performance of MSL and SFX models reveals that adding a softmax
layer generally improves stability and detection, particularly in the Quick setup, with accompanying
reductions in FPR and detection error.

Figure[d]visualizes the unlearning—retention trade-off by plotting TUA versus TRA with AUC encoded
as bubble size; color denotes method, marker denotes model variant, and fill denotes loss. SALUN
achieves high TUA and TRA having a large bubble. COS tends to preserve retention better than MSL,
and ORC is more balanced. GA-COS-MSE offers the best balance between TRA and TUA. Overall,
the figure summarizes how method, classifier head, and loss jointly shape the unlearning—retention
trade-off.
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Figure 4: Merged view of IDK detection and test unlearning/retention under the optimum setting, il-
lustrating forgetting effectiveness versus retained-data performance (the trade-off between unlearning
accuracy and retention fidelity).
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