
Published as a conference paper at ICLR 2024

HIGEN: HIERARCHICAL GRAPH GENERATIVE NET-
WORKS

Mahdi Karami
mahdi.karami@ualberta.ca

ABSTRACT

Most real-world graphs exhibit a hierarchical structure, which is often overlooked
by existing graph generation methods. To address this limitation, we propose a
novel graph generative network that captures the hierarchical nature of graphs and
successively generates the graph sub-structures in a coarse-to-fine fashion. At each
level of hierarchy, this model generates communities in parallel, followed by the
prediction of cross-edges between communities using separate neural networks.
This modular approach enables scalable graph generation for large and complex
graphs. Moreover, we model the output distribution of edges in the hierarchical
graph with a multinomial distribution and derive a recursive factorization for this
distribution. This enables us to generate community graphs with integer-valued
edge weights in an autoregressive manner. Empirical studies demonstrate the
effectiveness and scalability of our proposed generative model, achieving state-of-
the-art performance in terms of graph quality across various benchmark datasets.
Code available at https://github.com/Karami-m/HiGen_main.

1 INTRODUCTION

Graphs play a fundamental role in representing relationships and are widely applicable in various
domains. The task of generating graphs from data holds immense value for diverse applications but
also poses significant challenges (Dai et al., 2020). Some of the applications include: the exploration
of novel molecular and chemical structures (Jin et al., 2020), document generation (Blei et al., 2003),
circuit design (Mirhoseini et al., 2021), the analysis and synthesis of realistic data networks, as well
as the synthesis of scene graphs in computer (Manolis Savva et al., 2019; Ramakrishnan et al., 2021).

In all the aforementioned domains, a common observation is the presence of locally heterogeneous
edge distributions in the graph representing the system, leading to the formation of clusters or
communities and hierarchical structures. These clusters represent groups of nodes characterized by
a high density of edges within the group and a comparatively lower density of edges connecting
the group with the rest of the graph. In a hierarchical structure that arise from graph clustering, the
communities in the lower levels capture the local structures and relationships within the graph. These
communities provide insights into the fine-grained interactions among nodes. On the other hand, the
higher levels of the hierarchy reflect the broader interactions between communities and characterize
global properties of the graph. Therefore, in order to generate realistic graphs, it is essential for graph
generation models to learn this multi-scale structure, and be able to capture the cross-level relations.
While hierarchical multi-resolution generative models were developed for specific data types such as
voice (Oord et al., 2016), image (Reed et al., 2017; Karami et al., 2019) and molecular motifs (Jin
et al., 2020), these methods rely on domain-specific priors that are not applicable to general graphs
with unordered nature. To the best of our knowledge, there exists no data-driven generative models
specifically designed for generic graphs that can effectively incorporate hierarchical structure.

Graph generative models have been extensively studied in the literature. Classical methods based on
random graph theory, such as those proposed in Erdos & Rényi (1960) and Barabási & Albert (1999),
can only capture a limited set of hand-engineered graph statistics. Leskovec et al. (2010) leveraged
the Kronecker product of matrices but the resulting generative model is very limited in modeling
the underlying graph distributions. With recent advances in graph neural networks, a variety of
deep neural network models have been introduced that are based on variational autoencoders (VAE)
(Kingma & Welling, 2013) or generative adversarial networks (GAN) (Goodfellow et al., 2020).

1

https://github.com/Karami-m/HiGen_main

Published as a conference paper at ICLR 2024

Some examples of such models include (De Cao & Kipf, 2018; Simonovsky & Komodakis, 2018;
Kipf & Welling, 2016; Ma et al., 2018; Liu et al., 2019; Bojchevski et al., 2018; Yang et al., 2019)
The major challenge in VAE based models is that they rely on heuristics to solve a graph matching
problem for aligning the VAE’s input and sampled output, limiting them to small graphs. On the other
hand, GAN-based methods circumvent the need for graph matching by using a permutation invariant
discriminator. However, they can still suffer from convergence issues and have difficulty capturing
complex dependencies in graph structures for moderate to large graphs (Li et al., 2018; Martinkus
et al., 2022). To address these limitations, (Martinkus et al., 2022) recently proposed using spectral
conditioning to enhance the expressivity of GAN models in capturing global graph properties.

On the other hand, autoregressive models approach graph generation as a sequential decision-making
process. Following this paradigm, Li et al. (2018) proposed a generative model based on GNN but it
has high complexity of O(mn2). In a distinct approach, GraphRNN (You et al., 2018) modeled graph
generation with a two-stage RNN architecture for generating new nodes and their links, respectively.
However, traversing all elements of the adjacency matrix in a predefined order results in O(n2)
time complexity making it non-scalable to large graphs. In contrast, GRAN (Liao et al., 2019)
employs a graph attention network and generates the adjacency matrix row by row, resulting in a
O(n) complexity sequential generation process. To improve the scalability of generative models,
Dai et al. (2020) proposed an algorithm for sparse graphs that decreases the training complexity
to O(log n), but at the expense of increasing the generation time complexity to O((n+m) log n).
Despite their improvement in capturing complex statistics of the graphs, autoregressive models highly
rely on an appropriate node ordering and do not take into account the community structures of the
graphs. Additionally, due to their recursive nature, they are not fully parallelizable.

A new family of diffusion model for graphs has emerged recently. Continuous denoising diffusion
was developed by Jo et al. (2022), which adds Gaussian noise to the graph adjacency matrix and
node features during the diffusion process. However, since continuous noise destroys the sparsity
and structural properties of the graph, discrete denoising diffusion models have been developed as a
solution in (Haefeli et al., 2022; Vignac et al., 2022; Kong et al., 2023). These models progressively
edit graphs by adding or removing edges in the diffusion process, and then denoising graph neural
networks are trained to reverse the diffusion process. While the denoising diffusion models can offer
promising results, their main drawback is the requirement of a long chain of reverse diffusion, which
can result in relatively slow sampling. To address this limitation, Chen et al. (2023) introduced a
diffusion-based graph generative model. In this model, a discrete diffusion process randomly removes
edges while a denoising model is trained to inverse this process, therefore it only focuses on a portion
of nodes in the graph at each denoising step.

In this work, we introduce HiGen, a Hierarchical Graph Generative Network to address the limitations
of existing generative models by incorporating community structures and cross-level interactions.
This approach involves generating graphs in a coarse-to-fine manner, where graph generation at each
level is conditioned on a higher level (lower resolution) graph. The generation of communities at
lower levels is performed in parallel, followed by the prediction of cross-edges between communities
using a separate graph neural network. This parallelized approach enables high scalability. To
capture hierarchical relations, our model allows each node at a given level to depend not only on
its neighbouring nodes but also on its corresponding super-node at the higher level. We address
the generation of integer-valued edge weights of the hierarchical structure by modeling the output
distribution of edges using a multinomial distribution. We show that multinomial distribution
can be factorized successively, enabling the autoregressive generation of each community. This
property makes the proposed architecture well-suited for generating graphs with integer-valued edge
weights. Furthermore, by breaking down the graph generation process into the generation of multiple
small partitions that are conditionally independent of each other, HiGen reduces its sensitivity to a
predefined initial ordering of nodes.

2 BACKGROUND

A graph G = (V, E) is a collection of nodes (vertices) V and edges E with corresponding sizes
n = |V| and m = |E| and an adjacency matrix Aπ for the node ordering π. The node set can
be partitioned into c communities (a.k.a. cluster or modules) using a graph partitioning function
F : V → {1, ..., c}, where each cluster of nodes forms a sub-graph denoted by Ci = (V(Ci), E(Ci))

2

Published as a conference paper at ICLR 2024

(a) (b) (c)

(d) (e)

Figure 1: (a) A sample hierarchical graph, HG with 2 levels is shown. Communities are shown in different
colors and the weight of a node and the weight of an edge in a higher level, represent the sum of the edges in the
corresponding community and bipartite, respectively. Node size and edge width indicate their weights. (b) The
matrix shows corresponding adjacency matrix of the graph at the leaf level, G2, where each of its sub-graphs
corresponds to a block in the adjacency matrix, communities correspond to diagonal blocks and are shown in
different colors while bipartites are colored in gray. (c) Decomposition of multinomial distribution as a recursive
stick-breaking process where at each iteration, first a fraction of the remaining weights rt is allocated to the t-th
row (corresponding to the t-th node in the sub-graph) and then this fraction, vt, is distributed among that row of
lower triangular adjacency matrix, Â. (d), (e) Parallel generation of communities and bipartites, respectively.
Shadowed lines are the augmented edges representing candidate edges at each step.

with adjacency matrix Ai. The cross-links between neighboring communities form a bipartite
graph, denoted by Bij = (V(Ci), V(Cj), E(Bij)) with adjacency matrix Aij . Each community
is aggregated to a super-node and each bipartite corresponds to a super-edge linking neighboring
communities, which induces a coarser graph at the higher (a.k.a. parent) level. Herein, the levels are
indexed by superscripts. Formally, each community at level l, Cl

i , is mapped to a node at the higher
level graph, also called its parent node, vl−1

i := Pa(Cl
i) and each bipartite at level l is represented by

an edge in the higher level, also called its parent edge, el−1
i = Pa(Bl

ij) = (vl−1
i , vl−1

j). The weights
of the self edges and the weights of the cross-edges in the parent level are determined by the sum of the
weights of the edges within their corresponding community and bipartite, respectively. Therefore, the
edges in the induced graphs at the higher levels have integer-valued weights: wl−1

ii =
∑

e∈E(Cl
i)
we

and wl−1
ij =

∑
e∈E(Bl

ij)
we, moreover sum of all edge weights remains constant in all levels so

w0 :=
∑

e∈E(Gl) we = |E|, ∀ l ∈ [0, ..., L].

This clustering process continues recursively in a bottom-up approach until a single node graph G0 is
obtained, producing a hierarchical graph, defined by the set of graphs in all levels of abstractions,
HG := {G0,,GL−1,GL}. This forms a dendrogram tree with G0 being the root and GL being the
final graph that is generated at the leaf level. An HG is visualized in Figure 1a. The hierarchical tree
structure enables modeling of both local and long-range interactions among nodes, as well as control
over the flow of information between them, across multiple levels of abstraction. This is a key aspect
of our proposed generative model. Please refer to appendix A for a list of notation definitions.

3

Published as a conference paper at ICLR 2024

3 HIERARCHICAL GRAPH GENERATION

In graph generative networks, the objective is to learn a generative model, p(G) given a set of training
graphs. This work aims to establish a hierarchical multi-resolution framework for generating graphs in
a coarse-to-fine fashion. In this framework, we assume that the graphs do not have node attributes, so
the generative model only needs to characterize the graph topology. Given a particular node ordering
π, and a hierarchical graph HG := {G0,,GL−1,GL}, produced by recursively applying a graph
partitioning function, F , we can factorize the generative model using the chain rule of probability as:

p(G = GL, π) = p({GL,GL−1, ...,G0}, π) = p(GL, π | {GL−1, ...,G0}) ... p(G1, π | G0) p(G0)

=

L∏
l=0

p(Gl, π | Gl−1)× p(G0) (1)

In other words, the generative process involves specifying the probability of the graph at each level
conditioned on its parent level graph in the hierarchy. This process is iterated recursively until the
leaf level is reached. Here, the distribution of the root p(G0) = p(w0 = w0) can be simply estimated
using the empirical distribution of the number of edges, w0 = |E|, of graphs in the training set.

Based on the partitioned structure within each level of HG, the conditional generative probability
p(Gl | Gl−1) can be decomposed into the probability of its communities and bipartite graphs as:

p(Gl | Gl−1) = p({Cl
i ∀i ∈ V(Gl−1)} ∪ {Bl

ij ∀(i, j) ∈ E(Gl−1)} | Gl−1)

≊
∏

i ∈ V(Gl−1)

p(Cl
i | Gl−1)×

∏
(i,j)∈ E(Gl−1)

p(Bl
ij | Gl−1, {Cl

k}Cl
k∈Gl) (2)

This decomposition is based on the assumption that, given the parent graph Gl−1, generative proba-
bilities of communities, Cl

i , are mutually independent. Subsequent to the generation of community
graphs, it further assumes that the generation probability of each bipartite can be modeled independent
of the other bipartites. 1 The following theorem leverages the properties of multinomial distribution
to prove the conditional independence of the components for the integer-value weighted hierarchical
graph (r.t. appendix B.1 for the proof).
Theorem 3.1. Let the random vector w := [we]e ∈ E(Gl) denote the set of weights of all edges of Gl

such that their sum is w0 = 1T w. The joint probability of w can be described by a multinomial
distribution: w ∼ Mu(w | w0,θ

l). By observing that the sum of edge weights within each community
Cl
i and bipartite graph Bl

ij are determined by the weights of their parent edges in the higher level,
wl−1

ii and wl−1
ij respectively, we can establish that these components are conditionally independent

and each of them follow a multinomial distribution:

p(Gl | Gl−1) ∼
∏

i ∈ V(Gl−1)

Mu([we]e ∈ Cl
i
| wl−1

ii ,θl
ii)

∏
(i,j)∈ E(Gl−1)

Mu([we]e ∈ Bl
ij
| wl−1

ij ,θl
ij) (3)

where {θl
ij [e] ∈ [0, 1], s.t. 1Tθl

ij = 1 | ∀ (i, j) ∈ E(Gl−1)} are the multinomial model’s parameters.

Therefore, given the parent graph at a higher level, the generation of graph at its subsequent level
can be reduced to generation of its partition and bipartite sub-graphs. As illustrated in figure 1, this
decomposition enables parallel generation of the communities in each level which is followed by
predicting bipartite sub-graphs in that level. Each of these sub-graphs corresponds to a block in the
adjacency matrix, as visualized in figure 2a, so the proposed hierarchical model generates adjacency
matrix in a blocks-wise fashion and constructs the final graph topology.

3.1 COMMUNITY GENERATION

Based on the equation (3), the edge weights within each community can be jointly modeled using
a multinomial distribution. In this work, our objective is to specify the generative probability of

1Indeed, this assumption implies that the cross dependency between communities are primarily encoded by
their parent abstract graph which is reasonable where the nodes’ dependencies are mostly local and are within
community rather than being global.

4

Published as a conference paper at ICLR 2024

communities in level l, p(Cl
i | Gl−1), as an autoregressive process, hence, we need to factorize the

joint multinomial distribution of edges as a sequence of conditional distributions. Toward this goal,
we show in appendix: B.2 that this multinomial distribution can be decomposed into a sequence of
binomial distribution of each edge using a stick-breaking process. This result enables us to model the
community generation as an edge-by-edge autoregressive process with O(|VC |2) generation steps,
similar to existing algorithms such as GraphRNN (You et al., 2018) or DeepGMG (Li et al., 2018).

However, inspired by GRAN (Liao et al., 2019), a community can be generated more efficiently
by generating one node at a time, reducing the sampling process to O(|VC |) steps. This requires
decomposing the generative probability of edges in a group-wise form, where the candidate edges
between the t-th node, the new node at the t-th step, and the already generated graph are grouped
together. In other words, this model completes the lower triangle adjacency matrix one row at a time
conditioned on the already generated sub-graph and the parent-level graph. The following theorem
formally derives this decomposition for multinomial distributions.
Theorem 3.2. For a random counting vector w ∈ ZE

+ with a multinomial distribution Mu(w | w,θ),
let’s split it into T disjoint groups w = [u1, ...,uT] where ut ∈ ZEt

+ ,
∑T

t=1 Et = E, and also split
the probability vector accordingly as θ = [θ1, ...,θT]. Additionally, let’s define sum of all variables
in the t-th group (t-th step) by a random count variable vt :=

∑Et

e=1 ut,e. Then, the multinomial
distribution can be factorized as a chain of binomial and multinomial distributions:

Mu(w = [u1, ...,uT]| w,θ = [θ1, ...,θT]) =

T∏
t=1

Bi(vt | rt, ηvt) Mu(ut | vt, λt), (4)

where: rt = w −
∑
i<t

vi , ηvt =
1T θt

1−
∑

i<t 1
T θi

, λt =
θt

1T θt
.

Here, rt denotes the remaining weight at t-th step, and the probability of binomial, ηvt , is the fraction
of the remaining probability mass that is allocated to vt, i.e. the sum of all weights in the t-th group.
The vector parameter λt is the normalized multinomial probabilities of all count variables in the
t-th group. Intuitively, this decomposition of multinomial distribution can be viewed as a recursive
stick-breaking process where at each step t: first a binomial distribution is used to determine how
much probability mass to allocate to the current group, and a multinomial distribution is used to
distribute that probability mass among the variables in the group. The resulting distribution is
equivalent to the original multinomial distribution. Proof: Refer to appendix B.3.

Let Ĉl
i,t denote an already generated sub-graph at the t-th step, augmented with the set of candidate

edges from the new node, vt(Cl
i), to its preceding nodes, denoted by Êt(Ĉl

i,t) := {(t, j) | j < t}.
We collect the weights of the candidate edges in the random vector ut := [we]e ∈ Êt(Ĉl

i,t)
(that

corresponds to the t-th row of the lower triangle of adjacency matrix Âl
i), where the sum of the

candidate edge weights is vt , remaining edges’ weight is rt = wl−1
ii −

∑
i<t vi and total edges’

weight of community Cl
i is wl−1

ii . Based on theorem 3.2, the probability of ut can be characterized by
the product of a binomial and a multinomial distribution. So, we need to model the parameters of
the these distributions. This process is illustrated in figure 2b and figure 2 in appendix. We further
increase the expressiveness of the generative network by extending this probability to a mixture
model with K mixtures:

p(ut) =

K∑
k=1

βl
kBi(vt | rt, ηlt,k)Mu(ut | vt, λl

t,k) (5)

λl
t,k = softmax

(
MLPl

θ

([
∆hÊt(Ĉl

i,t)
|| pool(hĈl

i,t
) || hPa(Cl

i)

]))
[k, :] (6)

ηlt,k = sigmoid
(
MLPl

η

([
pool(hĈl

i,t
) || hPa(Cl

i)

]))
[k]

βl = softmax
(
MLPl

β

([
pool(hĈl

i,t
) || hPa(Cl

i)

]))
Where ∆hÊt(Ĉl

i,t)
is a |Êt(Ĉl

i,t)| × dh dimensional matrix, consisting of the set of candidate edge

embeddings {∆h(t,s) := ht−hs | ∀ (t, s) ∈ Êt(Ĉl
i,t)} , hĈl

i,t
is a t×dh matrix of node embeddings

5

Published as a conference paper at ICLR 2024

of Ĉl
i,t learned by a GNN model: hĈl

i,t
= GNNl

com(Ĉl
i,t). Here, the graph level representation is

obtained by the addpool() aggregation function and the mixture weights are denoted by βl. In
order to produce K × |Et(Cl

i)| dimensional matrix of multinomial probabilities, the MLPl
θ() network

acts at the edge level, while MLPl
ηv() and MLPl

β() act at the graph level to produce the binomial
probabilities and K dimensional arrays for K mixture models, respectively. All of these MLP
networks are built by two hidden layers with ReLU() activation functions.

In the generative model of each community Cl
i , the embedding of its parent node, hPa(Cl

i)
, is used as

the context, and is concatenated to the node and edge embeddings at level l. The operation
[
x || y

]
concatenates vector y to each row of matrix x. Since parent level reflects global structure of the
graph, concatenating its features enriches the node and edge embeddings by capturing long-range
interactions and global structure of the graph, which is important for generating local components.

3.2 BIPARTITE GENERATION

Once all the communities in level l are generated, the edges of all bipartite graphs at that level can
be predicted simultaneously. An augmented graph Ĝl composed of all the communities, {Cl

i ∀i ∈
V(Gl−1)}, and the candidate edges of all bipartites, {Bl

ij ∀(i, j) ∈ E(Gl−1)}. Node and edge
embeddings are encoded by GNNl

bp(Ĝl). We similarly extend the multinomial distribution of a
bipartite, in (11), using a mixture model to express its generative probability:

p(w := Ê(Bl
ij)) =

K∑
k=1

βl
kMu(w | wl−1

ij ,θl
ij,k)

θl
ij,k = softmax

(
MLPl

θ(
[
∆hÊ(Bl

ij)
|| ∆hPa(Bl

ij)

]
)
)
[k, :] (7)

βl = softmax
(
MLPl

β

([
pool(∆hÊ(Bl

ij)
) ||∆hPa(Bl

ij)

]))
where the random vector w := [we]e ∈ Ê(Bl

ij)
is the set of weights of all candidate edges in bipartite

Bl
ij , and ∆hPa(Bl

ij)
are the parent edge embeddings of the bipartite graph. By parametrizing the

distribution of bipartite graphs based on both the generated communities and the parent graph, HiGen
can effectively capture the interdependence between bipartites and communities.

Node Feature Encoding: To encode node embeddings, we extend GraphGPS proposed by Ram-
pášek et al. (2022). GraphGPS combines local message-passing with global attention mechanism
and uses positional and structural encoding for nodes and edges to construct a more expressive and a
scalable graph transformer (GT) (Dwivedi & Bresson, 2020). We employ GraphGPS as the GNN of
the parent graph, GNNl−1(Gl−1). However, to apply GraphGPS on augmented graphs of bipartites,
GNNl

bp(Ĝl), we use distinct initial edge features to distinguish augmented (candidate) edges from
real edges. Furthermore, for bipartite generation, the attention scores in the Transformers of the
augmented graph Ĝl are masked to restrict attention only to connected communities. Moreover, for
the community generation, we employ the GNN with attentive messages model, proposed in (Liao
et al., 2019), as GNNl

com. The details of model architecture are provided in appendix C.1.

4 RELATED WORK

In order to deal with hierarchical structures in molecular graphs, a generative process was proposed
by Jin et al. (2020) which recursively selects motifs, the basic building blocks, from a set and
predicts their attachment to the emerging molecule. However, this method requires prior domain-
specific knowledge and relies on molecule-specific graph motifs. Additionally, the graphs are only
abstracted into two levels, and component generation cannot be performed in parallel. In (Kuznetsov
& Polykovskiy, 2021), a hierarchical normalizing flow model for molecular graphs was introduced,
where new molecules are generated from a single node by recursively dividing each node into two.
However, the merging and splitting of pairs of nodes in this model is based on the node’s neighborhood
without accounting for the diverse community structure of graphs, hence the graph generation of
this model is inherently limited. Shirzad et al. (2022) proposed a graph generation framework based

6

Published as a conference paper at ICLR 2024

on tree decomposition that reduces upper bound on the maximum number of sampling decisions.
However, this model is limited to a single level of abstraction with tree structure and requires O(nk)
generation steps where k represents the width of the tree decomposition, hence its scalability is
limited to medium-sized graphs. In contrast, HiGen’s ability to employ different generation models
for community and inter-community subgraphs at multiple levels of abstraction is a key advantage
that enhances its expressiveness.

5 EXPERIMENTS

In our empirical studies, we compare the proposed hierarchical graph generative network against
state-of-the-art autoregressive models: GRAN and GraphRNN models, diffusion models: DiGress
(Vignac et al., 2022), GDSS (Jo et al., 2022), GraphARM (Kong et al., 2023) and EDGE (Chen et al.,
2023) , and a GAN-based model: SPECTRE (Martinkus et al., 2022), on a range of synthetics and
real datasets of various sizes.

Datasets: We used 5 different benchmark graph datasets: (1) the synthetic Stochastic Block Model
(SBM) dataset consisting of 200 graphs with 2-5 communities each with 20-40 nodes (Martinkus
et al., 2022); (2) the Protein including 918 protein graphs, each has 100 to 500 nodes representing
amino acids that are linked if they are closer than 6 Angstroms (Dobson & Doig, 2003), (3) the
Enzyme that has 587 protein graphs of 10-125 nodes, representing protein tertiary structures of the
enzymes from the BRENDA database (Schomburg et al., 2004) and (4) the Ego dataset containing
757 3-hop ego networks with 50-300 nodes extracted from the CiteSeer dataset (Sen et al., 2008). (5)
Point Cloud dataset, which consists of 41 3D point clouds of household objects. The dataset consists
of large graphs with up to 5k nodes and approximately 1.4k nodes on average (Neumann et al., 2013).

Graph Partitioning Different algorithms approach the problem of graph partitioning (clustering)
using various clustering quality functions. Two commonly used families of such metrics are modu-
larity and cut-based metrics (Tsitsulin et al., 2020). Although optimizing modularity metric is an
NP-hard problem, it is well-studied in the literature and several graph partitioning algorithm based on
this metric have been proposed. For example, the Louvain algorithm (Blondel et al., 2008) starts with
each node as its community and then repeatedly merges communities based on the highest increase
in modularity until no further improvement can be made. This heuristic algorithm is computationally
efficient and scalable to large graphs for community detection. Moreover, a spectral relaxation of
modularity metrics has been proposed in Newman (2006a;b) which results in an analytical solution
for graph partitioning. Additionally, an unsupervised GNN-based pooling method inspired by this
spectral relaxation was proposed for partitioning graphs with node attributes (Tsitsulin et al., 2020).
As the modularity metric is based on the graph structure, it is well-suited for our problem. Therefore,
we employed the Louvain algorithm to get a hierarchical clustering of the graph nodes in the datasets
and then spliced out the intermediate levels to achieve HGs with uniform depth of L = 2.

Model Architecture In our experiments, the GNN models consist of 8 layers of GraphGPS layers,
and the input node features are augmented with positional and structural encoding. This encoding
includes the first 8 eigenvectors related to the smallest non-zero eigenvalues of the Laplacian and the
diagonal of the random-walk matrix up to 8 steps. Each hierarchical level employs its own GNN and
output models. For more architectural details, please refer to Appendix C.1 and D.

We conducted experiments using the proposed hierarchical graph generative network (HiGen) model
with two variants for the output distribution of the leaf edges: 1) HiGen: the probability of the
community edges’ weights at the leaf level are modeled by mixture of Bernoulli, using sigmoid()
activation in (6), since the leaf levels in our experiments have binary edges weights. 2)HiGen-m:
the model uses a mixture of multinomial distributions (5) to describe the output distribution for
all levels. In this case, we observed that modeling the probability parameters of edge weights
at the leaf level, denoted by λL

t,k in (6), by a multi-hot activation function, defined as σ(z)i :=
sigmoid(zi)/

∑K
j=1 sigmoid(zj) where σ : RK → (K − 1)-simplex, provided slightly better performance

than the standard softmax() function. However, for both HiGen and HiGen-m, the probabilities of
the integer-valued edges at the higher levels are still modeled by the standard softmax() function.2

2As the leaf levels have binary edge weights while the sum of their weights is determined by their parent
edge, a possible extension to this work could be using the cardinality potential model (Hajimirsadeghi et al.,

7

Published as a conference paper at ICLR 2024

Table 1: Comparison of generation metrics on benchmark datasets. The baseline results for SBM and Protein
graphs are obtained from (Martinkus et al., 2022; Vignac et al., 2022), the results for enzyme graphs are obtained
from (Kong et al., 2023). and the scores for Ego are from (Chen et al., 2023). For Ego we report GNN-based
performance metrics: GNN RBF and Frechet Distance (FD) besides structure-based statistics. For all the scores,
the smaller the better. Best results are indicated in bold and the second best methods are underlined. "-": not
applicable due to resource issue or not reported in the reference papers. On the right side, the samples from
HiGen are depicted where the communities are distinguished with different colors at 2 levels.

Stochastic block model Protein

Model Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec.

GraphRNN 0.0055 0.0584 0.0785 0.0065 0.0040 0.1475 0.5851 0.0152

GRAN 0.0113 0.0553 0.0540 0.0054 0.0479 0.1234 0.3458 0.0125

SPECTRE 0.0015 0.0521 0.0412 0.0056 0.0056 0.0843 0.0267 0.0052

DiGress 0.0013 0.0498 0.0433 - - - - -

HiGen-m 0.0017 0.0503 0.0604 0.0068 0.0041 0.109 0.0472 0.0061

HiGen 0.0019 0.0498 0.0352 0.0046 0.0012 0.0435 0.0234 0.0025

Enzyme
Model Deg. Clus. Orbit

GraphRNN 0.017 0.062 0.046
GRAN 0.054 0.087 0.033
GDSS 0.026 0.061 0.009
SPECTRE 0.136 0.195 0.125
DiGress 0.004 0.083 0.002
GraphARM 0.029 0.054 0.015

HiGen-m 0.027 0.157 1.2e-3
HiGen 0.012 0.038 7.2e-4

Ego

Model Deg. Clus. Orbit GNN RBF FD

GraphRNN 0.0768 1.1456 0.1087 0.6827 90.57

GRAN 0.5778 0.3360 0.0406 0.2633 489.96

GDSS 0.8189 0.6032 0.3315 0.4331 60.61

DiscDDPM 0.4613 0.1681 0.0633 0.1561 42.80

DiGress 0.0708 0.0092 0.1205 0.0489 18.68

EDGE 0.0579 0.1773 0.0519 0.0658 15.76

HiGen-m 0.114 0.0378 0.0535 0.0420 12.2

HiGen 0.0472 0.0031 0.0387 0.0454 5.24

SBM Protein

Enzyme Ego

Metrics To evaluate the graph generative models, we compare the distributions of four different
graph structure-based statistics between the ground truth and generated graphs: (1) degree distri-
butions, (2) clustering coefficient distributions, (3) the number of occurrences of all orbits with
four nodes, and (4) the spectra of the graphs by computing the eigenvalues of the normalized graph
Laplacian. The first three metrics capture local graph statistics, while the spectra represents global
structure. The maximum mean discrepancy (MMD) score over these statistics are used as the metrics.
While Liu et al. (2019) computed MMD scores using the computationally expensive Gaussian earth
mover’s distance (EMD) kernel, Liao et al. (2019) proposed using the total variation (TV) distance
as an alternative measure. TV distance is much faster and still consistent with the Gaussian EMD
kernel. Recently, O’Bray et al. (2021) suggested using other efficient kernels such as an RBF kernel,
or a Laplacian kernel, or a linear kernel. Moreover, Thompson et al. (2022) proposed new evaluation
metrics for comparing graph sets using a random-GNN approach where GNNs are employed to
extract meaningful graph features. However, in this work, we follow the experimental setup and
evaluation metrics of (Liao et al., 2019), except for the enzyme dataset where we use a Gaussian
EMD kernel to be consistent with the results reported in (Jo et al., 2022). GNN-based performance
metrics of HiGen model are also reported in appendix E.

The performance metrics of the proposed HiGen models are reported in Table 1, together with gener-
ated graph samples of HiGen. The results demonstrate that HiGen effectively captures graph statistics
and achieves state-of-the-art on all the benchmarks graphs across various generation metrics. This
improvement in both local and global properties of the generated graphs highlights the effectiveness
of the hierarchical graph generation approach, which models communities and cross-community
interactions separately. A comparison of sampling times for the model can be found in Appendix D.2.
Additionally, Appendix E contains visual comparisons of generated graphs by the HiGen models and
an experimental evaluation of various node ordering and partitioning functions.

For point cloud dataset, the augmented graph of bipartites, Ĝl, contains very large number
of candidate edges, leading to out-of-memory during training. To overcome this challenge,
we adopted a sub-graph sampling strategy, allowing us to generate one or a subset of bipar-
tites at a time to ensure memory constraints were met. In our experiments, we sequenced
the generation of bipartites based on the index of their parent edges in the parent graph.

2015), which is derived to model the distribution over the set of binary random variables, to model the edge
weight at the leaf level.

8

Published as a conference paper at ICLR 2024

Table 2: Comparison of generation metrics
on benchmark 3D point cloud. The baseline
results are from (Liao et al., 2019)

3D Point Cloud
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓

Erdos-Renyi 3.1e-01 1.22 1.27 4.26e-02
GRAN 1.75e-02 5.1e-01 2.1e-01 7.45e-03
HiGen-s (L=2) 3.48e-02 2.82e-01 3.45e-02 5.46e-03
HiGen-s (L=3) 4.97e-02 3.19e-01 1.97e-02 5.2e-03

In this context, when generating the edges of Bl
ij , the aug-

mented graph encompassed all preceding communities
(Cl

k ∀k ≤ max(i, j)), bipartites (Bl
xy ∀(x, y) ≤ (i, j))

and the candidate edges of Bl
ij . We trained different mod-

els for hierarchical depth of L = 2 and L = 3. The results
of this approach, referred to as HiGen-s, in Table 11 high-
lights that HiGen-s outperforms the baselines while other
baseline models are not applicable due to out-of-memory
and computational complexity.

This modification can also address a potential limitation related to edge independence when generating
all the inter-communities simultaneously. However, it’s important to note that the significance of edge
independence is more prominent in high-density graphs like community generations, (Chanpuriya
et al., 2021), whereas its impact is less significant in sparser inter-communities of hierarchical
approach. This is evident by the performance improvement observed in our experiments.

6 DISCUSSION AND CONCLUSION

Node ordering sensitivity: The predefined ordering of dimensions can be crucial for training
autoregressive (AR) models (Vinyals et al., 2015), and this sensitivity to node orderings is particularly
pronounced in autoregressive graph generative models (Liao et al., 2019; Chen et al., 2021). However,
in the proposed approach, the graph generation process is divided into the generation of multiple
small partitions, performed sequentially across the levels, rather than generating the entire graph
by a single AR model. Therefore, given an ordering for the parent level, the graph generation
depends only on the permutation of the nodes within the graph communities rather than the node
ordering of the entire graph. In other words, the proposed method is invariant to a large portion of
possible node permutations, and therefore the set of distinctive adjacency matrices is much smaller
in HiGen. For example, the node ordering π1 = [v1, v2, v3, v4] with clusters VG1 = {v1, v2} and
VG2 = {v3, v4} has a similar hierarchical graph as π2 = [v1, v3, v2, v4], since the node ordering
within the communities is preserved at all levels. Formally, let {Cl

i ∀i ∈ VGl−1} be the set of
communities at level l produced by a deterministic partitioning function, where nl

i = |V(Cl
i)| denotes

the size of each partition. The upper bound on the number of distinct node orderings in an HG
generated by the proposed process is then reduced to

∏L
l=1

∏
i n

l
i!.

3

The proposed hierarchical model allows for highly parallelizable training and generation. Specifically,
let nc := maxi(|Ci|) denote the size of the largest community, then, it only requires O(nc log n)
sequential steps to generate a graph of size n.

Block-wise generation: GRAN generates graphs one block of nodes at a time using an autoregres-
sive approach, but its performance declines with larger block sizes. This happens because adjacent
nodes in an ordering might not be related and could belong to different structural clusters. In con-
trast, our method generates node blocks within communities with strong connections and predicts
cross-links between communities using a separate model. This allows our approach to capture both
local relationships within a community and global relationships across communities, enhancing the
expressiveness of the graph generative model.

Conclusion This work introduces a novel graph generative model, HiGen, which effectively
captures the multi-scale and community structures inherent in complex graphs. By leveraging a hier-
archical approach that focuses on community-level generation and cross-community link prediction,
HiGen demonstrates significant improvements in performance and scalability compared to existing
models, bridging the gap between one-shot and autoregressive graph generative models. Experimental
results on benchmark datasets demonstrate that HiGen achieves state-of-the-art performance in terms
of graph generation across various metrics. The hierarchical and block-wise generation strategy of
HiGen enables scaling up graph generative models to large and complex graphs, making it adaptable
to emerging generative paradigms.

3It is worth noting that all node permutations do not result in distinctive adjacency matrices due to the
automorphism property of graphs (Liao et al., 2019; Chen et al., 2021). Therefore, the number of node
permutations provides an upper bound rather than an exact count.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY

To ensure reproducibility, we provide comprehensive documentation of key elements in this work.
The complete proofs of the theorems, community generative model, bipartite distribution, GNN
architectures, and the loss function can be found in Appendices A, B, and C. Furthermore, Section 5
and Appendix D include experimental details, model architectures, benchmark graph datasets, their
statistics, the computational resource and the graph partitioning function. These resources collectively
facilitate the reproducibility of our research findings.

ACKNOWLEDGMENTS

We would like to thank Fatemeh Fani Sani for preparing the schematic figures.

REFERENCES

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Clustering with
bregman divergences. Journal of machine learning research, 6(10), 2005.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):
509–512, 1999.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008,
2008.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Generating graphs
via random walks. arXiv preprint arXiv:1803.00816, 2018.

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos Tsourakakis. On
the power of edge independent graph models. Advances in Neural Information Processing Systems, 34:
24418–24429, 2021.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Probabilistic modeling of
node sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation via discrete
diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative modeling for sparse
graphs. In International Conference on Machine Learning, pp. 2302–2312. PMLR, 2020.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. arXiv
preprint arXiv:1805.11973, 2018.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without alignments.
Journal of molecular biology, 330(4):771–783, 2003.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, and Zhangyang
Wang. A comprehensive study on large-scale graph training: Benchmarking and rethinking. Advances in
Neural Information Processing Systems, 35:5376–5389, 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

10

Published as a conference paper at ICLR 2024

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion models
for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.

Hossein Hajimirsadeghi, Wang Yan, Arash Vahdat, and Greg Mori. Visual recognition by counting instances: A
multi-instance cardinality potential kernel. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2596–2605, 2015.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using structural
motifs. In International conference on machine learning, pp. 4839–4848. PMLR, 2020.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system of
stochastic differential equations. In International Conference on Machine Learning, pp. 10362–10383. PMLR,
2022.

Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, and Daniel Duckworth. Invertible
convolutional flow. Advances in Neural Information Processing Systems, 32, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang. Autoregressive
diffusion model for graph generation, 2023.

Maksim Kuznetsov and Daniil Polykovskiy. Molgrow: A graph normalizing flow for hierarchical molecular
generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 8226–8234,
2021.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research, 11(Feb):985–1042,
2010.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative models of
graphs. arXiv preprint arXiv:1803.03324, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel Urtasun, and
Richard Zemel. Efficient graph generation with graph recurrent attention networks. Advances in neural
information processing systems, 32, 2019.

Scott Linderman, Matthew J Johnson, and Ryan P Adams. Dependent multinomial models made easy: Stick-
breaking with the pólya-gamma augmentation. Advances in Neural Information Processing Systems, 28,
2015.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows, 2019.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. arXiv preprint arXiv:1809.02630, 2018.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for Embodied AI
Research. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral conditioning
helps to overcome the expressivity limits of one-shot graph generators. In International Conference on
Machine Learning, pp. 15159–15179. PMLR, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon
Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology for fast chip design.
Nature, 594(7862):207–212, 2021.

Marion Neumann, Plinio Moreno, Laura Antanas, Roman Garnett, and Kristian Kersting. Graph kernels for
object category prediction in task-dependent robot grasping. In International Workshop on Mining and
Learning with Graphs at KDD, 2013.

Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices. Physical review
E, 74(3):036104, 2006a.

11

Published as a conference paper at ICLR 2024

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national academy of
sciences, 103(23):8577–8582, 2006b.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph generative
models: Problems, pitfalls, and practical solutions. arXiv preprint arXiv:2106.01098, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalch-
brenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexander Clegg,
John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, Manolis Savva,
Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d environments for
embodied AI. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515, 2022.

Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov,
and Nando Freitas. Parallel multiscale autoregressive density estimation. In International Conference on
Machine Learning, pp. 2912–2921. PMLR, 2017.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and Dietmar
Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic acids research, 32
(suppl_1):D431–D433, 2004.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888–905, 2000.

Hamed Shirzad, Hossein Hajimirsadeghi, Amir H Abdi, and Greg Mori. Td-gen: Graph generation using tree
decomposition. In International Conference on Artificial Intelligence and Statistics, pp. 5518–5537. PMLR,
2022.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Exphormer:
Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023.

Kyle Siegrist. Probability, Mathematical Statistics, Stochastic Processes. LibreTexts, 2017.
URL https://stats.libretexts.org/Bookshelves/Probability_Theory/
Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist).

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using variational
autoencoders. arXiv preprint arXiv:1802.03480, 2018.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation metrics
for graph generative models. arXiv preprint arXiv:2201.09871, 2022.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph neural
networks. arXiv preprint arXiv:2006.16904, 2020.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard. Digress:
Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391, 2015.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation through graph
variational generative adversarial nets. Advances in neural information processing systems, 32, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In ICML, pp. 5694–5703, 2018.

12

https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)

Published as a conference paper at ICLR 2024

A NOTATION DEFINITION

Notations Brief definition and interpretation

G = (V, E) A graph with nodes (vertices) V and edges E

F : V → {1, ..., c} a graph partitioning function that partitions a graph into c communities (a.k.a. cluster
or modules)

Cli =
(
V(Cli), E(Cli)

)
i-th community graph (a cluster of nodes) at level l

Al, Al
i, A

l
ij adjacency matrix of a graph, community and bipartite

Bl
ij =

(
V(Cli), V(Clj), E(Bl

ij)
)

a bipartite (or cross-community) graph composed of cross-links between neighboring
communities

vl−1
i := Pa(Cli) parent node of Cli at the higher level

el−1
i = Pa(Bl

ij) = (vl−1
i , vl−1

j) parent edge of Bl
ij at the higher level

wl−1
ii =

∑
e∈E(Cl

i)
we weight of edge (vl−1

i , vl−1
i): sum of the weights of the edges within their child

community

wl−1
ij =

∑
e∈E(Bl

ij)
we weight of edge (vl−1

i , vl−1
j): sum of the weights of the edges within their child bipartite

w0 :=
∑

e∈E(Gl) we = |E| sum of all edge weights that remains constant in all levels

HG := {G0,,GL−1,GL} the set of graphs in all levels, where G0 is a single node root graph and GL is the final
graph at the leaf level.

Mu(u | v, λ) Multinomial distribution of random vector u, with parameters (v, λ)

Bi(v | r, η) Binomial distribution of random variable v, with parameters (r, η)

Êt(Ĉli,t) = {(t, j) | j < t} set of candidate (augmented) edges from the new node, vt(Cli), to its preceding nodes
of community

Ĉli,t =(
V(Cl

i,t−1) ∪ vt(Cl
i), E(Cl

i,t−1) ∪ Êt

) an already generated community at the t-th step, augmented with the set of candidate
edges. Its size is t

ut := [we]e ∈ Êt(Ĉl
i,t)

Random vector of weights of the candidate edges in Ĉli,t (the t-th row of the lower
triangle Âl

i)

vt = 1Tut sum of the candidate edge weights at step t.

rt = wl−1
ii −

∑
i<t vi remaining edges’ weight at step t.

hĈl
i,t

t× dh matrix of node embeddings of Ĉli,t

∆hÊt(Ĉl
i,t)

|Êt(Ĉli,t)| × dh dimensional matrix of candidate edge embeddings

Ĝl An augmented graph composed of all the communities, {Cli ∀i ∈ V(Gl−1)}, and the
candidate edges of all bipartites, {Bl

ij ∀(i, j) ∈ E(Gl−1)}. It is used for bipartite
generation.

B PROBABILITY DISTRIBUTION OF COMMUNITIES AND BIPARTITES

Theorem B.1. Given a graph G and an ordering π, assuming there is a deterministic function that
provides the corresponding high-level graphs in a hierarchical order as {GL,GL−1, ...,G0}, then:

p(G = GL, π) = p({GL,GL−1, ...,G0}, π) = p(GL, π | {GL−1, ...,G0}) ... p(G1, π | G0) p(G0)

=

L∏
l=0

p(Gl, π | Gl−1)× p(G0) (8)

13

Published as a conference paper at ICLR 2024

Proof. The factorization is derived by applying the chain rule of probability and last equality holds
as the graphs at the coarser levels are produced by a partitioning function acting on the finer level
graphs. Overall, this hierarchical generative model exhibits a Markovian structure.

B.1 PROOF OF THEOREM 3.1

Lemma B.2. Given the sum of counting variables in the groups, the groups are independent and
each of them has multinomial distribution:

p(w = [u1, ...,uM]|{v1, ..., vM}) =
M∏

m=1

Mu(vm, λm)

where: λm =
θm

1T θm
Here, probability vector (parameter) λm is the normalized multinomial probabilities of the counting
variables in the m-th group.

Proof.

p(w|{v1, ..., vM}) = p(w)

p({v1, ..., vM})
I(v1 = 1T u1, ..., vM = 1T uM)

=

w!∏E
i=1 wi!

∏E
i=1 θi

wi

w!∏M
i=1 vi!

∏M
i=1 αi

vi
I(v1 = 1T u1, ..., vM = 1T uM)

=

w!∏E
i=1 wi!

θw1
1 ...θwE

E

w!∏M
i=1 vi!

(1T θ1)v1 ...(1T θM)vM

=
v1!∏E1

i=1 u1,i!

E1∏
i=1

λ1,i
u1,i × ...× vM !∏EM

i=1 uM,i!

E1∏
i=1

λM,i
uM,i

= Mu(v1, λ1)× ...× Mu(vM , λM)

In a hierarchical graph, the edges has non-negative integer valued weights while the sum of all the
edges in community Cl

i and bipartite graph Bl
ij are determined by their corresponding edges in the

parent graph, i.e. wl−1
ii and wl−1

ij respectively. Let the random vector w := [we]e ∈ E(Gl) denote the
set of weights of all edges of Gl such that w0 = 1T w, its joint probability can be described as a
multinomial distribution:

w ∼ Mu(w | w0,θ
l) =

w0!∏|E(Gl)|
e=1 w[e]!

|E(Gl)|∏
e=1

(θl[e])
w[e]

, (9)

where {θl[e] ∈ [0, 1], s.t. 1Tθl = 1} are the parameters of the multinomial distribution.4 Therefore,
based on lemma B.2 these components are conditionally independent and each of them has a
multinomial distribution:
p(Gl | Gl−1) ∼

∏
i ∈ V(Gl−1)

Mu([we]e ∈ Cl
i
| wl−1

ii ,θl
ii)×

∏
(i,j)∈ E(Gl−1)

Mu([we]e ∈ Bl
ij
| wl−1

ij ,θl
ij)

where {θl
ij [e] ∈ [0, 1], s.t. 1Tθl

ij = 1 | ∀ (i, j) ∈ E(Gl−1)} are the parameters of the model.

Therefore, the log-likelihood of Gl can be decomposed as the log-likelihood of its sub-structures:

log pϕl(Gl | Gl−1) =
∑

i∈VGl−1

log pϕl(Cl
i | Gl−1) +

∑
(i,j)∈EGl−1

log pϕl(Bl
ij | Gl−1) (10)

4It is analogous to the random trial of putting n balls into k boxes, where the joint probability of the number
of balls in all the boxes follows the multinomial distribution.

14

Published as a conference paper at ICLR 2024

Bipartite distribution: Let’s denote the set of weights of all candidate edges of the bipartite Bl
ij by

a random vector w := [we]e ∈ E(Bl
ij)

, its probability can be described as

w ∼ Mu(w | wl−1
ij ,θl

ij) =
wl−1

ij !∏|E(Bl
ij)|

e=1 w[e]!

|E(Bl
ij)|∏

e=1

(θl
ij [e])

w[e]
(11)

where {θl
ij [e] | θl

ij [e] ≥ 0,
∑

θl
ij [e] = 1} are the parameter of the distribution, and the multinomial

coefficient n!∏
w[e]! is the number of ways to distribute the total weight wl−1

ij =
∑|E(Bl

ij)|
e=1 w[e] into

all candidate edges of Bl
ij .

Community distribution: Similarly, the probability distribution of the set of candidate edges for
each community can be modeled jointly by a multinomial distribution but as our objective is to model
the generative probability of communities in each level as an autoregressive process we are interested
to decomposed this probability distribution accordingly.

B.2 GENERATING A COMMUNITY AS AN EDGE-BY-EDGE AUTOREGRESSIVE PROCESS

Lemma B.3. A random counting vector w ∈ ZE
+ with a multinomial distribution can be recursively

decomposed into a sequence of binomial distributions as follows:

Mu(w1, ...,wE | w, [θ1, ..., θE]) =
E∏

e=1

Bi(we | w −
∑

i<e
wi, θ̂e), (12)

where: θ̂e =
θe

1−
∑

i<e θi

This decomposition is known as a stick-breaking process, where θ̂e is the fraction of the remaining
probabilities we take away every time and allocate to the e-th component (Linderman et al., 2015).

B.3 PROOF OF THEOREM 3.2

For a random counting vector w ∈ ZE
+ with multinomial distribution Mu(w,θ), let’s split it into

M disjoint groups w = [u1, ...,uM] where um ∈ ZEm
+ ,

∑M
m=1 Em = E, and also split the

probability vector as θ = [θ1, ...,θM]. Additionally, let’s define sum of all weights in m-th group by
a random variable vm :=

∑Em

e=1 um,e.

Lemma B.4. Sum of the weights in the groups, um ∈ ZEm
+ ,

∑M
m=1 Em = E has multinomial

distribution:

p({v1, ..., vM}) = Mu(w, [α1, ..., αM])

where: αm =
∑

θm[i]. (13)

In the other words, the multinomial distribution is preserved when its counting variables are combined
Siegrist (2017).

Theorem B.5. Given the aforementioned grouping of counts variables, the multinomial distribution
can be modeled as a chain of binomials and multinomials:

Mu(w,θ = [θ1, ...,θM]) =

M∏
m=1

Bi(w −
∑
i<m

vi, ηvm) Mu(vm, λm), (14)

where: ηvm =
1T θm

1−
∑

i<m 1T θi
, λm =

θm
1T θm

Proof. Since sum of the weights of the groups, vm, are functions of the weights in the group:

p(w) = p(w, {v1, ..., vM}) = p(w|{v1, ..., vM})p({v1, ..., vM})

15

Published as a conference paper at ICLR 2024

(a) (b)

Figure 2: An illustration of the generation process of the single community in level l = 1 ofHG in Figure 1a
according to Theorem 3.2, and equation (5). The total weight of this community graph is 29, determined by the
parent node of this community. Consequently, the edge probabilities of this community follow a Multinomial
distribution. This Multinomial is formed as an autoregressive (AR) process and decomposed to a sequence of
Binomials and Multinomials, as outlined in 3.2. At each iteration of this stick-breaking process, first a fraction
of the remaining weights rt is allocated to the t-th row (corresponding to the t-th node in the sub-graph) and
then this fraction, vt, is distributed among that row of lower triangular adjacency matrix, Â.

According to lemma B.4, sum of the weights of the groups is a multinomial and by lemma B.3, it can
be decomposed to a sequence of binomials:

p({v1, ..., vM}) = Mu(w, [α1, ..., αM]) =

M∏
m=1

Bi(w −
∑

i<m
vi, η̂m),

where: αm = 1T θm, η̂e =
αe

1−
∑

i<e αm

Also based on lemma B.2, given the sum of the wights of all groups, the groups are independent and
has multinomial distribution:

p(w|{v1, ..., vM}) =
M∏

m=1

Mu(vm, λm)

where: λm =
θm

1T θm

B.4 TRAINING LOSS

According to equations (1) and (2), the log-likelihood for a graph sample can be written as

log p(GL) =

L∑
l=1

(
∑

i ∈ V(Gl−1)

log p(Cl
i | Gl−1) +

∑
(i,j)∈ E(Gl−1)

log p(Bl
ij | Gl−1, {Cl

k}Cl
k∈Gl)) (15)

Therefore, one need to compute the log-likelihood of the communities and cross-community compo-
nents. The log-likelihood of the cross-communities are straightforward using equation (7). For the

16

Published as a conference paper at ICLR 2024

log-likelihood of the communities, as we break it into subsets of edges for each node in an autoregres-
sive manner, with probability of each subset modeled in equation (5), therefore, the log-likelihood is
reduced to

log p(Cl
i | Gl−1) =

|Cl
i|∑

t=1

log p(ut(Ĉl
i,t))

where p(ut(Ĉl
i,t) is defined in equation 5 as a mixture of product of binomial and multinomial.

Since the binomial and multinomial are from the exponential family distribution, their log-likelihood
reduces to Bregman divergence Banerjee et al. (2005). The binomial log likelihood is a general form
of Bernoulli log likelihood, binary cross entropy, and multinomial log likelihood is a general form of
Multinoulli (categorical) log likelihood, categorical cross entropy.

For training of generative model for the communities at level l , we randomly sample total of s
augmented communities, so given si of these sub-graphs are from community Cl

i then, we estimate
the conditional generative probability for this community by averaging the loss function over all the
subgraphs in that community multiplied by the size of the community:

log p(Cl
i | Gl−1) = |Cl

i| ∗mean([log p(ut(Ĉl
i,t)), ∀ t ∈ si]) (16)

C MODEL ARCHITECTURE

C.1 GRAPH NEURAL NETWORK (GNN) ARCHITECTURES

To overcome limitations in the sparse message passing mechanism, Graph Transformers (GTs)
(Dwivedi & Bresson, 2020) have emerged as a recent solution. One key advantage of GTs is the
ability for nodes to attend to all other nodes in a graph, known as global attention, which addresses
issues such as over-smoothing, over-squashing, and expressiveness bounds Rampášek et al. (2022).
GraphGPS provide a recipe for creating a more expressive and scalable graph transformer by making
a hybrid message-passing graph neural networks (MPNN)+Transformer architecture. Additionally,
recent GNN models propose to address the limitation of standard MPNNs in detecting simple
substructures by adding features that they cannot capture on their own, such as the number of cycles.
A framework for selecting and categorizing different types of positional and structural encodings,
including local, global, and relative is provided in Rampášek et al. (2022). Positional encodings, such
as eigenvectors of the adjacency or Laplacian matrices, aim to indicate the spatial position of a node
within a graph, so nodes that are close to each other within a graph or subgraph should have similar
positional encodings. On the other hand, structural encodings, such as degree of a node, number of
k-cycles a node belong to or the diagonal of the m-steps random-walk matrix, aim to represent the
structure of graphs or subgraphs, so nodes that share similar subgraphs or similar graphs should have
similar structural encodings.

In order to encode the node features of the augmented graphs of bipartites, GNNl
bp(Ĝl), we cus-

tomized GraphGPS in various ways. We incorporated distinct initial edge features to distinguish
augmented (candidate) edges from real edges. Furthermore, for bipartite generation, we apply a
mask on the attention scores of the transformers of the augmented graph Ĝl to restrict attention
only to connected communities. Specifically, the i-th row of the attention mask matrix is equal to 1
only for the index of the nodes that belong to the same community or the nodes of the neighboring
communities that are linked by a bipartite, and 0 (i.e., no attention to those positions) otherwise.

The time and memory complexity of GraphGPS can be reduced to O(n + m) per layer by using
linear Transformers such as Performer (Choromanski et al., 2020) or Exphormer, a sparse attention
mechanism for graph, Shirzad et al. (2023) for global graph attention, while they can be as high
quadratic in the number of nodes if the original Transformer architecture is employed. We leverage
the original Transformer architecture for the experiments on all graphs datasets that are smaller than
1000 nodes except for point cloud dataset where Performer is used.

We also employed GraphGPS as the GNN of the parent graph, GNNl−1(Gl−1). On the other hand,
for the community generation, we employed the GNN with attentive messages model, proposed in
(Liao et al., 2019), as GNNl

com. Additionally, we conducted experiments for the Enzyme dataset,
using GraphGPS with the initial features as used in (Liao et al., 2019) for GNNl

com which resulted in
comparable performance in the final graph generation.

17

Published as a conference paper at ICLR 2024

C.2 COMPLEXITY ANALYSIS

Given the linear complexity of O(n +m) for the Graph Neural Network (GNN) building blocks
(GraphGPS and GAT), we can analyse the complexity of the proposed hierarchical graph generation.
Let’s denote the size of the largest community at level l as nl

c := maxi(|Cl
i|) and nc := maxi,l(|CL

i |).
As explained in section 3, and illustrated in Figure 1 and algorithms (1, 2), each level l of hierarchical
generation is composed of:

0) Parent node embedding, GNNl−1(Gl−1), with O(nl−1 +ml−1).
1) Parallel community generation for {Cl

i ∀i ∈ V(Gl−1)}, which require nl
c generation steps.

For each community Ĉl
i , node embedding computation, GNNl

com(Ĉl
i), requires O(nl

i +ml
i)

operations, resulting in nl
c

∑
i O(nl−1

i +ml−1
i) = nl

cO(nl +ml). In training all of these
can be performed in parallel on the sampled batch.

2) Bipartite generation require O(nl + m̂l) for node embedding computation, GNNl
bp(Ĝl),

where m̂l = |E(Ĝl)| = O(ml−1(nl
c)

2)
(∗)
= O(nlnl

c).
5

So, each level of graph generation requires O(nl
c(n

l +ml)) computations, and consequently, the
overall complexity of HiGen is

∑L
l O(nl

c(n
l +ml)) = O(nc(n+m) L). Moreover, since most of

the computations are parallelizable, graph sampling requires O(nc L) = O(nc lognc
n) sequential

steps to generate a graph of size n.

The complexity analysis for training follows a similar approach, but with the advantage that all
steps can be executed in parallel. For batch training, we can adopt either subgraph-wise sampling
or node-wise sampling, ensuring that each batch meets to GPU memory constraints (Duan et al.,
2022). As detailed in Section B.4, the proposed model enables the random sampling of a total of s
augmented communities, eliminating the need to load the entire graph into memory, a distinction
from diffusion models like DiGress.

Complexity of partitioning algorithm: Although optimizing modularity metric is an NP-hard
problem in general, we used the Louvain algorithm, which is a greedy optimization method with
O(n log n) complexity. However, the graph partitioning is only applied once on the training data as a
pre-processing step and its results are cached to be used throughout the entire training.

The pseudocodes for training and graph sampling using HiGen are presented in algorithms (1, 2).

Table 3: Complexity of different graph generative models. Here, n is the number of nodes, m is number of
edges nc the size of the largest cluster graph and L is the number of hierarchical levels. In the baseline models,
T is the number of diffusion steps, K is the maximum number of active nodes during the diffusion process of
EDGE (Chen et al., 2023).

Model Runtime Sampling steps

GraphRNN O(n2) O(n2)
GRAN O(n2) O(n)

SPECTRE O(n3) O(1)
GDSS O(T n2) O(T)

DiGress O(T n2) O(T)
EDGE O(T max(m,K)) O(T)
HiGen O(nc(n+m) L) O(nc L)

C.3 CONNECTED GRAPH GENERATION

An advantage of the proposed model is its ability to enforce connected graph generation by con-
straining the total sum of the candidate edge weights to vt > 0 in the recursive stick-breaking

5(*) We make an assumption that the graph is not very dense such that the number of edges is at the order of
number of nodes, i.e. m = O(n).

18

Published as a conference paper at ICLR 2024

Algorithm 1 Training step of HiGen

1: Input: A hierarchical graphHG := {G0,,GL−1,GL}
2: for all l = 1 to L do ▷ Can be done in parallel
3: Ĉl ← sample s augmented communities Ĉl

i,t from {Ĉl
i,t | i ≤ nl

c, t ≤ |Cl
i|} ▷ Cl

i : ith community at level l

4: Ĉl ← batch(Ĉl)

5: Ĝl ← join({Cli ∀i ∈ V(Gl−1)} ∪ {B̂l
ij ∀ (i, j) ∈ E(Gl−1)}) ▷ B̂l

ij : all the candidate edges of Bl
ij r.t. sec. 3.2.

6: end for
7: for all l = 1 to L do ▷ Can be done in parallel
8: hGl−1 ← GNNl−1(Gl−1) ▷ get parent node embeddings
9: hĈl ← GNNl

com(Ĉl)
10: hĜl ← GNNl

bp(Ĝl) ▷ skipped for l = 1 since it has no BP
11: lossl ←

∑
i ∈ V(Gl−1) log p(C

l
i | Gl−1) +

∑
(i,j)∈ E(Gl−1) log p(B

l
ij | Gl−1) ▷ using eqn. (5), (16), (7)

12: end for
13: optimizer. step(

∑L
l=1 loss

l)

Algorithm 2 Sampling from HiGen

1: w0 ∼ pw0(w0) ▷ pw0 is the empirical distribution of the number of edge in training data
2:
3: for l = 1 to L do
4: hGl−1 ← GNNl−1(Gl−1) ▷ 0) Get parent node embeddings
5: Ĉ← ∅ ▽ 1) Generation of all communities
6: for all i = 1 to nl

c = V(Gl−1) do ▷ in parallel for all communities
7: Ĉli ← (∅, ∅; ri = wl−1

ii) ▷ Initialize with an empty graph and remaining edges’ weight = the weight of the parent node

8: Ĉ← Ĉ ∪ Ĉli
9: end for

10: while Ĉ ̸= ∅ do ▷ grow all communities autoregressively
11: Ĉl ← batch(Ĉ)
12: hĈl ← GNNl

com(Ĉl)
13: (βl, ηl

t,λ
l
t)← f(hĈl , hGl−1) ▷ using eqn. (6)

14: for all i = 1 to nl
c = V(Gl−1) do ▷ in parallel for all communities

15: k ∼ Cat(βl
i) ▷ sample mixture index from a categorical dist.

16: v ∼ Bi(ri, ηl
t,k[i]) ▷ sample v: sum of candidate edges for node (step) t

17: u ∼ Mu(v, λl
t,k[i]) ▷ sample u: weights of the candidate edges for node (step) t

18: ri ← ri − v ▷ update remaining edges’ weight of Ĉl
i

19: if ri = 0 then ▷ termination condition for generation of Cl
i

20: Cli ← update(Ĉli,u)
21: Ĉ← Ĉ \ Ĉli
22: else
23: Ĉli ← update(Ĉli,u, ri) ▷ update Ĉl

i with new sampled edges u for tth node
24: end if
25: end for
26: end while
27: ▽ 2) Bipartite generation (for l ≥ 2)
28: Ĝl ← join({Cli ∀i ∈ V(Gl−1)} ∪ {B̂l

ij ∀ (i, j) ∈ E(Gl−1)}) ▷ B̂l
ij : all the candidate edges of Bl

ij r.t. sec. 3.2.

29: hĜl ← GNNl
bp(Ĝl)

30: (βl,θl)← f(hĜl , hGl−1) ▷ using eqn. (7)

31: k ∼ Cat(βl
i) ▷ sample mixture index from a categorical dist.

32: for all (i, j) ∈ E(Gl−1) do ▷ in parallel for all BPs
33: wl

ij ∼ Mu(wl−1
ij ,θl

ij,k) ▷ sample weights of Bl
ij

34: end for
35: Gl ← join({Cli ∀i ∈ V(Gl−1)} ∪ {Bl

ij ∀(i, j) ∈ E(Gl−1)}) ▷ Join all components
36: end for
37: return G = GL

19

Published as a conference paper at ICLR 2024

process. This is accomplished by modeling and sampling an auxiliary variable v̂t ≥ 0 from the
binomial distribution in theorem 3.2 as Bi(v̂t | rt − 1, ηlt,k). Subsequently, its effective value is set as
vt = v̂t + 1, guaranteeing the existence of at least one edge among the candidate edges connecting
the new node and the previously generated community in the autoregressive community generation
process. This technique was particularly employed in our experiments with connected graphs.

It’s noteworthy that the proposed method is not restricted to connected graphs and has the capability
to model and generate graphs with disconnected components as well. HiGen, in essence, learns to
reverse a graph coarsening algorithm, such as Louvain. In cases where a graph is disconnected, the
coarsening algorithm produces an HG with a disconnected graph at the top level (l = 1 in Figure 1a).
To illustrate, consider the example graph in Figure 1a is split into two left and right components (by
removing the edge between the yellow and blue communities and the edge between the cyan and
orange communities, and subsequently removing their corresponding edge at the top level (l = 1)),
therefore the coarsened graph at the top level becomes a disconnected community composed of two
components. Consequently, to potentially generate disconnected graphs, we would need to relax
the community generation at level l = 1 to include disconnected communities. Meanwhile, we can
maintain the constraint of connected community generation for the subsequent levels (l > 1).

C.4 GENERATING GRAPH WITH NODE AND EDGE ATTRIBUTES

Adapting HiGen to handle attributed graphs involves reversing the partitioning (coarsening) algo-
rithms tailored for clustering attributed graphs like molecular structures. For example a GNN-based
clustering method inspired by the spectral relaxation of modularity metric for graphs with node
attributes proposed by Tsitsulin et al. (2020). Toward that goal, we need to modify the proposed
community generation and cross-community predictor to learn attributed edges or use the graph
generation models with such capability.

Extending HiGen for graphs with edge types involves assigning a weight vector wl
i,j ∈ Zd to each

edge eli,j = (i, j), where d is the number of edge types and each feature indicates the number of
one specific edge type that the edge eli,j at a level l is representing. The autoregressive multinomial
and binomial generative models offered in this work can then be applied to each dimension so that
the attributed graph at level l + 1 is generated based on its parent attributed graph Gl. Note that,
in this approach, the attribute of node vi can be added as a self loop edge ei,i = (i, i) with weight
wi,i = xi. Consequently, the model only needs to predict the edge attributes (or edge types), aligning
with HiGen’s edge weight generation capabilities.

Another approach is training an additional predictor, such as a GNN model for edge/node classifi-
cation, dedicated to predicting edge and node types based on the graph structure. This model does
not have the difficulties associated with graph topology generation – such as graph isomorphism and
edge independence – focusing solely on predicting edge/node attributes. This additional model can
be tailored to specific application requirements and characteristics. Addressing attributed graphs is
acknowledged as a potential future avenue for research.

D EXPERIMENTAL DETAILS

Datasets: For the benchmark datasetst, graph sizes, denoted as Ddataset =
(|V|max, |V|avg, |E|max, |E|avg), are: Dprotein = (500, 258, 1575, 646), DEgo =
(399, 144, 1062, 332), DPoint−Cloud = (5.03k, 1.4k, 10.9k, 3k),

Before training the models, we applied Louvain algorithm to obtain hierarchical graph structures
for all of datasets and then trimmed out the intermediate levels to achieve uniform depth of L = 2.
In case of HG s with varying heights, empty graphs can be added at the root levels of those HGs
with lower heights to avoid sampling them during training. Table 4 summarizes some statistics of the
hierachical graph datasets. An 80%-20% split was randomly created for training and testing and 20%
of the training data was used for validation purposes.

Model Architecture: In our experiments, the GraphGPS models consisted of 8 layers, while each
level of hierarchical model has its own GNN parameters. The input node features were augmented
with positional and structural encodings, which included the first 8 eigenvectors corresponding to

20

Published as a conference paper at ICLR 2024

Table 4: Summary of some statistics of the benchmark graph datasets, Where nc = max(|C|) denotes the
size of largest cluster at the leaf level, numc is the number of clusters in each graph and avg(mod test) and
avg(mod gen) are the modularity score of the test set and the generated samples by HiGen.

dataset max(n) avg(n) avg(nc) avg(numc) avg(mod test) avg(mod gen)

Enzyme 125 33 9.8 4.62 0.59 0.62
Ego 399 144 37.52 8.88 0.56 0.66
Protein 500 258 26.05 13.62 0.77 0.8
SBM 180 105 31.65 3.4 0.6 0.59
3D point Cloud 5K 1.4K 97.67 18.67 0.85 0.88

the smallest non-zero eigenvalues of the Laplacian matrices and the diagonal of the random-walk
matrix up to 8 steps. We leverage the original Transformer architecture for all detests except Point
Cloud dataset which use Performer. The hidden dimensions were set to 64 for the Protein, Ego, and
Point Cloud datasets, and 128 for the Stochastic Block Model and Enzyme datasets. The number of
mixtures was set to K=20.

In comparison, the GRAN models utilized 7 layers of GNNs with hidden dimensions of 128 for the
Stochastic Block Model, Ego, and Enzyme datasets, 256 for the Point Cloud dataset, and 512 for the
Protein dataset. Despite having smaller model sizes, HiGen achieved better performance than GRAN.

For training, the HiGen models used the Adam optimizer Kingma & Ba (2014) with a learning rate
of 5e-4 and default settings for β1 (0.9), β2 (0.999), and ϵ (1e-8).

The experiments for the Enzyme and Stochastic Block Model datasets were conducted on a MacBook
Air with an M2 processor and 16GB RAM, while the rest of the datasets were trained using an
NVIDIA L4 Tensor Core GPU with 24GB RAM as an accelerator.

D.1 MODEL SIZE COMPARISON

Here, we compare the model size, number of trainable parameters, against GRAN, the main baseline
of our study. To ensure the HiGen model of the same size or smaller size than GRAN, we conducted
the experiments for SBM and Enzyme datasets with reduced sizes. For the SBM dataset, we set the
hidden dimension to 64, and for the Enzyme dataset, it was set to 32. The resulting model sizes and
performance metrics are presented in Tables 5 and 6.

Table 5: Comparison of model sizes (number of trainable parameters) of HiGen vs GRAN.

Protein 3D Point Cloud Ego Enzyme SBM
GRAN 1.75e+7 5.7e+6 1.5e+7 1.54e+6 3.16e+6
HiGen 4.00e+6 6.26e+6 3.96e+6 1.48e+6 3.19e+6

Table 6: Comparison of generation metrics for Enzyme and Stochastic Block Model (SBM). Here, the hidden
dimension of HiGen is set to 32 and 62 for Enzyme and SBM, respectively.

Enzyme
Model Deg. ↓ Clus. ↓ Orbit ↓
Training set 0.0011 0.0025 3.7e-4
GraphRNN 0.017 0.062 0.046
GRAN 0.054 0.087 0.033
GDSS 0.026 0.061 0.009
HiGen 6.8e-3 0.067 1.3e-3

Stochastic block model
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓
Training set 0.0008 0.0332 0.0255 0.0063
GraphRNN 0.0055 0.0584 0.0785 0.0065
GRAN 0.0113 0.0553 0.0540 0.0054
SPECTRE 0.0015 0.0521 0.0412 0.0056
DiGress 0.0013 0.0498 0.0433 -
HiGen 0.0015 0.0520 0.0370 0.0049

These results highlight that despite smaller or equal model sizes, HiGen outperforms GRAN’s
performance. This emphasizes the efficacy of hierarchically modeling communities and cross-
community interactions as distinct entities. This results can be explained by the fact that the proposed

21

Published as a conference paper at ICLR 2024

model needs to learn smaller community sizes compared to GRAN, allowing for the utilization of
more compact models.

D.2 SAMPLING SPEED COMPARISON

In table 8, we present a comparison of the sampling times between the proposed method and its
primary counterpart, GRAN, measured in seconds. The sampling processes were carried out on a
server machine equipped with a 32-core AMD Rome 7532 CPU and 128 GB of RAM.

Table 7: Sampling times in seconds.

Protein Ego SBM Enzyme
GRAN 46.04 2.145 1.5873 0.2475
HiGen 1.33 0.528 0.4653 0.1452

Table 8: Sampling speedup factor of generative model vs GRAN: tGRAN (s)/tmodel(s). The speedup factor of
baseline models are obtained from Martinkus et al. (2022).

Protein SBM
GRAN 1 1

GraphRNN 0.32 0.37
SPECTRE 23.04 25.54

HiGen 34.62 3.41

As expected by the model architecture and is evident from the table 8, HiGen demonstrates a
significantly faster sampling, particularly for larger graph samples.

E ADDITIONAL RESULTS

Table 9 presents the results of various metrics for HiGen models on all benchmark datasets. The
structural statistics are evaluated using the Total Variation kernel as the Maximum Mean Discrepancy
(MMD) metric.

In addition, the table includes the average of random-GNN-based metrics (Thompson et al., 2022)
over 10 random Graph Isomorphism Network (GIN) initializations. The reported metrics are MMD
with RBF kernel (GNN RBF), the harmonic mean of improved precision+recall (GNN F1 PR) and
harmonic mean of density+coverage (GNN F1 PR).

22

Published as a conference paper at ICLR 2024

Table 9: Various graph generative performance metrics for HiGen models on all benchmark datasets.

Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN RBF ↓ GNN F1 PR ↑ GNN F1 DC ↑

Enzyme
GRAN 8.45e-03 2.62e-02 2.11e-02 3.46e-02 0.0663 0.950 0.832
HiGen-m 6.61e-03 2.65e-02 2.15e-03 8.75e-03 0.0215 0.970 0.897
HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 0.0180 0.978 0.983

Protein
HiGen-m 0.0041 0.109 0.0472 0.0061 0.167 0.912 0.826
HiGen 0.0012 0.0435 0.0234 0.0025 0.0671 0.979 0.985

Stochastic block model
GRAN 0.0159 0.0518 0.0462 0.0104 0.0653 0.977 0.86
HiGen-m 0.0017 0.0503 0.0604 0.0068 0.154 0.912 0.83
HiGen 0.0019 0.0498 0.0352 0.0046 0.0432 0.986 1.07

Ego
GraphRNN 9.55e-3 0.094 0.048 0.025 0.0972 0.86 0.45
GRAN 7.65e-3 0.066 0.043 0.026 0.0700 0.76 0.50
HiGen-m 0.011 0.063 0.021 0.013 0.0420 0.87 0.68
HiGen 1.9e-3 0.049 0.029 0.004 0.0520 0.88 0.69

Table 10: Performance comparison of HiGen model on Ego datasets against the baselines reported in (Chen et al.,
2023). Gaussian EMD kernel was used for structure-based statistics together with GNN-based performance
metrics: GNN RBF and Frechet Distance (FD)

Ego
Model Deg. Clus. Orbit GNN RBF FD

GraphRNN 0.0768 1.1456 0.1087 0.6827 90.57
GRAN 0.5778 0.3360 0.0406 0.2633 489.96
GDSS 0.8189 0.6032 0.3315 0.4331 60.61
DiscDDPM 0.4613 0.1681 0.0633 0.1561 42.80
DiGress 0.0708 0.0092 0.1205 0.0489 18.68
EDGE 0.0579 0.1773 0.0519 0.0658 15.76

HiGen-m 0.114 0.0378 0.0535 0.0420 12.2
HiGen 0.0472 0.0031 0.0387 0.0454 5.24

As the results show, HiGen outperforms other baseline, particularly improving in terms of degree
statistic compared to EDGE which is explicitly a degree-guided graph generative model by design.

E.1 POINT CLOUD

We also evaluated HiGen on the Point Cloud dataset, which consists of 41 simulated 3D point clouds
of household objects. This dataset consists of large graphs of approximately 1.4k nodes on average
with maximum of over 5k nodes. In this dataset, each point is mapped to a node in a graph, and
edges are connecting the k-nearest neighbors based on Euclidean distance in 3D space (Neumann
et al., 2013). We conducted the experiments for hierarchical depth of L = 2 and L = 3. In the
case of L = 2, we spliced out the intermediate levels of Louvain algorithm’s output. For the L = 3
experiments, we splice out all the intermediate levels except for the one that is two level above the leaf
level when partitioning function’s output had more than 3 levels to achieve final HGs with uniform
depth of L = 3. For all graphs, Louvain’s output had at least 3 levels.

However, the quadratic growth of the number of candidate edges in the augmented graph of bipartites
Ĝl – the graph composed of all the communities and the candidate edges of all bipartites used in
section 3.2 for bipartite generation – can cause out of memory issue when training large graphs in
the point cloud dataset. To address this issue, we can sample sub-graphs and generate one (or a
subset of) bipartites at a time to fit the available memory. In our experimental study, we generated
bipartites sequentially, sorting them based on the index of their parent edges in the parent level. In
this case, the augmented graph Ĝl used for generating the edges of Bl

ij consists of all the communities

23

Published as a conference paper at ICLR 2024

{Cl
k ∀k ≤ max(i, j)} and all the bipartites {Bl

mn ∀(m,n) ≤ (i, j)}, augmented with the candidate
edges of Bl

ij . This model is denoted by HiGen-s in table 11.

This modification can also address a potential limitation related to edge independence when generating
all the inter-communities simultaneously. However, it’s important to note that the significance of edge
independence is more prominent in high-density graphs like community generations, (Chanpuriya
et al., 2021), whereas its impact is less significant in sparser inter-communities of hierarchical
approach. This is evident by the performance improvement observed in our experiments.

The GraphGPS models that was used for this experiment have employed Performer (Choromanski
et al., 2020) which offers linear time and memory complexity. The results in Table 11 highlights the
performance improvement of HiGen-s in both local and global properties of the generated graphs.

Table 11: Comparison of generation metrics on benchmark 3D point cloud for L = 2 and deeper hierarchical
model of L = 3. The baseline results are obtained from (Liao et al., 2019).

3D Point Cloud
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓

Erdos-Renyi 3.1e-01 1.22 1.27 4.26e-02
GRAN 1.75e-02 5.1e-01 2.1e-01 7.45e-03
HiGen-s (L=2) 3.48e-02 2.82e-01 3.45e-02 5.46e-03
HiGen-s (L=3) 4.97e-02 3.19e-01 1.97e-02 5.2e-03

An alternative approach is to sub-sample a large graph such that each augmented sub-graph consists
of a bipartite Bl

ij and its corresponding pair of communities Cl
i, Cl

j . This approach allows for parallel
generation of bipartite sub-graphs on multiple workers but does not consider the edge dependece
between neighboring bipartites.

E.2 ABLATION STUDIES

In this section, two ablation studies were conducted to evaluate the sensitivity of HiGen with different
node orderings and graph partitioning functions.

Node Ordering In our experimental study, the nodes in the communities of all levels are ordered
using breadth first search (BFS) node ordering while the BFS queue are sorted by the total weight
of edges between a node in the queue and predecessor nodes plus its self-edge. To compare the
sensitivity of the HiGen model against GRAN versus different node orderings, we trained the models
with default node ordering and random node ordering. The performance results, presented in Table
12, confirm that the proposed model is significantly less sensitive to the node ordering whereas the
performance of GRAN drops considerably with non-optimal orderings.

Table 12: Ablation study on node ordering. Baseline HiGen used the BFS ordering and baseline GRAN used
DFS ordering. π1, π2 and π3 are default, random and π3 node ordering, respectively. Total variation kernel
is used as MMD metrics of structural statistics. Also, the average of random-GNN-based metrics aver 10
random GIN initialization are reported for MMD with RBF kernel (GNN RBF), the harmonic mean of improved
precision+recall (GNN F1 PR) and harmonic mean of density+coverage (GNN F1 PR).

Enzyme
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN RBF ↓ GNN F1 PR ↑ GNN F1 DC ↑

GRAN 8.45e-03 2.62e-02 3.46e-02 2.11e-02 6.63e-02 9.50e-01 8.32e-01
GRAN (π1) 1.75e-02 2.89e-02 3.78e-02 2.03e-02 6.51e-02 8.24e-01 6.69e-01
GRAN (π2) 3.90e-02 3.24e-02 3.81e-02 2.38e-02 1.26e-01 8.31e-01 6.72e-01

HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01
HiGen (π1) 1.83e-03 2.21e-02 6.75e-04 7.08e-03 1.78e-02 9.84-01 9.77e-01
HiGen (π2) 3.31e-03 2.34e-02 2.06e-03 9.10e-03 2.04e-02 9.47-01 8.81e-01
HiGen (π3) 1.34e-03 2.13e-02 6.94e-04 6.56e-03 1.90e-02 9.61e-01 9.74e-01

24

Published as a conference paper at ICLR 2024

Different Graph Partitioning In this experimental study, we evaluated the performance of HiGen
using different graph partitioning functions. Firstly, to assess the sensitivity of the hierarchical gener-
ative model to random initialization in the Louvain algorithm, we conducted the HiGen experiment
three times with different random seeds on the Enzyme dataset. The average and standard deviation
of performance metrics are reported in Table 13 which demonstrate that HiGen consistently achieves
almost similar performance across different random initializations.

Additionally, we explored spectral clustering (SC), which is a relaxed formulation of k-min-cut
partitioning (Shi & Malik, 2000), as an alternative partitioning method. To determine the number
of clusters, we applied SC to partition the graphs over a range of 0.7

√
n ≤ k ≤ 1.3

√
n, where n

represents the number of nodes in the graph. We computed the modularity score of each partition and
selected the value of k that yielded the maximum score.

The results presented in Table 13 demonstrate the robustness of HiGen against different graph
partitioning functions.

Table 13: Multiple initialization of Louvain partitioning algorithm and also min-cut partitioning

Enzyme
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN RBF ↓ GNN F1 PR ↑ GNN F1 DC ↑

HiGen 2.64e-03±4.7e-4 2.09e-02±4.0e-4 7.46e-04±4.4e-4 1.74e-02±1.5e-3 2.00e-02±3.1e-3 .98±4.6e-3 .96±1.0e-2

HiGen (SC) 2.24e-03 2.10e-02 5.59e-04 8.30e-03 2.00e-02 .98 .94 ,

E.3 GRAPH SAMPLES

Generated hierarchical graphs sampled from HiGen models are presented in this section.

25

Published as a conference paper at ICLR 2024

Protein Stochastic Block Model

Tr
ai

n
G

R
A

N
SP

E
C

T
R

E
H

iG
en

Figure 3: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted. The samples for GRAN and SPECRE are obtained from (Martinkus et al., 2022).

26

Published as a conference paper at ICLR 2024

Ego Enzyme

Tr
ai

n
G

D
SS

G
R

A
N

H
iG

en

Figure 4: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors
and both levels are depicted. The samples for GDSS are obtained from (Jo et al., 2022).

27

Published as a conference paper at ICLR 2024

3D Point Cloud

Tr
ai

n
G

R
A

N
H

iG
en

-s

Figure 5: Samples from HiGen trained on 3D Point Cloud. Communities are distinguished with different colors
and both levels are depicted. The samples for GRAN are obtained from (Liao et al., 2019).

28

	Introduction
	Background
	Hierarchical Graph Generation
	Community Generation
	Bipartite Generation

	Related Work
	Experiments
	Discussion and Conclusion
	Notation definition
	Probability Distribution of Communities and Bipartites
	Proof of Theorem 3.1
	Generating a community as an edge-by-edge autoregressive process
	Proof of Theorem 3.2
	Training Loss

	Model architecture
	Graph Neural Network (GNN) architectures
	Complexity Analysis
	Connected graph generation
	Generating Graph with node and edge attributes

	Experimental details
	Model Size Comparison
	Sampling Speed Comparison

	Additional Results
	Point Cloud
	Ablation studies
	Graph Samples

