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ABSTRACT

Decoding images from non-invasive electroencephalographic (EEG) signals has
been a grand challenge in understanding how the human brain process visual infor-
mation in real-world scenarios. To cope with the issues of signal-to-noise ratio and
nonstationarity, this paper introduces a MUltimodal Similarity-keeping contrastivE
learning (MUSE) framework for zero-shot EEG-based image classification. We
develop a series of multivariate time-series encoders tailored for EEG signals and
assess the efficacy of regularized contrastive EEG-Image pretraining using an
extensive visual EEG dataset. Our method achieves state-of-the-art performance,
with a top-1 accuracy of 19.3% and a top-5 accuracy of 48.8% in 200-way zero-
shot image classification. Furthermore, we visualize neural patterns via model
interpretation, shedding light on the visual processing dynamics in the human
brain.

1 INTRODUCTION

Understanding visual processing in the human brain remains a profound challenge at the intersection
of neuroscience and artificial intelligence. Visual processing involves a complex sequence of neural
mechanisms across various brain regions, enabling the intricate processing of visual stimuli Riesen-
huber & Poggio (1999); Miyawaki et al. (2008); Liu et al. (2009); DiCarlo et al. (2012); Gifford et al.
(2022). The development of deep learning techniques, such as convolutional neural networks (CNNs),
has been significantly inspired by our understanding of these neural mechanisms Fukushima (1980);
LeCun et al. (1998; 2015). Unveiling the brain dynamics of visual processing in real-world contexts
holds the potential to inspire future advancements in artificial intelligence (AI), continuing the cycle
of innovation driven by biological insights Hassabis et al. (2017); Ullman (2019). Recent studies have
advanced our understanding of visual processing in the human brain through the observation of brain
activity using various neuromonitoring modalities He et al. (2011). Electroencephalography (EEG),
as a non-invasive, portable modality with high-temporal resolution, offers a unique window into
visual processing by revealing the instantaneous neural dynamics of visual perception and recognition
in real-world contexts Rousselet et al. (2007); Samaha & Postle (2015); Wei & Jung (2023).

Decoding images from EEG signals represents a promising approach to study the mechanisms of
visual processing. By leveraging EEG, researchers can gain insight into the temporal evolution of
neural responses to visual stimuli Robinson et al. (2017). However, this endeavor faces significant
obstacles, primarily due to the low signal-to-noise ratio and nonstationarity of EEG signals Kaplan
et al. (2005); Urigüen & Garcia-Zapirain (2015). Addressing these challenges is crucial for advancing
our understanding of visual cognition and for developing robust EEG-based image decoding or
brain-computer interfacing (BCI) systems. Early studies in EEG-based image decoding have been
constrained by the use of small datasets, limiting their ability to develop generalizable models
Spampinato et al. (2017); Tirupattur et al. (2018). More recent work has utilized larger datasets
collected through the rapid serial visual presentation (RSVP) paradigm, where images are presented
in quick succession to elicit brain responses Gifford et al. (2022); Song et al. (2024). Despite
these advances, the performance of existing methods remains suboptimal, underscoring the need for
dedicated design of EEG encoding network architectures that consider the brain’s mechanisms and
EEG characteristics.
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Figure 1: Schematic illustration of the proposed MUltimodal Similarity-keeping contrastivE learning
(MUSE) framework. During the training phase, EEG-image pairs are independently processed by
an EEG encoder and an image encoder. The objectives of the MUSE framework are twofold: 1)
maximize the separation between matched and unmatched pairs, and 2) maintain the inner-batch
sample similarity within each EEG-image pair (see Algorithm 1 for details). In the test phase, an
unseen EEG sample is passed through the EEG encoder, which identifies the most similar image
from a set of unseen images based on cross-modality embedding similarity.

To address the challenges in EEG-based image decoding, we present a novel self-supervised frame-
work, coined as multimodal similarity-keeping contrastive learning (MUSE), dedicated to cross-
modality contrastive learning between EEG and image data. We develop a series of multivariate
time-series encoder network architectures tailored for EEG processing that facilitate the cross-
modality contrastive learning with an advanced off-the-shelf image encoder (CLIP-ViT Radford
et al. (2021)). These encoders feature an upstream spatial convolution of EEG data for the sake of
feature extraction and noise suppression Wei et al. (2019); Pan et al. (2022). Additionally, we propose
an innovative similarity-keeping contrastive learning mechanism, inspired by the cortical mapping
organization of visual object representation in the inferotemporal (IT) cortex Bao et al. (2020), to
regularize the contrastive learning process using the information of inter-object relationships within
both EEG and image samples.

Furthermore, we employ model interpretation techniques to visualize the neural patterns of image
processing, offering a deeper understanding of the underlying dynamics of visual cognition in the
human brain. The contributions of this work are threefold:

• We introduce a novel self-supervised multimodal similarity-keeping contrastive learning
(MUSE) framework that achieves state-of-the-art performance in zero-shot EEG-based
image recognition.

• We propose EEG encoders with upstream spatial convolution and similarity-keeping regular-
ization to enhance EEG-image cross-modality contrastive learning.

• We visualize neural patterns through model interpretation to provide neuroscientific insights
into the spatial and temporal brain dynamics of visual processing.

2 RELATED WORKS

2.1 DECODING VISUAL INFORMATION FROM BRAIN SIGNALS

Interpreting visual data from the human brain has been a longstanding challenge at the intersection of
neuroscience and computer science Riesenhuber & Poggio (1999); Miyawaki et al. (2008); DiCarlo
et al. (2012); Gifford et al. (2022). Despite significant advancements in understanding static visual
inputs, rapidly and accurately extracting meaningful information from natural imagery remains
difficult Kay et al. (2008); Chen et al. (2023). Previous efforts have primarily utilized functional
magnetic resonance imaging (fMRI) Mai et al. (2023); Takagi & Nishimoto (2023); Scotti et al.
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Figure 2: (a.) The whole view of this work. (b.) Illustration on feature space of multimodal similarity-
keeping contrastive learning framework (MUSE), different from traditional contrastive learning only
focus on multimodal similarity, MUSE both consider the multimodal similarity and inner batch
similarity in the loss function. r denotes representation. I and E denotes image and EEG signal,
respectively.

(2024), which has demonstrated the ability to capture meaningful content and structural details from
visual processing in the brain. However, fMRI relies on detecting changes in blood oxygenation,
resulting in a temporal lag of several seconds per stimulus, thereby limiting its utility for real-time
applications. Additionally, fMRI is expensive and requires large, stationary equipment.

In contrast, electroencephalography (EEG) offers superior temporal resolution, immediate data
feedback, and portable, cost-effective hardware. These attributes position EEG as a promising
candidate for personal brain-computer interface technology. Nevertheless, current methods for using
EEG to extract semantic information for image classification have not achieved satisfactory results
Ahmed et al. (2021); Liu et al. (2023); Song et al. (2024), highlighting the need for improved
approaches. Previous methodologies have often relied on supervised learning techniques with a
limited set of image categories, ignoring the intrinsic correlations between visual stimuli and neural
responses Liu et al. (2023); Spampinato et al. (2017); Singh et al. (2024). These limitations impair
their effectiveness in real-world scenarios that require the generalization to recognize novel, unfamiliar
object categories. To address these issues, Du et al. (2023) first attempted zero-shot classification
using the largest available EEG-image database Gifford et al. (2022) with a multilayer MLP and joint
EEG-image-text representation, while Song et al. (2024) employed a contrastive learning method.
However, Song et al. (2024) utilized a basic contrastive learning framework based on CLIP Radford
et al. (2021). Our work improves upon this framework and the EEG encoder, introducing a self-
supervised learning approach for EEG-based image decoding. This framework allows the model to
generalize to object recognition tasks without specific prior training, demonstrating its effectiveness.

2.2 MULTIMODAL CONTRASTIVE LEARNING

In recent years, after the success of the traditional contrastive learning models on the same modal
data like text and image Tian et al. (2020); He et al. (2020); Grill et al. (2020); Chen et al. (2020), the
development of multimodal contrastive learning has reached significant advancements in the field of
self-supervised learning, particularly in tasks that contain the integration of multiple types of data.
This method leverages the strengths of various modalities (e.g., text, images, video) to boost model
generalization across diverse datasets. Multimodal contrastive learning aligns representations from
different modalities within a shared embedding space, facilitating robust, modality-invariant feature
learning. This enhances capabilities in cross-modal retrieval and zero-shot learning. Typically, a
two-tower network architecture processes each modality independently, with outputs converging in
the embedding space where contrastive loss minimizes distances between similar pairs and maximizes
distances between dissimilar ones. One of the most popular and successful multimodal contrastive
learning framework is CLIP Radford et al. (2021), which project both the image and text in to the
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Figure 3: The details of the MUSE. (a.) The contrastive learning loss is calculated from EEG
encoding and image encoding. (b.)(c.) The similarity-keeping loss comes from the final similarity of
self-batch similarity of the input modal data.

Figure 4: The model structure comparison. Where BN denotes batch normalization, IN denotes
instance normalization, LN denotes layer normalization, respectively.

same feature space. Nevertheless, because datasets containing both time-series signals like EEG
and image data are quite rare, there has been little research applying contrastive learning methods
to this combination of temporal and visual information. To our best knowledge, Ye et al. (2022) is
maybe the first work introduced the EEG-image contrastive learning on obtaining the EEG-image
representation for image reconstruction downstream task but do not do the zero-shot classification.
Singh et al. (2024) introduced the EEGClip network for joint representation learning between EEG
signal and image but it just do supervised learning. Song et al. (2024) first try to design the EEG
encoder on EEG-image contrastive learning , but the work only modified the encoders. This area
remains largely uncharted and calls for new, specialized contrastive learning techniques to handle
these joint time-series and image modalities effectively.
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Algorithm 1 Multimodal Similarity-Keeping Contrastive Learning framework (MUSE)

1: Input: (Image, EEG) ▷ stimulus & response
2: Model: Encimg: CLIP-ViT or its variance, Enceeg: STConv or NervFormer

3: # E : (batch, channel, electrode, data sample) ▷ batch of input EEGs
4: # I : (batch, channel, height, width) ▷ batch of input images

5: # τ : learned temperature parameter
6: # β : learned inner similarity parameter
7: # CS : Cosine Similarity
8: # SK : Similarity-Keeping

9: # extract normalized representations from the raw image and EEG
10: Ef = Norm(Linear(Enceeg(E)))
11: If = Norm(Encimg(I)) ▷ can be obtained before training

12: # calculate cosine similarity from the inner batch image and EEG
13: ECS = CS(Ef , Ef )
14: ICS = CS(If , If )
15: lossSK = 1 - E(CS(ECS , ICS))

16: # scaled pairwise cosine similarity
17: logits = dot(Ef , If .t) × eτ

18: # symmetric loss function
19: labels = arange(batch) ▷ self-supervised learning label
20: losse = CrossEntropyLoss(logits, labels, axis=0)
21: lossi = CrossEntropyLoss(logits, labels, axis=1)
22: total_loss = (losse + lossi) / 2 + β × lossSK

3 METHODOLOGY

3.1 OVERVIEW

This section introduces the Multimodal Similarity-Keeping Contrastive Learning (MUSE) framework,
comprising the EEG encoder, image encoder, and the contrastive learning method. Our contribution
encompasses cutting-edge EEG encoders tailored for zero-shot classification tasks: the Spatial-
Temporal convolution (STConv) and NervFormer architectures, along with a pioneering regularized
contrastive learning approach featuring a novel similarity-keeping loss.

3.2 NETWORK ARCHITECTURE

3.2.1 EEG ENCODER

In this study, we introduce a series of multivariate time-series encoding architectures tailored to
capture essential features in EEG data. Recent works suggest that upstream spatial convolution serves
as an effective spatial filtering method for enhancing feature extraction and noise suppression Wei
et al. (2019); Pan et al. (2022). Herein, we present the Spatial-Temporal Convolution (STConv)
module, which employs spatial convolution to denoise data by referencing between brain electrodes,
followed by temporal convolution. Additionally, we extend the capabilities of the STConv and
Temporal-Spatial Convolution (TSConv) modules by integrating an attention mechanism, leading to
the development of a novel transformer-like EEG encoder, which we refer to as NervFormer. In line
with Graph Attention Networks (GATs) principles, we employ the Graph Attention (GA) module
(see Appendix) to iteratively refine the state of each node, conceptualized as electrodes, by leveraging
the states of all other nodes Veličković et al. (2018); Brody et al. (2022). The architectures of the
baseline and proposed EEG encoders are illustrated and compared in Figure 4.
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3.2.2 IMAGE ENCODER

For our implementation, we integrate the off-the-shelf CLIP-ViT model Radford et al. (2021), which
has demonstrated exceptional performance in aligning image and text representations. This model,
pre-trained on extensive datasets, captures intricate details and high-level semantic information from
images, making it an ideal candidate for our contrastive learning framework.

3.2.3 SIMILARITY-KEEPING CONTRASTIVE LEARNING

Inspired by recent neuroscience findings of the cortical network of visual object representation Bao
et al. (2020); She et al. (2024), we take the interplay between object categories into account and
propose a novel regularized contrastive learning framework. The procedure is outlined in Algorithm
1.

The ordinary contrastive learning uses InfoNCE loss given by Oord et al. (2018); He et al. (2020);
Radford et al. (2021):

LInfoNCE = −E

[
log

exp(SE,I/τ)∑N
k=1 exp(SE,Ik/τ)

]
(1)

where the SE,I denotes the similarity score between EEG signal E and image I pairing data, the τ is
learned temperature parameter, the training process shown in Figure 2.

We introduce regularization to the ordinary contrastive learning by incorporating similarity preser-
vation into the contrastive loss to capture both inter-sample and multimodal similarities. Drawing
inspiration from the similarity-keeping (SK) concept used in knowledge distillation between EEG
models Huang et al. (2023), we propose a novel SK loss to regularize the InfoNCE loss. This involves
estimating the inner-batch inter-sample relationship. The SK loss is defined as:

LSK = 1− E [S(SE,E , SI,I)] (2)

We introduce a trainable parameter β to enhance training flexibility. When the β = 0, the similarity-
keeping InfoNCE loss reduces to the standard InfoNCE loss. The combined loss function, which
integrates similarity-keeping, is illustrated in Figure 3 and defined as:

LSK−InfoNCE = LInfoNCE + β × LSK (3)

This integration of similarity-keeping into the contrastive loss framework ensures that the model not
only aligns paired EEG and image embeddings effectively but also maintains the intrinsic relationships
within the batch.

4 EXPERIMENTS

4.1 DATASETS AND PREPROCESSING

The ThingsEEG dataset Gifford et al. (2022) comprises extensive EEG recordings gathered through
a rapid serial visual presentation (RSVP) paradigm, featuring responses from 10 individuals to
16,740 natural images from the THINGS database Hebart et al. (2019). The dataset includes 1654
training classes, each with 10 images, and 200 test classes, each with 1 image. EEG recordings were
conducted using 64-channel EASYCAP equipment, and the data were preprocessed by segmenting
into trials from 0 to 1000 ms post-stimulus onset, with baseline correction using the pre-stimulus
mean. EEG responses for each image were averaged across repetitions, and the images were resized
to 224×224 and normalized prior to processing.

4.2 EXPERIMENT DETAILS

Experiments were conducted on a GeForce RTX 3090 24G GPU with Pytorch. Training using the
MUSE series required approximately 2 to 3 hours per subject, with a batch size of 1000, while
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Table 1: Overall accuracy (%) of 200-way zero-shot classification using CLIP-ViT as image encoder:
top-1 and top-5. The parts in bold represent the best results, while the underlined parts are the second
best.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Subject dependent - train and test on one subject
BraVL 6.1 17.9 4.9 14.9 5.6 17.4 5.0 15.1 4.0 13.4 6.0 18.2 6.5 20.4 8.8 23.7 4.3 14.0 7.0 19.7 5.8 17.5
NICE 12.3 36.6 10.4 33.9 13.1 39.0 16.4 47.0 8.0 26.9 14.1 40.6 15.2 42.1 20.0 49.9 13.3 37.1 14.9 41.9 13.8 39.5
NICE-SA 13.3 40.2 12.1 36.1 15.3 39.6 15.9 49.0 9.8 34.4 14.2 42.4 17.9 43.6 18.2 50.2 14.4 38.7 16.0 42.8 14.7 41.7
NICE-GA 15.2 40.1 13.9 40.1 14.7 42.7 17.6 48.9 9.0 29.7 16.4 44.4 14.9 43.1 20.3 52.1 14.1 39.7 19.6 46.7 15.6 42.8
MUSE-Nerv (ours) 11.0 33.9 12.3 37.4 13.6 39.4 19.1 48.0 10.7 31.9 14.0 41.2 13.0 41.3 21.0 54.6 15.4 38.6 17.1 43.9 14.7 41.0
MUSE-SK-Nerv (ours) 11.6 34.7 14.3 40.4 13.6 38.2 20.8 48.6 12.0 32.2 16.1 41.5 15.7 43.7 24.1 54.4 17.2 41.7 17.1 44.7 16.3 42.0
MUSE-SK-Nerv-GA (ours) 12.1 38.7 15.2 43.0 18.5 48.8 24.4 50.6 14.0 36.6 18.0 46.1 19.7 48.4 24.3 56.9 17.8 43.7 21.9 52.2 18.6 46.5
MUSE-Nerv-GA (ours) 13.4 39.0 17.6 42.8 17.3 48.0 22.6 50.3 14.4 35.9 18.7 46.2 19.2 47.3 26.8 56.7 19.0 47.3 20.6 52.9 19.0 46.6
MUSE (ours) 14.7 39.2 15.2 45.3 19.3 48.7 25.9 61.0 12.6 36.0 18.5 50.6 20.2 50.1 26.3 58.6 19.0 45.7 20.4 54.0 19.2 48.9
MUSE-GA (ours) 14.7 38.3 17.5 47.4 17.1 48.0 24.8 58.2 11.5 34.9 18.5 50.5 19.3 49.1 24.3 55.1 16.9 40.3 24.0 55.8 18.8 47.8
MUSE-SK (ours) 14.4 39.9 16.5 44.2 19.7 49.5 26.4 58.6 13.2 34.0 19.1 52.5 19.5 49.4 26.8 59.3 17.6 46.6 20.1 54.3 19.3 48.8
MUSE-SK-GA (ours) 15.3 41.0 18.1 44.5 20.0 50.0 25.3 58.1 11.2 34.7 17.9 48.0 20.1 49.1 25.4 57.7 17.0 43.6 22.7 54.4 19.3 48.1

NervFormer series models took 40 minutes to 1 hour per subject. Models were saved at 200 epochs
when the validation loss reached its lowest point. We use the weighted Adam optimizer with a learning
rate of 0.0002 and parameters β1=0.5 and β2=0.999. The τ in contrastive learning initialized with
log(1/0.07) and β=1. The NervFormer model achieves the best results with a multiheads number of
5. Results were averaged over five random seeds, and statistical significance was determined using
the Wilcoxon Signed-Rank Test.

4.3 PERFORMANCE COMPARISON

The comparison results presented in Table 1 highlight the performance of various methods, with
detailed model abbreviations provided in the appendix. Overall, MUSE-SK achieves the highest
average top-1 accuracy at 19.3%, while MUSE attains the highest average top-5 accuracy at 48.9%.
Furthermore, MUSE-SK-Nerv-GA, MUSE-Nerv-GA, MUSE, MUSE-SK, MUSE-SK-GA, MUSE-
GA, and MUSE-SK-Nerv-GA significantly outperform the NICE-GA model in both top-1 (p < 0.01)
and top-5 (p < 0.01) accuracy. Although individual performance can differ, MUSE-based methods
usually do better than others. The GA and SK variants are particularly strong in this evaluation.

4.4 ABLATION STUDY

We conduct ablation studies on both MUSE and MUSE-Nerv series models, with the results of
MUSE-Nerv illustrated in Table 3. While the NervFormer EEG encoder does not demonstrate the
best average zero-shot performance across all datasets, the MUSE-SK-Nerv-GA model achieves
higher individual accuracy for subjects 5 and 10 compared to both MUSE and MUSE-SK. Moreover,
beyond the MUSE series models, which solely employ the STConv as the EEG encoder, the MUSE-
Nerv series models, incorporating the NervFormer as the EEG encoder, independently validate the
efficacy of the similarity-keeping loss architecture and the graph attention module in EEG-image
multimodal contrastive learning.

Upon examining the performance metrics of MUSE as depicted in Table 2, it becomes apparent that
MUSE, MUSE-SK, and MUSE-SK-GA exhibit similar average performance levels. However, each
method demonstrates distinct advantages across the ten subjects studied. For example, MUSE-SK-
GA demonstrates superior overall performance in subjects 1, 3, and 10, while MUSE-SK achieves
state-of-the-art results in subject 8. Additionally, each method excels uniquely in either top-1 or top-5
rankings in various subjects. This underscores the effectiveness of the SK and GA techniques as
enhancements. However, in the context of STConv, these techniques do not demonstrate as clear
an advantage as NervFormer does. We also observe that while SK may impact GA performance on
NervFormer, both SK and GA enhance performance on STConv, with further details discussed in the
model interpretation section.

4.5 MODEL INTERPRETATION

We conducted model interpretation to uncover the internal mechanisms of our models across three
distinct domains: spatial-temporal, brain region topography-temporal, and temporal-frequency. We
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Table 2: Ablation Study of MUSE series models, accuracy (%) of 200-way zero-shot classification:
top-1 and top-5. The parts in bold represent the best results, while the underlined parts are the second
best.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave Win
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 subject score #

Subject dependent - train and test on one subject
Original MUSE (STConv as EEG encoder & CLIP-ViT as image encoder with InfoNCE loss)
MUSE 14.7 39.2 15.2 45.3 19.3 48.7 25.9 61.0 12.6 36.0 18.5 50.6 20.2 50.1 26.3 58.6 19.0 45.7 20.4 54.0 19.2 48.9 6/20
Change InfoNCE loss to SK-InfoNCE loss
MUSE-SK 14.4 39.9 16.5 44.2 19.7 49.5 26.4 58.6 13.2 34.0 19.1 52.5 19.5 49.4 26.8 59.3 17.6 46.6 20.1 54.3 19.3 48.8 7/20
Change STConv to STConv-GA
MUSE-SK-GA 15.3 41.0 18.1 44.5 20.0 50.0 25.3 58.1 11.2 34.7 17.9 48.0 20.1 49.1 25.4 57.7 17.0 43.6 22.7 54.4 19.3 48.1 7/20

Table 3: Ablation Study of MUSE-Nerv series models, accuracy (%) of 200-way zero-shot classifica-
tion: top-1 and top-5. The parts in bold represent the best results, while the underlined parts are the
second best.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave Win
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 subject score #

Subject dependent - train and test on one subject
Original MUSE-Nerv (NervFormer as EEG encoder & CLIP-ViT as image encoder with InfoNCE loss)
MUSE-Nerv 11.0 33.9 12.3 37.4 13.6 39.4 19.1 48.0 10.7 31.9 14.0 41.2 13.0 41.3 21.0 54.6 15.4 38.6 17.1 43.9 14.7 41.0 0
Change InfoNCE loss to SK-InfoNCE loss
MUSE-SK-Nerv 11.6 34.7 14.3 40.4 13.6 38.2 20.8 48.6 12.0 32.2 16.1 41.5 15.7 43.7 24.1 54.4 17.2 41.7 17.1 44.7 16.3 42.0 0
Change NervFormer to NervFormer-GA
MUSE-SK-Nerv-GA 12.1 38.7 15.2 43.0 18.5 48.8 24.4 50.6 14.0 36.6 18.0 46.1 19.7 48.4 24.3 56.9 17.8 43.7 21.9 52.2 18.6 46.5 20/20

employed the Grad-CAM analysis method Selvaraju et al. (2016) to scrutinize our proposed best
MUSE series models.

4.5.1 SPATIAL-TEMPORAL DYNAMICS ANALYSIS

To ensure that meaningful signals are preserved during Grad-CAM calculations, we take the absolute
value of all Grad-CAM and EEG signal intensities of each trial for further analysis. The spatial-
temporal comparison on both training and testing trials is depicted in Figure 7. We note that
the higher-performing models, such as MUSE-SK and MUSE-SK-GA, concentrate on the EEG
information between the 25th and 125th data points, corresponding to the 100 ms to 500 ms time
period. Figure 8 illustrates a distinct response observed in the occipital cortex between 100 and 600
ms after the onset in MUSE-SK. However, the 200 ms stimulus onset asynchrony (SOA) continues
to elicit periodic responses in the occipital cortex. Furthermore, a response in the parietal cortex
is evident after 100 ms. This observation aligns with the bottom-up hierarchy of the visual system
DiCarlo & Cox (2007), wherein visual stimuli are sequentially processed by V1, V2, and V4 in the
occipital cortex, and subsequently by the inferotemporal region in the temporal cortex along the
ventral stream for object recognition Bao et al. (2020).

5 CONCLUSION

In summary, this paper introduces the MUltimodal Similarity-keeping contrastivE learning (MUSE)
framework, a novel approach tailored specifically for zero-shot EEG-based image classification,
thereby addressing the intricate challenge of deciphering visual information from non-invasive EEG
signals. Our method, drawing inspiration from established neuroscience findings, achieves state-of-
the-art decoding accuracy, as substantiated by rigorous experimental evaluations. We further interpret
our models and uncover insights into the spatial-temporal dynamics of EEG responses, shedding
light on the neural processes underlying visual perception. We foresee that our work will catalyze
further exploration in bridging the gap between EEG decoding and image recognition, advancing our
understanding of visual cognition in the human brain.
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A APPENDIX

A.1 THE MODEL ABBREVIATIONS DETAILS

The abbreviations detail is shown as Table 4.

Table 4: The detail of all the model

Method EEG Encoder Image Encoder Loss Function

BraVL Du et al. (2023) MLP MLP ELBO

NICE Song et al. (2024) TSConv CLIP-ViT InfoNCE
NICE-SA Song et al. (2024) TSConv-SA CLIP-ViT InfoNCE
NICE-GA Song et al. (2024) TSConv-GA CLIP-ViT InfoNCE

MUSE (ours) STConv CLIP-ViT InfoNCE
MUSE-GA (ours) STConv-GA CLIP-ViT InfoNCE

MUSE-Nerv (ours) NervFormer CLIP-ViT InfoNCE
MUSE-Nerv-GA (ours) NervFormer-GA CLIP-ViT InfoNCE

MUSE-SK (ours) STConv CLIP-ViT SK-InfoNCE
MUSE-SK-GA (ours) STConv-GA CLIP-ViT SK-InfoNCE

MUSE-SK-Nerv (ours) NervFormer CLIP-ViT SK-InfoNCE
MUSE-SK-Nerv-GA (ours) NervFormer-GA CLIP-ViT SK-InfoNCE

A.2 GRAPH ATTENTION

In line with Graph Attention Networks (GATs) principles, we employ the Graph Attention (GA)
module to iteratively refine the state of each node, conceptualized as electrodes, by leveraging the
states of all other nodes Veličković et al. (2018); Brody et al. (2022). Through these mechanisms, the
GA module dynamically adjusts the importance of each node based on the contextual information
proffered by its neighbors, ensuring an attention-weighted update that underscores the interconnec-
tivity of node features within the graph’s architecture. Each node’s representation is denoted by
ni ∈ R1×T , indexed by i for i = 1, . . . , ch, signifying an electrode that establishes connections with
a defined set Ni of adjacent nodes, thus forming a fully connected graph. The update mechanism for
an individual node ni is formalized as:

n′
i = αi,iWni +

∑
j∈Ni

αi,jWnj (4)

where n′
i designates the updated node, αi,j encapsulates the attention coefficients indicative of the

feature significance from node j to node i, and W is the weight matrix of the linear transformation.
The attention coefficients αi,j are computed via the equation:

αi,j =
exp(aT · LeakyReLU(W [ni∥nj ]))∑

k∈Ni∪{i} exp(a
T · LeakyReLU(W [ni∥nk]))

(5)

In this expression, a ∈ R2T represents the weight vector of a feedforward attention mechanism, ()T
indicates the transpose operation, and ∥ signifies concatenation. LeakyReLU is introduced as the
non-linear function with a negative slope coefficient of 0.2, facilitating computational stability and
non-linearity.

A.3 TIME-FREQUENCY DYNAMICS ANALYSIS

We took the best SK model, MUSE-SK, to perform time-frequency analysis and found that the alpha
wave, gamma wave, and theta wave signals were concentrated on the occipital and parietal lobes in
both the training and testing topomaps. This finding aligns with medical literature, where the alpha
wave is associated with visual attention Klimesch (1999); Mathewson et al. (2011), and the gamma
wave is related to higher cognitive functions, attention, and visual processing Fries et al. (2001). This
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Figure 9: Time-Frequency map of MUSE-SK on averaging all of subject 10’s training trials. We can
see that the MUSE-SK can focus on alpha band and gamma band, where is related to vision attention
and high-level visual recognition in neural science.

also indicates that our designed model has indeed learned some neural behaviors related to the human
brain.

A.4 LIMITATION

In our framework, we have not changed the image encoder to the more powerful CLIP, but we
focus on comparing different EEG encoders under the same image encoder and the reliability of our
proposed brain-inspired similarity-keeping framework. After demonstrating that this work can indeed
improve the performance of contrastive learning, replacing the image encoder with a more powerful
one would be a better direction.

A.5 TABLE OF TESTING OBJECT CATEGORIES

We also try to use Grad-CAM method doing model interpretation on testing sets with our-selected
category.
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Figure 10: Time-Frequency map of MUSE-SK on averaging all trials in the testing set of subject 10.
It is evident that MUSE-SK focuses on the alpha and gamma bands, which are associated with visual
attention and high-level visual recognition in neuroscience.
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Figure 11: MUSE model interpretation on our-selected category.

Figure 12: Topomap of each 100 ms by on one trial averaging through all the repetition on subject 10.
(a.) On MUSE-SK and MUSE models, the color bar on the botton is the Grad-CAM of each model
through time. Most of the model focus on the 100-500ms. The u (b.) Zoom-in and compare the input
EEG data and the MUSE-SK, can see that the model can more focus on temporal and occipital areas.
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Table 5: Test images on THINGSEEG dataset categories

Category Items
animal 00002_antelope, 00012_beaver, 00024_bug, 00033_cat, 00034_caterpillar,

00039_cheetah, 00046_cobra, 00053_crab, 00058_crow, 00063_dalmatian,
00065_dragonfly, 00069_eagle, 00070_eel, 00072_elephant, 00076_flamingo,
00086_goose, 00087_gopher, 00088_gorilla, 00089_grasshopper, 00097_hum-
mingbird, 00106_lamb, 00110_lightning_bug, 00111_manatee, 00117_mosquito,
00127_ostrich, 00129_panther, 00133_pheasant, 00136_pigeon, 00137_piglet,
00142_possum, 00144_pug, 00150_rhinoceros, 00152_rooster, 00161_seagull,
00183_tick, 00190_turkey

clothing 00019_bonnet, 00037_chaps, 00043_cleat, 00045_coat, 00052_coverall,
00074_face_mask, 00083_glove, 00094_headscarf, 00096_hoodie, 00104_kneepad,
00107_lampshade, 00128_pajamas, 00138_pocket, 00155_sandal, 00169_snowshoe,
00176_suit, 00177_t-shirt, 00182_tiara, 00187_top_hat, 00189_tube_top

instruments 00009_bassoon, 00041_chime, 00067_drum, 00080_french_horn, 00119_music_box,
00149_recorder

food 00005_banana, 00007_basil, 00011_batter, 00015_birthday_cake, 00018_bok_choy,
00022_bread, 00027_bun, 00029_calamari, 00032_cashew, 00038_cheese, 00047_co-
conut, 00048_coffee_bean, 00050_cookie, 00051_cordon_bleu, 00054_creme_brulee,
00055_crepe, 00057_croissant, 00060_crumb, 00061_cupcake, 00064_dessert,
00071_egg, 00073_espresso, 00081_fruit, 00082_garlic, 00091_hamburger,
00098_ice_cube, 00101_jelly_bean, 00109_lettuce, 00112_marijuana, 00113_meat-
loaf, 00120_mussel, 00122_okra, 00123_omelet, 00124_onion, 00125_orange,
00126_orchid, 00131_pear, 00132_pepper1, 00135_pie, 00140_popcorn, 00141_popsi-
cle, 00143_pretzel, 00147_radish, 00148_raspberry, 00157_sausage, 00158_scallion,
00159_scallop, 00162_seaweed, 00163_seed, 00174_strawberry, 00184_tomato_sauce,
00195_walnut, 00196_wheat, 00199_wine

tool 00003_backscratcher, 00006_baseball_bat, 00016_blowtorch, 00020_bottle_opener,
00021_brace, 00023_breadbox, 00026_bullet, 00030_candlestick, 00035_cd_player,
00042_chopsticks, 00044_cleaver, 00049_coffeemaker, 00062_dagger, 00078_fork,
00079_freezer, 00090_grenade, 00092_hammer, 00093_handbrake, 00103_kettle,
00105_ladle, 00114_metal_detector, 00118_muff, 00130_paperweight, 00134_pickax,
00139_pocketknife, 00145_punch2, 00168_slingshot, 00170_spatula, 00171_spoon,
00173_stethoscope, 00185_tongs, 00186_tool, 00192_vise, 00197_wheelchair,
00200_wok

vehicle 00001_aircraft_carrier, 00014_bike, 00017_boat, 00025_buggy, 00031_cart,
00059_cruise_ship, 00075_ferry, 00084_golf_cart, 00085_gondola, 00100_jeep,
00115_minivan, 00154_sailboat, 00160_scooter, 00164_skateboard, 00165_sled,
00172_station_wagon, 00175_submarine, 00191_unicycle

other Other categories in test images.
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Figure 13: Time-Frequency map of MUSE-SK on one of subject 10’s training trial. We can see that
the MUSE-SK can focus on alpha band and gamma band, where is related to vision attention and
high-level visual recognition in neural science.
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Figure 14: Time-Frequency map of MUSE-SK on one trial in the testing set of subject 10. It is
evident that MUSE-SK focuses on the alpha and gamma bands, which are associated with visual
attention and high-level visual recognition in neuroscience.
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