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ABSTRACT

Large-scale pretrained vision-language models like CLIP have demonstrated re-
markable zero-shot image classification capabilities across diverse domains. To
enhance CLIP’s performance while preserving the zero-shot paradigm, various
test-time prompt tuning methods have been introduced to refine class embeddings
through unsupervised learning objectives during inference. However, these meth-
ods often encounter challenges in selecting appropriate learning rates to prevent
model instability with absence of validation data during test-time training. In
this study, we propose a novel backpropagation-free method for test-time adapta-
tion in vision-language models. Instead of fine-tuning text prompts to refine class
embeddings, our approach directly estimates class centroids using online cluster-
ing within a projected embedding space that aligns text and visual embeddings.
We dynamically aggregate predictions from both estimated and original class em-
beddings, as well as from distinct augmented views, by assessing the reliability
of each prediction using Rényi entropy. Through extensive experimentation, we
demonstrate that our approach consistently outperforms state-of-the-art test-time
adaptation methods by a significant margin.

1 INTRODUCTION

The emergence of large-scale pre-trained “foundation” vision-language models (VLM), exemplified
by pioneering works such as CLIP (Radford et al. (2021)) and ALIGN (Jia et al. (2021)) has ushered
in a new era of computational capabilities. These models have demonstrated promising capacity for
open-world generalization, where their ability to excel in tasks extends beyond the original training
data. They achieve this feat by harnessing an unified visual-text embedding space, enabling them to
perform zero-shot image classification on novel concepts, simply by translating the category names
into this shared representation as classification weights.

In the pursuit to further enhance VLM performance, various adaptation and fine-tuning techniques
have emerged to bridge the domain gap when applied to downstream tasks. For instance, Zhou
et al. (2022b) and Zhou et al. (2022a) fine-tune text prompts for VLMs, tailoring them to specific
downstream tasks with few-shot adaptation. Moreover, in the realm of zero-shot classification,
numerous approaches have been proposed to boost VLM performance without necessitating labeled
data. For example, Hu et al. (2023) and Tanwisuth et al. (2023) improve CLIP through source-free
unsupervised adaptation using unlabeled test examples, while Udandarao et al. (2022) and Ge et al.
(2023) enhance CLIP with training-free methods by leveraging external resources. Furthermore,
test-time prompt tuning algorithms, exemplified by Manli et al. (2022) and Park & D’Amico (2023),
refine learnable text prompts during inference through the optimization of an unsupervised objective
using augmentations, leading to improved model accuracy.

As shown in Table 1, the test-time prompt-tuning method, TPT (Manli et al. (2022)), excels in
adaptation without the need for labeled data or external resources. This characteristic underscores
its practicality and versatility as an effective means to enhance the performance of CLIP, especially
within the context of zero-shot classification. However, as pointed out by Niu et al. (2023), test-time
adaptation methods such as Wang et al. (2020) Liang et al. (2023) as well as methods like TPT, often
encounter the intricate challenge of determining an optimal learning rate in the absence of validation
data. Striking the right balance is crucial—achieving maximum improvement while simultaneously
safeguarding against the model’s instability during test-time adaptation.
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Labeled Back-PropMethods Task Setting Data Training External Resource

CoOp (Zhou et al. (2022b)) Few-Shot Fine-Tuning Yes Yes None
CoCoOp (Zhou et al. (2022a)) Few-Shot Fine-Tuning Yes Yes None

ReCLIP (Hu et al. (2023)) Source-Free Adaptation No Yes None
POUF (Tanwisuth et al. (2023)) Source-Free Adaptation No Yes None

TPT (Manli et al. (2022)) Test-Time Adaptation No Yes None
DiffTPT (Feng et al. (2023)) Test-Time Adaptation No Yes Stable Diffusion

Sus-X (Udandarao et al. (2022)) Test-Time Adaptation No No LAION-5B
Hierarchy-CLIP (Ge et al. (2023)) Test-Time Adaptation No No ImageNet Hierarchy

BaFTA (Ours) Test-Time Adaptation No No None

Table 1: Taxonomy of CLIP adaptation methods for downstream classification. In this work, we
adopt TPT as the main baseline for comparison as it is the state-of-the-art test-time adaptation algo-
rithm without requirement of external resources.

To avoid the trouble in determining the optimal learning rate and to fully harness the potential of each
test example while avoiding concerns about model instability, we propose the Backpropagation-Free
Test-time Adaptation algorithm BaFTA. Instead of refining the class embeddings with backpropa-
gation training in the prompt token space, BaFTA directly refines the class embeddings within the
unified visual-text embedding space of CLIP, by leveraging the neighboring information among test
examples visual embeddings with an online clustering algorithm. Our approach is motivated by the
observation that the visual embeddings from CLIP are often sufficiently discriminative for effective
classification. However, the sub-optimal zero-shot performance is often limited by the imprecise
text embeddings associated with inaccurate class names. Therefore, we opt to harness neighboring
information within test example visual embeddings to enhance CLIP’s test-time performance.

To further enhance the performance of online clustering predictions, we have proposed two piv-
otal designs. Firstly, building upon the recommendation from Hu et al. (2023), we execute the
online clustering algorithm on a projected embedding space. This projection helps alleviate the dis-
parity between CLIP’s visual and text embeddings, contributing to improved clustering outcomes.
Secondly, recognizing that clustering-based predictions can sometimes be swayed by the biased dis-
tribution of test examples, we combine these clustering-based predictions with standard predictions
derived from randomly augmented views of the test examples. We employ Rényi Entropy to gauge
the reliability of these predictions, ultimately arriving at an aggregated prediction that benefits from
the strengths of both approaches while ensuring accuracy and robustness.

The significance of our work can be summarized in four key contributions:

• We introduce BaFTA, a novel Backpropagation-Free Test-time Adaptation algorithm de-
signed to enhance the zero-shot classification capability of vision-language models at in-
ference time, without requiring any labeled examples or back propagation training.

• We propose an effective online clustering method to directly refine the class embeddings of
vision-language models within a projected space that aligns the visual and text embeddings.

• We present a simple technique to dynamically aggregate the predictions from the
clustering-estimated and original class embeddings, as well as from various augmented
views, by evaluating the reliability of each prediction using Rényi entropy.

• Through comprehensive experiments, we validate BaFTA and its components, affirming its
effectiveness in significantly improving the zero-shot classification accuracy of pre-trained
vision-language models during inference.

2 BACKGROUND

In this section, we revisit the large-scale pre-trained vision language model CLIP (Radford et al.
(2021)) and test-time prompt tuning algorithm TPT (Manli et al. (2022)) for the necessary back-
ground before we introduce our method in Section 3.

Zero-Shot Image Classification with VLM. A pre-trained vision-language model such as CLIP
consists of two parallel components M = {Mv,Mt} where Mv is the visual encoder and Mt is the

2



Under review as a conference paper at ICLR 2024

Multi-Template Prompts

a photo of a {}
a photo of the {}

a cropped photo of {}
a photo of many {}

…

Merged Logits

Projected
Online

Clustering

Test 
Example

Augmented
Views

Visual
Encoder

Text
Encoder

Initialize Centroids
at beginning

Assign &
Updates

Projected
Centroids

Prediction Logits from
Text Embedding

Prediction Logits from
Class Centroids

Rényi
Entropy

Weighted
Average

Dog
Cat
Deer
Bird
…

Prediction

Projected
Visual
Embeddings

Cosine Similarity

Figure 1: Overview of our Backpropagation-Free Test-Time Adaptation algorithm BaFTA. Instead
of prompt-tuning, we employ online clustering to directly estimate class embeddings in a projection
space that aligns visual and text embeddings. The class centroids are initialized with text embed-
dings of class names, and updated incrementally with online test examples assigned to the class.
For each test example, we generate two sets of predictions. The first set measures cosine similarity
between visual embeddings of augmented views and class name text embeddings. The second set
measures cosine similarity between visual embeddings and online-clustering centroids. Predictions
are aggregated with reliability estimated by Rényi Entropy for final results.

text encoder. Given test images Dtest = {xi}Ii=1 and target class names C = {cj}Jj=1 , the pre-
trained vision-language M performs zero-shot classification by generating the adaptive classification
weights from text embeddings of the target class names tj = Mt(θ0(cj)) for j ∈ {1, 2, ..., J},
where θ0 is the text prompt template such as “a photo of {class name}” that warpped the
class names cj into full sentences θ0(cj). To further improve the quality of the text embeddings,
CLIP provides lists of templates {θz}Zz=1 to align the text embeddings with the distribution of real
caption sentences used in pre-training, and generates the text embeddings for each class by taking
the average of these templates,

tj =
1

Z

Z∑
z=1

Mt(θz(cj)).

Then, the prediction yi can be obtained by selecting the class j whose text embedding tj has the
highest cosine similarity with its visual embedding Mv(xi), i.e., yi = argmaxj⟨

Mv(xi)
∥Mv(xi)∥ ,

tj
∥tj∥ ⟩

Test-Time Prompt Tuning for VLM. To further enhance the zero-shot generalization ability of
vision language model M , TPT proposes to learn an adaptive text template θ at inference time. For
each test example xi, TPT first prepares a mini-batch of random augmented views {x1

i , x
2
i , ..., x

B
i }

and performs a single step gradient descent to optimize the entropy minimization loss over the high-
confidence predictions among the augmented views,

θi = θ0 − δ∇θ

(
B∑

b=1

1[H(M(xb
i ) < τ ]H(M(xb

i ))

)
|θ=θ0

where H(·) is the entropy function, τ is the entropy threshold for high-confidence augmented
view selection, and δ is the learning rate. M(xb

i ) = softmax
([

M(xb
i ; cj)

]J
j=1

)
is the esti-

mated probability distribution of augmented view xb
i over target classes c1, ..., cj , with M(xb

i ; cj) =〈
Mv(x

b
i )

∥Mv(xb
i )∥

,
Mt(θ(cj)

∥Mt(θ(cj)∥

〉
as the cosine-similarity between visual embedding Mv(x

b
i ) and text embed-

ding Mt(θ(cj)). Then, with adapted text prompt θi, TPT produces the prediction for test example xi

with the averaged prediction from high-confidence (estimated by entropy H(·)) augmented views:

yi = argmax
j

B∑
b=1

1[H(M(xb
i ) < τ ]M(xb

i ; cj) (1)
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3 METHOD

As investigated by Niu et al. (2023), test-time adaptation algorithms frequently encounter the chal-
lenge regarding the appropriate choice of the learning rate in absence of validation data during
unsupervised training. On one hand, opting for a small learning rate will restrict the enhancement of
the model. On the other hand, employing a large learning rate can be risky in triggering the potential
model collapse. TPT adopts a relatively large learning rate to expedite improvement, but chooses to
restart from the original model for each test example to prevent the potential model collapse.

In this work, we present an novel backpropagation-free solution which directly refines the class
embeddings in the aligned visual-text embedding space instead of in the prompt token space. Our
BaFTA algorithm performs Backpropagation-Free Test-time Adaptation for Vision-Language Mod-
els, and brings three major advantages over the test-time prompt tuning methods like TPT:

• BaFTA avoids the use of back-propagation to update model weights. As a result, it signifi-
cantly reduces the risk of causing model collapse during unsupervised adaptation.

• In contrast to the test-time adaptation algorithms like TPT that require frequent restart to
prevent model collapse, BaFTA possesses the capability to scale as more test examples
become available, and to leverage from the relationships between neighboring examples.

• BaFTA can leverage the multi-template prompts provided by CLIP to enhance text embed-
ding quality. In contrast, prompt-tuning methods are constrained to using single-template
prompts due to computational costs.

In the following sections, we first present the motivation and primary concepts behind the esti-
mation of class embeddings using online clustering during inference, as outlined in Section 3.1.
Subsequently, we delve into the discussion of two pivotal findings that enhance the performance of
online clustering, as elaborated in Section 3.2 and Section 3.3 respectively. Finally, we present a
comprehensive overview of the BaFTA with the complete algorithm in Section 3.4.

3.1 ESTIMATE CLASS EMBEDDING WITH ONLINE CLUSTERING

As shown in Table 2, CLIP generates discriminative visual embeddings on various downstream
tasks, but the zero-shot classification performance is often limited by the imprecise text embeddings
generated from uninformative class names. For example, FGVC Aircraft ( Maji et al. (2013)) uses
codenames such as 707-320 and A300B4 as class names, which are hardly informative for CLIP
to generate proper text embeddings to capture the visual difference between classes.

Conversely, the results of linear evaluation suggest that the visual embeddings from CLIP exhibit a
high degree of distinctiveness among target classes, enabling the linear classifier to attain remarkable
classification accuracy. This finding opens up an opportunity to leverage the neighboring informa-
tion within these visual embeddings to further enhance classification performance.

Given a set of visual embeddings {vi|vi = Mv(xi)}Ii=1 come in order, we can obtain a set of cluster
centroids wj as class embeddings using the online clustering algorithm Barbakh & Fyfe (2008):

wj =
tj
∥tj∥

initialize centroids with text embedding tj

wyi =
kyi

wyi
+ vi

∥kyiwyi + vi∥
update upon example vi with prediction yi (2)

kyi
= kyi

+ 1 update counter kyi
for class yi

where kyi
records the number of examples contributed to the calculation of wyi

before vi, which
adjust the magnitude of wyi

to accommodate the new cluster member vi.

3.2 VISUAL TEXT ALIGNMENT

While VLMs aim to establish a unified embedding space for both visual and text modalities, re-
cent research studies conducted by Liang et al. (2022), Tanwisuth et al. (2023) and Hu et al. (2023)
have suggested that contrastive pre-trained models might still exhibit a notable disparity between
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CLIP (RN50) Zero-Shot 55.8 82.1 41.7 41.1 19.3 81.1 65.9 85.4 63.6 59.6 59.6
CLIP (RN50) Linear-Eval 78.3 89.6 76.4 95.2 49.1 86.4 96.1 88.2 81.6 73.3 73.3

CLIP (ViT-B/16) Zero-Shot 65.6 89.3 46.0 54.1 27.1 89.2 70.4 88.9 69.8 65.2 68.6
CLIP (ViT-B/16) Linear-Eval 86.7 94.7 79.2 97.1 59.5 92.8 98.1 93.1 88.4 78.4 80.2

Table 2: Zero-Shot v.s. Linear Evaluation top-1 accuracy reported by CLIP (Radford et al. (2021)).
Linear Evaluation protocol assesses the quality of visual embeddings by training a fully-supervised
linear classifier over the frozen visual embeddings. This Linear Evaluation result implies: 1) the
zero-shot performance of CLIP are largely limited by the quality of zero-shot classifier, i.e, the text
embeddings of class names; 2) The native visual embeddings of CLIP get classified well with a
linear classifier, which suggests the distinctiveness of visual embeddings across target classes, and
leads to an opportunity to leverage the neighboring relationships to enhance test-time performance.

their visual and text embeddings. Hu et al. (2023) introduces a simple yet effective projection-based
alignment method. This method effectively removes the classification-agnostic information that is
inherent in both visual and text modalities. As a result, it efficiently aligns the visual and text embed-
dings, leading to the advantages of enhanced embedding distribution and clustering characteristics.

Assuming a classification task with J classes, where the text embeddings are denoted as T =
[t1, ..., tJ ] with tj = Mt(cj). Using the singular value decomposition

U, S, V = svd(T )

we obtain U = [e1, e2, ..., eJ ] as the orthonormal basis of the span of T , that defines a matrix
P = UU⊤. This matrix projects embeddings onto the span of T and removes the class-agnostic in-
formation irrelevant to classification. Additionally, the principle axis e1 within the outer space basis
U represents where {t1, ..., tJ} overlap the most. By removing e1, the text embeddings are sepa-
rated from each other, which in turn distances the visual embeddings of different classes. Together
with feature re-normalization, Hu et al. (2023) defines the projection function P ∗ with

P ∗(x) :=
U ′U ′⊤x

∥U ′U ′⊤x∥
U ′ = [e2, e2, ..., eJ ] (3)

3.3 PREDICTION AGGREGATION WITH RÉNYI ENTROPY

The online clustering algorithm presented in Section 3.1 yields accurate estimations of the embed-
ding centroids for classes that have a sufficient quantity of seen test examples. However, when it
comes to classes with only a limited number of examples, the estimations of embedding centroids
can become notably biased. In datasets featuring a large number of classes like ImageNet1k (Deng
et al. (2009)), certain categories might remain unassigned or have very few examples assigned to
them until the adaptation process concludes. This situation reduces the reliability of centroid es-
timation for these classes. Consequently, it becomes imperative to implement a mechanism for
filtering out predictions with low reliability.

On the other hand, we follow TPT (Manli et al. (2022)) to leverage random augmentations to im-
prove the prediction quality on test examples. For each test example xi, we prepare B augmented
views {x1

i , ..., x
B
i }, which result in a B distinct predictions {p1i , ..., pBi } that also requires to be fil-

tered and to preserve the reliable ones. As described in Equation 1, TPT selects the predictions pbi
by thresholding their entropy H(pbi ) > τ , as the high entropy predictions tend to be more confident.

On the contrary, we draw inspiration from a study from the area of speech recognition Laptev &
Ginsburg (2023) and opt for Rényi Entropy to estimate the reliability of each prediction. This
decision is motivated by the observed stronger correlation between Rényi Entropy and prediction
accuracy, as indicated in the study. For each test example xi, we generate regular predictions pbi by
calculating the softmax-cosine similarity between visual embedding vbi and text embedding tj :

pbi = softmax
([

cos(vbi , tj)
]J
j=1

)
, (4)

5



Under review as a conference paper at ICLR 2024

Algorithm 1 BaFTA: Backprop-Free Test-Time Adaptation for zero-shot VLM.
Require: Vision Language Pre-trained Model M = {Mv,Mt}
Require: Test Samples X = {xi}Ii=1; Class Names C = {cj}Jj=1; Template Prompts {θz}Zz=1

tj ← 1
Z

∑
z Mt(θz(cj) ▷ Prepare multi-templates text embeddings for each class

t̂j ← P ∗(tj |{t1, ..., tJ}) ▷ Projected text embeddings (Eq 3)
wj ← t̂j , kj ← 0 ▷ Initialize class centroids wj and counter kj for each class
for i← 1 to I do
{xb

i}Bb=1 ← A(xi) ▷ Generate B views with random augmentation function A(·)
vbi ←Mv(x

b
i ) ▷ Visual embedding for each augmented views

v̂bi ← P ∗(vbi ) ▷ Projected visual embedding (Eq 3)

pbi ← softmax
([

cos(vbi , tj)
]J
j=1

)
▷ Cosine-similarity between visual embedding vbi and text embedding tbj , (Eq 4)

p̂bi ← softmax

([
cos(v̂bi , wj)

]J
j=1

)
▷ Cosine-similarity between projected visual embedding v̂bi and class centroids wb

j , (Eq 5)
p̃i ← 1

R

∑
b Re(pbi )p

b
i +

1
R

∑
b Re(p̂bi )p̂

b
i ▷ Prediction Aggregation (Eq. 6)

yi ← argmaxj p̃i ▷ Get prediction for example xi

v̂i ← 1
B

∑B
b=1 v̂

b
i

wj ← (kjwj + v̂i) /∥(kjwj + v̂i)∥, kj ← kj + 1 for j = yi
▷ Updates centroids and counter on predicted class yi (Eq. 2)

Output yi as prediction for xi

end for

and also online-clustering predictions pbi by comparing vbi with the class centroids wj :

p̂bi = softmax
([

cos(P ∗(vbi ), wj)
]J
j=1

)
. (5)

Note that we use projected visual embeddings P ∗(vbi ) to calculate p̂bi , because wj are calculated in
the projection space. Then, we estimate the reliability of each prediction p with the Rényi entropy:

Re(p) =
1

α− 1
log

J∑
j=1

(p[j])α

Finally, we aggregate the predictions {pbi} and {p̂bi} with their Rényi entropy as the weight:

p̃i =
1

R

(
B∑

b=1

Re(pbi )p
b
i +

B∑
b=1

Re(p̂bi )p̂
b
i

)

=
1

R
(pi + p̂i) (6)

where R =
∑B

b=1(Re(pbi ) +Re(p̂bi )) is the normalization factor to ensure p̃i sums to 1.

3.4 ALGORITHM AND OVERVIEW

We demonstrate the overview of BaFTA in Figure 1. Instead of employing prompt-tuning, which en-
tails back-propagation and the risk of potential model collapse during unsupervised training, BaFTA
takes a backpropagation-free approach. We directly refine the class embeddings with online cluster-
ing (as detailed in Section 3.1) in a projection space that aligns the visual and text embeddings (as
detailed in Section 3.2). For each test instance, BaFTA generates two sets of predictions. The first
set follows the standard contrastive VLM classification protocol, measuring cosine similarity be-
tween visual embeddings of augmented views and the text embeddings of class names. The second
set measures cosine similarity between visual embeddings and centroids obtained through online
clustering. These predictions are subsequently combined, considering their reliability as evaluated
by Rényi Entropy (as outlined in Section 3.3), to yield the final results. For a comprehensive under-
standing of BaFTA’s procedures, please also refer to Algorithm 1.
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ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch NDS Avg

CLIP (ViT-B/16) 66.73 47.87 60.86 73.98 46.09 57.20

Multi-Template 68.34 49.89 61.88 77.65 48.24 59.42
Hierarchy-CLIP 68.86 31.07 62.00 60.62 48.26 50.48

TPT 68.98 54.77 63.45 77.06 47.94 60.81
BaFTA 71.43 58.19 64.46 79.06 50.51 63.06

CoOp (16-shot) 71.51 49.71 64.20 75.21 47.99 59.28
TPT + CoOp 73.61 57.95 66.83 77.27 49.29 62.84

BaFTA + CoOp 74.42 59.21 67.15 79.00 51.39 64.19

CLIP (RN50) 58.16 21.83 51.41 56.15 33.37 40.69

Multi-Template 59.81 23.24 52.91 60.72 35.48 43.09
TPT 60.74 26.67 54.70 59.11 35.09 43.89

BaFTA 62.01 26.91 55.26 59.79 36.37 44.58
CoOp (16-shot) 63.33 23.06 55.40 56.60 34.67 42.43

TPT + CoOp 64.73 30.32 57.83 58.99 35.86 45.75
BaFTA + CoOp 65.92 29.39 58.22 59.45 36.84 45.98

Table 3: Comparison of top-1 accuracy on ImageNet and the Natural Distribution Shifts (NDS)
Benchmarks. All methods evaluated in zero-shot classification setting, except CoOp being fine-
tuned on ImageNet with 16 examples per category.
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CLIP (ViT B/16) 63.58 65.48 93.35 44.27 42.01 23.67 83.65 67.44 88.25 65.13 62.59
Multi-Template 64.59 66.11 93.55 45.04 50.42 23.22 82.86 66.99 86.92 65.16 65.63
CoOp (16-shot) 63.88 64.51 93.70 41.92 46.39 18.47 85.30 68.71 89.14 66.55 64.15

TPT 65.10 66.87 94.16 47.75 42.44 24.78 84.67 68.98 87.79 68.04 65.50
BaFTA 68.52 69.44 94.08 50.30 50.49 27.00 87.03 73.81 92.61 71.13 69.34

CLIP (RN50) 55.82 55.70 85.88 40.37 23.69 15.66 73.97 61.75 83.57 58.84 58.80
Multi-Template 56.63 55.89 87.26 40.37 25.79 16.11 74.82 62.77 82.97 59.48 60.85
CoOp (16-shot) 56.18 55.32 86.53 37.29 26.20 15.12 75.59 61.55 87.00 59.05 58.15

TPT 57.66 58.46 87.02 40.84 28.33 17.58 74.88 62.69 84.49 60.82 61.46
BaFTA 63.20 58.29 87.95 44.03 39.26 18.15 77.69 66.67 88.76 64.26 62.99

Table 4: Top-1 Accuracy on 10 Fine-grained Benchmarks. All baselines are evaluated in zero-shot
classification setting, except CoOp being fine-tuned on ImageNet with 16 examples per category.

4 EXPERIMENT AND RESULTS

Baselines. We conduct experiments in comparison of BaFTA with several benchmark models and
algorithms. Our comparisons include the baseline model CLIP (Radford et al. (2021)) and the
state-of-the-art test-time prompt-tuning algorithm TPT (Manli et al. (2022)) that were introduced in
Section 2. For CLIP, we report both single template (denoted as CLIP), and multi-template versions.
We also include Hierarchy-CLIP (Ge et al. (2023)) in the ImageNet evaluation, as it enhances prompt
quality with a training-free method that leverages the ImageNet class hierarchy. Furthermore, we
have introduced CoOp (Zhou et al. (2022b)), a few-shot prompt-tuning method, as an additional
baseline model for both comparison and adaptation, aligning with experiments from TPT.

Datasets. We have conducted our experiments over two sets of datasets, following the experi-
ment setup of Manli et al. (2022) and Zhou et al. (2022b), which includes: 1) ImageNet Ro-
bustness Evaluation with ImageNet (Deng et al. (2009)) and its Natural Distribution Shift (NDS)
variants ImageNet-V2 (Recht et al. (2019)), ImageNet-R (Hendrycks et al. (2021a)), ImageNet-
Sketch (Wang et al. (2019)) and ImageNet-A (Hendrycks et al. (2021b)); 2) Fine-Grained Datasets
with Stanford Cars (Krause et al. (2013)), Caltech101 (Li et al. (2022)), Describable Textures
(DTD, Cimpoi et al. (2014)), EuroSAT (Helber et al. (2019)), FGVC Aircrafts (Maji et al.
(2013)), Food101 (Bossard et al. (2014)), Flowers102 (Nilsback & Zisserman (2008)), Oxford-IIIT-
Pets (Parkhi et al. (2012)), UCF101 (Soomro et al. (2012)) and SUN397 (Xiao et al. (2010)).
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CLIP 63.46 68.34 49.89 61.88 77.65 48.24 66.11 93.55 45.04 50.42 23.22 82.86 66.99 86.92 65.16 65.63
BaFTA-RA 65.88 70.53 57.87 64.45 79.03 49.40 67.96 93.87 46.93 47.88 27.09 86.66 71.42 89.23 69.07 66.74
BaFTA-OC 62.53 66.77 52.43 50.15 74.74 46.65 64.99 92.12 49.41 49.52 24.78 85.72 58.60 89.31 68.60 64.11

BaFTA 67.26 71.43 58.19 64.46 79.06 50.51 69.44 94.08 50.30 50.49 27.00 87.03 73.81 92.61 71.13 69.34

Table 5: Comparison over different BaFTA predictions. BaFTA-RA (Rényi Aggregation): standard
predictions over augmented views aggregated with Rényi Entropy; BaFTA-OC (Online Clustering):
predictions generated with the clustering centroids; BaFTA-RA, BaFTA-OC, BaFTA refers to the
pi, p̂i and p̃i from Eq. 6 respectively. All results produced with CLIP (ViT-B/16).

kNN w/o P ∗ 61.56 63.03 44.29 50.56 71.19 44.29 62.49 92.29 43.85 58.37 22.35 68.66 84.56 85.01 68.68 63.77
kNN w/ P ∗ 64.04 66.62 48.91 55.41 77.91 47.62 67.01 93.55 45.74 53.75 23.52 69.35 86.33 89.64 69.36 65.87

Table 6: Effectiveness of Projection P ∗ (Eq. 3) in improving embedding distribution. Results pro-
duced with CLIP (ViT-B/16) embeddings, demonstrated by the top-1 accuracy improvement of kNN
classifier with k = 5. Columns correspond to the columns in Table 5.

Implementation Details. In our experiments, we employ the ViT-B/16 and ResNet50 checkpoints
from CLIP as the baseline models for comparison and adaptation. In line with the TPT implemen-
tation, we utilize a simple combination of RandomResizedCrop and RandomFlip to prepare
63 augmented views, constituting a mini-batch of 64 images for each test image. This choice, as
previously observed in Manli et al. (2022), strikes a suitable balance between runtime efficiency
and performance. We have employed the exponential form of Renyi Entropy with order α = 0.5
following Laptev & Ginsburg (2023). For experiments on-top-of the CoOp, we use the 16-shot fine-
tuned model and ensemble the predictions generated from CoOp embeddings with our predictions
using Rényi entropy. Instead of directly replacing the prompts, we adopt this approach because we
have observed that CoOp embeddings sometimes perform less effectively than the multi-template
embeddings provided by CLIP. For all other BaFTA results, we use official template sets provided
by CLIP to generate the text embeddings. Unless otherwise specified, all BaFTA results are re-
ported with a warm-up schedule of 10J examples (J as number of class) before the online clus-
tering predictions aggregated into final prediction. For the embedding projection matrix, we use
U ′ = [e2, ..., eJ ] for all datasets, except for datasets with more than 150 categories such as Ima-
geNet, we use U ′ = [e2, ..., e150] for best performance.

4.1 MAIN RESULTS

In Table 3 and Table 4 we present the comprehensive results of backpropagation-free test-time algo-
rithm BaFTA in comparison to baseline methods across five ImageNet robustness benchmarks and
ten fine-grained classification benchmarks.

As illustrated in Table 3, BaFTA exhibits a substantial improvement over the baseline CLIP model
on ImageNet, achieving enhancements of 3.07% and 6.11% on ViT-B/16 and RN50 models, respec-
tively. Notably, BaFTA achieves these results without the need for backpropagation training during
adaptation. Furthermore, BaFTA surpasses the state-of-the-art test-time prompt tuning method TPT
by notable margins of 2.45% and 1.17% on ViT-B/16 and RN50. Additionally, when applied on top
of the few-shot fine-tuned prompts from CoOp, BaFTA further enhances CoOp’s performance by
significant margins. On the Natural Distribution Shifts Benchmarks, BaFTA even outperforms CoOp
with a remarkable margin of 3.78% and 2.15% on the ViT-B/16 and RN50 models (as well as on the
fine-grained datasets as shown in Table 4). This indicates that test-time adaptation provides superior
results compared to cross-domain generalization through few-shot supervised methods. In Table 4,
BaFTA exhibits even larger improvements over TPT on the fine-grained datasets, with notable mar-
gins of 3.42% and 5.54% on ViT-B/16 and RN50, respectively. This performance improvement is
possibly attributed to the better online clustering performance on datasets with fewer target cate-
gories. These results underline the effectiveness of BaFTA, even without the use of backpropagation
training, solidifying its position as a valuable and robust test-time adaptation method.
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Re(pb)pbCLIP pb softmax(pb) max(pb)pb 1[H(pb) < τ ]pb Ĥ(pb)pb α = 0.25 α = 0.5 α = 0.75

68.34 69.43 70.19 58.69 70.40 69.87 70.52 70.53 70.30

Table 7: Comparison of different methods to aggregate predictions pb from augmented views. All
results are top-1 accuracy reported with CLIP (ViT-B/16) on ImageNet with 64 augmented views
for each test example. Please refer to the text for details on the notation.

4.2 ABLATION STUDIES

Comparison on Predictions from BaFTA. Table 5 presents the ablation results of BaFTA, assess-
ing the accuracy of each of its prediction sets: p̂i, pi, and p̃i, as described in Equation 6. The results
reveal that simply applying Rényi Entropy to aggregate predictions from augmented views results in
a 2.40% average accuracy improvement across the 15 datasets. The predictions generated with the
online clustering centroids improve CLIP’s performance on ImageNet-A, DTD, FGVC, Food101,
Oxford-Pets, and UCF101, but do not show improvement on others. This discrepancy may be at-
tributed to two factors: 1) The accuracy is calculated over the entire dataset, where the clustering
centroids are not yet stable on earlier examples; 2) Some of the clustering centroids might become
unreliable, on datasets with biased distribution, or a large number of categories, such as ImageNet
and SUN397. However, thanks to Rényi Entropy Aggregation, BaFTA is capable of leveraging the
reliable predictions among the clustering-based predictions (p̂i) and achieves an additional 1.40%
improvement over pi, resulting in a total improvement of 3.80% across the 15 datasets.

Effectiveness of Projected Embedding Space. Table 6 provides evidence of the effectiveness
of the Projection P ∗ in enhancing the distribution of CLIP embeddings for clustering, as proposed
in Hu et al. (2023). The results demonstrate a 2.48% improvement in averaged k-nearest neighbor
(kNN) classifier accuracy across the 15 datasets after projecting the CLIP embeddings with P ∗. This
improvement signifies that P ∗ successfully enhances the neighboring relationships among CLIP
embeddings in the projection space, which, in turn, will benefit the online clustering process.

Comparison on Prediction Aggregation Method. In Table 7, we present the ablation results on
choice of aggregation function that merges the predictions results from augmented views. We use the
over-line X =

∑B
b=1 Xb to denote the average over B augmented views. From left to right, we have:

1) CLIP: baseline prediction without augmentation; 2) pb: averaged prediction; 2) softmax(γpb):
soft majority-vote prediction; 3) max(pb)pb: weighted-average prediction with confidence estimated
by maximum entry of pb; 4) 1[H(pb) > τ ]pb: average of low-entropy (high-confidence) predictions,
as adopted by TPT; 6) Ĥ(pb)pb: weighted-average prediction with confidence estimated by the
normalized entropy Ĥ(pb) = (Hmax −H(pb))/Hmax; 6) Re(pb)pb: weighted-average prediction
with confidence estimated by Rényi entropy Re(pb), with entropy order α = 0.25, 0.50, 0.75. As
shown in the Table, Rényi entropy at order of 0.50 provides the best results over all the other options.

5 CONCLUSION

In this work, we have focused on enhancing the performance of large-scale pre-trained vision-
language models, exemplified by CLIP, in the context of zero-shot image classification. While
various test-time prompt tuning methods have been developed to refine class embeddings during
inference, they often grapple with the challenge of selecting appropriate learning rates in the ab-
sence of validation data during test-time training. To address this challenge, we have introduced a
novel backpropagation-free method for test-time adaptation in vision-language models. Instead of
fine-tuning text prompts to refine class embeddings, our approach directly estimates class centroids
using online clustering within a projected embedding space that aligns text and visual embeddings.
We have also proposed a dynamic aggregation technique for predictions, leveraging both estimated
and original class embeddings, as well as distinct augmented views. This aggregation is guided by
an assessment of prediction reliability using Rényi entropy. Our comprehensive experimentation has
consistently demonstrated that our approach outperforms state-of-the-art test-time adaptation meth-
ods by a significant margin. This work contributes to improving vision-language models, offering a
practical solution for real-world applications.
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