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ABSTRACT

The Empirical Risk Minimization (ERM) adopts the supervision information, i.e.,
class labels, to guide the learning of labeled samples and achieves great success
in many applications. However, many real-world applications usually face the
label insufficient scenario, where there exist limited or even no labeled samples but
abundant unlabeled samples. Under those scenarios, the ERM cannot be directly
applied to tackle them. To alleviate this issue, we propose a Label-encoding
Risk Minimization (LRM), which draws inspiration from the phenomenon of
neural collapse. Specifically, the proposed LRM first estimates the label encodings
through prediction means for unlabeled samples and then aligns them with their
corresponding ground-truth label encodings. As a result, the LRM takes both the
prediction discriminability and diversity into account and can be utilized as a plugin
in existing models to address scenarios with insufficient labels. Theoretically, we
analyze the relationship between the LRM and ERM. Empirically, we demonstrate
the superiority of the LRM under several label insufficient scenarios, including
semi-supervised learning, unsupervised domain adaptation, and semi-supervised
heterogeneous domain adaptation. The code will be released soon.

1 INTRODUCTION

With abundant high-quality human-annotated samples, deep learning techniques have achieved
remarkable advances in various applications (Shi et al., 2021; Subramanian et al., 2022; Wang et al.,
2023). One key principle behind their success is the Empirical Risk Minimization (ERM), which
adopts the supervision information, i.e., class labels, to guide the learning of labeled samples. In
practice, however, we often encounter some label insufficient scenarios (Cui et al., 2020), where the
labeled samples are limited or may even be absent altogether. For the former, we can utilize a large
number of unlabeled samples to assist the learning of labeled samples, which falls within the scope of
semi-supervised learning (Sohn et al., 2020; Zhang et al., 2021a; Chen et al., 2022). On the contrary,
as for the latter, a popular solution is to borrow the knowledge from a similar and label sufficient
domain, i.e., source domain, for facilitating the learning of unlabeled samples, which pertains to the
field of transfer learning (Pan & Yang, 2010; Yang et al., 2020). The commonality of those techniques
is to fully utilize unlabeled samples for improving the generalization capability in label insufficient
scenarios. These scenarios are not uncommon in practical applications. For instance, in the field
of industrial defect detection, the annotation of defective images demands a substantial number of
professionals, which is expensive and time-consuming (Zhang et al., 2023b). As the ERM heavily
relies on the guidance of the label information and fails to fully utilize the potential of unlabeled
samples, leading to suboptimal performance in label insufficient scenarios. Hence, this paper focuses
on mining the potential of unlabeled samples to address the issue of insufficient labeling.

To achieve this, a simple and popular approach is the entropy minimization (EntMin) (Grandvalet &
Bengio, 2004). It can be regarded as a direct extension of ERM to unlabeled samples. Specifically, it
utilizes the soft-labels of unlabeled samples, which are assigned by the classifier during the training
process, for guiding their own learning, and it pushes samples far from the decision boundary. One
problem of EntMin is that the soft-labels assigned by the classifier could be mainly from dominant
categories with large numbers of samples, resulting in a decrease in prediction diversity (Cui et al.,
2020) that the samples are prone to be pushed towards the majority categories. One reason for that
lies in the absence of more appropriate guidance information for unlabeled samples. So we want to
ask “for unlabeled samples, is there more precise guidance information available?”
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To seek a potential solution to the above problem, we delve deeper into the essence of the ERM.
A recently discovered phenomenon of the neural collapse (Papyan et al., 2020) has captured our
attention, which prevalently exists in trained neural networks under the ERM framework. One
property of neural collapse is the neural class-mean collapse (NCC), which reveals that the learned
features1 of samples from a class collapse to their corresponding class mean. We prove that the
underlying cause of NCC roots in the use of label encoding, i.e., one-hot label encoding, which
leads to the collapse of the features through back-propagation. That is, all samples associated with
the sample category need to be mapped to a label encoding corresponding to that category. In
other words, the guidance information of the ERM for the samples in a specific category is the
corresponding label encoding. Moreover, under label insufficient scenarios studied in this paper, the
label encodings of labeled samples remain consistent with those of unlabeled samples. Accordingly,
it is reasonable to apply label encodings as guidance information to learn from unlabeled samples.
Inspired by this, we propose the Label-encoding Risk Minimization (LRM), a generalization of ERM,
to handle unlabeled samples. Specifically, the proposed LRM first estimates the label encodings
based on unlabeled samples by calculating the prediction mean in each class. Then, the LRM
minimizes the label-encoding risk, i.e., the discrepancy between the estimated label encodings and
their corresponding label encodings. Since these label encodings serve as accurate supervision
information, in conjunction with many existing models, the LRM can enhance their generalization
performance under label insufficient scenarios.

The contributions of this paper are three-fold. (1) We theoretically reveal the primary rationale
behind the NCC, that is, the use of label encoding results in the collapse of features through back-
propagation. (2) We propose LRM, a refined generalization of the ERM to unlabeled samples. Also,
we theoretically analyze the relationship between the LRM and ERM. (3) Extensive experiments
conducted under several label insufficient scenarios, including semi-supervised learning (SSL),
unsupervised domain adaptation (UDA), and semi-supervised heterogeneous domain adaptation
(SHDA), verify the effectiveness of the proposed LRM.

2 RELATED WORK

Label Insufficient Scenarios. In this paper, we mainly focus on three learning tasks under label
insufficient scenarios, i.e., SSL (Sohn et al., 2020; Zhang et al., 2021a; Chen et al., 2022), UDA
(Ganin et al., 2016; Long et al., 2018; Xu et al., 2019; Rangwani et al., 2022; Zhang et al., 2023a),
and SHDA (Yao et al., 2019; Li et al., 2020; Gu et al., 2022; Fang et al., 2022). Specifically, SSL
leverages limited labeled samples and massive unlabeled samples to improve the generalization
capability. For example, FlexMatch (Zhang et al., 2021a) utilizes curriculum pseudo learning for
enhancing the performance of SSL, and DST (Chen et al., 2022) mitigates the impact of incorrect
pseudo-labels during the iterative self-training process. On the other hand, UDA aims to improve
the learning of a target domain with unlabeled samples by harnessing the knowledge from a source
domain with sufficient labeled samples. For instance, DANN (Ganin et al., 2016) and CDAN (Long
et al., 2018) bridge the source and target domains through adversarial training. AFN (Xu et al., 2019)
progressively adapts the feature norms of the two domains to a broad range of values. Recently,
SDAT (Rangwani et al., 2022) enhances the stability of domain adversarial training and seeks a flat
minimum. Considering the heterogeneity of the features between domains, SHDA utilizes additional
limited labeled samples in the target domain to improve the transfer effect. As an example, STN (Yao
et al., 2019) adopts the soft-labels of unlabeled target samples to align the conditional distributions
across domains. Another example is KPG (Gu et al., 2022), which leverages key samples to guide
the matching process in optimal transport. Among those learning tasks, to boost performance, it is
vital to fully utilize the information of unlabeled samples. EntMin (Grandvalet & Bengio, 2004) is
commonly used to leverage unlabeled samples to improve prediction discriminability. For example,
in SSL, Berthelot et al. (2019) utilizes EntMin to estimate low-entropy labels for data-augmented
unlabeled samples. Moreover, Yin et al. (2022) adopts the entropy of the predicted distribution as a
confidence measure to filter pseudo-labels effectively. In UDA, EntMin is utilized in (Long et al.,
2016; Vu et al., 2019) to obtain a more reliable decision boundary in the unlabeled target domain.
In addition, Batch Nuclear-norm Maximization (BNM) (Cui et al., 2020) is proposed to maximize
the nuclear norm of the prediction matrix derived from unlabeled samples, which ensures both the
prediction discriminability and diversity. Similar to LRM, EntMin and BNM can also be seamlessly

1In this paper, the features default to the output of the penultimate layer in a deep neural network.
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embedded into any existing SSL, UDA, and SHDA approaches. However, unlike them, LRM adopts
label encodings as the supervision information, which achieves both the prediction discriminability
and diversity in a classification fashion.

Neural Collapse. Neural collapse is initially observed in (Papyan et al., 2020), which unveils that
the features and classifier weights exhibit remarkably elegant properties after sufficient training.
Subsequently, some theoretical studies (Kothapalli, 2023) mainly pursue two lines in an attempt
to uncover the rationale behind neural collapse. One line of studies is based on the principle of
unconstrained features (Mixon et al., 2022; Fang et al., 2021; Zhou et al., 2022), which assumes
that the features can be freely optimized. On the contrary, another line of studies is grounded in
the principle of local elasticity (He & Su, 2020; Zhang et al., 2021b), which strives to capture the
progressive differentiation of class features. However, different from them, our work primarily focuses
on the NCC property, i.e., the learned features of within-class samples collapse to the corresponding
class mean. We not only theoretically analyze the key rationale behind the NCC, but also derive the
label-encoding risk to guide the learning of unlabeled samples.

3 EMPIRICAL RISK MINIMIZATION

The ERM aims to provide theoretical guidance for the learning of labeled samples, which can be
derived from the expected risk minimization. Under the expected risk minimization framework, we
are interested in learning a function f(·) from a set of potential function sets F . Such function f(·)
characterizes the connection between a random feature vector x and the corresponding target vector
y. For this purpose, we need a non-negative real-valued loss function L(·, ·), which tells us how
much it “hurts” to make the prediction f(x) when the actual target y, for a sample (x,y) ∼ P . Then,
the expected risk is defined as the expectation of the loss function L(·, ·) over the distribution P as

Rexp(f) = EP [L(f(x),y)] =
∫

L(f(x),y)dP (x,y). (1)

An inevitable obstacle of the above calculation is that it is impossible to know the distribution P
in most realistic scenarios. To tackle with it, we can use an approximation, i.e., the empirical risk,
by averaging the loss function L(·, ·) over a set of training samples D = {(xi,yi)}ni=1, where
(xi,yi) ∼ P for i = 1, ..., n. Accordingly, the empirical risk can be formulated as

Remp(f) =
1

n

n∑
i=1

L(f(xi),yi). (2)

Finally, we learn function f∗ that minimizes Eq. (2), which is known as ERM:

f∗ = argmin
f

Remp(f) = argmin
f

1

n

n∑
i=1

L(f(xi),yi). (3)

4 LABEL-ENCODING RISK MINIMIZATION

The ERM has been successfully applied to various label sufficient scenarios. However, it is not so
powerful under label insufficient scenarios. In the following sections, we commence by introducing
the NCC property, which reveals that in the context of classification, the essence of ERM lies in
mapping all the within-class samples to the corresponding ground-truth label encoding. Inspired by
this, we propose the LRM, a refined generalization of the ERM to unlabeled samples, which can be
utilized to handle challenging label insufficient scenarios. Then, we establish connections between
LRM and NCC as well as ERM, and also compare LRM with EntMin. Finally, we detail how to
concretely apply the LRM to label insufficient scenarios.

4.1 AN ANALYSIS ON NEURAL CLASS-MEAN COLLAPSE

Recently, under the ERM framework, a widespread phenomenon called neural collapse has been
discovered in (Papyan et al., 2020). One of its attractive properties is the NCC, where the optimized
features in the same class collapse to the corresponding class mean. We delve deeper into the cause of
NCC and find that it arises from the use of label encoding, where the labels of within-class samples
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Figure 1: An intuitive explanation for the NCC. We can observe that the nine samples are mapped
into three label encodings, resulting in the collapse of features through back-propagation.

are all encoded to be identical. In this paper, label encoding refers to one-hot encoding by default.
Accordingly, we infer that the key rationale behind NCC is the use of label encoding causes the
collapse of the features via back-propagation. An intuitive explanation is depicted in Figure 1. There
are nine samples belonging to three distinct categories. However, there are only three label encodings,
i.e., [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Hence, the task of classification is actually to map nine samples
into three label encodings according to their categories. This forces the optimized features of nine
samples to collapse into three class means. In the following theorem, we prove our inference based
on the aforementioned principle of unconstrained features.

Theorem 1 Given an injective function f(·): Rd → RC and a loss function L(·, ·): RC × RC →
[0,+∞) satisfying that L(y1, y2) = 0 indicates y1 = y2, then for any feature matrix H ∈ Rn×d and
its one-hot label matrix Y ∈ Rn×c, when L(f(H),Y) w.r.t. H and f is minimized to 0, we have

h∗
1,c = · · · = h∗

nc,c =
1

nc

nc∑
i=1

h∗
i,c,∀c ∈ {1, . . . , C} (4)

where h∗
i,c is the optimized feature representation for the i-th sample in category c, nc is the total

number of labeled features belonging to class c, and C is the total number of categories.

The proof of Theorem 1 can be found in Appendix A.1. Theorem 1 implies that a primary factor
leading to the collapse of features is the use of label encoding, i.e., samples from the same category
share the same label encoding. In addition, Theorem 1 is loss-agnostic and solely relies on the
mapping property of f(·).
Furthermore, we extend Theorem 1 to the ERM framework. Under this framework, the linear and
softmax classifiers are two of the commonly used classification functions. The linear classifier is
an injective function, which thus satisfies Theorem 1. The softmax classifier is not an injective
function. However, under the constraint that the inputs are non-negative and equimodular, it is
injective and satisfies Theorem 1. The above constraint is relatively common, since the non-negative
and equimodular conditions can be realized by using the ReLU activation function (Nair & Hinton,
2010) and l2 normalization, respectively. The detailed proof is offered in Appendix A.4.

4.2 LABEL-ENCODING RISK MINIMIZATION

Under label insufficient scenarios, we aim to find accurate supervised information that can be utilized
to unlabeled samples. Recall that the NCC phenomenon is attributed to the use of label encodings.
These label encodings serve as reliable supervised information for learning from labeled samples.
Moreover, note that the label encodings remain consistent for both labeled and unlabeled samples
under label insufficient scenarios studied in this paper. Consequently, it is reasonable to apply
label encodings to guide the learning process of unlabeled samples. Inspired by this, we design a
label-encoding risk. Specifically, we first calculate the weighted average of prediction probabilities
for unlabeled samples in each category, i.e., prediction mean. Based on the properties of prediction
means, they can serve as an estimation for label encodings. Then, the label-encoding risk is measured
by the divergence between the estimated and ground-truth label encodings for all categories. Next,
we detail how to formulate the label-encoding risk.
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We first introduce how to calculate the prediction means of unlabeled samples. Let f(·) be a classifier
and g(·) be a feature extractor in the form of deep neural networks. Given nu unlabeled samples
{xu

i }
nu
i=1, we denote ỹu

i,: = f(g(xu
i )) ∈ RC as the prediction probability of xu

i provided by f(·)
and g(·), where its c-th element ỹui,c denotes the probability (weight) of xu

i belonging to category c.
Accordingly, the prediction mean for unlabeled samples belonging to category c can be calculated by

mu
c =

1∑nu
i=1 ỹ

u
i,c

( nu∑
i=1

ỹui,cỹ
u
i,:

)
. (5)

Then, we explain why mu
c could be treated as an estimation of label encoding associated with category

c. To this end, we summarize the properties of mu
c in Theorem 2.

Theorem 2 mu
c satisfies the following properties:

(1) 1Tmu
c = 1, where 1 ∈ RC denotes an all-ones vector.

(2) 0 ≤ mu
c,j ≤ 1, ∀j ∈ {1, . . . , C}, where mu

c,j denotes the j-th element of mu
c .

(3) If ỹu
i,: is the ground-truth label encoding of sample xu

i , ∀i ∈ {1, . . . , nu}, then mu
c equals to

ec, where ec denotes the one-hot label encoding associated with category c and is a one-hot vector
where its c-th element equals 1 while all other elements are 0.

(4) If mu
c is equal to ec for some c ∈ {1, · · · , C}, then for any i ∈ {1, · · · , nu}, ỹu

i,: either equals to
ec or satisfies the condition that ỹui,c = 0, 0 ≤ ỹui,k ≤ 1, ∀k ̸= c.

(5) If mu
c is equal to ec for any c ∈ {1, · · · , C}, then for any i ∈ {1, · · · , nu}, ỹu

i,: is a one-hot
vector with only one entry equal to 1 and other entries being 0.

The proof of Theorem 2 can be found in Appendix A.2. Based on the property (3) in Theorem 2, we
find that when ỹu

i,: approaches the ground-truth label encoding of sample xu
i , mu

c tends to approach
label encoding of ec. Accordingly, mu

c could be viewed as an estimation for ec.

Building upon the above theoretical perspectives, we formulate the label-encoding risk as

Rler(f, g) =
1

C

C∑
c=1

L(mu
c , ec), (6)

where L(·, ·) denotes the cross-entropy loss. By minimizing the label-encoding risk, we could make
estimated label encodings close to the corresponding ground-truth label encodings, which can guide
the learning of prediction means for those unlabeled samples. We refer to the minimization process
as the LRM, which can be utilized as a plugin for models to handle label insufficient scenarios.

4.3 DISCUSSIONS

Connection between LRM and NCC. According to property (5) of Theorem 2, if mu
c equals ec

for any c ∈ {1, · · · , C} (i.e., Rler(f, g) = 0), the prediction of each unlabeled sample could equal
a one-hot vector. This implies that LRM will collapse the prediction for each sample, ultimately
resulting in the aforementioned NCC property through Theorem 1.

Comparison between LRM and EntMin. On one hand, unlike EntMin which is sample-specific,
the LRM is class-specific according to its definition in Eq. (6). Thus, the LRM optimizes all C
categories equally, which could help mitigate the dominance of any large category (please refer
to Appendix C for detailed analysis and comparison). Accordingly, the LRM considers both the
prediction discriminability and diversity. On the other hand, the LRM adopts ground-truth label
encodings as the supervision information, in contrast to the soft-labels adopted by EntMin. Moreover,
a similar behavior in LRM and EntMin is that they both seek sharp prediction probabilities, which
are close to one-hot probabilities. To achieve that, EntMin minimizes the entropy of the prediction
probability of each unlabeled sample, while in contrast, according to properties (4) and (5) in Theorem
2, LRM minimizes the label-encoding risk, which is verified in Appendix D.4.

Connection between LRM and ERM. As LRM draws inspiration from NCC, a widely observed
phenomenon within the ERM framework, we reveal the theoretical relationship between LRM and
ERM in the following theorem.
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Theorem 3 Under the setting of supervised learning, we assume that the corresponding dataset is
balanced among classes. If the loss function is convex or strongly convex, then the label-encoding
risk is upper-bounded by the empirical risk.

The proof of Theorem 3 is offered in Appendix A.3. Theorem 3 implies that under the setting of
class-balanced supervised learning, there is a relationship between the empirical and label-encoding
risks. Moreover, experimental results in Section 5.2 verify Theorem 3 empirically.

4.4 APPLICATION TO LABEL INSUFFICIENT SCENARIOS

Application to SSL. Under the SSL setting, we have nl labeled sample {(xl
i,y

l
i)}

nl
i=1, where yl

i is
the one-hot label for xl

i. Also, we have nu unlabeled samples {xu
i }

nu
i=1. Here, we have nl ≪ nu.

The goal is to pick an excellent model for predicting {xu
i }

nu
i=1. To this end, we apply the ERM and

LRM to labeled and unlabeled samples, respectively. In addition, following the setting of supervised
pre-training in (Chen et al., 2022), we augment the labeled and unlabeled samples by leveraging a
weak augmentation function, i.e., ψ(·), and a strong augmentation, i.e., Ψ(·), respectively. Thus, the
overall objective function can be formulated as

min
f,g

1

nl

nl∑
i=1

L
(
f
(
g(ψ(xl

i))
)
,yl

i

)
+
µ

nl

nl∑
i=1

L
(
f
(
g(Ψ(xl

i))
)
,yl

i

)
+
λ

C

C∑
c=1

[
L(wu

c , ec) +µL(suc , ec)
]
, (7)

where g(·), f(·), and L(·, ·) are the feature extractor, softmax classifier, and cross-entropy loss,
respectively, λ and µ are two trade-off hyperparameters, and the calculation of wu

c and suc is similar
to Eq. (5) by replacing xu

i in mu
c with ψ(xu

i ) and Ψ(xu
i ), respectively.

Application to UDA. For the UDA task, we are offered ns labeled source samples {(xl
i,y

l
i)}

ns
i=1

and nt unlabeled target samples {xu
i }

nt
i=1. The goal is to find a high-quality model for categorizing

{xu
i }

nt
i=1. To achieve this, we apply the ERM and LRM to labeled source and unlabeled target

samples, respectively. Accordingly, we can formulate the objective function as

min
f,g

1

ns

ns∑
i=1

L
(
f(g(xl

i)),y
l
i

)
+
λ

C

C∑
c=1

L(mu
c , ec), (8)

where g(·) is the feature extractor, f(·) is the classifier, and mu
c can be obtained in Eq. (5).

Application to SHDA. In the SHDA problem, we are given nl labeled target samples {(xl
i,y

l
i)}

nl
i=1,

ns labeled source samples {(xs
i ,y

s
i )}

ns
i=1 and nt unlebeled target samples {xu

i }
nt
i=1. Here, we have

ns ≫ nl and nt ≫ nl. The goal is to learn a model for classifying {xu
i }

nt
i=1. As the heterogeneity

of the features across domains, we let gs(·) and gt(·) represent the feature extractors in the source
and target domains, respectively, and let f(·) be the classifier. For the above purpose, we apply the
ERM to labeled source and target samples, and utilize the LRM on unlabeled target samples. In
addition, following the setting in (Yao et al., 2019), an additional regulation term is put to use to
prevent overfitting. As a result, we can derive the following objective function as

min
f,gs,gt

1

ns

ns∑
i=1

L
(
f(gs(x

s
i )),y

s
i

)
+

1

nl

nl∑
i=1

L
(
f(gt(x

l
i)),y

l
i

)
+
λ

C

C∑
c=1

L(ṁu
c , ec)+τ(∥f∥2+∥gs∥2+∥gt∥2),

(9)
where the calculation of ṁu

c is similar to Eq. (5) by replacing g(·) in mu
c with gt(·), and λ, τ act as

two trade-off hyperparameters.

5 EXPERIMENTS

We evaluate the LRM on three typical label insufficient scenarios, including SSL, UDA, and SHDA.

5.1 EVALUATION

Evaluation on SSL Tasks. We evaluate the LRM on three SSL benchmark datasets, including
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and DTD (Cimpoi et al.,
2014). The CIFAR-10 and CIFAR-100 datasets consist of 60,000 images with a resolution of 32×32
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Table 1: Accuracy (%) comparison on the CIFAR-10, CIFAR-100, and DTD datasets for SSL. The
best performance of each task is marked in bold and the best performance in each comparison group
is underlined.

Dataset CIFAR-10 CIFAR-100 DTD

# Label per category 1 4 1 4 1 4
Top-1 Top-5 Top-1 Top-1 Top-5 Top-1 Top-1 Top-5 Top-1

ERM (Vapnik, 1999) 32.24 78.16 57.04 23.58 47.51 47.18 31.22 58.99 50.66
ERM+EntMin (Grandvalet & Bengio, 2004) 28.17 71.05 59.62 15.32 43.95 45.40 21.55 51.65 50.96

ERM+BNM (Cui et al., 2020) 27.02 70.37 52.46 21.79 47.72 58.90 28.55 54.61 48.26
ERM+LRM 36.00 80.92 76.94 31.77 61.39 59.52 36.65 65.78 54.34

FlexMatch (Zhang et al., 2021a) 40.86 84.75 86.66 16.49 42.40 65.11 33.39 58.48 54.96
FlexMatch+EntMin 43.79 87.69 86.56 13.00 42.83 67.32 32.20 58.49 54.91
FlexMatch+BNM 41.95 78.73 86.57 15.04 43.54 64.46 31.31 57.31 55.04
FlexMatch+LRM 56.86 93.01 87.75 20.28 42.46 68.04 34.22 59.56 55.51

DST (Chen et al., 2022) 51.11 91.76 88.05 32.92 64.65 66.80 34.88 61.99 56.40
DST+EntMin 45.46 92.41 87.85 25.48 60.92 66.79 32.32 62.27 56.13
DST+BNM 55.03 91.75 88.49 32.15 65.16 67.27 36.08 64.06 56.51
DST+LRM 67.91 95.90 89.48 38.81 69.51 70.41 37.63 65.59 57.04

pixels, categorized into 10 and 100 categories, respectively. The DTD dataset contains 5,640 textural
images in 47 categories. We conduct experiments on the SSL tasks with limited labeled samples, i.e.,
one and four labeled samples per category. In the comparison experiments, we combine the LRM
with ERM, and state-of-the-art SSL approaches such as FlexMatch (Zhang et al., 2021a) and DST
(Chen et al., 2022) to tackle all the above tasks. Also, we realize the EntMin and BNM in the same
way as the LRM, and report the average classification accuracy of each method in three randomized
trials. Due to page limit, more experimental details can be found in the Appendix B.1.

According to the results shown in Table 1, we can see that LRM yields significant performance
improvements under all the settings. Specifically, for the SSL tasks with four labeled samples
per category, the LRM achieves accuracy improvements of 19.90%, 12.34%, and 3.68% over the
ERM method on the CIFAR-10, CIFAR-100, and DTD datasets, respectively, and it also performs
better than EntMin and BNM. Moreover, when combined with state-of-the-art SSL methods, the
LRM could further improve the performance. For instance, LRM brings performance improvements
of 2.93% and 3.61% over FlexMatch and DST on the CIFAR-100 dataset, respectively. Those
results highlight the potential benefits of combining LRM with existing SSL approaches. For the
more challenging case with one labeled sample per category, both the EntMin and BNM exhibit
varying degrees of performance degradation when compared with ERM. On the contrary, the LRM
shows consistent performance improvements on three benchmark datasets, which demonstrates
its effectiveness in scenarios with extremely limited labeled samples. Moreover, the LRM further
enhances the performance of FlexMatch and DST, and surpasses other methods with a large margin in
terms of top-1 accuracy. Specifically, with only one labeled sample per category, LRM achieves a top-
1 performance improvement of 16.8% over the DST method on the CIFAR-10 dataset, demonstrating
its superiority for better utilization of unlabeled samples. In summary, LRM has shown promising
results in improving the performance of existing SSL methods and outperforms EntMin and BNM.

Evaluation on UDA Tasks. We evaluate the LRM on two UDA benchmark datasets, i.e., Office-31
(Saenko et al., 2010) and Office-Home (Venkateswara et al., 2017). The Office-31 dataset contains
three domains: Amazon (A), DSLR (D), and Webcam (W), with 4,110 images in 31 categories. We
evaluate six transfer tasks built on the above domains. The Office-Home dataset contains about 15,500
images from 65 categories within four domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World
(Rw). By utilizing these four domains, we construct 12 transfer tasks for evaluation. We combine the
LRM with ERM, and state-of-the-art UDA methods such as CDAN and SDAT for dealing with all
the above tasks. Additionally, we implement the EntMin and BNM in the same fashion as the LRM.
For each method, we run three random experiments and list the average classification accuracy. Due
to page limit, more experimental details are offered in the Appendix B.2.

The results on the Office-31 dataset are shown in Table 2. As can be seen, the LRM brings a
substantial performance improvement of 7.77% over ERM, and surpasses EntMin and BNM by a
large margin of 4.11% and 1.17%, respectively. Remarkably, ERM + LRM even performs better
than well-established UDA methods such as DANN, AFN, and CDAN. Note that the LRM does not
explicitly match the distributions across domains. Instead, the LRM aligns the prediction means
for target samples and their corresponding label encodings, while the ERM reduces the divergence
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Table 2: Accuracy (%) comparison on the Office-31 dataset for UDA. The best performance of each
task is marked in bold and the best performance in each comparison group is underlined.

Method A→D A→W D→W W→D D→A W→A Average

ERM (Vapnik, 1999) 81.15 77.00 96.60 99.00 63.98 64.01 80.29
DANN (Ganin et al., 2016) 83.62 89.30 97.81 100.00 72.01 74.11 86.14

AFN (Xu et al., 2019) 95.29 91.18 98.73 100.00 72.13 70.60 87.99
ERM+EntMin (Grandvalet & Bengio, 2004) 87.42 88.01 98.49 99.93 68.04 61.83 83.95

ERM+BNM (Cui et al., 2020) 89.36 91.36 98.62 99.93 70.76 71.29 86.89
ERM+LRM 92.26 92.83 98.74 99.95 72.21 72.35 88.06

CDAN (Long et al., 2018) 92.77 92.37 98.79 100.00 72.46 70.31 87.78
CDAN+EntMin 92.64 91.49 98.87 100.00 71.87 71.80 87.78
CDAN+BNM 92.17 92.87 99.20 100.00 73.53 73.15 88.49
CDAN+LRM 93.88 92.92 99.12 100.00 74.35 74.63 89.15

SDAT (Rangwani et al., 2022) 94.99 89.77 99.04 100.00 77.04 72.73 88.93
SDAT+EntMin 95.58 93.04 98.74 100.00 77.50 72.41 89.54
SDAT+BNM 95.58 92.91 98.66 100.00 77.61 74.97 89.96
SDAT+LRM 96.65 93.31 98.95 100.00 77.98 75.18 90.34

between the predicted labels for the source samples and their ground-truth labels. Thus, ERM + LRM
implicitly reduces the distributional divergence across domains in a classification manner, leading to
better transfer performance. This is one important reason for the above results. Moreover, as can be
seen, the performance of CDAN + LRM outperforms that of CDAN + EntMin and CDAN + BNM by
1.37% and 0.66%, respectively. Similar observations can be found in SDAT, highlighting the potential
of the LRM. Due to page limit, experiments on the Office-Home datasets are put in Appendix D.1. In
a nutshell, the LRM shows transferability by combining existing UDA (or ERM alone) methods.

Evaluation on SHDA Tasks. We evaluate the LRM on the SHDA tasks involving text-to-text and
text-to-image scenarios. For the former, we adopt the Multilingual Reuters Collection dataset (Amini
et al., 2009), which consists of about 11,000 articles from six categories written in English (E), French
(F), German (G), Italian (I), and Spanish (S). Following (Duan et al., 2012; Hsieh et al., 2016; Li
et al., 2013; Yao et al., 2019), we treat S as the target domain, and the remaining as the source ones.
For the latter, we follow (Chen et al., 2016; Yao et al., 2019) and use the NUS-WIDE (N) (Chua et al.,
2009) and ImageNet (I) (Deng et al., 2009) datasets as the source and target domains, respectively.
Eight shared categories from both domains are chosen. Also, for the source domain, we randomly
select 100 texts per category as the labeled samples. As for the target domain, we randomly single
out three images from each category as the labeled samples, and the remaining images are considered
as the unlabeled samples. We combine the LRM with ERM, and state-of-the-art SHDA approach
i.e., KPG2 (Gu et al., 2022), to handle all the above tasks. For a fair comparison, we implement the
EntMin and BNM in the same manner as the LRM, and present the average classification accuracy of
each method in five random experiments. More experimental details are given in Appendix B.3.

Table 3 lists the results on SHDA tasks, where S5 and S10 denote the number of labeled target samples
per category are five and ten, respectively. We can observe that compared to EntMin and BNM,
both ERM and KPG demonstrate the most significant performance improvements when combined
with LRM. In particular, the classification accuracy of ERM + LRM on the N→I is 79.83%, which
exceeds ERM, ERM+EntMin, and ERM+BNM by 10.86%, 10.26%, and 1.5%, respectively. Overall,
these results verify that even in heterogeneous scenarios, the LRM is still effective and superior.

5.2 ANALYSIS

Effectiveness and Convergence. We evaluate the effectiveness and convergence of the LRM on
the SHDA task of E→S5. Specifically, we plot the loss values of ERM and LRM w.r.t. the ERM
and ERM + LRM in Figure 2(a), respectively. We also show the accuracy curves of both methods
in Figure 2(a). We have several observations. (1) The loss values of ERM in both methods have
experienced notable reductions, as they explicitly minimize the ERM loss in their objective functions.
Also, the loss value of ERM in ERM + LRM is slightly lower than that of ERM in ERM alone, which

2Since KPG uses an SVM classifier, for convenience, we first extract the learned features of KPG and then
use a softmax classifier for categorizing.
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Table 3: Accuracy (%) comparison on the text-to-text and text-to-image datasets for SHDA. The best
performance of each task is marked in bold and the best performance in each comparison group is
underlined.

Method E→S5 F→S5 G→S5 I→S5 Average E→S10 F→S10 G→S10 I→S10 Average N→I

ERM 61.62 61.75 60.91 62.11 61.60 68.53 68.47 68.36 68.96 68.58 68.97
ERM+EntMin 62.31 61.99 61.13 61.72 61.78 70.80 70.32 70.79 71.68 70.90 69.57
ERM+BNM 69.73 68.77 70.23 69.93 69.66 73.49 73.41 73.49 73.79 73.55 78.33
ERM+LRM 70.14 68.80 70.82 70.08 69.96 74.63 74.43 74.43 73.97 74.36 79.83

KPG+ERM 62.23 61.32 61.53 61.29 61.59 67.11 64.02 64.69 63.99 64.95 61.68
KPG+BNM 65.55 65.62 65.11 65.15 65.36 73.09 73.78 73.23 73.47 73.39 74.52
KPG+LRM 68.36 68.39 68.20 67.99 68.24 73.80 74.47 73.79 74.11 74.04 77.25

indicates that the LRM may assist in further reducing the loss value of ERM. (2) When ERM is
combined with LRM, the accuracy curve improves by a large margin, which implies that LRM can
effectively improve the performance. (3) The loss value of LRM in ERM + LRM is significantly
lower than that of LRM in ERM, which is reasonable since ERM does not take LRM into account.
Meanwhile, it is also one important reason for the observation of (2). (4) The loss value of LRM in
ERM + LRM first decreases gradually and then hardly changes as the number of iterations grows.
Also, the accuracy first improves monotonically and then becomes stable as more iterations are
conducted. Both imply the convergence of the LRM.
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Figure 2: Comparison between LRM and ERM.

Connection between the LRM and ERM.
In the SHDA task of N→I, as aforemen-
tioned, there are 100 labeled source samples
and three labeled target samples per cate-
gory. Accordingly, under the setting where
only labeled samples from both domains are
available for training, which can be regarded
as a class-balanced supervised learning task.
Hence, we empirically verify the connection
between LRM and ERM under this setting.
We calculate the loss values of ERM and
LRM on all labeled samples, respectively.
Please refer to Appendix A.3 for the calcu-
lation of the loss value of LRM on all labeled samples. Figure 2(b) highlights that the loss value
of ERM consistently surpasses that of LRM during the training. This confirms that ERM is an
upper bound for the LRM under the utilization of the convex cross-entropy loss, thereby providing
experimental evidence for Theorem 3.

Parameter Sensitivity and Feature Visualization. We conclude the analysis of parameter sensitivity
and feature visualization in Appendix D. These results indicate that the LRM is insensitive to different
tasks, and can produce effective transfer in combination with the ERM.

6 CONCLUSION

In this paper, we reveal the key rationale behind the NCC, and propose the LRM based on this
inspiration for handling label insufficient scenarios. The LRM can be seen as an extension of the
ERM to unlabeled samples. It adopts label encodings as supervision information, and the prediction
means are designed to estimate the label encodings for unlabeled samples, which ensures both
the prediction discriminability and diversity. Also, under the setting of class-balanced supervised
learning, we theoretically analyze the relationship between the LRM and ERM. Experiments on three
typical scenarios with insufficient labeled samples validate the effectiveness of the LRM. As a future
direction, we intend to investigate the relationship between the LRM and ERM, in the context of
class-imbalanced supervised learning. Moreover, we believe that the LRM has the potential to serve
as an elegant and effective alternative to EntMin, thereby opening a new door for tackling unlabeled
samples. Hence, applying the LRM to other label insufficient scenarios is also our interest.
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A THEORETICAL ANALYSES

A.1 PROOF FOR THEOREM 1

Since the learned features belonging to the same category collapse to the class mean, when
L(f(H),Y) w.r.t. H and f is minimized to 0, we have

f∗(h∗
1,c) = · · · = f∗(h∗

nc,c) = ec,∀c ∈ {1, . . . , C}, (10)

Since f(·) is a injective function, we obtain

h∗
1,c = · · · = h∗

nc,c. (11)

Hence, we have

1

nc

nc∑
i=1

h∗
i,c =

1

nc

nc∑
i=1

h∗
1,c = h∗

1,c = · · · = h∗
nc,c,∀c ∈ {1, . . . , C}. (12)

A.2 PROOF FOR THEOREM 2

(1) The sum of all elements in mu
c , i.e., 1Tmu

c , can be calculated as follows:

1Tmu
c =

1T
∑nu

i=1(ỹ
u
i,cỹ
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i,:)∑nu

i=1 ỹ
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i,c

=
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i,c

=
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i,c∑nu

i=1 ỹ
u
i,c

= 1. (13)

(2) Since 0 ≤ ỹui,j ≤ 1, ∀j ∈ {1, . . . , C}, ∀i ∈ {1, . . . , nu}, based on Eq. (5) and the Property (1) in
Theorem 2, we have

0 ≤ mu
c,j ≤ 1,∀j ∈ {1, . . . , C}. (14)

(3) Since ỹu
i,: is the ground-truth label encoding of sample xu

i , ỹui,c = 1 if xu
i belongs to category c,

else ỹui,c = 0. Accordingly, we can calculate the c-th element of mu
c as follows:

mu
c,c =

∑nu

i=1 ỹ
u
i,cỹ

u
i,c∑nu

i=1 ỹ
u
i,c

=
ncu
ncu

= 1. (15)

Similarly, the k-th (∀k ̸= c) element of mu
c can be calculated as follows:

mu
c,k =

∑nu

i=1 ỹ
u
i,cỹ

u
i,k∑nu

i=1 ỹ
u
i,c

=
0

ncu
= 0,∀k ̸= c. (16)

Hence, mu
c equals to ec.

(4) Since mu
c = ec for some c ∈ {1, · · · , C}, we have mu

c,c = 1 and mu
c,k = 0,∀k ̸= c. According

to the constraint of mu
c,c = 1, we obtain

mu
c,c =

∑nu

i=1 ỹ
u
i,cỹ
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i=1 ỹ
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i,c
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T ỹu
:,c − 1T ỹu

:,c = 0

⇒ (ỹu
:,c − 1)T (ỹu

:,c − 0) = 0, (17)

where ỹu
:,c denotes the prediction probabilities of {xu

i }
nu
i=1 belonging to category c, and 1 ∈ Rnu

denotes an all-ones vector, and 0 ∈ Rnu denotes an all-zero vector. Since 0 ≤ ỹui,c ≤ 1, ∀i ∈
{1, · · · , nu}, we can get

ỹui,c = 1 or ỹui,c = 0,∀i ∈ {1, · · · , nu}. (18)

Based on the constraint of mu
c,k = 0, ∀k ̸= c, we have

mu
c,k =

∑nu
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u
i,cỹ

u
i,k∑nu
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= 0 ⇒ ỹui,cỹ
u
i,k = 0 ⇒ ỹui,c = 0 or ỹui,k = 0,∀k ̸= c. (19)
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According to Eq. (18) and Eq. (19), for some c ∈ {1, · · · , C}, and any i ∈ {1, · · · , nu}, we obtain

ỹui,c = 1, ỹui,k = 0,∀k ̸= c⇒ ỹu
i,: = ec or ỹui,c = 0, 0 ≤ ỹui,k ≤ 1,∀k ̸= c. (20)

(5) Since mu
c is equal to ec for any c ∈ {1, · · · , C}, based on the Property (4), for any i ∈

{1, · · · , nu}, we have
ỹui,c = 0 or ỹui,c = 1,∀c ∈ {1, · · · , C}. (21)

Hence, ỹu
i,: is a one-hot vector for any i ∈ {1, · · · , nu}.

A.3 PROOF FOR THEOREM 3

Given nl labeled sample {(xl
i,y

l
i)}

nl
i=1, where yl

i is the one-hot label for xl
i. Since the dataset is

balanced across categories, we let n be the number of labeled samples in each class, we have nl = nC.
In addition, we denote by f(·) : Rd → RC a classification function, and by L(·, ·): RC × RC →
[0,+∞) a loss function satisfying that L(y, z) = 0 indicates yi = zi, ∀i ∈ {1, . . . , C}.

The empirical risk is given by
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where ec denotes the label encoding associated with category c, ỹl
i = f(xl

i) ∈ RC is the prediction
probability of xl

i, ỹ
l
j,c = f(xl

j,c) is the prediction probability of xl
j,c. Here, xl

j,c is j-th labeled
sample belonging to category c.

The label-encoding risk is given by

Rler(f) =
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C
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L(ml
c, ec), (23)

where ml
c is the prediction mean of labeled samples belonging to category c, which can be calculated

by
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i=1 y
l
i,c

( nl∑
i=1

yl
i,cỹ

l
i,:

)
=

1

n

n∑
j=1

ỹl
j,c. (24)

Hence, when the loss function L(·, ·) is convex, we have

Remp(f) =
1

nC

C∑
c=1

n∑
j=1

L(ỹl
j,c, ec)

=
1

C

C∑
c=1

[ 1
n

n∑
j=1

L(ỹl
j,c, ec)

]
≥ 1

C

C∑
c=1

[
L( 1
n

n∑
j=1

ỹl
j,c, ec)

]
=

1

C

C∑
c=1

L(ml
c, ec)

= Rler(f).

(25)

The inequality is followed from the convexity of L(·, ·). When L(·, ·) is strongly convex, we obtain
Remp(f) > Rler(f). Therefore, it proves that when the dataset is balanced among classes, the
label-encoding risk is upper-bounded by the empirical risk under the condition that L(·, ·) is convex
or strongly convex.
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A.4 THEORETICAL ANALYSIS FOR THE MAPPING PROPERTY OF THE SOFTMAX FUNCTION

Theorem 4 Let φ(·) : Rd → Rd be a softmax function. If the inputs of φ(·) are non-negative and
equimodular, then φ(·) is injective.

First, we prove the following Lemma 1.

Lemma 1 Let φ(·) : Rd → Rd be a softmax function, for any given h,k ∈ Rd, if φ(h) = φ(k),
then ∃c ∈ R such that k = h+ c1, where 1 ∈ Rd denotes an all-ones vector.

Proof. Let hi and ki denote the i-th element in h and k, respectively, ∀i ∈ {1, . . . , d}, ifφ(h) = φ(k),
we have

φ(hi) =
ehi∑d
j=1 e

hj

=
eki∑d
j=1 e

kj

= φ(ki). (26)

Then, we obtain

1 =
φ(ki)

φ(hi)
=

eki∑d
j=1 ekj

ehi∑d
j=1 ehj

=
eki∑d
j=1 e

kj

·
∑d

j=1 e
hj

ehi
= eki−hi

∑d
j=1 e

hj∑d
j=1 e

kj

, (27)

where
∑d

j=1 e
hj and

∑d
j=1 e

kj are fixed when h and k are given, respectively. Hence,

eki−hi = ekj−hj ,∀i, j ∈ {1, . . . , d}. (28)

Accordingly, we have

ki − hi = kj − hj = c,∀i, j ∈ {1, . . . , d},
⇒ hi + c = ki, hj + c = kj ,∀i, j ∈ {1, . . . , d},
⇒ h+ c1 = k,

(29)

where c ∈ R is a constant. □

Based on Lemma 1, in the following we can further prove Theorem 4. Since the inputs are non-
negative, we have

ki = hi + c ≥ 0 ⇒ c ≥ −hi ⇒
d∑
i

c ≥ −
d∑

i=1

hi ⇒ c ≥ −
∑d

i=1 hi
d

,∀i ∈ {1, . . . , d}. (30)

Also, as the inputs are equimodular, we obtain

∥h∥2 = ∥k∥2 = ∥h+ c1∥2 ⇒ hTh = (h+ c1)T(h+ c1)

⇒ hTh = hTh+ chT1+ c1Th+ c21T1

⇒ c(hT1+ 1Th+ c1T1) = 0

⇒ c(2

d∑
i=1

hi + cd) = 0.

(31)

Hence we can get

c = 0 or c = −
2
∑d

i=1 hi
d

. (32)

But the second one is impossible except for h = k = 0. According to Eq. (30), we have

c = −
2
∑d

i=1 hi
d

≥ −
∑d

i=1 hi
d

. (33)

If
∑d

i=1 hi ̸= 0, together with hi ≥ 0, ∀i ∈ {1, . . . , d}, the inequality does not hold. Hence∑d
i=1 hi = 0, and it implies h = 0 since hi are non-negative. In this case, ∥k∥2 = ∥h∥2 = ∥0∥2,

and k = h = 0, which is already included in the case c = 0.

Therefore, for any given h,k ∈ Rd, if φ(h) = φ(k) and h, k are non-negative and equimodular, we
have h = k. At this point, φ(·) is injective.
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B IMPLEMENTATION DETAILS

The experiments on SSL and UDA tasks are conducted on a NVIDIA V100 GPU, and the experiments
in SHDA tasks are conducted on a NVIDIA 3090 GPU.

B.1 SEMI-SUPERVISED LEARNING Table 4: Parameter λ on SSL tasks.
Dataset CIFAR-10 CIFAR-100 DTD

ERM+LRM 0.1 0.5 0.1
FlexMatch+LRM 0.5 0.5 0.1

DST+LRM 0.1 0.5 0.1

The parameter λ in Eq. (7) for SSL tasks is
shown in Table 4, and the parameter µ in Eq. (7)
is set to 0.1. We use mini-batch stochastic gradi-
ent descent (SGD) with a momentum of 0.9 as
the optimizer, and the batch-sizes of labeled and unlabeled samples are both set to 32. Following
(Chen et al., 2022), we use random-resize-crop and RandAugment (Cubuk et al., 2020) for strong
augmentation and random-horizontal-filp for weak augmentation. To ensure a fair comparison, all
methods utilize the same backbone for each dataset. Specifically, ResNet-18 is used on the CIFAR-10
dataset, and ResNet-50 (He et al., 2016) is adopted on the CIFAR-100 and DTD datasets. Both
backbones are pretrained on ImageNet (Deng et al., 2009). Furthermore, we observe that wu

c and suc
in Eq. (7) may be incorrect at the beginning of the training iteration. To prevent them from fitting
into certain categories too early leading to unstable learning, we perform an additional softmax
transformation before calculating cross-entropy loss, which encourages them smoother. The same
strategy is also adopted in the following two tasks.

B.2 UNSUPERVISED DOMAIN ADAPTATION

For the UDA tasks, λ in Eq. (8) is set to 1 when used independently, and 0.1 when combined with
other methods. We set the batch-sizes of both domains to 32. The optimizer is a mini-batch SGD
method with a momentum of 0.9 and a learning rate annealing strategy in (Ganin et al., 2016). For a
fair comparison, in all transfer tasks, we use the ResNet-50 pretrained on ImageNet as the backbone.

B.3 SEMI-SUPERVISED HETEROGENEOUS DOMAIN ADAPTATION

For the SHDA tasks, we implement gs(·) and gt(·) in Eq. (9) by using a one-layer fully connected
network with the Leaky ReLU (Maas et al., 2013) activation function, respectively. Analogously, we
adopt a one-layer fully connected network with the softmax activation function for f(·) in Eq. (9). In
addition, following (Yao et al., 2019), we utilize full-batch gradient descent with the Adam optimizer
(Kingma & Ba, 2014) for optimizing {f(·), gs(·), gt(·)}, and the learning rate is set to 0.008 when
used with KPG and 0.001 in the other cases. We maintain a fixed value of λ = 1 and τ = 0.01 in
Eq. (9) for all the experiments. In the text-to-text scenario, The reduced dimensions of E, F, G, I,
and S are 1,131, 1,230, 1,417, 1,041, and 807, respectively. Also, we randomly pick up 100 labeled
articles per category as labeled source samples, while in the target domain, there are l (i.e., l = 5, 10)
and 500 randomly selected labeled and unlabeled samples in each category, respectively. In the
text-to-image scenario, we extract the 64-dimensional features from the fourth hidden layer of a
five-layer neural network as the text features, and the 4096-dimensional DeCAF6 features (Donahue
et al., 2014) are extracted to represent the images in the target domain.

C PREDICTION DIVERSITY ANALYSIS

C.1 ANALYSIS ON SYNTHETIC SCENARIOS

In this section, we provide detailed analyses on the prediction diversity of EntMin and LRM. In
EntMin, each unlabeled sample is prone to be frequently misclassified into the dominant categories,
which undermines the prediction diversity. However, the LRM estimates the label encodings through
the prediction means of C categories, which is calculated by the weighted average of prediction
probabilities for each category. Accordingly, the LRM maintains the prediction diversity. To provide
more detailed explanations, we construct two synthetic binary classification problems. One gives an
explanation in the optimal situation, while the other is in the ordinary situation.
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In the first example, suppose there are a total of two unlabeled samples xu
1 and xu

2 , with ground-truth

labels yu
1 = [1, 0] and yu

2 = [0, 1], respectively. We denote by Ỹu =

[
f(g(xu

1 ))
T

f(g(xu
2 ))

T

]
∈ R2×2 the

prediction matrix provided by the feature extractor g(·) and classifier f(·). Next, we analyze the
optimal solutions of EntMin and LRM, respectively.

(1) EntMin utilizes the soft-label of each unlabeled sample to guide its learning, and promotes sharper
prediction probabilities for each unlabeled sample. Thus, the optimal solutions may be as follows:

Ỹu =

[
1 0
1 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1
0 1

]
.

Among those optimal solutions, the first and last solutions compromise the prediction diversity.

(2) LRM adopts the label encodings to guide the learning of prediction means. Since the label
encodings for all categories are e1 = [1, 0] and e2 = [0, 1], the optimal prediction means for all
categories are mu

1 = [1, 0] and mu
2 = [0, 1]. Thus, the optimal solutions may be as follows:

Ỹu =

[
1 0
0 1

]
,

[
0 1
1 0

]
.

Among those optimal solutions, all solutions maintain the prediction diversity.

In the second example, suppose there are total three unlabeled samples xu
1 , xu

2 and xu
3 , with ground-

truth one-hot labels yu
1 = [1, 0], yu

2 = [1, 0] and yu
3 = [0, 1], respectively. Assuming that at the

t-th iteration, the output probabilities of the classifier for xu
1 , xu

2 and xu
3 are (ỹu

1 )
t = [0.7, 0.3],

(ỹu
2 )

t = [0.8, 0.2] and (ỹu
3 )

t = [0.5, 0.5]. Next, we detail the output probabilities that may be
obtained using EntMin and LRM at the (t+ 1)-th iteration, respectively.

(1) EntMin: At the t-th iteration, the entropy is 1
3 (−[0.7, 0.3] log[0.7, 0.3]T −

[0.8, 0.2] log[0.8, 0.2]T − [0.5, 0.5] log[0.5, 0.5]T) ≈ 0.60. According to the principle of Ent-
Min, all output probabilities will become sharper and x3 will be pushed towards the majority
category. Hence, at the (t+ 1)-th iteration, the output probabilities are highly likely to be towards
(ỹu

1 )
t+1 = [0.8, 0.2], (ỹu

2 )
t+1 = [0.9, 0.1] and (ỹu

3 )
t+1 = [0.6, 0.4]. At this point, although the

entropy drops to 1
3 (−[0.8, 0.2] log[0.8, 0.2]T − [0.9, 0.1] log[0.9, 0.1]T − [0.6, 0.4] log[0.6, 0.4]T) ≈

0.50, x3 is misclassified.

(2) LRM: At the t-th iteration, the prediction means for all categories are (mu
1 )

t =
0.7[0.7,0.3]+0.8[0.8,0.2]+0.5[0.5,0.5]

0.7+0.8+0.5 = [0.69, 0.31] and (mu
2 )

t = 0.3[0.7,0.3]+0.2[0.8,0.2]+0.5[0.5,0.5]
0.3+0.2+0.5 =

[0.62, 0.38]. The label encodings for all categories are e1 = [1, 0] and e2 = [0, 1]. Thus, the
label-encoding risk is −[1,0] log[0.69,0.31]T−[0,1] log[0.62,0.38]T

2 ≈ 0.67. According to the principle
of LRM, the prediction means for all categories will be pushed to the label encodings. Ac-
cordingly, at the (t + 1)-th iteration, the output probabilities are highly likely to be towards
(ỹu

1 )
t+1 = [0.8, 0.2], (ỹu

2 )
t+1 = [0.9, 0.1] and (ỹu

3 )
t+1 = [0.4, 0.6]. At this point, the predic-

tion means for all categories become (mu
1 )

t+1 = 0.8[0.8,0.2]+0.9[0.9,0.1]+0.4[0.4,0.6]
0.8+0.9+0.4 = [0.77, 0.23]

and (mu
2 )

t+1 = 0.2[0.8,0.2]+0.1[0.9,0.1]+0.6[0.4,0.6]
0.2+0.1+0.6 = [0.54, 0.46]. Therefore, not only does the label-

encoding risk decrease to −[1,0] log[0.77,0.23]T−[0,1] log[0.54,0.46]T

2 ≈ 0.52, but x3 is also classified
correctly.

In summary, in the above synthetic problems, LRM always maintains the classification of all unlabeled
samples into two categories, while EntMin may have several optimal solutions to classify all unlabeled
samples into only one category. Accordingly, the predictions of LRM would be more diverse than
those of EntMin.

C.2 ANALYSIS ON PRACTICAL SCENARIOS

We conduct experiments to compare the prediction diversity of ERM + LRM and ERM + EntMin
under class-imbalanced scenarios. To this end, we reconstruct the SHDA task of N→I into a
class-imbalanced setting. As aforementioned, there are eight shared categories in both domains.
Accordingly, in the source domain of N, for the first six categories, we randomly select 100 texts
per category as the labeled samples. As for the last two categories, we randomly pick 20 texts as
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Figure 3: Empirical evaluation of prediction diversity on the SHDA task of N→I under the class-
imbalanced setting. (a) The prior category distributions of the source and target domains. (b) The
prior category distribution of the source domain and the category distribution of the target domain
predicted by ERM + EntMin. (c) The prior category distribution of the source domain and the
category distribution of the target domain predicted by ERM + LRM.

the labeled samples from each category. In the target domain of I, we randomly choose three and
100 images per category as the labeled and unlabeled samples, respectively. Figure 3(a) shows the
prior category distributions of labeled samples in N and unlabeled samples in I. We can see that
the prior category distribution of labeled source samples is imbalanced, whereas that of unlabeled
target samples is balanced. Figure 3(b) and Figure 3(c) plot the category distributions of unlabeled
samples in I predicted by ERM + EntMin and ERM + LRM, respectively. As can be seen, for the
last two categories, ERM + EntMin greatly suffers from the class imbalance issue, while ERM +
LRM maintains the prediction diversity well. In addition, the average classification accuracy of
ERM + EntMin and ERM + LRM is 64.88% and 76.30%, respectively. Accordingly, ERM + LRM
outperforms ERM+EntMin by 11.42%. One important reason is that compared to ERM + EntMin,
ERM + LRM can effectively preserve prediction diversity even in class-imbalanced scenarios.

Furthermore, we also rebuild the SSL task on CIFAR-10 dataset into a class-imbalanced setting.
Specifically, we randomly choose 1,000 labeled samples from each category for the first eight
categories. As for the last two categories, we randomly pick 20 labeled samples per category. In the
testing set, there are 1,000 samples per category. The experimental results are plotted in Figure 4. We
can observe that, compared with EntMin, LRM is less susceptible to the impact of class imbalance.
Moreover, the average classification accuracy of ERM + EntMin and ERM + LRM is 79.47% and
93.28%, respectively. Accordingly, ERM + LRM outperforms ERM+EntMin by a large margin of
13.81%, which verifies the effectiveness of the proposed LRM in class-imbalanced scenarios again.

In class-imbalanced supervised learning, we conduct experiments on the CIFAR-10 dataset. Specif-
ically, in the training set, we randomly choose 50 labeled samples from each category for the last
two categories, while keeping all the samples for the remaining categories. In the testing set, there
are 1000 samples per category. The experimental results are shown in Figure 5. Note that the closer
the model’s predicted quantities for the last two categories are to 1000, the less it is affected by
class imbalance. As shown in Figure 5(b), ERM + LRM yields higher predicted quantities for the
last two categories compared to ERM alone, indicating that LRM can mitigate class imbalance in
supervised learning. Moreover, the average classification accuracy of ERM and ERM + LRM is
87.13% and 89.41%, respectively. Accordingly, ERM + LRM outperforms ERM by 2.28%, showing
the effectiveness of LRM in class-imbalanced supervised learning. Hence, compared with ERM,
ERM + LRM is less susceptible to the impact of class imbalance in this dataset.

D MORE EXPERIMENTAL RESULTS

D.1 RESULTS ON OFFICE-HOME DATASET FOR UDA

The results on the Office-Home dataset for UDA are listed in Table 5. As can be seen, when combined
with the LRM, all the approaches achieve performance improvement. Specifically, the average
classification accuracy of ERM + LRM is 69.29%, which outperforms ERM, ERM + EntMin, and
ERM + BNM by 9.97%, 3.54%, and 0.58%, respectively. The results testify the superiority of LRM
again.
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Figure 4: Empirical evaluation of prediction diversity on the SSL task on CIFAR-10 dataset under the
class-imbalanced setting. (a) The prior category distributions of the training and testing sets. (b) The
prior category distribution of the training set and the category distribution of the target set predicted
by ERM + EntMin. (c) The prior category distribution of the training set and the category distribution
of the testing set predicted by ERM + LRM.
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Figure 5: Empirical evaluation of prediction diversity of supervised learning on CIFAR-10 dataset
under the class-imbalanced setting. (a) The prior category distributions of the training and testing
sets. (b) The category distributions of the testing set predicted by ERM and ERM + LRM.

Table 5: Accuracy (%) comparison on the Office-Home dataset for UDA. The best performance of
each task is marked in bold and the best performance in each comparison group is underlined.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average

ERM (Vapnik, 1999) 44.00 67.16 74.19 52.98 61.65 64.29 52.12 39.10 73.01 64.33 43.73 75.29 59.32
DANN (Ganin et al., 2016) 52.84 62.90 73.46 56.26 67.42 68.01 58.40 54.41 78.92 70.65 60.31 80.79 65.36

AFN (Xu et al., 2019) 52.68 72.27 76.96 65.13 71.13 72.78 63.93 51.33 77.81 72.12 57.52 81.98 67.97
ERM+EntMin (Grandvalet & Bengio, 2004) 46.83 67.28 77.24 62.23 70.26 71.69 59.22 47.06 79.34 70.92 54.47 82.43 65.75

ERM+BNM (Cui et al., 2020) 54.78 74.86 79.51 63.04 72.00 74.99 61.41 52.21 80.27 71.39 57.33 82.77 68.71
ERM+LRM 55.41 74.57 79.67 64.28 74.46 75.66 62.48 52.39 80.33 71.51 57.96 82.80 69.29

CDAN (Long et al., 2018) 55.18 72.63 78.01 62.01 72.46 73.11 62.68 53.99 79.65 72.83 58.23 83.60 68.70
CDAN+EntMin 54.82 72.43 78.90 63.03 72.51 72.87 62.23 53.53 80.04 72.42 58.14 83.73 68.72
CDAN+BNM 56.00 74.00 78.94 63.59 73.31 73.79 62.53 53.91 81.05 73.03 59.08 83.55 69.40
CDAN+LRM 57.08 74.43 78.84 64.28 74.09 74.56 63.70 54.95 81.15 73.30 59.46 84.29 70.01

SDAT (Rangwani et al., 2022) 57.66 77.06 81.30 66.07 76.14 75.91 63.23 55.92 81.85 75.87 62.36 85.41 71.57
SDAT+EntMin 56.97 77.74 81.33 65.90 75.83 75.99 63.58 55.36 82.30 75.09 62.01 85.32 71.45
SDAT+BNM 57.59 76.95 80.84 66.13 75.33 75.65 65.49 56.07 81.87 75.38 62.47 85.51 71.61
SDAT+LRM 58.20 77.75 82.25 67.04 76.89 76.96 64.73 56.46 82.50 75.87 63.76 85.97 72.36

D.2 PARAMETER SENSITIVITY

We investigate the parameter sensitivity on the SHDA tasks of E→S5 and N→I. We mainly investigate
the sensitivity of the parameter λ in Eq. (9), as it controls the importance of the LRM. According
to the accuracy w.r.t. λ as shown in Figure 6, we can observe that when λ = 0, ERM + LRM
degenerates to the original ERM without LRM. Therefore, in the initial phases of increasing the value
of λ, the significant improvement in performance indicates the effectiveness of LRM. As the value of
λ increases, the performance improves and reaches an optimal value around λ = 1. Subsequently,
the performance decreases gradually with the increase in the value of λ. One possible reason is that,
with a large λ, the model excessively focuses on LRM with unlabeled samples and neglects ERM on
labeled samples. In summary, the default setting, i.e., λ = 1, can lead to good performance on both
tasks, which suggests that the default setting is a good choice for λ.
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Figure 6: Parameter sensitivity
analysis on the SHDA tasks of E
→ S5 and N → I.
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Figure 7: t-SNE visualization for the UDA task A→D on
the Office-31 dataset. The red and blue circles represent the
source and target features, respectively.

Table 6: Average entropy comparison on the SSL task of four samples per category on CIFAR-10.
Method Entropy

ERM 0.3832
ERM + EntMin 0.0266
ERM + LRM 0.0644

D.3 FEATURE VISUALIZATION

Figure 7 visualizes the t-SNE embeddings (Van der Maaten & Hinton, 2008) of the learned source
and target features on the UDA task of A→D for ERM and ERM + LRM. As can be seen, compared
with the ERM alone, ERM + LRM can better align the distributions across domains. Although the
LRM does not directly reduce the distributional divergence between domains, it implicitly reduces
the distributional divergence across domains by aligning with label encodings, leading to a better
transfer performance.

D.4 PREDICTION PROBABILITY ANALYSIS

Table 6 shows the average entropy results of all unlabeled samples on the SSL task of four samples
per category on CIFAR-10 dataset. As can be seen, ERM + EntMin and ERM + LRM obtain lower
entropy than ERM, showing that both EntMin and LRM can obtain sharp prediction probabilities.
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