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ABSTRACT

Natural language processing evaluation has made significant progress, largely
driven by the proliferation of powerful large language models (LLMs). New eval-
uation benchmarks are of increasing priority as the reasoning capabilities of LLMs
are expanding at a rapid pace. In particular, while multi-document (MD) reasoning
is an area of extreme relevance given LLM capabilities in handling longer-context
inputs, few benchmarks exist to rigorously examine model behavior in this setting.
Moreover, the multi-document setting is historically challenging for benchmark
creation due to the expensive cost of annotating long inputs.
In this work, we introduce MDBench, a new dataset for evaluating LLMs on the
task of multi-document reasoning. Notably, MDBench is created through a novel
synthetic generation process, allowing us to controllably and efficiently gener-
ate challenging document sets and the corresponding question-answer (QA) ex-
amples. Our novel technique operates on condensed structured seed knowledge,
modifying it through LLM-assisted edits to induce MD-specific reasoning chal-
lenges. We then convert this structured knowledge into a natural text surface form,
generating a document set and corresponding QA example. We analyze the be-
havior of popular LLMs and prompting techniques, finding that MDBench poses
significant challenges for all methods, even with relatively short document sets.
We also see our knowledge-guided generation technique (1) allows us to read-
ily perform targeted analysis of MD-specific reasoning capabilities and (2) can be
adapted quickly to account for new challenges and future modeling improvements.

1 INTRODUCTION

The rapid advancements in natural language processing (NLP) have been largely driven by the devel-
opment and deployment of large language models (LLMs). These models have showcased remark-
able improvements in various tasks, including understanding, generating, and reasoning over text.
However, despite these advancements, evaluation frameworks for NLP systems have struggled to
keep pace (Chang et al., 2024), notably for tasks involving reasoning over multiple documents (Mavi
et al., 2024).

Multi-document (MD) reasoning involves synthesizing and inferring information across multiple
diverse texts (Caciularu et al., 2021), posing unique challenges not addressed by traditional single-
document benchmarks. While LLMs are increasingly capable of handling longer-context multi-
document inputs, there is a scarcity of benchmarks that rigorously examine the specific reasoning
characteristics that are prominent in this setting. In addition, many existing benchmarks consist of
static, hand-crafted datasets, which are labor-intensive to produce. These datasets are often suscepti-
ble to data contamination (Xu et al., 2024) over time, e.g., LLMs are exposed to public benchmarks
during training. This can compromise the integrity of the evaluation.

In this work, we address these limitations with MDBench, a benchmark using a novel generation
technique for multi-document reasoning evaluation. Our benchmark is generated through a syn-
thetic process that leverages structured knowledge as seed information. This process uses a strong
LLM (GPT-4o) to augment structured knowledge by injecting complexities that require advanced
reasoning skills, then generates text documents from the augmented knowledge.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our benchmark generation pipeline begins with a structured knowledge source serving as the seed
information. Each knowledge entry (i.e., row of the table) encapsulates distinct knowledge that
forms the basis of a document in the generated set. We follow a three-step augmentation process to
source knowledge, augment knowledge, and generate document sets with multi-document reasoning
challenges:

1. Source Seed Knowledge: We collect tabular data where each row contains information
that will contribute to a generated document.

2. Augment Knowledge: Using a powerful LLM, we edit the structured knowledge to inject
challenging reasoning dependencies and enrich the context for document creation. By
treating rows as proxies for documents, we model cross-document dependencies through
cross-row knowledge interactions. In this step, we also generate question-answer pairs that
utilize the introduced reasoning dependencies.

3. Generate Natural Text: We map the augmented knowledge into natural text by generating
a corresponding multi-document set from the augmented table. This process allows us
to systematically inject critical reasoning challenges while producing examples that are
realistic and fluent.

We produce a substantial number of multi-document QA examples using this pipeline (300 human-
validated, and 700 more automatically-validated for quality) and evaluate the performance of models
from several prominent LLM families including GPT, Claude, Gemini, and Llama. We find that:

• MDBench poses a strong challenge, even for state-of-the-art methods, with the best ones
achieving ∼59% performance on this MD reasoning task.

• Frontier models such as GPT-4o and Claude Sonnet significantly outperform smaller LLMs
across different prompting methods. This highlights the importance of model capacity and
sophistication in handling complex multi-document reasoning tasks.

• When comparing performance on document reasoning versus tabular reasoning (i.e., struc-
tured format pre-document generation), we find that strong models are mostly performant
in both settings. However, smaller models struggle more in the long-form document set-
ting. This suggests that multi-document reasoning is influenced by both the fundamental
reasoning complexity, and also from the nuances of the surface form.

• Prompting techniques such as Chain-of-Thought (Wei et al., 2022) can improve perfor-
mance across strong models. However, they are insufficient to significantly enhance the
performance of weaker models like Llama3-7B and GPT-3.5. This indicates that while
prompting strategies can aid reasoning, underlying model capabilities remain a limiting
factor for this task, which makes MDBench suitable for future, advanced model evaluation.

2 RELATED WORK

Evaluating the capabilities of LLMs is a critical aspect of NLP research. As LLMs continue to
improve rapidly, existing evaluation frameworks often lag behind, particularly in assessing complex
reasoning abilities such as multi-document (MD) reasoning. As LLMs rapidly increase in reasoning
capacity, there is a pressing need to develop evaluation methods that can capture these higher-order
reasoning skills.

Multi-Document Reasoning MD reasoning involves synthesizing and inferring information
across multiple texts. Existing work in this area includes datasets targeting specific phenomena such
as temporal reasoning (Xiong et al., 2024; Wan, 2007), summarization (Xiao et al., 2021; Peper et al.,
2023; Lior et al., 2024), multi-hop question answering (Yang et al., 2018; Qi et al., 2021; Trivedi
et al., 2022) and ambiguous entity resolution (Lee et al., 2024). Notably, many of these MD datasets
are publicly-sourced and often reliant on significant human effort to curate For example, Zhu et al.
(2024) introduce FanOutQA, a recent multi-hop, multi-document question answering dataset, which
targeted decomposable QA examples sourced from public Wikipedia knowledge and relied on thou-
sands of manual annotations. Our work seeks to use knowledge-controlled generation to offer a
scalable alternative for producing nuanced and unseen multi-document reasoning examples.
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Tabular Reasoning with LLMs LLMs have demonstrated strong performance in tasks involving
structured knowledge, such as tabular data or knowledge bases (Lu et al., 2024; Li et al., 2023a).
Recent studies have observed success in applying LLMs to table reasoning, manipulation, and aug-
mentation (Lu et al., 2024; Li et al., 2023a). While there are limitations in LLM pre-training which
can lead to formatting sensitivities and limitations with handling large tables, Nahid & Rafiei (2024)
find improved performance by decomposing the tabular knowledge into a digestible size. Similarly,
leveraging tabular knowledge within reasoning chains allows for compact and effective represen-
tation of complex problems, as explored in the Chain-of-Tables framework (Wang et al., 2024).
These insights highlight the potential of using condensed knowledge as a foundation for generating
challenging reasoning tasks.

LLM-Supported Synthetic Benchmark Creation To address the need for more dynamic eval-
uation datasets, LLM-powered synthetic benchmark creation has gained significant traction (Long
et al., 2024; Liu et al., 2024; Li et al., 2023b), particularly as there is growing concern of bench-
mark data contamination Xu et al. (2024) Some work has been done in the multi-document setting,
although automation is largely used for extending existing annotated multi-document benchmarks
to more complex tasks (Schnitzler et al., 2024). While not directly modeling multi-document tasks,
Sprague et al. (2023) explore synthetic generation in the related multi-step reasoning setting, using a
neurosymbolic generation algorithm which maps synthetic structure into natural text examples. Our
method seeks to build off related work in synthetic generation to address efficient multi-document
benchmark creation.

3 MDBENCH GENERATION PIPELINE

In this section, we motivate and overview the generation process, and provide details on the compo-
nents and steps taken to produce the MDBench evaluation benchmark.

3.1 BENCHMARK GENERATION GOALS

• Contain Novel and Unseen Text: We aim to produce examples that are not merely scraped
from public datasets but rather contain newly-generated content. This ensures that models
are tested on scenarios they have not encountered during training, avoiding overfitting to
pre-existing benchmarks.

• Contains Cross-Document Knowledge Dependencies: A key focus is to produce exam-
ples that require reasoning across multiple documents. We design our benchmark to have
intentional cross-document dependencies, making them particularly challenging, testing
multi-document reasoning capabilities.

• Grounded in Real-World Scenarios: Even though the examples are synthetically gen-
erated, they should ideally remain grounded in real-world concepts and situations. This
ensures that the reasoning challenges presented are realistic and relevant to practical NLP
applications.

• Counterfactual Alterations: To further mitigate data contamination and leakage risks
from public sources, we incorporate slight counterfactual or fictional twists on real-world
scenarios. This allows for a fresh take on familiar domains while maintaining the integrity
of the benchmark.

• Scalability and Control: Our approach is designed to offer control during benchmark
generation. We allow one to specify seed information such as domain and behavior types,
and can control the complexity and nature of the reasoning tasks present in the benchmark.

3.2 PIPELINE OVERVIEW

Our benchmark generation pipeline begins with structured knowledge sourced from tabular data,
which serves as the seed for the augmentation process. This structured knowledge is systematically
enriched and refined through a strong LLM to inject reasoning dependencies that challenge models
to infer information across multiple documents. Figure 1 overviews the pipeline.

3
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Step 1: Source structured 
knowledge from tabular data

Step 2: Produce new+challenging 
tabular QA example through 

knowledge augmentation

“Provided are definitions and 
examples of multi-document 

reasoning skill: {multi-hop_ex}, 
{temporal_ex}, {numeric_ex}...”

“Your task is to alter the provided 
table to introduce multi-document 
reasoning challenges. Here is an 

example of an edit plan {edit_plan}. 
Generate a plan to edit this table and 

create a QA example”

“Generate a document for row k of the 
table in this example: {Table} 

{Question} {Answer} {Generation 
Parameters} ”

Step 3: Produce Document Set for QA example

Doc 1
Doc 2

Doc 3

Hockey Series

date visitor score home victor record

April 17 ottawa 0-1 buffalo buffalo 0-1

April 19 ottawa 3-1 buffalo ottawa 1-1

April 21 buffalo 3-2 ottawa buffalo 1-2

April 23 buffalo 0-1 ottawa ottawa 2-2

Hockey Series

date visitor score home context style

April 17 ottawa 0-1 buffalo the arena was a sea of
blue and gold news article

April 19 buffalo 3-1 ottawa box score recap

April 21 W 3-2 L visiting fans dressed in 
blue and gold news article

April 23 buffalo 0-1 ottawa  fan post-game 
interview

Question: Which team won the series and what was their overall record?
Answer: Buffalo won, going 3-1 in the series

Doc 4

Generated Edit Plan
1) Create question+answer:
“Which team won the series…”
2) Remove victor and record
columns
3) Add context to introduce soft
knowledge dependency by
associating buffalo with blue and
gold in April 17 and April 21
4) Remove direct mentions of
team names in April 21
5) Add style/prose for each row to
simulate a real-world document

“Create a new table 
using the provided 

instructions: {Original 
Table} {Edit Plan}”

Figure 1: MDBench generation pipeline overview. We source structured knowledge, then use in-
context multi-document reasoning demonstrations to intentionally modify the existing knowledge
with challenging dependencies. We then map this seed knowledge into document form to produce
the multi-document QA example.

Step 1: Obtaining Seed Knowledge We start with the intuition that compressed structured knowl-
edge provides an effective foundation for multi-document reasoning. Several valid sources of this
exist, such as knowledge bases, tabular information, or even by performing information extraction
to consolidate data from existing documents and text corpora. For the MDBench benchmark, we uti-
lize the TabFact (Chen et al., 2020) dataset, which comprises 16,000 tables sourced from Wikipedia.
Our motivation for exploring this dataset is threefold: (1) TabFact tables provide a reliable and cu-
rated source of seed knowledge (2) the data spans a wide range of domains, including news, sports,
media, and technology, and (3) has an emphasis on human-readability both in scale and content.
This structured knowledge serves as the starting point for our knowledge augmentation process,
which significantly transforms the raw data into more challenging and complex reasoning tasks. We
heuristically filter the dataset to select tables that are rich in content yet manageable in size, choosing
those with 5 to 15 rows and 3 to 8 columns.

Step 2: Knowledge Augmentation An important component of our technique is the knowledge
augmentation step. This step modifies information, applying operations that inject complex knowl-
edge dependencies and reasoning challenges. Figure 1 overviews our pipeline, while full detailed
examples of the knowledge augmentation prompts are provided in Appendix A.

• Multi-document Reasoning Demonstrations Prior to altering the existing information we
first demonstrate relevant skills for multi-document reasoning. Each skill is demonstrated
in both ‘simple’ and ‘challenging’ forms. The demonstrations include examples, along
with explanations and rationales for solving them. For the purpose of this benchmark,
we define and emphasize five reasoning components which are particularly relevant in the
multi-document setting. For each skill we demonstrate both a simple and more complex
example, each highlighting the relevant reasoning. We describe these skills in Table 2.

• Knowledge Augmentation Demonstrations In addition to demonstrating relevant reason-
ing skills, we next provide knowledge edit demonstrations. These demonstrations illustrate
plans for how simple tables can be enhanced to form nuanced QA examples. Each demon-
stration consists of an initial table, a series of edits, and a resultant augmented table and
QA annotation. When performing knowledge augmentation, we provide one demonstration
from a small set of high-quality curated examples.
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‭Baseline Example:‬‭Which country had the‬
‭most showings and how many was this in‬
‭total?‬

‭date‬ ‭territory‬ ‭showings‬

‭october 20,‬
‭2006‬ ‭turkey‬ ‭200‬

‭october 20,‬
‭2006‬ ‭belgium‬ ‭600‬

‭Answer:‬‭Belgium had the most with 600‬
‭showings.‬
‭Answer rationale:‬‭Turkey had 200‬
‭showings and Belgium had 600. 600 > 200,‬
‭therefore Turkey had the most showings.‬
‭Commentary:‬‭This is a simple reasoning‬
‭process as it requires a simple comparison‬
‭of two values with no additional reasoning‬
‭required.‬

‭Harder Example:‬‭Which country had the‬
‭most showings and how many was this in‬
‭total?‬

‭date‬ ‭territory‬ ‭showings‬

‭october 20, 2006‬ ‭turkey‬ ‭200‬

‭october 20, 2006‬ ‭belgium‬ ‭600‬

‭october 25, 2006‬ ‭turkey‬ ‭500‬

‭Answer‬‭: Turkey had the most with 700‬
‭showings.‬
‭Answer Rationale:‬‭Turkey had showings‬
‭on two different days, so the total is‬
‭200+500=700 showings. 700 > Belgium’s‬
‭600, therefore Turkey had the most.‬
‭Commentary:‬‭By adding a new row with‬
‭complementary information, we necessitate‬
‭an additional reasoning hop to correctly‬
‭answer the question. Note that this table‬
‭was edited specifically such that the answer‬
‭(Turkey) is flipped from the original answer‬
‭(Belgium) in the simple example.‬

Figure 2: Example Skill Description – Multi-hop Reasoning. During knowledge augmentations, we
demonstrate the multi-document skills relevant to the document sets.

.

Min Mean (std) Max
# Docs / Rows 5 8.79 (2.5) 17
# Table Columns 3 5.42 (1.2) 9
Token Length (Tabular Format) 121 255.98 (81.6) 554
Token Length (Doc. Format) 1048 2317.81 (754.1) 6210
Avg. Document Token Length 177 264.02 (37.6) 388

Table 1: MDBench benchmark statistics. Each row in the tabular representation ultimately corre-
sponds to a document within the multi-document example. We see a roughly 9x increase in surface
form length when mapping the structured knowledge to natural text document format.

Through these two steps, we modify the tabular knowledge to form a more nuanced QA example
with cross-row knowledge dependencies.

Step 3: Document Set Generation Once the tabular knowledge has been augmented, we map
this information into natural language text; each row in the table is used to generate a document,
with the augmented knowledge ensuring that reasoning across documents (rows) is required to solve
the accompanying QA task. We independently generate each document, the generation prompt
parameterized by the following components: (1) the augmented table and title, (2) the column names
and (3) a specific row of content within the table indicated for generation. Iterating this process over
all n rows in the table, we generate an n-document set. This approach of knowledge-grounded
generation ensures the generated document set maintains logical coherence while presenting unique
cross-document reasoning challenges.

3.3 MDBENCH BENCHMARK GENERATION DETAILS

We use GPT-4o as the backbone of the pipeline, for both table augmentation and document gener-
ation. We note that quality control is a crucial process for synthetic data generation (Long et al.,
2024), and we use automated validation steps in both generation steps to mitigate compounding er-
rors within the pipeline. We generate and hand-verify 300 produced examples, and also produce 700
machine-validated examples for community use. Details of the automated validation prompts used
in the generation process are outlined in Appendix C. Table 1 outlines the statistics of the generated
benchmark.
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Figure 3: Overall performance of models on MDBench. Table reasoning is when evaluated with the
intermediate table QA examples. Document Reasoning refers to the performance on the final task
of multi-document reasoning.

Reasoning Type Description

Multi-hop Reasoning Solving problems requiring multiple steps to arrive at the
solution.

Numeric Reasoning Handling numeric values and performing numerical operations.
Temporal Reasoning Handle temporal information and temporal dependencies.

Knowledge Aggregation Aligning, comparing and/or contrasting knowledge that may be
present.

Soft Reasoning
Reasoning abductively and making informed decisions in cases
where some uncertainty or fuzziness may be present, such as

cross-document entity linking.

Table 2: Reasoning skills overview. For our benchmark, we focus on five goals which are especially
relevant for the multi-document setting. We provide demonstrations of these reasoning types to
inspire relevant knowledge edits during the generation process.

4 EXPERIMENTAL SETUP

To assess the challenges of MDBench, we test the performance of many popular LLMs in com-
bination with conventional prompting setups. Concretely, we test open-source LLMs with Meta’s
Llama-3 (Dubey et al., 2024), using the 8B-Instruct and 70B-Instruct variants. For API-based pro-
prietary models, we use models from the popular Anthropic Claude, OpenAI GPT, and Google
Gemini model familes, which represent the state-of-the-art in LLM performance. For Claude, we
use Claude-3-Opus-20240229 and Claude-3.5-Sonnet-202406201. For GPT we use GPT-3.5-turbo-
16k-06132 (Ouyang et al., 2022) and GPT-4o-2024-08-063. For Gemini, we use Gemini-1.5-Pro-
0514 (Team et al., 2024).

We explore both zero-shot and one-shot QA prompting scenarios, noting that when prompting in the
one-shot case we use a single representative demonstration across models for consistency. We use a
conventional question-answering prompt, and also further instruct the models to ‘think step by step’
to additionally produce Chain-of-Thought (CoT) rationales. Examples of these prompt formats are
provided in Appendix B. To evaluate on the QA task, we use GPT-4o as a reference-based scorer,
first parsing the final answer from each output, then comparing the similarity of the predicted answer
with the ground-truth answer (conditioned on the original question). We calculate both an exact
match score as well as an accuracy score, where the scorer can assign partial correctness credit on a
1-10 scale.

1https://www.anthropic.com/claude
2https://platform.openai.com/docs/models/gpt-3-5
3https://platform.openai.com/docs/models/gpt-4o
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Figure 4: Characteristic-level performance breakdown. We report each model’s overall accuracy on
each of the bins.

5 RESULTS + ANALYSIS

Overall Findings Figure 3 and Table 3 overview the performance on our new multi-document rea-
soning benchmark. MDBench poses a strong challenge, even for state-of-the-art methods, with the
best methods achieving ∼59% exact-match performance. Claude-3.5-Sonnet performs best overall
on the document reasoning task, with 54.4% overall performance. Sonnet performs strong on all
splits. Notably, we see mixed benefits to Chain-of-Thought for weaker models, where in compari-
son, Chain-of-Thought is usually beneficial for larger models such as Sonnet and GPT-4o, although
we observe that most models generally produce reasoning chains even without explicit CoT prompt-
ing. Of the large API-based frontier models, we see Gemini-1.5-Pro struggles the most, although it
performs relatively well when evaluating on overall accuracy (where partial credit is assigned during
scoring). Notably, Llama3-70B performs strongly, outperforming GPT-3.5 in several cases.

Document vs. Tabular Reasoning To ascertain the impact of surface form on the reasoning task,
we compare the performance of models on the full multi-document version of the benchmark versus

7
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Model Zero-shot Zero-shot CoT One-shot One-shot CoT Overall
Claude-3-Opus 52.9 51.6 58.8 51.6 53.8
Claude-3.5-Sonnet 54.9 56.9 56.2 56.2 56.0
GPT-3.5-Turbo 44.4 37.3 38.6 32.0 38.1
GPT-4o 56.9 56.9 51.0 52.9 54.4
Gemini-1.5-Pro 49.0 45.8 48.4 49.0 48.0
LLaMA-3-70B-Instruct 52.6 45.1 51.9 40.5 47.5
LLaMA-3-8B-Instruct 46.4 39.2 41.8 34.6 40.5

Model Zero-shot Zero-shot CoT One-shot One-shot CoT Overall
Claude-3-Opus 67.1 64.5 68.5 64.7 66.2
Claude-3.5-Sonnet 69.1 68.8 70.3 68.4 69.2
GPT-3.5-Turbo 55.9 53.9 52.2 49.8 53.0
GPT-4o 68.5 68.0 64.7 67.5 67.2
Gemini-1.5-Pro 64.1 63.3 67.3 63.7 64.6
LLaMA-3-70B-Instruct 66.3 58.4 66.4 58.4 62.4
LLaMA-3-8B-Instruct 63.5 58.2 60.4 53.3 58.8

Table 3: Document Reasoning Overall Results. We report exact-match (top) and accuracy (bottom)
results on the MDBench multi-document examples.

Model Zero-shot Zero-shot CoT One-shot One-shot CoT Overall
Claude-3-Opus 51.0 50.3 54.2 52.9 52.1
Claude-3.5-Sonnet 59.5 57.5 55.6 56.9 57.4
GPT-3.5-Turbo 47.1 43.8 45.8 50.3 46.7
GPT-4o 58.8 58.2 60.8 59.5 59.3
Gemini-1.5-Pro 51.0 48.4 53.6 57.5 52.6
LLaMA-3-70B-Instruct 52.9 52.6 52.6 51.0 52.3
LLaMA-3-8B-Instruct 43.1 46.4 43.8 40.5 43.5

Model Zero-shot Zero-shot CoT One-shot One-shot CoT Overall
Claude-3-Opus 68.3 65.0 70.3 63.5 66.8
Claude-3.5-Sonnet 70.7 70.8 70.3 69.5 70.3
GPT-3.5-Turbo 62.9 57.4 60.1 62.9 60.8
GPT-4o 70.6 71.2 71.2 75.9 72.2
Gemini-1.5-Pro 67.8 63.2 68.1 70.7 67.5
LLaMA-3-70B-Instruct 66.3 65.3 66.1 63.9 65.4
LLaMA-3-8B-Instruct 58.8 62.1 58.8 54.4 58.5 z

Table 4: Table Reasoning Overall Results. We report exact-match (top) and accuracy (bottom) when
applying models to the augmented tabular format QA examples (as opposed to documents).

the table version (i.e., stopping after step 2 in our pipeline). Table 4 overviews the table-reasoning
results, and the comparison of overall results can be seen in Figure 3. We find that performance is
generally higher on the condensed tabular format of the dataset. For example, this difference is quite
notable for GPT-3.5-Turbo, with a drop from 46.7% to 38.1% EM performance for tabular versus
document reasoning. Overall, Sonnet has the highest overall document-reasoning performance, and
GPT-4o has the highest table-reasoning performance.

Characteristic Breakdown We additionally evaluate the performance as a function of the exam-
ple difficulty. To do this, we prompt GPT-4o to generate characteristic-level difficulty scores for each
example. We use the same five characteristics as demonstrated in the generation process, and prompt
the model with these definitions. Rather than generating absolute scores, we instead approximate
difficulty by prompting GPT-4o to perform comparative ranking with two other randomly sampled
examples for each characteristic. We aggregate these relative rankings over the entire dataset to form
two difficulty bins per characteristic, as overviewed in Figure 4.

We see mostly consistent trends across characteristics, with temporal reasoning posing the starkest
dropoff between the simple and hard bins. Interestingly, we see soft reasoning is impacted inversely,
with performance increasing on the split of examples ranked to have harder soft-reasoning compo-
nents. While some of this may be due to small sample size for for the hard bin (only 38 of 300
examples), we suspect there is an inverse relationship between soft reasoning and more ‘explicit’
characteristics such as numeric and temporal. For example, a table/example well-suited for tempo-
ral reasoning may naturally contain less ‘soft’ information requirements. Conversely, an example
with significant soft reasoning requirements likely contains fewer hard reasoning requirements.

8
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6 CONCLUSION

In this work, we present MDBench, a novel benchmark designed to evaluate large language models
on multi-document reasoning tasks. By leveraging structured seed knowledge and augmenting it
with nuanced reasoning dependencies, MDBench enables the systematic development of challeng-
ing, multi-document QA examples and addresses key challenges in traditional benchmark creation,
including issues related to data contamination and the difficulty of efficiently generating diverse
reasoning examples. Our work introduces a new method for probing complex cross-document rea-
soning, paving the way for more rigorous evaluation of models’ abilities to handle real-world, multi-
source information, and advancing the development of LLMs capable of deeper, contextually aware
reasoning.
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A MULTI-DOCUMENT REASONING SKILLS DEMONSTRATIONS

Figures 6, 8, 7, 9, 10 overview the five reasoning skills we demonstrate during the creation of
MDBench. Figure 5 demonstrates an edit plan provided to inspire the table augmentation.

B MODEL EVALUATION PROMPTS

Simple QA Prompt

”You will be presented with a question and a context. You should answer the question based
on the context. The last thing you generate should be ANSWER:[your answer here]”

Chain-of-thought QA Prompt

”You will be presented with a question and a context. You should answer the question based
on the context. Explain your reasoning step by step before you answer. The last thing you
generate should be ANSWER:[your answer here]”
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Aggregation Multi-hop Numeric Soft Temporal
Difficulty Level E H E H E H E H E H
Support 181 119 88 212 113 187 262 38 203 97
Claude-3-Opus 66.9 67.5 68.5 66.5 69.1 65.9 65.9 76.7 70.0 61.2
Claude-3.5-Sonnet 70.6 67.0 74.7 66.6 76.3 64.8 68.1 76.1 72.6 61.8
GPT-3.5-Turbo 54.0 58.6 59.6 54.2 57.9 54.7 55.2 61.1 59.6 48.2
GPT-4o 68.3 68.7 72.8 66.6 73.2 65.7 68.6 67.8 73.5 58.2
Gemini-1.5-Pro 65.1 62.7 70.6 61.2 72.3 59.3 62.6 75.6 68.1 56.0
LLaMA-3-70B-Instruct 67.3 69.7 72.6 66.4 68.6 68.1 66.6 81.1 69.6 65.6
LLaMA-3-8B-Instruct 65.6 60.5 71.3 60.0 64.7 62.7 61.9 75.0 69.2 51.6
Overall 65.4 64.9 70.0 63.1 68.9 63.0 64.1 73.3 68.9 57.5

Table 5: Characteristic-level Performance Breakdown. We report overall accuracy.

C MDBENCH PIPELINE VALIDITY PROMPTS

We use the following prompts during the knowledge augmentation step to validate the edit plan
execution and resultant QA example. Prompt 1 works through the generated problem (leveraging
the full knowledge augmentation history) and attempts to rationalize the QA example. Then, prompt
2 evaluates whether this rationalization from Prompt 1 is valid and generates a 0-5 validity scalar.

Validity Prompt 1

Original Table Name: {table title}
Original Table: {original table}
Table Edits Applied: {edits applied}
Resultant Table: {generated table}
Resultant Question: {generated question}
Resultant Answer: {generated answer}

Prompt: I have provided an original table, and then an updated version (using the provided
knowledge edits) which resulted in an augmented table with a corresponding new question
and answer. Use this context and think step by step to come up with a solution rationale
that provides a justification for the answer. Note that the original table + edits are provided
mostly for added reference. Output the rationale as a string.

Validity Prompt 2

How consistent/valid is this reasoning in the following process for generating an example
from a table? Score the validity and consistency of the resultant table+question+answer on
a scale of 0-5. I want to be able to identify and ignore examples with low scores that I
shouldn’t include in my dataset. Output as a json with ’score’ and ’explanation’ fields. Here
is the example: {prompt 1 output}

D CHARACTERISTIC BREAKDOWN

Table 5 overviews the overall model performance when binning examples by difficulty for each of
the five considered characteristics.
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‭Original Table | Table Summary:‬‭Movie Sales by Country‬

‭date‬ ‭territory‬ ‭screens‬ ‭rank‬ ‭gross ($)‬

‭october 20 , 2006‬ ‭turkey‬ ‭378‬ ‭1‬ ‭146268‬

‭october 25 , 2006‬ ‭belgium‬ ‭6‬ ‭19‬ ‭38916‬

‭october 25 , 2006‬ ‭germany‬ ‭52‬ ‭12‬ ‭133228‬

‭october 26 , 2006‬ ‭austria‬ ‭4‬ ‭13‬ ‭41780‬

‭october 26 , 2006‬ ‭netherlands‬ ‭17‬ ‭14‬ ‭53749‬

‭october 27 , 2006‬ ‭united kingdom‬ ‭4‬ ‭24‬ ‭34704‬

‭Edit 1:‬‭Come up with a interesting question about this table. The question MUST have a concise verifiable answer. The question should go hand in hand‬
‭with ensuring the augmentation introduces complex cross-row dependencies, as this will be used to create corresponding multi-document examples‬
‭(one document per row). Make sure that the question + new table can only be answered if the model reasons correctly over documents.‬
‭Example:‬‭“Rank the movie's sales by country.” -- requires reasoning/comparing over the different rows in the document. Note: we will edit the table‬
‭further to make this even more challenging.‬

‭Edit 2:‬‭Remove extraneous columns to avoid overspecification in the resultant documents‬
‭Example:‬‭Remove the‬‭screens‬‭and‬‭rank‬‭columns since they’re not relevant‬

‭Edit 3:‬‭Round some of the numeric values to eventually make the information more realistic in the articles‬
‭Example:‬ ‭Round the gross sales numbers to thousands‬

‭Edit 4:‬‭Add ‘multi-hop’ information, or additional rows that necessitate synthesizing information across documents‬
‭Example:‬‭Add an October 26th entry for Germany for $195k (now there are two rows for Germany) -- These need to be added into order to calculate‬‭the‬
‭Germany sales.‬

‭Edit 5:‬‭Add secondary / peripheral / fictional information to contextualize/personalize the documents.‬
‭Example:‬‭Add a "context" column with some additional guidance to guide the document generation. This should include instructions on document‬
‭length + writing style as well as superfluous content that might naturally occur in a document of this type. Also add a fictionalized film name‬
‭(Nightmares of Glory).‬

‭Edit 6:‬‭Introduce cross-document dependencies by obfuscating some linked information. The dependencies must be utilized within the question‬
‭answering process.‬
‭Example:‬‭The Germany Oct. 26th entry was modified. The country information was obfuscated, but the daily revenue was defined in terms of the prior‬
‭day, allowing the model to refer back to the Oct. 25 row.‬

‭Resultant Augmented Table‬

‭date‬ ‭country‬ ‭daily revenue ($)‬ ‭film‬ ‭context‬

‭october 20 , 2006‬ ‭turkey‬ ‭146200‬ ‭Nightmares of Glory‬
‭short article about total‬

‭movie sales‬

‭october 25 , 2006‬ ‭belgium‬ ‭39000‬ ‭Nightmares of Glory‬
‭article about total‬

‭movie sales‬

‭october 25 , 2006‬ ‭germany‬ ‭135000‬ ‭Nightmares of Glory‬
‭mid-length article about‬

‭daily movie sales‬

‭october 26 , 2006‬ ‭austria‬ ‭42000‬ ‭Nightmares of Glory‬
‭article about total‬

‭movie sales‬

‭october 26 , 2006‬ ‭netherlands‬ ‭54000‬ ‭Nightmares of Glory‬
‭report of national movie‬

‭sales‬

‭october 27 , 2006‬ ‭united kingdom‬ ‭34700‬ ‭Nightmares of Glory‬

‭article about total‬
‭movie sales, and‬

‭interviewing a fictional‬
‭moviegoer‬

‭october 26 , 2006‬ ‭[not explicitly stated]‬
‭195,000, 60,000 more‬
‭than yesterday's sales‬

‭Nightmares of Glory‬
‭article about total‬

‭movie sales‬

‭Augmented Table Question:‬‭Rank the movie's sales by country.‬
‭Augmented Table Answer:‬‭Germany (133000+195000), Turkey (146200), Netherlands (54000), Austria (42000), Belgium (39000), United Kingdom‬
‭(34700)‬

Figure 5: Demonstration of table edit plan used during the knowledge augmentation component of
the MDBench pipeline.
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Figure 6: Knowledge Aggregation Skill Description
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Figure 7: Multi-hop Reasoning Skill Description
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Figure 8: Numeric Reasoning Skill Description
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Figure 9: Soft Reasoning Skill Description
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Figure 10: Temporal Reasoning Skill Description
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