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Abstract

Open Information Extraction (OpenIE) is the001
task of extracting (subject, predicate, object)002
triples from natural language sentences. Cur-003
rent OpenIE systems extract all triple slots in-004
dependently. In contrast, we investigate the005
hypothesis that it may be beneficial to extract006
triple slots iteratively: first extract easy slots,007
followed by the difficult ones by conditioning008
on the easy slots, and therefore achieve a better009
overall extraction.010

Based on this hypothesis, we propose a neural011
OpenIE system, MILIE, that operates in an it-012
erative fashion. Due to the iterative nature, the013
system is also modular—it is possible to seam-014
lessly integrate rule based extraction systems015
with a neural end-to-end system, thereby al-016
lowing rule based systems to supply extraction017
slots which MILIE can leverage for extracting018
the remaining slots. We confirm our hypothe-019
sis empirically: MILIE outperforms SOTA sys-020
tems on multiple languages ranging from Chi-021
nese to Arabic. Additionally, we are the first022
to provide an OpenIE test dataset for Arabic.023

1 Introduction024

Open Information Extraction (OpenIE) aims to ex-025

tract structured facts in the form of (subject, re-026

lation, object)-triples from natural language sen-027

tences (Etzioni et al., 2008). For example, given028

a sentence, "Barrack Obama became the US Pres-029

ident in the year 2008", an OpenIE system is030

expected to extract the following triples: (Bar-031

rack Obama; became; US President) and (Barrack032

Obama; became US President in; 2008). We refer033

to subject, predicate and the object of the triple as034

slots of a triple. OpenIE extractions are human un-035

derstandable intermediate representations of facts036

in source texts (Mausam, 2016), which are useful in037

a variety of information extraction end tasks such038

as summarization (Xu and Lapata, 2021), question039

answering (Khot et al., 2017; Yan et al., 2018) and040

automated schema extraction (Nimishakavi et al., 041

2016). 042

The various slots of a triple are dependent on 043

each other and hence an error in one slot renders 044

the entire extraction unusable. We hypothesize that 045

triple extraction errors largely stem from the diffi- 046

culty of extracting certain slots of triple and these 047

difficult to extract slots may depend on the sentence 048

construction and also the language. For example, 049

"Barrack Obama became the US President in the 050

year 2008" contains two triples (Barrack Obama; 051

became; US President) and (Barrack Obama; be- 052

came US President in; 2008). Extracting the pred- 053

icate, "became US President in", for the second 054

triple is tricky, because the object of the first triple 055

(US President) overlaps with the predicate of the 056

second triple. But if the extraction system was pro- 057

vided with the object, (2008), and then asked to 058

extract a triple conditioned on this object, then the 059

predicate extraction would be easier. 060

This is precisely the hypothesis we wish to in- 061

vestigate —is it easier to extract certain slots of a 062

triple, say subjects, compared to other slots, such as 063

objects, and is it possible to improve performance 064

by leveraging specific slot extraction orders? 065

Given the hypothesis, we propose MILIE, a 066

Modular & Iterative multiLingual open Information 067

Extraction system, which iteratively extracts the 068

different slots of a triple. The iterative nature al- 069

lows for (1) studying the effects of a slot extractions 070

on rest of the triple extraction, (2) extracting easier 071

triple slots followed by harder ones, (3) aggregat- 072

ing different slot extraction orders as a mixture of 073

experts, and (4) integrating slots supplied by an 074

external rule-based system, resulting in a hybrid 075

system. The latter offers a system that combines 076

the best of neural and rule based systems, e.g. by 077

using a rule-based system to extract high precision 078

slots on which the neural system is conditioned. 079

We empirically confirm our hypothesis: the iter- 080

ative nature of MILIE outperforms several SOTA 081
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systems. It proves especially useful for zero-shot082

multilingual extraction, which we evaluated on five083

different low resource languages. Additionally we084

show how MILIE can leverage rule-based slot ex-085

traction by conditioning on them to predict the086

remaining parts of the triple. Therefore MILIE is a087

boon for existing applications wishing to transition088

from a rule based information extraction system089

to a neural one, because MILIE would allow using090

the rule-based system to compensate for the lack091

of exhaustive training data. Finally, we perform092

linguistic analyses that uncovers useful insights093

on how different languages either make it easy or094

difficult for OpenIE systems to extract individual095

elements of the triple.096

Our contributions are summarized as follows:097

1. We propose MILIE, a multilingual OpenIE098

system that iteratively extracts the different099

slots of a triple.100

2. We carry out extensive experiments on a101

variety of languages including English and102

demonstrate that MILIE outperforms recent103

SOTA systems by a wide margin, especially104

on languages other than English.105

3. We perform an extensive analysis based on ab-106

lation studies and uncover interesting insights107

about the nature of OpenIE task in different108

languages.109

2 MILIE110

The backbone of our system is the iterative proce-111

dure (Section 2.1), which allows us to investigate112

our hypothesis. The iterative procedure allows us113

to extract triple slots in various pathway orders,114

which results in a series of possible aggregation115

schemes (Section 2.2). To create a strong iterative116

system, the training paradigm (Section 2.3 needs117

to consider two aspects: (1) it needs to prepare118

incomplete triple extractions which represent in-119

complete triple extractions the system is expected120

to predict; (2) it creates negative samples that allow121

for teaching the system when to not continue with122

an extraction due to a prior error. With the iterative123

nature we also integrate rule-based systems (Sec-124

tion 2.4) as well as elegantly handle the specific125

case of n-ary extractions, where more than 3 slots126

need to be extracted (Section 2.5).127

Figure 1: MILIE system architecture. An input se-
quence is is tokenized and, optionally, dependency
parsed. This is given to a BERT-based transformer,
which outputs a hidden state for each token. The hidden
states are given to each of the extraction heads, here to
the predicate head. This head marks the location of the
predicate in the sequence. The system then proceeds to
extract the other slots, see Figure 2.

2.1 Iterative Prediction 128

To implement the iterative nature of our system, 129

we use a BERT-based transformer (Devlin et al., 130

2019) as the base building block. On top of this 131

block, we add a total of four neural networks blocks 132

in parallel, which we refer to as heads and which 133

are each in charge of extracting a particular triple 134

slot. Concretely, we have the heads fs, fo, fp, fa, 135

which are in charge of predicting subject, object, 136

predicate and argument, respectively. The argu- 137

ment head is an extra feature, which is needed for 138

n-ary extractions that occur in some datasets, where 139

in addition to the triple there might be an argument 140

that modifies the triple, e.g., a temporal phrase. 141

Given an input sequence of words of length N , 142

S = wi, i = 1 · · ·N , the task for each extraction 143

head is framed as a BIO tagging problem. For this, 144

each output head outputs a label li for token wi, 145

where li ∈ {B, I,O}, i = 1 · · ·N ( see Fig, 1 for 146

the architecture). The output heads use the final 147

transformer hidden state and predict labels denoted 148

by Ls, Lo, Lp, La where L(·) = l1, l2, · · · lN . 149

By having different extraction heads, we iden- 150

tify extraction slots iteratively. During prediction 151
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Figure 2: Iterative extraction dynamics for decoding
pathway Ppsoa. The numbers indicate the iteration
number. Iterations are color coded, black is the pred-
icate extraction, green subject extraction, blue object
extraction and red argument extraction.

time, along with the input sentence, the model also152

expects extractions predicted by the previous itera-153

tions. To provide this information we add special154

symbols to the sentence that explicitly mark the155

previous extractions in the sentence. For exam-156

ple, we surround the predicate with the symbol157

<P>, subject with <S> and object with <O>. For158

example, for predicting the object given the predi-159

cate extracted from previous iteration, the extracted160

predicate is marked in the sentence using the <P>161

symbol and the sentence is consequently passed162

through the transformer for predicting the object163

using the object head. We always extract the ar-164

guments at the last iteration, therefore we do not165

mark the arguments in the sentence.1166

Finally, we add the option to attach a dependency167

tag ti to each word wi in the sequence. This addi-168

tional information may allow the system to more169

effectively learn how to extract triples. We use a170

language specific dependency tagger for obtaining171

the tags. We target languages, which are low re-172

source for OpenIE, but could be high resource for173

other tasks, such as PoS tagging or dependency174

parsing. For a graphical overview of the MILIE175

architecture, see Figure 1.176

1Preliminary experiments suggested that predicted the ar-
gument last leads to better overall results. This makes sense
intuitively, as the argument can modify the entire triple.

2.2 Aggregating Decoding Pathways 177

The order in which the different triple parts are 178

extracted can be varied. This allows us to investi- 179

gate the challenge of extracting triple elements in 180

specific order on different languages. Additionally 181

different pathways aid different kinds of extrac- 182

tions and combining them results in a richer set of 183

extractions. Choosing a particular order defines a 184

decoding pathway Puvxy as a sequence of output 185

heads where u, v, x, y ∈ {s, p, o, a}. For example, 186

the decoding pathway Pspoa denotes a sequence of 187

output functions (fs, fp, fo, fa). 188

Fixing the n-ary argument extraction in the fi- 189

nal iteration we obtain the following six decoding 190

pathways- Pspoa, Psopa, Ppsoa, Pposa, Pospa, Popsa. 191

Let’s assume the decoding pathway Ppsoa: pred- 192

icates are extracted first, then for each predicate, 193

subjects are extracted, then for each (predicate, sub- 194

ject) pair objects are extracted and finally for ev- 195

ery extracted (predicate, subject, object) tuple all 196

the n-ary arguments are extracted. This extraction 197

procedure preserves the relationships between the 198

extracted elements resulting in correctly extracting 199

multiple triples. Fig. 2 illustrates this procedure. 200

We hypothesize that some triples are easier to 201

predict if, e.g., the predicate is extracted first while 202

for others subject first would work well. This could 203

differ from triple to triple, but also with different 204

languages. Consequently, some decoding pathways 205

might be more error prone than others. This leads 206

to two questions: (1) Which pathways are best? (2) 207

Can we improve recall by aggregating triples using 208

different decoding pathways? 209

We propose a simple algorithm we term as Wa- 210

ter Filling (WF) for aggregating the extractions. 211

This is inspired by the power allocation problem 212

in the communication engineering literature (Ku- 213

mar et al., 2008). Imagine a thirsty person with 214

access to different pots of water with varying levels 215

of purity and with the caveat that the amount of 216

water is inversely proportional to the purity. The 217

natural solution is to first drink the high purity wa- 218

ter and move on to the pots in decreasing level of 219

purity until the thirst is quenched. We use the same 220

idea. Treating each decoding pathways as an ex- 221

pert, we assume that the triples extracted by all 6 222

pathways are more accurate compared to those ex- 223

tracted by only 5 pathways, 4 pathways and so on. 224

This can be thought of as triples obtaining votes 225

from experts. Starting with an empty set, for each 226

sentence we start adding triples to the set in the 227
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order of decreasing number of received votes. The228

normalized votes a triple receives is used as the229

confidence value of the triple. Although the proce-230

dure is explained in a sequential manner it can be231

parallelized by running all 6 pathways in parallel.232

2.3 Training233

Triple preparation. For effectively extracting234

different triple slots conditioned on other slots, the235

model needs to see such combinations during train-236

ing. However, enumerating all possible combina-237

tions exhaustively is prohibitively expensive. We238

propose a sampling technique that ensures that the239

model sees varied combinations of different targets240

and prior extractions. This is done by creating a241

training set that simulates a prior extraction and242

forces the model to predict the next extraction. To243

ensure that the training dataset size does not ex-244

plode, we randomly sample one pathway order for245

each training instance.246

Based on the sampled pathway, we randomly247

sample at which step in the decoding process we248

are at and then mark the slots prior to this step in249

the sentence and use the remaining steps as target250

labels. We allow for multiple instances of the target251

labels, however there is only one instance of the252

marked element. For example, given one subject253

the target could be multiple predicates. This proce-254

dure trains the model to predict an appropriate label255

conditioned on a variety of previous predictions.256

Given that triples are at different steps in their257

decoding process, we minimize different log-258

likelihood functions. We describe the log likeli-259

hood functions along with a few example of the260

training instances in Table 1. We list additional261

details in Appendix A.262

Negative Sampling. Iterative prediction is prone263

to error amplification, i.e. if an error is made dur-264

ing the first iteration then the error propagates and265

affects subsequent extractions. Anticipating this,266

we train MILIE to recognize extraction errors made267

in the previous iteration. We purposely augment268

the training data with corrupted data points con-269

taining incorrectly marked extractions. For each270

of the incorrect extractions the model is trained to271

predict a blank extraction, i.e., predicting the out-272

side label for all tokens. We use a similar sampling273

procedure as described previously. For every train-274

ing data point from a fixed number of training data275

points, we create one negative sample using one276

of the three techniques and then choose k negative277

samples, where k is a hyperparameter. 278

We corrupt triples using three techniques: (1) 279

corrupting the predicates by replacing them with 280

randomly chosen tokens from the sentence, (2) cor- 281

rupting the subject and object by exchanging them, 282

and (3) by mismatching the subject object pairs 283

from different triples. We detail the entire proce- 284

dure in Appendix A. 285

2.4 Integrating Linguistic Rule based systems 286

Crucially, each output head is conditioned on the in- 287

put and the output labels extracted by the previous 288

function. This feature allows MILIE to seamlessly 289

integrate rule based systems with neural systems 290

since the conditioning can be also done on extrac- 291

tions obtained from rule based systems. This is 292

advantageous in situations where a linguistic rule 293

based system works well, for say, extracting ob- 294

jects. Then MILIE can complete the missing parts 295

of the triple conditioned on the objects. 296

We treat the output of the rule based system as 297

potential objects paired with subjects and extract 298

the predicate connecting them. If the rule based ex- 299

traction is incorrect, then MILIE can detect the error 300

and extract nothing. This results in more accurate 301

extractions compared to simply post-processing the 302

extracted tokens using linguistic rules. 303

2.5 Binarizing n-ary Extractions 304

We evaluate MILIE on both n-ary as well as binary 305

triple extraction datasets. One simple way to con- 306

vert the n-ary extractions to binary extraction is to 307

ignore the n-ary arguments. However, this will lead 308

to a decrease in recall because the n-ary arguments 309

may not be part of other extracted triples due to 310

the initial n-ary extraction. Another method is to 311

treat the extracted n-ary arguments as objects to 312

the same subject, predicate pair. This would ensure 313

that the extracted arguments are not dropped, how- 314

ever this may result in drop of precision since the 315

n-ary argument may not attach to the same predi- 316

cate. For example, consider the extraction (Barrack 317

Obama; became; US President; in the year 2008). 318

Treating n-ary arguments as objects results in (Bar- 319

rack Obama; became; US President) and (Barrack 320

Obama; became; in the year 2008) resulting in an 321

incorrect extraction. 322

In contrast to the above subpar solutions, the iter- 323

ative nature of MILIE allows us to elegantly address 324

the problem of converting n-ary extractions into a 325

binary format: we treat the extracted n-ary argu- 326

ments as hypothesized objects. We then provide the 327
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Likelihood function Input Sentence Head Target

Lp = −
∑N

i=1 log p(l
p
i |fp(θ);S) The Taj Mahal was built by Shah Jahan in 1643 Predicate built by

Ls = −
∑N

i=1 log p(l
s
i |fs(θ);S;L

p) The Taj Mahal was <P>built by<P> Shah Jahan in 1643 Subject Taj Mahal
Lo = −

∑N
i=1 log p(l

o
i | fo(θ);S;L

p;Ls) The <S>Taj Mahal<S> was <P>built by<P> Shah Jahan in 1643 Object Shah Jahan
La = −

∑N
i=1 log p(l

a
i | fa(θ);S;L

p;Ls;Lo) The <S>Taj Mahal<S> was <P>built by<P> <O>Shah Jahan<O> in 1643 Argument in 1643
Lp = −

∑N
i=1 log p(l

p
i | fp(θ);S;L

s;Lo) The <S>Taj Mahal<S> was built by <O>Shah Jahan<O> in 1643. Predicate built by
Ls = −

∑N
i=1 log p(l

s
i | fs(θ);S;L

o) The Taj Mahal was built by <O>Shah Jahan<O> in 1643. Subject Taj Mahal
Lo = −

∑N
i=1 log p(l

o
i | fo(θ);S) The Taj Mahal was built by Shah Jahan in 1643. Object Shah Jahan

Table 1: A few examples of training inputs and corresponding log likelihood functions.

English (Ro et al., 2020) Translation Error Explanation

The stock pot should be chilled and the solid lump
of dripping which settles when chilled should be
scraped clean and re-chilled for future use.

La olla de caldo debe ser enfriado y la masa sólida
de goteo que se asienta cuando [se] enfriada se debe
raspar limpio y re-enfriada para uso futuro.

"enfriado": the gender of the adjective doesn’t
match the noun.
"[se]": missing reflexive particle.
"enfriada": wrong use of the participle.
"raspar limpio": syntactic error.

However, StatesWest isn’t abandoning its pursuit of
the much-larger Mesa.

Sin embargo, StatesWest no abandona su búsqueda
de la tan - Mesa grande.

<tan - Mesa grande>: syntactically and semanti-
cally incorrect.

The rest of the group reach a small shop, where
Brady attempts to phone the Sheriff, but the
crocodile breaks through a wall and devours
Annabelle.

El resto del grupo llega a una pequeña tienda,
donde Brady intentos de teléfono del Sheriff, pero
los saltos de cocodrilo a través de una pared, y de-
vora a Annabelle.

"intentos": number and the gender don’t match
with the noun.
"de teléfono del Sheriff": telefóno cannot be used
as a verb.
"los saltos de cocodrilo a través de una pared":
semantically incorrect.

Table 2: Examples of incorrectly translated sentences. Using red we highlight mistranslated words, using blue,
missing words, and with a strikethrough the parts that are semantically or syntactically incorrect.

extracted subject, hypothesized object pair to the328

model, which then extracts a new predicate condi-329

tioned on the previously extracted subject and the330

hypothesized object, i.e., p(Lp | fp(θ);S;Ls =331

"Barrack Obama";Lo = "year 2008"). This cre-332

ates a possibility of extracting the correct predicate,333

something that is not possible with existing n-ary334

OpenIE systems.335

3 Experiments336

3.1 Setup337

Baselines & Training. We compare MILIE338

with both unsupervised and supervised baselines.339

Specifically we compare MILIE with ClausIE,340

MinIE, Stanford-OIE, RNN-OIE, OIE6 (Del Corro341

and Gemulla, 2013; Gashteovski et al., 2017;342

Stanovsky et al., 2018; Angeli et al., 2015; Kol-343

luru et al., 2020a) and Multi2OIE (Ro et al., 2020)344

on English. Multi2OIE is the only neural system ca-345

pable of extracting triples from multiple languages346

and therefore it is the only available baseline for347

the non-English evaluations.348

We use the English RE-OIE2016 (Zhan and349

Zhao, 2020) training dataset used in (Ro et al.,350

2020). This training dataset contains n-ary extrac-351

tions allowing MILIE to be evaluated on both n-ary352

as well as binary extraction benchmarks. Evalu-353

ation on languages other than English is always354

zero-shot, i.e., the model is trained using only the355

English Re-OIE2016 dataset and tested on test set 356

of the other languages. 357

CaRB benchmark. We use the CARB bench- 358

mark introduced in (Bhardwaj et al., 2019) for eval- 359

uating English OpenIE n-ary extraction. However, 360

the CARB benchmark also suffers from serious 361

shortcomings due to its evaluation method based 362

on token overlaps. For example, (Gashteovski et al., 363

2021) discovered that a simple OpenIE system that 364

breaks the sentence into a triple at the verb bound- 365

ary achieves 0.70 recall and 0.19 precision. This 366

is problematic since it indicates that simply adding 367

extraneous words to the extraction results in im- 368

proved recall. 369

BenchIE benchmark. Due to the issues identi- 370

fied for CaRB, we also evaluate using BenchIE, 371

which is an exhaustive fact based multilingual 372

OpenIE benchmark proposed by (Gashteovski 373

et al., 2021). BenchIE evaluates explicit bi- 374

nary extractions in English, Chinese and German. 375

BenchIE is accompanied by an annotation tool, 376

AnnIE (Friedrich et al., 2021), for extending the 377

benchmark to additional languages. We translated 378

100 sentences from the BenchIE-English to Arabic 379

with the help of a native Arabic speaker and then 380

extracted triples using AnnIE. This allows us to 381

also evaluate our system on Arabic. 382

Multilingual CaRB. Additionally we also eval- 383

uate MILIE on the Spanish and Portuguese mul- 384
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Chinese German Arabic Spanish (LM) Portuguese (LM) Spanish-Clean (LM)

F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

M2OIE 17.1 25.7 12.8 4.0 8.9 2.6 4.9 16.3 2.9 60.2 59.1 61.2 59.1 56.1 62.5 53.5 66.0 44.9
milIE 20.5 25.2 17.3 8.5 13.4 6.3 — — — 64.2 69.5 59.7 65.6 70.2 61.6 55.7 58.1 53.5
- DEP 19.2 19.8 18.7 8.4 11.3 6.7 7.3 14.2 4.9 48.1 64.4 38.4 46.9 58.8 39.0 45.0 62.0 35.3
- NS 17.3 19.6 15.5 10.3 14.3 8.0 4.0 10.8 2.5 59.1 75.7 48.5 62.4 74.0 54.0 59.5 66.2 53.9
- Bin 20.0 22.0 18.4 9.0 13.5 6.7 7.5 13.8 5.1 — — — — — — — — —

Table 3: MILLIE performance comparison on multilingual BenchIE and CARB lexical match (LM) benchmarks.
- DEP represents MILIE trained and evaluated without dependency tags, -NS represents absence of negative sam-
pling, -Bin represents lack of binarizing mechanism. MILIE always outperforms M2OIE, except for the recall on
the erroneous automatic translation of Spanish and Portuguese. For Arabic no dependency tags were available,
therefore the first entry for Arabic is in the line - DEP.

tilingual CaRB datasets introduced in Ro et al.385

(2020). The lexical match evaluation used in386

this dataset has numerous shortcomings (Bhard-387

waj et al., 2019), however we include it for a fair388

comparison to Ro et al. (2020)’s Multi2OIE sys-389

tem. The CARB test set was translated to Spanish390

and Portuguese using the Google Translate API. To391

investigate the quality of these automatic transla-392

tions, we randomly sampled 100 sentences from393

the test sets and had them evaluated by native Span-394

ish and Portuguese speakers. To our surprise we395

discovered that around 70 percent of the sentence396

or extraction translations were inaccurate. Table397

2 shows a few examples of the incorrect transla-398

tions. For an accurate and clean comparison with399

Multi2OIE we also cleaned up part of the Spanish400

test set by re-translating 149 sentences and their ex-401

tractions in Spanish. These translations were done402

by native Spanish speakers.403

On the CARB English benchmark we use re-404

sults for baselines reported in (Ro et al., 2020) and405

(Kolluru et al., 2020a). For evaluating on BenchIE,406

we run all the baselines on the BenchIE English407

evaluation benchmark. For multilingual BenchIE408

we train Multi2OIE using the code and hyperpa-409

rameters supplied in the paper. For hyperparameter410

tuning we use the CARB English validation set and411

use the F1 scores obtained using the CARB evalua-412

tion procedure for comparing models with different413

hyperparameters. The MILIE model is trained us-414

ing negative sampling and includes the dependency415

tag information and binarization. We use the spaCy416

dependency parser for obtaining dependency tags.417

We were unable to find a dependency parsing tool418

with universal dependencies for Arabic and there-419

fore we did not use dependency tags for Arabic.420

For BenchIE, MILIE uses the binarization function421

described in Section 2.5, but not for CARB and lex-422

ical match because they evaluate n-ary extractions.423

3.2 Results 424

3.2.1 English 425

In Table 4, we compare MILIE with several unsu- 426

pervised and supervised baselines in English on 427

CARB and BenchIE. MILIE performs much better 428

compared to other neural baselines on BenchIE. 429

This is not the case for the CARB dataset and the 430

reason behind this is that CARB punishes compact 431

extractions while rewarding overly long extractions 432

(Gashteovski et al., 2021). Although rule based 433

systems like ClausIE and MinIE outperform neural 434

systems, they cannot be used for languages other 435

than English. 436

3.2.2 Multilingual 437

In Table 3, we compare MILIE with Multi2OIE 438

(M2OIE) on the multilingual BenchIE benchmark. 439

MILIE performs significantly better compared to 440

Multi2OIE for all the languages. For German and 441

Arabic both Multi2OIE and BenchIE perform much 442

worse compared to other languages. The presence 443

of separable prefixes in German verbs which can- 444

not be extracted using BIO tags results in low per- 445

formance for German. The BIO tagging scheme 446

assumes continuity of phrases which is absent for 447

most German verbs present in predicates, resulting 448

in extremely low recall. For Arabic, the low scores 449

are due to the Verb-Subject-Object nature of the 450

Arabic language along with the fact that subjects or 451

objects can be expressed as part of the verb. This 452

calls for additional research on framing OpenIE 453

tasks for languages such as German and Arabic. 454

Ablation results in Table 3 also indicate the use- 455

fulness of adding the dependency tags, negative 456

sampling and the binarization mechanism. MILIE 457

without negative sampling works best for Spanish 458

clean data. This is not due to the language, but 459

due to the lexical match evaluation which rewards 460

overly long extractions even if incorrect. Not us- 461
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English CaRB-nary BenchIE-binary

F1 Prec. Rec. F1 Prec. Rec.
ClausIE 44.9 — — 33.9 50.3 25.6
MinIE 41.9 — — 33.7 42.9 27.8
Stanford 23.0 — — 13.0 11.1 15.7

R-OIE 46.7 55.6 40.2 13.0 37.3 7.8
S-OIE 49.4 60.9 41.6 — — —
OIE6 52.7 — — 25.4 31.1 21.4
M2OIE 52.3 60.9 45.8 22.8 39.2 16.1
milIE 45.0 48.6 41.8 27.9 36.6 22.4
-DEP 41.2 44.1 38.6 26.7 31.1 23.4
-NS 44.7 47.6 42.2 25.8 29.6 22.9
-Bin — — — 27.7 34.6 23.1

Table 4: MILIE performance comparison on CARB
and BenchIE English benchmarks. MILIE performs
best out of all models on BenchIE. It performs worse
compared to some model on CaRB, which is due to the
CaRB evaluation scheme where overly long extractions
are rewarded.

English F1 Prec. Rec. ∆ F1

MILIE 27.88 36.65 22.37 —

MILIE + CO 29.71 32.35 27.48 + 6.5 %

Table 5: Performance comparison of Hybrid MILIE on
English BenchIE. Here ‘+ CO’ denotes system fused
with extracted ClausIE Objects.

ing negative sampling sometimes improves recall462

which may improve F1 score. This is observed for463

the German benchmark.464

3.2.3 Hybrid OpenIE465

MILIE can easily integrate any rule based system466

that extracts even a part of the triple. To evaluate467

this, we first simulate a system that only extracts468

the object and use MILIE to extract other parts of469

the triple. We do this by employing ClausIE for470

extracting triples for the BenchIE English data and471

only use the object, discarding the rest of the triple.472

The reason behind the choice of selecting object473

extraction from ClausIE is the fact that neural sys-474

tems are not good at extracting objects (Kolluru475

et al., 2020a). This is also seen from additional476

experiments detailed in Section 4. Table 5 indeed477

confirms that combining rule based object extrac-478

tion with MILIE improves performance by over 6%479

in F1 score. This showcases that MILIE’s ability to480

integrate other systems can be a great advantage.481

F1-Score EN DE ZH AR ES

SPOA 26.3 8.7 20.3 5.3 55.2
SOPA 24.9 8.2 18.2 5.8 53.1
PSOA 27.7 8.8 19.5 5.0 51.4
POSA 27.4 8.1 19.4 5.4 51.7
OSPA 22.4 8.0 17.1 5.7 45.5
OPSA 22.2 7.9 17.5 6.4 47.9
WF 27.9 8.5 20.5 7.3 55.7

Table 6: Comparison between different decoding
schemes. WF represents water filling.

Figure 3: Percentage error contribution due to incorrect
subject, predicate or object for EN, DE, ZH and AR.
Most errors occur in the object.

4 Analysis 482

We would like to analyze that the ability of MILIE 483

to extract triples using different extraction patterns 484

results in improved performance on multilingual 485

data. For this, we compare MILIE with the water 486

filling aggregation against MILIE with different 487

extraction pathways. 488

Table 6 details the performance for different ex- 489

traction schemes. All the extraction schemes ex- 490

cept WF, use only one pathway while WF com- 491

bines multiple pathways resulting in WF perform- 492

ing much better on all languages, except German. 493

This demonstrates that combining triple extraction 494

from multiple pathways is better than any single 495

pathway, which in turn confirms that extracting 496

triples repeatedly from the same sentence using 497

multiple extraction pathways is more profitable 498

than using a single extraction pathway. 499

Additionally, Table 6 provides an interesting in- 500

sight: predicate first seems to be the best, followed 501

by subject first and then object first for languages 502

other than Arabic. This also shows how the diffi- 503

culty of extracting triple slots using transfer learn- 504

ing from English varies with the target language. 505
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Entropy Subject Predicate Object

DEP POS DEP POS DEP POS

EN 1.719 1.588 2.443 1.831 2.286 1.861
ZH 2.464 1.827 2.497 1.476 2.602 1.943
DE 1.587 1.567 1.811 1.457 2.115 2.095

Table 7: Entropy of dependency and part of speech tags
for subject, predicate and objects in BenchIE test data.
Objects exhibit the highest complexity.

Table 6 suggests that predicates are easier to ex-506

tract leading to lesser number of errors propagated507

in the prediction chain. We suspect that this could508

result from differences in linguistic variability. To509

test our hypothesis we measured the entropy of510

the distribution of dependency and part-of-speech511

tags in the predicate, subject and object slots in512

the BenchIE English and the multilingual test sets.513

Results shown in Table 7 suggest that linguistic514

complexity of objects is higher than those of predi-515

cates and subjects.516

This is also confirmed in Fig. 3, where we plot517

the extraction errors in either subject, predicate or518

objects among incorrectly extracted triples. Most519

errors result from extracting incorrect objects com-520

pared to predicates and subjects. The percentage521

sum does not add to hundred because an incorrect522

triple can contain errors in more than one slot.523

5 Related Work524

OpenIE systems largely come in two flavors, (1)525

unsupervised OpenIE systems that use fine grained526

rules based on dependency parse trees (Del Corro527

and Gemulla, 2013; Gashteovski et al., 2017;528

Lauscher et al., 2019), and (2) supervised neu-529

ral OpenIE systems, trained end-to-end with large530

training datasets (Stanovsky et al., 2018; Ro et al.,531

2020; Kolluru et al., 2020a). Neural OpenIE sys-532

tems characterize OpenIE as either a sequence tag-533

ging task (Stanovsky and Dagan, 2016; Ro et al.,534

2020), span prediction task or a sequence genera-535

tion task (Kolluru et al., 2020b). However all these536

prior approaches extract a triple in a single step,537

which does not allow us to study the effect of ex-538

tracting a specific slot and its effect on extracting539

the rest of the triple.540

Neural generative approaches to OpenIE use541

sequence-to-sequence models with a copy mecha-542

nism for generating triples (Sun et al., 2018; Kol-543

luru et al., 2020b). The copy mechanism needs544

to be learned and is often a source of errors. A545

series of alternative approaches cast OpenIE as a 546

sequence tagging task where each token is tagged 547

as subject, predicate or object using a BIO like 548

tagging scheme (Stanovsky et al., 2018; Ro et al., 549

2020; Kolluru et al., 2020a). In these systems, all 550

triple slots are extracted simultaneously and it is 551

therefore not possible to condition on easier slots. 552

More closely related to our work is SpanOIE 553

(Zhan and Zhao, 2020) and Multi2OIE (Ro et al., 554

2020), which first extracts the predicate and then 555

all additional arguments. Like us, Multi2OIE (Ro 556

et al., 2020) addresses multilinguality by leverag- 557

ing a pretrained BERT model (Devlin et al., 2019) 558

for transfer learning. In contrast, through our itera- 559

tive nature, it is possible to enrich the extractions in 560

other languages if rule based models or other mod- 561

els (e.g. NER recognizers) exist to provide input 562

for a triple slot. IMOJIE (Kolluru et al., 2020b) iter- 563

atively extracts entire triples from a sentence: first a 564

triple is extracted, which is added to the input to ex- 565

tract the next triple. In contrast, our work iteratively 566

extracts the slots of a single triple, which allows us 567

to condition on the easier slots and therefore obtain 568

higher quality triples. (Kolluru et al., 2020a) pro- 569

pose OpenIE6, a Bert based system, with iterative 570

grid labelling and linguistic constraint based train- 571

ing. Such lingusitic constraints with soft penalties 572

cannot be readily ported to other languages since 573

such constraints use head verb based heuristics. 574

Consequently OIE 6 is evaluated only on English. 575

6 Conclusion 576

We introduced MILIE, a modular & iterative mul- 577

tilingual OpenIE system. We confirmed our hy- 578

pothesis that it is beneficial to extract triple slots 579

iteratively which allows us to extract easier slots 580

first. Our experiments on English as well as five 581

low resource languages uncovered that, with the 582

exception of Arabic, triples are easier to extract 583

if the predicate is extracted first followed by the 584

subject and object. More importantly we discov- 585

ered that extracting triples using multiple extraction 586

pathways is superior than the standard single ex- 587

tractions especially in the multilingual setting. We 588

also demonstrated how MILIE can be combined 589

seamlessly with rule based systems for improv- 590

ing performance. Although our experiments were 591

focused on the OpenIE task, we believe that the in- 592

sights gained can be translated to other information 593

extraction tasks with coupled extractions. We plan 594

to explore such connections in the future. 595
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A Appendix720

A.1 Training Details721

MILIE is expected to predict slots iteratively con-722

ditioned on prior extracted slots of a triple, there-723

fore it needs to be trained with similar examples.724

Exhaustively listing all possible combinations of725

prior extracted slots and slots to be extracted is pro-726

hibitively expensive. Therefore we use a sampling727

procedure that ensures the model sees a variety of728

combinations during training.729

For every example in the Re-2016 training730

dataset we do the following731

1. Sample an slot as target (for extraction) with732

the following probabilities (subject: 1/3, pred-733

icate: 5/12, object: 5/12)734

2. Sample two slots, one that is assumed to be735

extracted and other the target that needs to be736

extracted conditioned on the first.737

3. Sample three slots, first two assumed to be ex-738

tracted and the third is the target conditioned739

on first two.740

4. If the example contains n-ary arguments, the741

subject, predicate and object are assumed742

to be extracted and the n-ary arguments are743

treated as targets.744

When a slot is sampled for target extraction, all745

instances of the slot are expected to be extracted.746

For example, if the target is the subject and if747

the example consists of multiple subjects then748

the targets are multiple subjects. However the749

sampled slots assumed to be extracted must be750

single instances, and if there are multiple instances,751

then each instance is considered for conditioning752

one after the other. Table 8 details the sampling753

probabilities for two and three slots. The sampling754

probabilities were not tuned, but rather chosen755

Extracted Slots Target Slot Probability

subject object 3/12
subject predicate 1/12
object subject 2/12
object predicate 1/12
predicate subject 2/12
predicate object 3/12

(subject, object) predicate 2/12
(subject, predicate) object 6/12
(object, predicate) subject 4/12

Table 8: Sampling Probabilities for training data.

based on heuristics. Post sampling, we obtain 756

training dataset with about 5 and a half million 757

examples. 758

759

Negative Sampling 760

We provide MILIE with negative samples during 761

training for reducing error amplification arising 762

out of iterative prediction. In this case the target 763

is always blank, i.e., all the tokens are marked 764

as ’outside’. Thus the sampling revolves around 765

creating incorrectly extracted slots. We sample 766

negatives for every example in the training data 767

and then select k negative samples uniformly at 768

random. k is treated as a hyperparameter. 769

Table 9 provides the sampling probabilities for 770

different slot arrangements. We use three corrup- 771

tion procedure for generating incorrectly marked 772

slots, namely, invert, randomize and switch. The in- 773

vert method consist of swapping the extracted slot 774

with the target slot. For example, if the extracted 775

slot is subject and target slot is object, then the ob- 776

ject is marked as subject. The randomize method 777

consists of choosing a random span of tokens near 778

the actual slot. Finally the switch method involves 779

switching one of the extracted slot with a slot from 780

another triple associated with the sentence. For 781

example, in the case of (subject, object), the object 782

of this triple is switched with an object of another 783

triple associated with the same sentence. It is pos- 784

sible that the same subject maybe associated with 785

the new object as well. We check if this is true, and 786

if true we filter out such positives. 787

A.2 Hyperparameter Tuning 788

We train and evaluate MILIE on an NVIDIA Titan 789

RTX with 24 GB GPU RAM. The training is done 790

for a maximum of two epochs and each epoch takes 791
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Extracted Slots Target Corruption Prob.

subject object Invert 1/12
object predicate Invert 3/12
predicate subject Randomize 2/12
(subject, object) predicate Switch 1/12
(subject, predicate) object Switch 3/12
(predicate, object) subject Switch 2/12

Table 9: Negative Sampling Probabilities.

Num. NS (k) Learning Rate F1

0 1× 10−5 39.88
0 3× 10−5 44.70
0 9× 10−5 40.76

10K 1× 10−5 43.45
10K 3× 10−5 47.03
10K 9× 10−5 47.19

100K 1× 10−5 48.03
100K 3× 10−5 47.30
100K 9× 10−5 45.87

1M 1× 10−5 46.01
1M 3× 10−5 46.16
1M 9× 10−5 45.26

Table 10: Hyperparameter Tuning

about 9-10 hours. The maximum sentence length792

using the English train and validation dataset is793

found to be about 100. Due to the addition of794

extracted triple element markers we allow a slack795

of 20 tokens, thus fixing the maximum sentence796

length to 120. We use a maximum possible batch797

size that fits inside the GPU, which results in batch798

size of 192. We use ADAM (Kingma and Ba, 2015)799

as the optimizer with linear warmup and tune the800

learning rate. The linear warmup fraction is fixed at801

0.1. We also treat the number of negative samples,802

k, as a hyperparameter and tune it. We choose the803

best hyperparameters based on the recall score as804

it is a better metric for deciding the ability of a805

model to aggregate triples from different extraction806

pathways. Table 10 provides details on the recall807

scores for every hyperparameter arrangement.808

A.3 Additional Results809

We also compared with a dynamic decoding810

scheme where MILIE chooses a decoding pathways811

based on the sentence. To do this we split a part of812

the English training set and for each sentence in the813

split we record the extraction pathway that provides814

the best F1 score MILIE as per CARB evaluation.815

F1-Score EN DE ZH AR ES

SPOA 26.27 8.65 20.32 5.30 55.21
SOPA 24.95 8.19 18.24 5.80 53.10
PSOA 27.70 8.75 19.46 5.00 51.41
POSA 27.42 8.12 19.43 5.40 51.71
OSPA 22.35 7.96 17.09 5.73 45.45
OPSA 22.24 7.93 17.47 6.40 47.91
DYN 26.90 8.95 19.46 4.9 51.00
WF 27.88 8.54 20.50 7.30 55.70

Table 11: Comparison between different decoding
schemes. DYN represents the dynamic setting.

We then use this as training data for training an- 816

other mBERT model which classifies each sentence 817

in one of the six classes where each class represents 818

an extraction pathway. While creating the training 819

split we found that for most sentences the extrac- 820

tion path Pp,s,o,a results in the best F1 score which 821

unsurprisingly also translates during test time.This 822

is shown in Table. 11 823
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Figure 4: Distribution of the Part of Speech tags in subject, predicates and object tokens of triples in BenchIE
English test data.
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