
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SSI, from Specifications to Protocol? Formally verify security!
Anonymous Author(s)

ABSTRACT
We evaluate a bundle of specifications from the Self-Sovereign Iden-
tity (SSI) paradigm to construct an authentication protocol for the
Web. We demonstrate how relevant standards such as W3C Verifi-
able Credentials (VC), W3C Decentralised Identifiers (DIDs), and
components of the Hyperledger Aries Framework are to be assem-
bled methodologically into a protocol. We make those assumptions
from standard trust models explicit that underlie the derived pro-
tocol, and verify security and privacy properties, notably secrecy,
authentication, and unlinkability. This enables us to formally jus-
tify the additional precision that we urge these specifications to
consider, to ensure that implementors of SSI-based systems do not
neglect security-critical controls.
ACM Reference Format:
Anonymous Author(s). 2024. SSI, from Specifications to Protocol? Formally
verify security! . In Proceedings of the ACM Web Conference 2024 (WWW
’24), May 13–17, 2024, Singapore. ACM, New York, NY, USA, 13 pages. https:
//doi.org/subjecttoacceptance

1 INTRODUCTION
The Self-Sovereign Identity (SSI) paradigm, popularised in Christo-
pher Allen’s seminal blog post [2], refers to the idea of placing
users, or more generally agents, in control of their digital identity.
That is, agents should be able to create digital identities and use
them on the Web, without involving a third party when identities
are requested, presented or verified. In SSI, security and privacy
are declared paramount to protect the user [2, 13, 34]: users must
be in control, data minimisation should be observed, and privacy
preservation measures are desired. SSI systems are being consid-
ered internationally [7, 12, 14, 21, 27] and in various domains, e.g.,
finance [11], healthcare [19], and the public sector [16, 27].

Standards and specifications underlying these SSI systems are
still incomplete, but SSI systems based on these are already be-
ing built today: In 2021, hackers from the Chaos Computer Club
(CCC), Europe’s largest hacker association, demonstrated (cf. https:
//github.com/Fluepke/ssi-poc) a flawed application of a common
SSI standard in the German driver’s license app ID-Wallet showcas-
ing that authentication of the entity that verifies credentials was
not guaranteed by the protocol derived from SSI specifications [4].
The app was therefore cancelled just before roll-out on a national
scale. This prominent failure urges us to scrutinise security consid-
erations in the specifications regarding their corresponding level
of completeness.

To realise an identity and access management system, the follow-
ing building blocks are required: agent identification, attributes for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24, May 13–17, 2024, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN subject to acceptance.
https://doi.org/subjecttoacceptance

Table 1: Layers of common SSI specifications.

Layer Function Most common specification
4 Cryptographic envelopes DIF DIDComm Messaging [13]
3 Message exchange protocols Hyperledger Aries [17, 20, 38]
2 Attribute assertion W3C Verifiable Credentials [34]
1 Agent identification W3C Decentralised Identifiers [32]

authorisation, and protocols for authentication. In SSI, the specifi-
cations for those building blocks are subject to ongoing and mostly
separate standardisation efforts by the World Wide Web Consor-
tium (W3C), the Decentralised Identity Foundation (DIF), and the
Hyperledger Community. In Tab. 1, we summarise function and
layering of the specifications for W3C Decentralised Identifiers
(DIDs) [32], the W3C Verifiable Credentials (VC) Data Model [34],
Hyperledger Aries protocols [17, 20, 38], and DIF DIDComm [13].

When we examine the individual specifications, we observe
that information on how to implement the standards is scattered
across supplementary material, and without elaborating on the se-
curity implications. What is more, information on how to properly
combine the different standards is also limited: each specification
focuses on their domain of interest with little considerations of
the other layers of Tab. 1, resulting in the fragmentation of specifi-
cations. While this layered thinking is commonplace in software
engineering, problems may arise from a security perspective.

That being said, the specifications including DIDComm [13] and
the W3C VC data model [34] provide tools that indeed can be used
to create secure and privacy-preserving applications, if it’s done
right. However, when combining these standards, there should be
a methodology for ensuring that mistakes compromising security
are avoided. We thus formulate the following research questions:
(1) Can a formal model of an authentication protocol be derived

from the SSI specifications?
(2) What essential security requirements can be distilled from the

SSI specifications and related documents?
(3) Does the formal model satisfy the desired security properties?
(4) What essential design decisions MUST be made in order to

guarantee security which are not evident from the standards?
To answer these research questions, we apply the following

methodology: First, we review the relevant specifications and stan-
dards (Sec. 3.1, 3.2, 4.1) and provide an illustrating example (Sec. 3.3).
Next, we present an authentication protocol constructed from the
specifications (Sec. 4.2) and provide a formal mapping between the
abstract protocol model and the specifications (Sec. 4.3). Based on
the combined knowledge on specifications and security best prac-
tices, we define necessary trust relations between agents (Sec. 5.1)
and map formal security properties back to the informal desire of
those from the SSI specifications and related documents (Sec. 4.3).
We verify secrecy and authentication properties using the verifica-
tion tool Proverif [5, 6] and privacy properties (unlinkability) using
the tool DeepSec [9] (Sec. 5.2). Finally, we summarize the essential
design decisions required to guarantee the security of SSI protocols
as feedback to the specifications (Sec. 6).

1

https://doi.org/subject to acceptance
https://doi.org/subject to acceptance
https://github.com/Fluepke/ssi-poc
https://github.com/Fluepke/ssi-poc
https://doi.org/subject to acceptance

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 SECURITY METHODOLOGIES AND SSI
We review Allen’s SSI principles in the light of established secu-
rity and privacy methodologies. To this end, we first present such
methodologies. We next use them to identify the following prop-
erties as most relevant for SSI: secrecy, authentication, and un-
linkability, which we subsequently introduce. We last validate the
relevance of those properties by linking them to some of Allen’s
SSI principles.

Security properties to be considered can be derived from security
methodologies such as STRIDE. Of the threats in STRIDE, Spoofing
of user identity, Repudiability, and Information disclosure can be
partially addressed by establishing the security properties secrecy
and authentication, as initially articulated by Lowe [26]. Elevation of
privilege is also impacted by authentication, since authentication is
often established in order for access control to function. Tampering
and Denial of service are more perpendicular threats.

Next to those security properties, we consider the privacy prop-
erty of unlinkability, which means that two uses of a system cannot
be linked. Unlinkability can be considered the strongest privacy
property in the ISO/IEC 15408 security standard for information
systems (aka. Common Criteria [28]).

Secrecy and forward secrecy. Most threats are impacted by the
secrecy of long-term keys during regular execution of the protocol.
Information disclosure within a session is also impacted by the se-
crecy of material specific to a session of the protocol, such as session
keys and nonces. Secrecy holds, if whenever a session involving
honest agents completes, it is impossible that an attacker can obtain
the secrets in that session. Secrecy can also be evaluated in the face
of long-term keys being compromised, e.g. via a data breach, by
checking forward secrecy. Formally, forward secrecy is modelled
as two phases, the first where the protocol runs normally, and the
second where the long-term keys are revealed. We check whether
then the secrets in the first phase remain secret. This ensures that
information shared before a data breach remains secret.

Authentication. Threats such as spoofing of identity and repudi-
ation can be addressed by formal authentication properties, where
agreement is among the strongest. Agreement ensures that, when
one party completes the protocol, we can assume that the other
parties performed all previous actions in the protocol, and, for cor-
responding pairs of send and receive actions, the data was the same.
Agreement is, in addition, said to be injective, if for every session
completed, there are is a unique session for each of the other parties
involved. Injectivity is required to prevent replay attacks.

Unlinkability. is sometimes referred to as non-correlability in
anonymous credential systems. We believe that we are, in this
work, the first to point out that, even for credentials that are not
anonymous, unlinkability can be achieved from the perspective of
the issuer. Specifically, after issuing a credential, it is impossible for
the issuer to track how it is used with honest verifiers. We argue
this makes formal the concept of data sovereignty, in the sense that
the issuer does not control the usage of a credential after issuance.

Security & privacy for SSI. We reinforce the need for the pre-
sented properties by connecting them to Allen’s SSI principles [2].
Allen’s 2nd SSI principle, control, refers to users being able to

control what information about them is revealed and what is kept
secret. Thus control desires secrecy and authentication, where au-
thentication lends assurance regarding the context in which data
is revealed. Allen’s 3rd SSI principle, access, refers to users being
able to access information about themselves, but at the same time
keeping it secret from others. Allen’s 5th SSI principle, persistence,
stipulates that identities must be long-lived in the sense that iden-
tities may be retained when keys they map to are rotated. Thus
persistence is supported by forward secrecy, which ensures secrecy
in scenarios where key rotation is necessary. Allen’s 9th SSI prin-
ciple, minimisation, desires non-correlatibility, aka. unlinkability,
while acknowledging that it is difficult to fully achieve. This is
consistent with our observation that some but not all unlinkability
properties hold. Allen’s 10th SSI principle, protection, demands
identity authentication to occur independently from potential in-
terference by a third party to ensure the rights of individual users.
While this principle focuses on protecting the rights of users, it hints
at unlinkability from the perspective of issuers, to which we want to
draw attention in this work. It also hints at forward secrecy since
that mitigates against obtaining keys via coercion. Authentication
and hence agreement is explicitly mentioned in this principle.

3 WEB STANDARDS AS BASIC BUILDING
BLOCKS OF AN SSI PROTOCOL

We introduce DIDs and VCs, recommended by the W3C as Layer 1
and 2 of an SSI protocol, and sketch their application using a sim-
plified example protocol, omitting technologies for Layers 3 and 4.

3.1 W3C Decentralised Identifiers (DID)
Contrary to centrally managed identifiers, a Decentralised Iden-
tifier (a DID) is under control of the agent that it refers to. The
Decentralised Identifiers W3C recommendation [32] specifies how
such an agent proves control over a DID. A DID maps to a DID
document that incorporates information about cryptographic public
keys, which may be used by the agent controlling the DID to prove
their control over the DID. The mapping between the DID and
its DID document is defined by a DID method. The DID methods,
which can be defined and registered by anyone [36], define how
to retrieve a DID document from a DID. DID methods typically
involve a form of secure lookup to obtain the DID document, such
as did:web [29], which defines provisioning of DID documents via
TLS, or did:ethr [37] and did:sov [22], which define blockchain-
based DIDs on Ethereum or Hyperledger Indy, respectively. Locally
resolvable DID Methods include did:key [35], where a DID docu-
ment or associated public key is encoded in the DID itself.

For example, in Fig. 1, the DID did:web:issu:example.org
resolves to a DID document containing the public keys of the agent
issuer. Furthermore, the URI did:web:issu:example.org#key1
identifies which of the agent’s keys are employed. We clarify that,
while not explicitly specified, an explicit check is required to ensure
that the given key URI is among those listed in the DID document.

3.2 W3C Verifiable Credential (VC) data model
A Verifiable Credential (VC) according to the W3C recommenda-
tion [34] is a Resource Description Framework (RDF) dataset com-
prised of two RDF graphs: the credential graph containing claims

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Credential Graph

2024-09-13T14:34:18Z Credential
165653

expiration
Date

type credential
Subject

2000-01-01

birthDatedid:web:issu.example.org
(the Issuer)

issuer

Proof Graph
Signature
165653

Ed25519Signature2018
type

did:web:issu.example.org#key1
 pk(sk_issuer)

sig(
 canonicalise(credentialGraph),
 sk_issuer
)

verificationMethod

proofValue

creator

proof

2023-09-13T14:34:19Z

issuance
Date

did:web:issu.example.org
(the Issuer)

did:web:hold.example.org
(the Holder)

type

Presentation Proof Graph
Signature

42Ed25519Signature2018 type

did:web:hold.example.org#key2
pk(sk_holder)

sig(
 canonicalise(
 Credential Graph,
 Proof Graph,
 Presentation Graph,
 domai n,
 chal l enge),
 sk_holder
)

verification
Method

proofValue

creator

did:web:hold.example.org
(the Holder)

Presentation Graph

Presentation
42

VerifiablePresentation
type

VerifiableCredential Person

proof

784!37g105domain

challenge

did:web:verif.example.org
(Example Verifier)

verifiableCredential

Figure 1: The graph-based VC data model according to its JSON-LD context [34]. Notice the signature-relevant attributes of
challenge (a nonce) and domain from the presentation proof graph marked with red.

and attributes, which links to a proof graph containing the cre-
dential’s digital signature and metadata concerning its interpreta-
tion. The claims of the credential graph are the statements about
the credentialSubject that are asserted by the issuer (e.g. the
birthdate in Fig. 1). Claims include metadata such as a DID iden-
tifying the issuer who signs the credential, its expirationDate
and issuanceDate. The proof graph indicates the type of proof
explained generically in a separate Verifiable Credential Data In-
tegrity working draft [33]. The Data Integrity specification permits
multiple types, e.g. Ed25519Signature2018, which define how to
establish a signature’s validity using a specific signature scheme
and algorithm for obtaining a canonical representation of the RDF
graph underlying the credential [3, 18, 23, 24]. Fig. 1 suggests, using
typically notation employed in security (Dolev-Yao style [15]), how
signatures are generated using secret keys (sk) of agents and the
graphs. A term of form sig(𝑀, 𝑠𝑘) denotes a signature on bitstring
𝑀 using a private key 𝑠𝑘 , and pk(𝑠𝑘) denotes the corresponding
public key. This symbolic approach to security abstracts away the
implementation of signature schemes and canonicalise functions.

The VC specification [34] also defines a data model for Verifi-
able Presentations (VPs), which are necessary for the credential
subject, holding the VC, to prevent trivial replay attacks when a
credential is presented to another agent. A VP ties a VC crypto-
graphically to a particular session, by signing the VC along with
session information to certify that the holder has approved that the
VC may be used in the specified session only. The VP is described
in a presentation graph which links to the credential graph of the

relevant VC and the presentation proof graph, which describes a
digital signature on the presentation graph. Fig. 1 shows a VP com-
prised of the four graphs: the presentation graph and presentation
proof graph and the two graphs of the VC, i.e., the credential graph
and credential proof graph. As suggested symbolically in Fig. 1, the
session information signed by the signature in the presentation
proof graph is a serialisation of the presentation graph and optional
attributes in the proof graph, notably the domain and challenge.
This arguably confusing decision, i.e., to place some information
signed (the domain and challenge) outside the presentation graph,
is mandated by the Data Integrity draft [33], and implicitly in the
VC specification’s examples [34].

3.3 An example of authentication using VCs
VCs enable an agent (the holder) to prove to a second agent (the
verifier) that a third agent (the issuer) has asserted and signed some
claims about the holder. In other words, with a presentation of a
VC, an agent proves to a verifying agent that:
• they are in possession of the VC;
• the VC was issued by a particular issuer;
• the VC contains some claims, e.g., attributes of the holder;
• the VC was presented by the holder itself, for the purpose the
verifier intended, e.g., authenticated resource access on the Web.

As example, consider the use case of a student accessing online
teaching material of a guest professor. The student’s university (is-
suer) provides the student (holder) with a digital student credential.
It is signed by the university and asserts that the holder is a student.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

A guest professor at the university provides online teaching
material, served from their personal Web server, to the university’s
students. To access the online material, students have to prove that
they are really enrolled at the university by creating a VP asserting
a signature on the VC along with an identifier (DID) for the teacher
and other session-specific information. The professor verifies the
signature on the VC and VP using the public keys of the university
and student respectively, and checks that the claims and session
parameters are as expected.

Students verify that they are really talking to the professor by
looking up a trusted mapping between identifier (e.g. DID) and pub-
lic keys. In the Web-based case at hand, the professor’s homepage
may advertise the professor’s DID. Thereby, the here-described
system relies on the Domain Name System (DNS) and the transport
protocol HTTPS to ensure the integrity of the identifier-agent map-
ping. Other approaches formaintaining such identificationmapping
may include government registries, governed blockchains or smart
contracts. This mapping is commonly (and commonly implicitly)
deemed out-of-scope by SSI authentication protocols as a system-
level governance challenge. We make this assumption explicit in
Sec. 5.1 as the DID document and proof method assumptions.

We note that theW3CWorking GroupNote on VCUse Cases [30]
proposes 30 use cases from 7 domains. Among them, 25 concern
authentication of the holder, similarly to the one described above,
while 5 concern transferability and revocation. Trust assumptions
or protocols are not made explicit, as our paper addresses in Sec. 5.1.

4 CONSTRUCTING AUTHENTICATION
PROTOCOLS FOR SSI

To construct authentication protocols using the presented Web
standards (for Layers 1 and 2), we need to add protocol components
for Layers 3 and 4. We therefore first present potential protocol
components for Layers 3 and 4, which we find in the Hyperledger
Aries protocols and DIDComm. We then present the thus derived
SSI authentication protocol for Web resource access, and map the
protocol in detail to the SSI specifications.

4.1 Potential protocol components
The Hyperledger Aries community is in the process of defining
a framework of protocols for creating, transmitting and storing
verifiable digital credentials. We cover the three protocols intended
for building VC-based authentication protocols. These protocols are
agnostic to the specific data models and formats of the transmitted
payload, e.g., DIDs, VCs and VPs.
The Aries DID Exchange protocol [38], depicted in Appendix B
Fig. 4, is a protocol for establishing a session between agents using
DIDs. It defines three message types: a request communicating the
DID of the requesting agent; a response completing the exchange
from the responding agent; and a complete message confirming the
exchange from the requesting agent to the responding agent.
TheAries IssueCredential protocol [17], depicted in Appendix B
Fig. 5, is a protocol for issuing a VC. It defines two message types: a
request-credential message for a holder to request issuance of a VC,
and an issue-credential message containing the VC from the issuer.
The Aries Present Proof protocol [20], depicted in Appendix B
Fig. 6, is a protocol for presenting a VC. It defines two message

types: a request-presentation message from the verifier requesting a
verifiable presentation, and a presentation message containing a VP
from the holder. These protocols list “attachment registries” linking
to possible data models for messages, including VCs and VPs.
The DIF DIDComm Messaging. The above protocols define only
a message flow and do not consider how messages are encrypted
on the wire – the intention being that the protocols are meant
to be used on top of DIDComm Messaging [13]. Specified by the
Decentralised Identity Foundation (DIF), DIDCommMessaging [13]
is a methodology for encrypting and signing messages, using keys
in the DID documents of communicating agents.

4.2 A thus constructed authentication protocol
From the SSI specifications, we aim to derive an authentication
protocol for Web resource access, and specify it at a level of preci-
sion amenable to symbolic verification. We notice that application-
specific extensions to the message exchange protocols (Layer 3) are
required to construct a functional protocol. The result is a three-
party protocol comprised of two two-party protocols: First, the
issuance of a VC is conducted, such that this VC can be used
in multiple sessions of the provenance of a VC. A recently pro-
posed architecture [8] implements this protocol, without formal
verification of its security properties.

The protocol is informally illustrated in Fig. 2 as a message se-
quence chart. For the protocol’s complete applied 𝜋-calculus specifi-
cation [1] amenable to formal verification, see Appendix C Tab. 3 - 4.
In keeping with Dolev-Yao style symbolic notation, {𝑀}𝐾 denotes
the encryption of bitstring 𝑀 with a public key 𝐾 . We notate by
proj𝑖𝑀 the 𝑖𝑡ℎ projection of a tuple𝑀 of the form ⟨𝑀1, . . . , 𝑀𝑖 , . . .⟩,
dec(𝑀,𝐾) is the decryption of ciphertext 𝑀 using private key 𝐾 ,
and predicate check(𝑀,𝐾) checks a signature 𝑀 against a public
key 𝐾 . We use the following notation: 𝐼 , 𝑃,𝑉 are the DIDs of Issuer,
holder (aka. Prover), andVerifier, respectively. (𝑠𝑠𝑘𝑋 , 𝑠𝑝𝑘𝑋) is a ses-
sion key pair of agent 𝑋 with 𝑠𝑝𝑘𝑋 = 𝑝𝑘 (𝑠𝑠𝑘𝑋); and the long-lived
key pair (𝑠𝑘𝑋 , 𝑝𝑘𝑋) with 𝑝𝑘𝑋 = 𝑝𝑘 (𝑠𝑘𝑋) correspondingly. 𝑛 are
nonces and 𝑠 are signature values calculated via 𝑠𝑘 = 𝑠𝑖𝑔(𝑚′

𝑘
, 𝑠𝑘𝑋).

Constant attr serves as an attribute to assert, URI is the URI of a
desired Web resource under access control, and RULE is an access
control rule expressing expected claims in a VC.

Both two-party (sub-)protocols consist of two sub-sub-protocols:
A “handshake protocol” and an application-specific “follow-up pro-
tocol”. Both two-party protocols start with the Aries DID Exchange
Protocol as the handshake protocol. Seamlessly, the issuance of a
VC continues with the Aries Issue Credential Protocol as follow-up.
Similarly, the provenance of a VC follows then an extended version
of the Aries Present Proof Protocol.

In particular, the Aries Present Proof protocol is extended with
an additional access-request message that includes the URI of a
resource the holder wishes to access, and also includes an access-
response message communicating an access token if the present
proof protocol succeeds. The application-specific messages wrap
the Aries Present Proof protocol. Similarly, the last message of the
DID Exchange Protocol between two agents – a complete message
– is simultaneously the first message of the follow-up protocol in
in Fig. 2. For the issuance, the complete message is simultaneously

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Issuer (University)
𝑠𝑘𝐼

Holder (Student)
𝑠𝑘𝑃

Verifier (Professor’s Pod)
𝑠𝑘𝑉

new 𝑛𝐼 , 𝑠𝑠𝑘𝐼 new 𝑛𝑃𝐼 , 𝑛𝐻 , 𝑠𝑠𝑘𝑃𝐼

𝑚′
0 := ((𝑛𝑃𝐼 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝐼)){ (𝑚′

0, sig(𝑚′
0, 𝑠𝑠𝑘𝑃𝐼)) }𝑝𝑘𝐼

ifcheck((𝑛𝑃𝐼 , 𝑠𝑝𝑘𝑃𝐼), s0, 𝑠𝑝𝑘𝑃𝐼) then
𝑚′

1 := (𝑛𝑃𝐼 , 𝑛𝐼 , 𝑝𝑘 (𝑠𝑠𝑘𝐼)) { (𝑚′
1, sig(𝑚′

1, 𝑠𝑘𝐼)) }𝑠𝑝𝑘𝑃𝐼

ifcheck((𝑛′
𝑃𝐼
, 𝑛𝐼 , 𝑠𝑝𝑘𝐼), s1, 𝑝𝑘𝐼) then

if𝑛𝑃𝐼 == 𝑛′
𝑃𝐼

then
𝑚′

2 := ((𝑛𝐼 , 𝑃, 𝐼 , 𝑛𝐻), sig((𝑛𝐼 , 𝑃, 𝐼 , 𝑛𝐻), 𝑠𝑘𝑃)){ (𝑚′
2, sig(𝑚′

2, 𝑠𝑠𝑘𝑃𝐼)) }𝑠𝑝𝑘𝐼

ifcheck(((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′, 𝑛𝐻), s𝑃), s2, 𝑠𝑝𝑘𝑃𝐼) then

ifcheck((𝑛′
𝐼
, 𝑃 ′, 𝐼 ′, 𝑛𝐻), s𝑃 , 𝑝𝑘𝑃) then

if (𝑛′
𝐼
, 𝑃 ′, 𝐼 ′) = (𝑛𝐼 , 𝑃, 𝐼) then

claims := (𝑃, attr, 𝐼)
VC := (claims, sig(claims, 𝑠𝑘𝐼))
𝑚′

3 := ((VC, 𝑃, 𝑛𝐻), sig((VC, 𝑃, 𝑛𝐻), 𝑠𝑘𝐼)) { (𝑚′
3, sig(𝑚′

3, 𝑠𝑠𝑘𝐼)) }𝑠𝑝𝑘𝑃𝐼

ifcheck(((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′
𝐻
), 𝑠𝐻), s3, 𝑠𝑝𝑘𝐼) then

ifcheck((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′
𝐻
), s𝐻 , 𝑝𝑘𝐼) then

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′, 𝑛′

𝐻
) = (𝑃, 𝐼, 𝑃, 𝑛𝐻) then

issuance

new 𝑛𝑉 , 𝑛𝐶 , 𝑠𝑠𝑘𝑉 , 𝑡𝑘𝑛new 𝑛𝑃𝑉 , 𝑠𝑠𝑘𝑃𝑉

𝑚′
4 := (𝑛𝑃𝑉 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝑉))

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′, 𝑛′

𝐻
) = (𝑃, 𝐼, 𝑃, 𝑛𝐻) then { (𝑚′

4, sig(𝑚′
4, 𝑠𝑠𝑘𝑃𝑉)) }𝑝𝑘𝑉

ifcheck((𝑛𝑃𝑉 , 𝑠𝑝𝑘𝑃𝑉), s4, 𝑠𝑝𝑘𝑃𝑉) then
𝑚′

5 := (𝑛𝑃𝑉 , 𝑛𝑉 , 𝑝𝑘 (𝑠𝑠𝑘𝑉)){ (𝑚′
5, sig(𝑚′

5, 𝑠𝑘𝑉)) }𝑠𝑝𝑘𝑃𝑉

ifcheck((𝑛′
𝑃𝑉

, 𝑛𝑉 , 𝑠𝑝𝑘𝑉), s5, 𝑝𝑘𝑉) then
if𝑛𝑃𝑉 == 𝑛′

𝑃𝑉
then

𝑚′
6 := (𝑛𝑉 ,URI) { (𝑚′

6, sig(𝑚′
6, 𝑠𝑠𝑘𝑃𝑉)) }𝑠𝑝𝑘𝑉

ifcheck((𝑛′
𝑣,𝑢𝑟𝑖

′), s6, 𝑠𝑝𝑘𝑃𝑉) then
if (𝑛′

𝑉
,URI’) == (𝑛𝑉 ,URI) then

𝑚′
7 := (𝑛𝐶 , RULE){ (𝑚′

7, sig(𝑚′
7, 𝑠𝑠𝑘𝑉)) }𝑠𝑝𝑘𝑃𝑉

ifcheck((𝑛𝑐 , RULE), s7, 𝑠𝑝𝑘𝑉) then
ifclaims = RULE then
VP := ((VC, 𝑛𝑐 ,𝑉), sig((VC, 𝑛𝑐 ,𝑉), 𝑠𝑘𝑃)) {VP, sig(VP, 𝑠𝑠𝑘𝑃𝑉) }𝑠𝑝𝑘𝑉

ifcheck(((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′
𝑐 ,𝑉

′), s𝑃), s8, 𝑠𝑝𝑘𝑃𝑉) then
ifcheck((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′

𝑐 ,𝑉
′), s𝑃 , 𝑝𝑘𝑃) then

ifcheck((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if ((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), 𝑛′

𝐶
,𝑉 ′) = ((𝑃, 𝑎𝑡𝑡𝑟, 𝐼), 𝑛𝐶 ,𝑉) then

𝑚′
9 := (tkn, sig(tkn, 𝑠𝑘𝑉))

{sig(𝑚′
9, 𝑠𝑠𝑘𝑉) }𝑠𝑝𝑘𝑃𝑉

ifcheck((tkn, stkn), s9, 𝑠𝑝𝑘𝑉) then
ifcheck(tkn, stkn, 𝑝𝑘𝑉) then

provenance

Figure 2: An SSI authentication protocol consisting of issuance and provenance sub-protocols.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

a request-credential message; while for provenance, the complete
message is simultaneously an access-request message.

4.3 Connecting protocol and specifications
Wemap the protocol (cf. Fig. 2) to the specification layers (cf. Tab. 1).
Layer 1: Agent identification
• We interpret (𝑠𝑘𝑋 , 𝑝𝑘 (𝑠𝑘𝑋)) to be the long-lived key pair of an
agent 𝑋 .

• We interpret the long-lived identifiers of an agent, 𝑋 with 𝑋 ∈
(𝐼 , 𝑃,𝑉), to be DIDs, e.g., using did:web [29]. By Sec. 5.1, we
assume the public key to be obtainable from an agent’s DID;
𝑝𝑘 (𝑠𝑘𝑋) = getPubKey(𝑋).

• We interpret (𝑠𝑠𝑘𝑋 , 𝑝𝑘 (𝑠𝑠𝑘𝑋)) to be a short-lived session key pair
of an agent 𝑋 . We interpret the public key of a session key pair
𝑠𝑝𝑘𝑥 = 𝑝𝑘 (𝑠𝑠𝑘𝑥) to be encoded in a DID, e.g., using did:key [35],
when transmitted in messages.

Layer 2: Attribute assertion
• By Sec. 5.1, we assume the issuer to have verified that the holder

is actually exhibiting the attribute attr to be asserted.
• We interpret claims = (𝑃, 𝑎𝑡𝑡𝑟, 𝐼) according to the W3C VC data

model [34], with 𝑃 being the credentialSubject, attr being
some claim, e.g., birthDate from Fig. 1, and 𝐼 being the issuer.

• We interpret VC = (claims, sig(claims, 𝑠𝑘𝐼)) according to the
W3C VC data model [34], where the claims are RDF triples form-
ing the credential graph and the signature value sig(claims, 𝑠𝑘𝐼)
is the proofValue of the proof graph. The verificationMethod
is 𝑝𝑘 (𝑠𝑘𝐼). For the signature, we assume claims in canonicalised
form (i.e. after canonicalise(Credential Graph) from Fig. 1).

• We interpret VP = ((VC, 𝑛𝐶 ,𝑉), sig((VC, 𝑛𝐶 ,𝑉), 𝑠𝑘𝑃) according
to the W3C VC data model [34], where the VC is linked via
verifiableCredential from the presentation. In the presenta-
tion proof graph, sig((VC, 𝑛𝐶 ,𝑉), 𝑠𝑘𝑃) is the proofValue with
𝑝𝑘 (𝑠𝑘𝐼) the verificationMethod, 𝑛𝐶 the challenge, and 𝑉
the domain. For the signature, we assume (VC, 𝑛𝐶 ,𝑉) in canoni-
calised form (i.e. after canonicalise(Credential Graph, Proof Graph,
Presentation Graph, domain, challenge) from Fig. 1).

Layer 3: Message exchange protocols
• We interpret the first three messages exchanged between any
two agents, 𝑚′

0 -𝑚
′
2 and 𝑚′

4 -𝑚
′
6, according to the Aries DID

Exchange Protocol [38]. We notice that nonce is not required
by the specification. Let 𝑋 ∈ {PI, PV} and 𝑌 ∈ {I,V}:
– 𝑚′

0 and𝑚
′
4 are request messages with 𝑝𝑘 (𝑠𝑠𝑘𝑋) as did and 𝑛𝑋

as nonce.
– 𝑚′

1 and𝑚
′
5 are response messages with 𝑝𝑘 (𝑠𝑠𝑘𝑌) as did and

𝑛𝑌 and 𝑛𝑋 as nonce.
– 𝑚′

2 and𝑚
′
6 are complete messages with 𝑛𝑌 as a nonce.

• In the interaction between Issuer and Holder, we interpret the
two last messages,𝑚′

2 and𝑚
′
3, according to the Aries Issue Cre-

dential Protocol [17]. We notice that domain and challenge are
not required by the specifications.
– 𝑚′

2 is a request-credential message that contains an attachment
of: 𝑛𝐼 as nonce, 𝑛𝐻 as challenge, 𝑃 as holder, 𝐼 as issuer, and
a corresponding signature value as proofValue.
– 𝑚′

3 is a issue-credential message that contains an issued creden-
tial as an attachment: We interpret the attachment to be a VP
according to theW3C VC data model [34]. It includes the freshly

issued VC as verifiableCredential, 𝑛𝐻 as challenge and 𝑃
as domain.

• In the interaction between Holder and Verifier, we interpret the
two messages𝑚′

7 and VP (corresponding to𝑚′
8) according to the

Aries Present Proof Protocol [20]. We notice that domain and
challenge are not required by the specifications.
– 𝑚′

7 is a request-presentation message that contains a Verifi-
able Presentation Request as an attachment. We interpret the
attachment according to some attachment data model defini-
tion, e.g., provided by [8]: It includes 𝑛𝐶 as challenge, 𝑉 as
domain and RULE, the definition of the VC to present, e.g., as
requiredCredential.
– VP (i.e.𝑚′

8) is technically interpreted as a presentationmessage
containing the actual VP as an attachment: We interpret the
attachment as a VP according to the W3C VC data model [34]
with the VC as verifiableCredential, 𝑛𝐶 as challenge and
𝑉 as domain.

• The two messages,𝑚′
6 and𝑚

′
9, are interpreted according to the

mentioned extension of Aries Present Proof.
– 𝑚′

6 is a access-request message that includes URI as target.
– 𝑚′

9 is a access-response message; includes tkn as accessToken.
Layer 4: Cryptographic envelopes
• We interpret𝑚 = {(𝑚′, sig(𝑚′, 𝑠𝑘𝑆))}𝑝𝑘 (𝑠𝑘𝑅) to model a message
𝑚 with payload𝑚′ subject to signature using the sender’s private
key 𝑠𝑘𝑆 and encryption using the receivers’ public key 𝑝𝑘 (𝑠𝑘𝑅),
i.e., authcrypt as defined by DIDComm [13].

• Weassume automatic decryption of amessage𝑚 to its payload𝑚′

if possible for an agent. We then interpret check(𝑚′, s, 𝑝𝑘 (𝑠𝑘𝑆))
as explicitly checking the signature value 𝑠 of payload𝑚′ using
the sender’s public key 𝑝𝑘 (𝑠𝑘𝑆), as required by authdecrypt
defined by DIDComm [13].

5 TRUST, SECURITY AND PRIVACY,
FORMALLY VERIFIED

We formally justify the correctness of the constructed protocol.
Firstly, we make explicit the trust assumptions that must be re-
spected for secure functioning of the protocol. We then use stan-
dard tools to verify a comprehensive range of security and privacy
properties. We highlight throughout how trust assumptions and
properties verified are connected to SSI principles and systems.

5.1 Trust assumptions necessary for SSI
In order to reason about security and privacy it is essential to make
explicit the underlying trust assumption against which we verify
the protocol.We declare the following assumptions about the agents
and the underlying infrastructure of identifiers and cryptographic
keys. These assumptions are often not stated by SSI protocols and
specifications, but relied on implicitly.
(1) The Self-Sovereign Identity (SSI) assumption: All agents
can mint and manage key pairs in a self-sovereign manner and
honest agents never intentionally publish their private keys.

(2) The DID document assumption: All agents assume the in-
tegrity of the link between the DID of an honest agent and a
DID document containing public keys of the honest agent. Thus
the infrastructure employed by the honest agents for their DIDs
must be trusted.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

I ssuer I Ver i f i er V

Hol der H
Ver i f y
a) DI D cont r ol
b) at t r i but e

assume due di l l i gence

l ear ns exi st ence of asser t i on

Figure 3: The trust assumption triangle.

(3) The proof method assumption: If the proof graph contains a
URI indicated by proofMethod then the key extracted from the
URI must also appear in the DID document obtained via the DID
of the relevant agent (issuer in a VC or holder in a VP).1

(4) The Verifier-Issuer assumption: An honest verifier assumes
that an honest issuer has conducted due diligencewhen validating
the assertions signed by the issuer, e.g. that the holder is actually
a student (which may be out-of-band).

(5) The well-specified assumption: Honest parties assume that
parties they trust follow the protocol, even during a data breach.
Importantly, honest agents may also engage in sessions with
agents that do not follow the protocol [15, 25], which is reasonable
since attackers assuming roles within the system can co-exist
with honest participants and those attackers may exploit their
position to interfere with sessions between honest agents.
The goal with any SSI authentication protocol is to establish a

trust relationship from the verifier to the holder, transitively via
the issuer by means of asserting and signing claims, as suggested in
Fig. 3. The verifier trusts the issuer to have asserted correct informa-
tion about the holder. The fact that the issuer has some relationship
with the holder, is only revealed by the holder upon presentation of
the credential. Then, transitively, the verifier may trust the holder
to exhibit a certain attribute which has been attest by the issuer.
Inversely, the holder must be willing to present the credential to
the verifier. This case is similar to the holder trusting the issuer
to be the (honest) issuer when revealing private information for
validation of attributes to include in the credential.

5.2 Results of security and privacy analysis
Based on a model reflecting these trust assumption we can return
to the security and privacy properties laid down in Sec. 2 to verify
that they hold. Proofs of all properties are provided in a repository
and summarised in Tab. 2.

Forward secrecy. Relevant secrecy and forward secrecy proper-
ties are formally verified in rows 1-2, respectively, of Tab. 2. Our
formal analysis shows that session secrets in the past are preserved
even if the long-term private keys of all agents are revealed. Some
information may be leaked without compromising other proper-
ties, notably the VC itself and information about the access control
policy is leaked to an attacker posing as a verifier or holder, respec-
tively. The VC is leaked, as the holder may present the credential
to a compromised verifier, and the VP contains the VC (this is not
an attack, since the attacker cannot use the VC). The access control

1For a clarification of “checked against” we refer to: “Dereferencing a public key URL
reveals information about the controller of the key, which can be checked against the
issuer of the credential.” [34]

rule is leaked, as the protocol explains to anyone who asks what
credential is required to access a resource via a URI it controls.

Authentication. There are multiple agreement properties [26] to
check for the protocol. Between two parties we have: If the issuer
completes the protocol, then it injectively agrees with the holder
regarding the first three messages of the protocol. This ensures that
the issuer really issued the credential to the holder it believes it did.
If the holder reaches the fourth message in the protocol, then it
injectively agrees with the first four messages of the issuer. This en-
sures that the holder really received a credential from the intended
issuer. If the holder completes a session with a verifier, then it in-
jectively agrees with all five message exchanges in a session with a
verifier. This ensures that the holder really presented a credential to
the intended verifier. If the verifier completes the protocol, then it
injectively agrees with its first four messages with the holder. This
ensures that the presentation was really received from the agent
concerned. The final property fails if domain is omitted in the VP
(see row 6 of Tab. 2).

Since three parties are involved in SSI, additional assurance re-
garding authentication can be achieved if we check a multi-party
agreement property [10], where one agent establishes a belief about
two or more other agents. If the verifier completes the protocol,
then it agrees with all messages of both the holder and issuer (ex-
cluding the final message sent). This ensures that if a credential
was presented by a holder, then that credential originates in a legit-
imate session with an issuer. This property is non-injective, since
a credential may be issued once and used many times, meaning
there is not a one-to-one correspondence between verifier sessions
and issuer sessions. Perhaps surprisingly, the above multi-party
agreement property does not follow from the two-party agreement
properties. Indeed we were able to uncover the presence of an at-
tack on multi-party agreement, which cannot be detected using
two-party agreement if the holder were to neglect to check the sig-
nature on a VC they are issued. Specifically, an attacker may pose
as an issuer and re-issue VCs of an honest issuer (row 8, Tab. 2).

All authentication properties above hold even if VPs in previ-
ously completed sessions are leaked (e.g. due to a data breach or a
requirement to reveal logs). This compromise situation is important
to note, since if we mistakenly did not include the challenge in
the VP then all authentication properties from the perspective of
the verifier fail once VPs are revealed. This compromise situation
with the challenge present and missing is presented in respective
rows 3 and 6 of Tab. 2. For a complete picture regarding agreement,
we also check that, even if the holder is compromised, there is a
non-injective agreement between the verifier and the issuer, re-
garding their common data, namely the VC (see row 5 Tab. 2). This
means that credentials from honest issuers cannot be forged.

Unlinkability. We formulate unlinkability from the perspective
of the issuer as an equivalence problem between a “system” model
where the credential is used twice and an idealised “specification”
where each session with an honest verifier involves a fresh creden-
tial. In order to model the issuer as an attacker, the long-term keys
of the issuer are revealed to the attacker. A proof using the DeepSec
tool appears in row 9 Tab. 2.

A stronger property is unlinkability from the perspective of
both the issuer and verifier, which further ensures that verifiers

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: The structure of our GitHub repository containing the formal verification of security properties for our instance of an
SSI authentication protocol. Paths are relative to https://anonymous.4open.science/r/ssi-protocol-verify/.

Protocol Property No. Relative File Path in Repository OK Attack
Plain VCs Secrecy 1 ssipv.pv#L287
(PlainVCs/DIDComm/) 2 archive/ssipv_forward_secrecy.pv

Agreement 3 ssipv.pv#309
4 ssipv_ok_VP_leaked.pv
5 ssipv_unforgeable_VC.pv
6 ssipv_attack_domain_missing_replay.pv × masquerade as prover
7 ssipv_attack_no_nonce_VP_leaked.pv × replay credential
8 ssipv_attack_VC_reissued.pv × reissue old credential

Unlinkablitiy 9 ssipv_unlinkable.dps
10 ssipv_attack_verifier_unlinkablity.dps × verifier tracks prover

Anon VCs Secrecy 11 ssipv.pv#L297
(AnonVCs/DIDComm/) Agreement 12 ssipv.pv#L319

Unlinkablitiy 13 ssipv_unlinkablity_ok_wrt_verifier.dps

Plain VCs + Diffie Hellmann Secrecy 14 ssipv.pv#L302
(PlainVCs/DIDComm+DH/) Agreement 15 ssipv.pv#L324

Anon VCs + Diffie Hellmann Secrecy 16 ssipv.pv#L312
(AnonVCs/DIDComm+DH/) Agreement 17 ssipv.pv#L334

cannot link two uses of the same credential. This property cannot
be achieved for regular verifiable credentials, since the identity of
the holder appears in each verifiable presentation (row 10 Tab. 2).
However, it is achieved for anonymous credentials, which hide the
identity of the holder using zero-knowledge proofs (row 13 Tab. 2).

Further protocols and anonymous credentials. The examined pro-
tocol is, of course, not a unique solution for SSI on the Web. For
example, we have verified variants that open with a Diffie-Hellman
handshake in place of the DIDComm Exchange DID handshake (see
lines 14-17 of Tab. 2). A natural question is why, given privacy is re-
flected in SSI principles, have we mainly discussed non-anonymous
verifiable credentials that reveal the DID of a prover to verifiers,
rather than anonymous credentials. The reason is that the security
properties of anonymous credentials only hold if trust assumptions
are strengthened. In particular, the security of an individual agent
depends on the honesty of the entire group of agents holding the
same credential, (this is reflected in the model employed to verify
rows 11-12 of Tab. 2). Those proofs involve a richer message theory
modelling BBS+ zero-knowledge proofs and a modified protocol
(not shown). Due to this weakened trust assumption, for anony-
mous credentials, Allen’s SSI principle of control is weakened,
that is, control becomes a collective responsibility not entirely ones
own. This explains our focus on cryptographically simpler VCs. To
strengthen trust in order for the security of anonymous credential
systems to function, adequate wallet management measures of a
group of agents must be made explicit, e.g. the issuer should au-
thenticate an attested wallet rather than the holder directly, or all
employees holding an attribute need adequate security training.
On the other hand, anonymous credentials do strengthen unlink-
ability, as explained in Sec. 5.2, and in turn the SSI principle of
minimisation. Thus there is trade-off between trust and privacy
when choosing between anonymous and regular credentials.

6 CONCLUSION
We presented in Sec. 4.3 a mapping between a symbolic model of
an SSI protocol (Fig. 2) and specifications for SSI in Sec. 3 and 4.1.
This has enabled us to use symbolic security tools to verify a range
of security and privacy properties summarised in Table 2. These
properties formally support the argument that the constructed pro-
tocol is indeed in alignment with the principles of SSI. The most
important insight that we reinforce throughout the paper is that
certain parameters marked as optional in specifications are not
optional. Notably, omitting the domain and challenge in the VP
leads to critical attacks allowing attackers to authenticate them-
selves using the credentials of honest agents (rows 6-7 Tab. 2). Some
trust clarifications that do not appear explicitly in specifications,
notably the proof method assumption in Sec. 5.1, are critical for all
properties. The role of trust assumptions in ensuring properties
verified underscores the importance of spelling out such trust as-
sumptions and protocol design decisions to mitigate vulnerabilities
in SSI-based systems.

We believe that our methodology, which is to connect elements
of SSI to standard security models, is general enough to be applied
to evaluate protocols tailored to other SSI use cases. In particular,
we have explained that DIDs map to identities, as they typically
appear in security protocols, and their resolution to a public key,
is the typical trust assumption that the honest agents know the
mapping between honest identities and public keys. We have also
explained how elements of VC standards and signatures in proofs
can be represented symbolically in a protocol specification, and
how layers provided by Hyperledger Aries and DIDComm may be
assembled. We acknowledge that different use cases may require a
slightly different assembly of the standards, some of whichwe touch
on in Sec. 4.3. We also explained how such mappings can be used
to provide genuine insight in the compliance with SSI principles
by connecting those principles to standard security properties.

8

https://anonymous.4open.science/r/ssi-protocol-verify/
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv.pv#L287
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/archive/ssipv_forward_secrecy.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv.pv#309
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_ok_VP_leaked.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_unforgeable_VC.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_attack_domain_missing_replay.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_attack_no_nonce_VP_leaked.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_attack_VC_reissued.pv
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_unlinkable.dps
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm/ssipv_attack_verifier_unlinkablity.dps
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm/ssipv.pv#L297
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm/
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm/ssipv.pv#L319
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm/ssipv_unlinkablity_ok_wrt_verifier.dps
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm%2BDH/ssipv.pv#L302
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm%2BDH/
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/DIDComm%2BDH/ssipv.pv#L324
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm%2BDH/ssipv.pv#L312
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm%2BDH/
https://anonymous.4open.science/r/ssi-protocol-verify/AnonVCs/DIDComm%2BDH/ssipv.pv#L334

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile val-

ues, new names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018).
https://doi.org/10.1145/3127586, https://doi.org/10.1145/3127586

[2] Allen, C.: The path to self-sovereign identity (2016), http://www.lifewithalacrity.
com/2016/04/the-path-to-self-soverereign-identity.html

[3] American National Standards Institute, Inc.: Public key cryptography for the
financial services industry: the Elliptic Curve Digital Signature Algorithm
(ECDSA). X9.62, ANSI (2005)

[4] Biselli, A.: Konzeptionell kaputt und ein riesiger rückschritt (2021), https:
//netzpolitik.org/?p=338612

[5] Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14). pp. 82–96.
IEEE Computer Society, Cape Breton, Nova Scotia, Canada (2001)

[6] Blanchet, B., Cheval, V., Cortier, V.: ProVerif with lemmas, induction, fast sub-
sumption, andmuchmore. In: IEEE Symposium on Security and Privacy (S&P’22).
pp. 205–222. IEEE Computer Society, San Francisco, CA (2022)

[7] Boysen, A.: Decentralized, self-sovereign, consortium: The future of digital iden-
tity in Canada. Frontiers Blockchain 4, 624258 (2021)

[8] Braun, C.H.J., Papanchev, V., Käfer, T.: SISSI: an architecture for seman-
tic interoperable self-sovereign identity-based access control on the Web.
In: Proceedings of the ACM Web Conference 2023. p. 3011–3021. WWW
’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3543507.3583409

[9] Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: deciding equivalence
properties in security protocols theory and practice. In: 2018 IEEE Sym-
posium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. pp. 529–546. IEEE Computer Society (2018).
https://doi.org/10.1109/SP.2018.00033

[10] Cremers, C., Mauw, S.: Operational Semantics and Verification of Secu-
rity Protocols. Information Security and Cryptography, Springer (2012).
https://doi.org/10.1007/978-3-540-78636-8, https://doi.org/10.1007/978-3-540-
78636-8

[11] de Cristo, F.S., Shbair, W.M., Trestioreanu, L., State, R., Malhotra, A.: Self-
Sovereign Identity for the financial sector: A case study of PayString service. In:
Xiang, Y., Wang, Z., Wang, H., Niemi, V. (eds.) 2021 IEEE International Confer-
ence on Blockchain, Blockchain 2021, Melbourne, Australia, December 6-8, 2021.
pp. 213–220. IEEE (2021). https://doi.org/10.1109/Blockchain53845.2021.00036

[12] Cucko, S., Turkanovic, M.: Decentralized and Self-Sovereign Iden-
tity: Systematic mapping study. IEEE Access 9, 139009–139027 (2021).
https://doi.org/10.1109/ACCESS.2021.3117588

[13] Curren, S., Looker, T., Terbu, O.: DIDComm messaging. Editor’s draft, DIF: De-
centralized Identity Foundation (2021), https://identity.foundation/didcomm-
messaging/spec/

[14] Darnell, S.S., Sevilla, J.: 3 stages of a pan-African identity framework for estab-
lishing Self-Sovereign Identity with blockchain. Frontiers Blockchain 4, 631640
(2021)

[15] Dolev, D., Yao, A.: On the security of public key protocols.
IEEE Transactions on Information Theory 29(2), 198–208 (1983).
https://doi.org/10.1109/TIT.1983.1056650

[16] Freytsis, M., Barclay, I., Radha, S.K., Czajka, A., Siwo, G.H., Taylor, I.J.,
Bucher, S.L.: Development of a mobile, Self-Sovereign Identity approach for
facility birth registration in Kenya. Frontiers Blockchain 4, 631341 (2021).
https://doi.org/10.3389/fbloc.2021.631341

[17] Glastra, T., Aristy, G.: Aries RFC 0453: Issue credential protocol 2.0. RFC,
Hyperledger Aries Community (2021), https://github.com/hyperledger/aries-
rfcs/tree/main/features/0453-issue-credential-v2

[18] Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: Algo-
rithms for leaning and labelling blank nodes. ACM Trans. Web 11(4), 22:1–22:62
(2017)

[19] Houtan, B., Hafid, A.S., Makrakis, D.: A survey on blockchain-based Self-
Sovereign patient identity in healthcare. IEEE Access 8, 90478–90494 (2020).
https://doi.org/10.1109/ACCESS.2020.2994090

[20] Khateev, N., Curran, S.: Aries RFC 0454: Present proof protocol 2.0. RFC,
Hyperledger Aries Community (2021), https://github.com/hyperledger/aries-
rfcs/blob/main/features/0454-present-proof-v2/README.md

[21] Kudra, A.: Self-sovereign identity (SSI) in Deutschland. Datenschutz und Daten-
sicherheit 46(1), 22–26 (2022)

[22] Lodder, M., Hardman, D.: Sovrin DID method specification. Editor’s
draft (2023), https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-
template.html

[23] Longley, D., Kellogg, G., Yamamoto, D.: RDF dataset canonicalization a standard
RDF dataset canonicalization algorithm. W3C working draft, W3C (2023), https:
//www.w3.org/TR/rdf-canon/

[24] Longley, D., Sporny, M.: RDF dataset canonicalization. Final community group
report, W3C (2022), https://www.w3.org/community/reports/credentials/CG-
FINAL-rdf-dataset-canonicalization-20221009/

[25] Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. Softw. Concepts Tools 17(3), 93–102 (1996)

[26] Lowe, G.: A hierarchy of authentication specifications. In: 10th Com-
puter Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA. pp. 31–44. IEEE Computer Society (1997).
https://doi.org/10.1109/CSFW.1997.596782

[27] Mahula, S., Tan, E., Crompvoets, J.: With blockchain or not? opportunities
and challenges of Self-Sovereign Identity implementation in public adminis-
tration: Lessons from the Belgian case. In: Lee, J., Pereira, G.V., Hwang, S.
(eds.) DG.O’21: The 22nd Annual International Conference on Digital Govern-
ment Research, Omaha, NE, USA, June 9-11, 2021. pp. 495–504. ACM (2021).
https://doi.org/10.1145/3463677.3463705

[28] National Security Agency: Common Criteria for information technology security
evaluation (CCMB-2017-04-002) (2017), https://www.commoncriteriaportal.org/
files/ccfiles/CCPART2V3.1R5.pdf

[29] Prorock, M., Steele, O., Terbu, O.: did:web method specification. Editor’s draft
(2023), https://w3c-ccg.github.io/did-method-web/

[30] Sambra, A.: Verifiable credentials use cases. Working group note, W3C (2019),
https://www.w3.org/TR/vc-use-cases/

[31] Sambra, A.: Verifiable credentials implementation guidelines 1.0. Editor’s draft,
W3C (2023), https://w3c.github.io/vc-imp-guide/

[32] Sporny, M., Guy, A., Sabadello, M., Reed, D.: Decentralized Identifiers (DIDs).
W3C recommendation, W3C (2022), https://www.w3.org/TR/did-core/

[33] Sporny, M., Longley, D., Prorock, M.: Verifiable credential data integrity 1.0
securing the integrity of verifiable credential data. W3C working draft, W3C
(2023), https://www.w3.org/TR/2023/WD-vc-data-integrity-20230305/

[34] Sporny, M., Noble, G., Longley, D., Burnett, D.C., Zundel, B., Hartog, K.D.:
Verifiable credentials data model v1.1. W3C recommendation, W3C (2022),
https://www.w3.org/TR/vc-data-model/

[35] Sporny, M., Zagidulin, D., Longley, D., Steele, O.: The did:key method v0.7. Unof-
ficial draft (2022), https://w3c-ccg.github.io/did-method-key/

[36] Steele, O., Sporny, M.: DID specification registries. W3C group note, W3C
DID Working Group (2023), https://www.w3.org/TR/did-spec-registries/#did-
methods

[37] Veramo core team: ETHR DID method specification. Editor’s draft (2022),
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/
did-method-spec.md

[38] West, R., Bluhm, D., Hailstone, M., Curren, S., Curran, S., Aristy, G.: Aries
RFC 0023: DID exchange protocol 1.0. RFC, Hyperledger Aries Community
(2021), https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-
exchange/README.md

A EXAMPLES OF AMBIGUITIES IN SSI
SPECIFICATIONS WITH SECURITY
IMPLICATIONS

When we examine the individual standards, we observe that in-
formation on how to implement the standards is scattered across
supplementary material, and without elaborating on the security
implications. For example, concerning omitting optional fields, the
VCDataModel specification [34] does not specify the datamodel for
signatures, but does contain examples that include security-relevant
data fields (namely: domain, challenge), which are required to, e.g.,
prevent replay attacks. Those fields are in fact defined in a working
draft on VC Data Integrity [33], where they are marked as optional.
Neither the VC Data Integrity draft [33] nor the VC Implementation
Guidelines [31] are sufficient to understand that not using these
optional fields can result in critical authentication vulnerabilities.
Elsewhere in the specifications, both Aries protocols for creden-
tial issuance [17] and presentation [20] define protocol messages,
where the actual payload of a message, the so-called attachment,
is not defined by the protocol specification, but (again) in other
documents. These attachment definitions also lack security consid-
erations and explanations of the mentioned optional fields, instead
building on the VC recommendation that, as we just explained, is
incomplete in this sense. Thus, there are security controls that are
not clarified anywhere in this bundle of specifications that SSI is
intended to rely upon.

9

https://doi.org/10.1145/3127586
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://netzpolitik.org/?p=338612
https://netzpolitik.org/?p=338612
https://doi.org/10.1007/978-3-540-78636-8
https://doi.org/10.1007/978-3-540-78636-8
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0454-present-proof-v2/README.md
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://www.w3.org/TR/rdf-canon/
https://www.w3.org/TR/rdf-canon/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://www.w3.org/community/reports/credentials/CG-FINAL-rdf-dataset-canonicalization-20221009/
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://w3c-ccg.github.io/did-method-web/
https://www.w3.org/TR/vc-use-cases/
https://w3c.github.io/vc-imp-guide/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/2023/WD-vc-data-integrity-20230305/
https://www.w3.org/TR/vc-data-model/
https://w3c-ccg.github.io/did-method-key/
https://www.w3.org/TR/did-spec-registries/#did-methods
https://www.w3.org/TR/did-spec-registries/#did-methods
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/did-method-spec.md
https://github.com/decentralized-identity/ethr-did-resolver/blob/master/doc/did-method-spec.md
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange/README.md
https://github.com/hyperledger/aries-rfcs/tree/main/features/0023-did-exchange/README.md

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

What is more, information on how to properly combine the dif-
ferent standards is also very limited: Each specification focuses
on their domain of interest with little considerations of the other
layers of Tab. 1, resulting in the fragmentation of specifications.
While this layered thinking is commonplace in software engineer-
ing, problems may arise from a security perspective. For example
the DIDComm guide2 claims there are no possible interception
attacks on DIDComm by a man-in-the-middle; but that claim as-
sumes that communication is always between two honest agents,
which is well-known by security experts not to be a realistic threat
model. They seem not to consider cases, commonplace on the Web,
where dishonest agents may actively assume roles in one session of
a protocol in order to compromise other sessions involving honest
agents only.

That being said, the specifications including DIDComm [13] and
the W3C VC data model [34] provide tools that indeed can be used
to create secure and privacy-preserving applications, if assembled
correctly. However, we should ensure that, when combining these
standards, mistakes that compromise security are avoided.

B HYPERLEDGER ARIES PROTOCOLS
DIAGRAMS

Figures 4, 5, 6 illustrate the protocols outlined in 4.1.

Requester Responder

request

response

complete

msc

Figure 4: Aries RFC 0023:
DID Exchange 1.0

Holder Issuer

request-credential

issue-credential

msc

Figure 5: Aries RFC 0036:
Issue Credential 1.0

Holder Verifier

request-presentation

presentation

msc

Figure 6: Aries RFC 0454:
Present Proof 2.0

C FORMAL DEFINITION PROTOCOL ROLES,
AND ELABORATION

We provide 𝜋-calculus specification of protocol roles, illustrated
by Figure 2. Table 3 presents a formal model of the honest agents
in roles in the protocol for issuing a VC. Table 4 presents a formal
model of the honest agents in the protocol for provenance, making
use of using a VP presenting a VC.

2https://didcomm.org/book/v2/mitm

These process definitions are used in the Proverif and DeepSec
specifications of secrecy, agreement and unlinkability properties
verified. They are assembled in various network configurations
to investigate the impact of the various forms of threat model
described throughout Sec. 5.2 and Table 2.

C.1 Security-critical parameters marked
currently as optional in specifications

We elaborate here further on weaknesses of the layer cake of speci-
fications. According to the W3C recommendation on the VC data
integrity draft [33], including the domain, e.g., the receiving agent
or a Web domain to authenticate with, is optional. Moreover, the
function or meaning of domain is not explained in the VC spec-
ification [34] which may lead implementors to just skip over a
seemingly unimportant element. In doing so, however, authenti-
cation protocols are prone to replay attacks (see row 6 of Table 2),
with respect to a standard network threat model where sessions
involving compromised agents should not impact the security prop-
erties of sessions involving honest agents only. The relevance of
this threat, illustrated in https://anonymous.4open.science/r/ssi-
protocol-verify/PlainVCs/doc/msc-mitm-attack.pdf, is explained
next. A holder, e.g., a student wants to authenticate to Eve, e.g., for
some student discount at some online shop. In the authentication
process, Eve also authenticates to the holder; the holder knows
that they are communicating with Eve and present to them a Ver-
ifiable Presentation (VP) of the student credential. This process
may even complete successfully and the student may even receive
their student discount. During this authentication process, however,
Eve starts a second authentication process with another verifier,
e.g., a university to prove that she is a student, except she is not.
Eve replays content of transmitted messages from the university
to the student and vice versa. For example, Eve is able to replay
the challenge nonce nc from the university to the holder. Subse-
quently, this nonce is included in the presentation of the student VC
and signed by the holder. After receiving this presentation, Eve re-
plays this presentation to the university. With the matching nonce
and the signature of the holder on this VP, the university may be
tempted to believe that they were communication with the holder
the whole time, except they were communicating with Eve posing
as the actual holder.

Similarly, to the domain, the challenge is not optional (see row
7 of Table 2). Suppose a holder, e.g., a student wants to authenticate
to their university, e.g., to get access to online course material. The
student signs a VP and authenticates to the university using it. If this
VP is leaked, e.g., because the log files of the universitywere exposed
(line 192 in the code in row 7 of Table 2), and the protocol does
not include a challenge in the VP, any agent in possession of that
student’s VP is able to authenticate to the university as the student.
This is because the VP is not tied to a particular communication
session via a challenge.

C.2 Novel multi-party authentication property
Most definitions explored, such as forward secrecy and 2-party (in-
jective) agreement are formulated in a reasonably standard way in
the repository. For agreement, the invariant that must hold in every
trace is that an occurrence of an event listing messages used by the

10

https://didcomm.org/book/v2/mitm
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/doc/msc-mitm-attack.pdf
https://anonymous.4open.science/r/ssi-protocol-verify/PlainVCs/doc/msc-mitm-attack.pdf

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 3: Processes in the 𝜋-calculus for the issuance phase.

Holder (𝑃, 𝑠𝑘𝑃 , 𝐼 , 𝑝𝑘𝐼 ,𝑉 , 𝑝𝑘𝑉) Issuer (𝐼 , 𝑠𝑘𝐼 , 𝑎𝑡𝑡𝑟, 𝑃, 𝑝𝑘𝑃)
new 𝑠𝑠𝑘𝑃𝐼 , 𝑛𝑝 , 𝑛ℎ ;
let𝑚′

0 := (𝑛𝑝 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝐼)) in
let𝑚0 := {(𝑚′

0, sig(𝑚
′
0, 𝑠𝑠𝑘𝑃𝐼))}𝑝𝑘𝐼 in

ch(𝑚0);
ch(𝑚1);
let ((𝑛′𝑝 , 𝑛𝑖 , 𝑠𝑝𝑘𝐼), s1) := adec(𝑚1, 𝑠𝑠𝑘𝑃𝐼) in
if check((𝑛′𝑝 , 𝑛𝑖 , 𝑠𝑝𝑘𝐼), s1, 𝑝𝑘𝐼) then
if 𝑛′𝑝 = 𝑛𝑝 then
let𝑚′

2 := ((𝑛𝑖 , 𝑃, 𝐼 , 𝑛ℎ), sig((𝑛𝑖 , 𝑃, 𝐼 , 𝑛ℎ), 𝑠𝑘𝑃)) in
let𝑚2 := {(𝑚′

2, sig(𝑚
′
2, 𝑠𝑠𝑘𝑃𝐼))}𝑠𝑝𝑘𝐼 in

ch(𝑚2);
ch(𝑚3);
let (((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), 𝑠𝐻), s3) := adec(𝑚3, 𝑠𝑠𝑘𝑃𝐼) in
if check(((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), 𝑠𝐻)s3, 𝑠𝑝𝑘𝐼) then
if check((((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼), 𝑃 ′′, 𝑛′ℎ), s𝐻 , 𝑠𝑝𝑘𝐼) then
if check((𝑃 ′, 𝑎𝑡𝑡𝑟, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if (𝑃 ′, 𝐼 ′, 𝑃 ′′𝑛′

ℎ
) = (𝑃, 𝐼, 𝑃, 𝑛ℎ) then

!𝑃𝑟𝑜𝑣𝑒𝑟 (𝑃, 𝑠𝑘𝑃 ,VC,𝑉 , 𝑝𝑘𝑉)

new 𝑠𝑠𝑘𝐼 , 𝑛𝑖 ;
ch(𝑚0);
let ((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝐼), s0) := adec(𝑚0, 𝑠𝑘𝐼) in
if check((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝐼), s0, 𝑠𝑝𝑘𝑃𝐼) then
let𝑚′

1 := (𝑛𝑝 , 𝑛𝑖 , 𝑝𝑘 (𝑠𝑠𝑘𝐼)) in
let𝑚1 := {(𝑚′

1, sig(𝑚
′
1, 𝑠𝑘𝐼))}𝑠𝑝𝑘𝑃𝐼 in

ch(𝑚1);
ch(𝑚2);
let (((𝑛′

𝑖
, 𝑃 ′, 𝐼 ′, 𝑛ℎ), s𝑃), s2) := adec(𝑚2, 𝑠𝑠𝑘𝐼) in

if check(((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′, 𝑛ℎ), s𝑃), s2, 𝑠𝑝𝑘𝑃𝐼) then

if check((𝑛′
𝑖
, 𝑃 ′, 𝐼 ′), s𝑃 , 𝑝𝑘𝑃) then

if (𝑛′
𝑖
, 𝑃 ′, 𝐼 ′) = (𝑛𝑖 , 𝑃, 𝐼) then

let claims := (𝑃, attr, 𝐼) in
let VC := (claims, sig(claims, 𝑠𝑘𝐼)) in
let𝑚′

3 := ((VC, 𝑃, 𝑛𝐻), sig((VC, 𝑃, 𝑛𝐻), 𝑠𝑘𝐼)) in
let𝑚3 := {(𝑚′

3, sig(𝑚
′
3, 𝑠𝑠𝑘𝐼))}𝑠𝑝𝑘𝑃𝐼 in

ch(𝑚3);

Table 4: Processes in the 𝜋-calculus for the provenance phase.

Prover (𝑃, 𝑠𝑘𝑃 ,VC,𝑉 , 𝑝𝑘𝑉) Verifier (𝑉 , 𝑠𝑘𝑉 , RULE, 𝑝𝑘𝑃 , 𝑝𝑘𝐼 ,URI)
new 𝑠𝑠𝑘𝑃𝑉 , 𝑛𝑝 ;
let𝑚′

4 := (𝑛𝑝 , 𝑝𝑘 (𝑠𝑠𝑘𝑃𝑉)) in
let𝑚4 := {(𝑚′

4, sig(𝑚
′
4, 𝑠𝑠𝑘𝑃𝑉))}𝑝𝑘𝑉 in

ch(𝑚4);
ch(𝑚5);
let ((𝑛′𝑝 , 𝑛𝑣, 𝑠𝑝𝑘𝑉), s5) := adec(𝑚5, 𝑠𝑠𝑘𝑃𝑉) in
if check((𝑛′𝑝 , 𝑛𝑣, 𝑠𝑝𝑘𝑉), s5, 𝑝𝑘𝑉) then
if 𝑛′𝑝 := 𝑛𝑝 then
let𝑚′

6 := (𝑛𝑣,URI) in
let𝑚6 := {(𝑚′

6, sig(𝑚
′
6, 𝑠𝑠𝑘𝑃𝑉))}𝑠𝑝𝑘𝑉 in

ch(𝑚6)
ch(𝑚7);
let ((𝑛𝑐 , RULE), s7) := adec(𝑚7, 𝑠𝑠𝑘𝑃𝑉) in
if check((𝑛𝑐 , RULE), s7, 𝑠𝑝𝑘𝑉) then
let (claims, s𝐼) := VC in
if claims = RULE then
let VP := ((VC, 𝑛𝑐 ,𝑉), sig((VC, 𝑛𝑐 ,𝑉), 𝑠𝑘𝑃)) in
let𝑚8 := {VP, sig(VP, 𝑠𝑠𝑘𝑃𝑉)}𝑠𝑝𝑘𝑉 in
ch(𝑚8)
ch(𝑚9)
let ((tkn, stkn), s9) := (adec(𝑚9, 𝑠𝑠𝑘), 𝑠𝑝𝑘𝑉) in
if check((tkn, stkn), s9, 𝑠𝑝𝑘𝑉) then
if check(tkn, stkn, 𝑝𝑘𝑉) then

new 𝑠𝑠𝑘𝑉 , 𝑛𝑖 , 𝑛𝑐 , tkn;
ch(𝑚4);
let ((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝑉), s4) := adec(𝑚4, 𝑠𝑘𝑉) in
if check((𝑛𝑝 , 𝑠𝑝𝑘𝑃𝑉), s4, 𝑠𝑝𝑘𝑃𝑉) in
let𝑚′

5 := (𝑛𝑝 , 𝑛𝑣, 𝑝𝑘 (𝑠𝑠𝑘𝑉)) in
let𝑚5 := {(𝑚′

5, sig(𝑚
′
5, 𝑠𝑘𝑉))}𝑠𝑝𝑘𝑃𝑉 in

ch(𝑚5);
ch(𝑚6);
let ((𝑛′𝑣, 𝑢𝑟𝑖′), s6) := adec(𝑚6, 𝑠𝑠𝑘𝑉) in
if check((𝑛′𝑣, 𝑢𝑟𝑖′), s6, 𝑠𝑝𝑘𝑃𝑉) then
if (𝑛′𝑣,URI ′) = (𝑛𝑣,URI) then
let𝑚′

7 := (𝑛𝑐 , RULE) in
let𝑚7 := {(𝑚′

7, sig(𝑚
′
7, 𝑠𝑠𝑘𝑉))}𝑠𝑝𝑘𝑃𝑉 in

ch(𝑚7);
ch(𝑚8);
let (((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃), s8) := adec(𝑚8, 𝑠𝑠𝑘𝑉) in
if check(((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃), s8, 𝑠𝑝𝑘𝑃𝑉) then
if check((((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼), 𝑛′𝑐 ,𝑉 ′), s𝑃 , 𝑝𝑘𝑃) then
if check((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), s𝐼 , 𝑝𝑘𝐼) then
if ((𝑃 ′, 𝑎𝑡𝑡𝑟 ′, 𝐼 ′), 𝑛′𝑐 ,𝑉 ′) = ((𝑃, 𝑎𝑡𝑡𝑟, 𝐼), 𝑛𝑐 ,𝑉) then
let𝑚′

9 := (tkn, sig(tkn, 𝑠𝑘𝑉)) in
let𝑚9 := {sig(𝑚′

9, 𝑠𝑠𝑘𝑉)}𝑠𝑝𝑘𝑃𝑉 in
ch(𝑚9);

agent performing the authentication implies the existence of an
event listing all the messages sent by the agent being authenticated
and all those messages match. Forward secrecy is modelled as two
phases, (1) before a data breach where sessions run as normal, (2)
after a data breach when the private keys of agents are revealed

and where sessions continue to run, but secrecy is only asserted
about sessions that completed during phase 1.

We explain in more detail the more novel property of multi-party
agreement. As explained in Sec. 5.2 the novel insight is that multi-
party authentication helps to explain some SSI design decisions that
secrecy and two-party authentication properties miss. In particular,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

if the holder does not checkwhether the signature of a VC it is issued
matches that of the issuer, then there are reissuing attacks (line 8
Tab. 2). Besides the ProVerif code defining the attack vector under
which this attack exists, the attack vectors is illustrated as anMSC in
the repository: see https://anonymous.4open.science/api/repo/ssi-
protocol-verify/file/PlainVCs/doc/msc-njagreement-attack.pdf.

Multi-party agreement is modelled by inserting three events in
the protocol specification, explained in the following passage. As
suggested by the name auth_VerifierCompletesProtocol, this
event appears after the last action of the Verifier, and is parmeterised
on the messages 𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 in Tab. 4. Notice the Verifier
only makes assertions about the messages that it sends and receives.
Also the message𝑚9 is excluded that the Verifier sends out without
expecting a response, and hence there is no way to check whether
it is received correctly.

The other events auth_IssuerSendsLastMessageToHolder and
auth_ProverSendsLastMessageToVerifierInProtocolFull ap-
pear immediately before the last message sent by the Issuer and
Prover respectively to ensure that they are enabled when their final
message is sent (any subsequent inputs after the last output can
be ignored by the same argument for excluding𝑚9 in the event
above). The event associated with the Prover is parameterised on
messages labelled𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 in Tab. 3 and
Tab. 4. The definition of Prover is extended for this property such
that messages𝑚0,𝑚1,𝑚2,𝑚4 are passed as parameters to the Prover,
in order to remember the messages that were exchanged by the
Holder process during the issuance phase of the protocol, so they
may be asserted in the relevant event. The event associated with
the Issuer is parameterised on its messages𝑚0,𝑚1,𝑚2,𝑚3 in Tab. 3.

The authentication query (an invariant that must hold along any
execution path of the protocol) is expressed in Fig. 7. The messages
determined by the Verifier are universally quantified, while the
messages that are not known to the Verifier and determined by
the Holder prior to it interacting with the verifier are existentially
quantified. Notice that although there is no interaction between
the Issuer and Verifier, it does ensure that the VC appearing inside
the message𝑚8 of the Verifier matches the VC inside the message
𝑚8 of the Prover, and hence matches the VC inside message𝑚3 of
the Holder preceding the Prover and hence matches the VC inside
message𝑚3 of the Issuer. Therefore, by transitivity, the verifier and
issuer indirectly agree on a specific VC.

C.3 Novel formulations of unlinkability
The novel formulations of unlinkability towards the issuer are also
formal contributions of this paper (lines 9, 10, 13 of Tab. 2). It is
commonplace when symbolically verifying protocols to express
unlinkability as an equivalence problem between a process mod-
elling an idealised system that is trivially unlinkable by definition
and another process modelling more realistic behaviours where the
same identities are used across multiple sessions.

To model the unlinkability of a VC protocol from the perspective
of an issuer, the first trick to get the trust model correct is to model
only honest Verifiers and Provers who interact, and to give the
Issuer full power as an attacker to manipulate sessions between
those honest participants. In particular this means that we assume
that the attacker has the private keys of the Issuer, as modelled

by the use of an open variable modelling the issuer’s private key.
If the Issuer were able to exploit the protocol to know whether
the Prover has used the same VC that the attacker issues in two
provenance sessions with the Verifier, then the issuer would be
able to exploit its position in the network to track the Prover. One
may place a counter argument that an Issuer will likely be “honest
but curious” and can be modelled with less capabilities than a
full Dolev-Yao attacker; yet, this argument is irrelevant since the
proofs goes through and hence, no matter how devious the issuer
is, they will be unable to track participants in honest sessions of
the provenance phase (without posing as a Verifier in the session
themselves of course). This is advantageous to the Issuer since, if
accused of abusing their knowledge to track the VCs they issue,
then that claim may be countered by arguing that the protocol
makes such tracking impossible even if a sophisticated and devious
attacker were to pose as an issuer.

In contrast to the secrecy and unlinkability problems, which
reason over infinitely many session, we restrict this analysis to
two sessions, so that the formulation of the problem is amenable
to the bounded equivalence checker DeepSec (this is a powerful
and reliable tool suited to such problems). An applied 𝜋-calculus
processes modelling the idealised and real-world scenarios that
should be equivalent appears in the relevant DeepSec file in the
repository. Both the idealised process and real-world process begin
with a preamble defining the secret keys of the honest provers
and verifiers as follows, and releasing the public keys (or DIDs
containing a public key) to the network.

new 𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1, 𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2, 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 ;
let 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1 = 𝑝𝑘 (𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1) in 𝑘𝑒𝑦 (𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1);
let 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2 = 𝑝𝑘 (𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2) in 𝑘𝑒𝑦 (𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2);
let 𝑝𝑘_𝑖𝑠𝑠𝑢𝑒𝑟 = 𝑝𝑘 (𝑠𝑘𝑖𝑠𝑠𝑢𝑒𝑟) in 𝑘𝑒𝑦 (𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟3);

The processes are then initiated consisting of three parallel threads.
In both the specification and real-world scenarios, there are two
parallel honest verifiers, who are prepared to engage in a session
with one of two honest provers which correspond to the public
keys advertised above. These verifiers are parameterised as follows.

𝑉𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 (𝐷𝐼𝐷_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟, 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟, 𝑎𝑡𝑡𝑟,
𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1, 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2, 𝑝𝑘_𝑖𝑠𝑠𝑢𝑒𝑟,𝑈𝑅𝐼)

The above is a mild variant of the Verifier processes defined in Tab. 4,
where the public keys of two provers 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1 and 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2
are both accepted by the Verifier when checking the signature on
the VP. Parameters such as𝑈𝑅𝐼 and 𝑎𝑡𝑡𝑟 are open variables, since
they may be known (and perhaps manipulated in some contexts)
by the attacker.

The system and real-world processes differ in how the honest
Holder is modified. Both begin as specified by the Holder process
in Tab. 3, parameterised such that the private key of the Holder
is 𝑝𝑘_𝑝𝑟𝑜𝑣𝑒𝑟1 defined above and such that is expects a public key
supplied by the attacker posing an an issuer. This models the holder
being prepared to receive a VC issued by an attacker. In the real
world, once the VC is issued, the Holder indeed continues much as
in Tab. 3 by starting two Prover sessions loaded with the VC that
has just been issued and the public keys of the honest verifier. This
models the Holder uses the same VC twice in different sessions, i.e.
an expected usage pattern.

12

https://anonymous.4open.science/api/repo/ssi-protocol-verify/file/PlainVCs/doc/msc-njagreement-attack.pdf
https://anonymous.4open.science/api/repo/ssi-protocol-verify/file/PlainVCs/doc/msc-njagreement-attack.pdf

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

SSI, from Specifications to Protocol? Formally verify security! WWW ’24, May 13–17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

∀𝑚4,𝑚5,𝑚6,𝑚7,𝑚8 .
𝑒𝑣𝑒𝑛𝑡 (auth_VerifierCompletesProtocol(𝑚4,𝑚5,𝑚6,𝑚7,𝑚8)) ⇒

∃𝑚0,𝑚1,𝑚2,𝑚3 .
𝑒𝑣𝑒𝑛𝑡 (auth_IssuerSendsLastMessageToHolder(𝑚0,𝑚1,𝑚2,𝑚3))
∧
𝑒𝑣𝑒𝑛𝑡 (auth_ProverSendsLastMessageToVerifierInProtocolFull(𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7,𝑚8))

Figure 7: Invariant expressing multi-party authentication by the Verifier of both the Prover and Issuer.

In the idealised process, the Holder process is modified such that,
having being issued a VC it starts two processes. Those processes
however employ two different fresh VCswith the relevant attributes
and issued by the attacker, rather than the VC that was just issued to
the Holder. If the attacker cannot distinguish this setup to the above
real-world usage pattern, then not only can it not tell whether or not
the same credential was used twice, but it also cannot tell whether
a particular credential was used at all. Furthermore, those fresh
VCs may instead be in the possession of another Prover (knowing
𝑠𝑘_𝑝𝑟𝑜𝑣𝑒𝑟2) and hence the identity of any prover involved in a
provenance session is also not revealed to the attacker making the
holder as well as the credential unlinkable from the perspective of
the issuers.

In order to strengthen the above model in the setting of anony-
mous credentials, the Verifier is dropped from the process modelling
the real and idealised worlds, and the variable 𝑠𝑘_𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑟 is turned
into an open free variable, indicating that the attacker may know
that variable (and also manipulate it, e.g., by making the secret key
of the Issuer and Verifier that the attacker controls the same). This

has the effect of assuming that the verifier may also be an attacker,
and furthermore the issuer and verifier may attempt to collude to
trace the holder of a credential. Our verification of that model in
DeepSec shows that anonymous credentials are not vulnerable to
attacks on unlinkability in the face of this threat.

An interesting observation is that, the holder checking the sig-
nature of an anonymous credential after issuance and before usage
in a provenance session is not as critical for authentication as it
is for regular VCs (in short, because zero-knowledge proofs never
reveal the anonymous credential itself, only a proof-of-possession
of the anonymous credential). Yet, the holder checking the signa-
ture and contents of an anonymous credential after issuance and
before usage is critical for unlinkability (in short, because an issuer
may attempt to inject unsolicited identifying information into the
attributes). The above explanations and discussions highlight that
this paper makes a novel contribution in terms of verification, as
well as applying appropriate established methodologies to evaluate
the security of VC protocols.

13

	Abstract
	1 Introduction
	2 Security methodologies and SSI
	3 Web standards as basic building blocks of an SSI protocol
	3.1 W3C Decentralised Identifiers (DID)
	3.2 W3C Verifiable Credential (VC) data model
	3.3 An example of authentication using VCs

	4 Constructing authentication protocols for SSI
	4.1 Potential protocol components
	4.2 A thus constructed authentication protocol
	4.3 Connecting protocol and specifications

	5 Trust, security and privacy, formally verified
	5.1 Trust assumptions necessary for SSI
	5.2 Results of security and privacy analysis

	6 Conclusion
	References
	A Examples of ambiguities in SSI specifications with security implications
	B Hyperledger Aries Protocols Diagrams
	C Formal definition protocol roles, and elaboration
	C.1 Security-critical parameters marked currently as optional in specifications
	C.2 Novel multi-party authentication property
	C.3 Novel formulations of unlinkability

